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ABSTRACT

Aerogels are low-density and highly porous materials (90–99% porosity) with
exceptional thermal and mechanical properties, governed by their intricate
nanoporous microstructure. Understanding their structure-property relationships
is essential for optimizing their performance across industrial applications. A sig-
nificant challenge appears in precisely identifying the complete pore space and
thus mapping their microstructural morphology of aerogels. This work presents a
deep learning-driven digital twin framework for aerogels, leveraging Conditional
Generative Adversarial Networks (cGANs) and Convolutional Neural Networks
(CNNs) for 3D microstructure reconstruction and predictive modeling. Our ap-
proach reconstructs 3D aerogel microstructures from synthetic 2D scanning elec-
tron microscopy (SEM) images that mimic real samples by incorporating depth
effects. A CNN predicts key microstructural parameters, including pore radius,
relative density, and pore size distribution, with minimal error. A 3D cGAN then
generates aerogel microstructures by capturing global spatial features and condi-
tioning on the extracted parameters.
We demonstrate that conditioning improves the fidelity of reconstruction by en-
forcing physically meaningful constraints. This method provides a scalable, data-
driven approach for microstructure modeling, enabling efficient structure-property
predictions, and guiding aerogel design for targeted applications.

1 INTRODUCTION

Aerogels are low-density, highly open-porous materials synthesized by drying and are characterized
by their unique nanostructured morphology and exceptional thermal properties. Rather than refer-
ring to a specific material, the term ”aerogel” encompasses a broad class of materials developed via
the sol-gel process, where the liquid phase is replaced by a gas through a controlled drying process.
This transformation retains the original shape and volume while producing a highly porous struc-
ture with upto 99.98% porosity (Kistler, 1931). Due to their extremely low thermal conductivity,
low bulk densities, and high surface area, aerogels are widely used in aerospace, automotive, and
insulation applications. Their macroscopic properties are predominantly governed by their intricate
nanoporous microstructure, making precise microstructure characterization essential for material
optimization (Rege, 2023).

Despite their promising applications, establishing accurate structure-property relationships for aero-
gels remains a significant challenge due to their stochastic gelation process and complex pore mor-
phology. One critical aspect of aerogel characterization is the precise estimation of pore size distri-
bution, which directly influences key material properties such as thermal conductivity, mechanical
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strength, and adsorption capacity. However, due to aerogels’ hierarchical and highly porous nature,
obtaining reliable pore size measurements is nontrivial.

Experimental techniques for 3D characterization such as X-ray computed tomography (CT) face
limitations when applied to aerogels due to their poor resolution in the mesosporous region (2-50
nm), making it difficult to capture fine structural details (Tannert et al., 2017). While CT is ef-
fective for materials with larger and well-defined features, its inability to resolve pores below 50
nm leads to incomplete or inaccurate microstructural reconstructions of aerogels. Similarly, gas
adsorption-based porosimetry methods, such as the Brunauer-Emmett-Teller (BET) and Barrett-
Joyner-Halenda (BJH) methods, rely on simplified cylindrical pore models and assume uniform
pore geometries. These assumptions often fail for aerogels, where pore shapes remain highly irreg-
ular, interconnected, and exhibit multi-scale heterogeneity. Furthermore, these techniques primarily
estimate pore sizes based on adsorption-desorption isotherms, which can overlook macropores and
inter-particle voids, leading to significant discrepancies when compared to direct imaging techniques
such as SEM and transmission electron microscopy (TEM) (Horvat et al., 2022). Although SEM
and TEM allow for direct visualization of the aerogel microstructure, these techniques are limited to
two-dimensional projections. Consequently, they do not adequately capture the three-dimensional
connectivity and interconnectivity of the pore network. It remains to be seen if more advanced tech-
niques such as electron tomography in the so-called advanced mode can be applied to investigate
diverse aerogels, as preliminary reports on silica aerogels have been promising (Roiban et al., 2016).

Figure 1: Hierarchy diagram that depicts the flow from the 2D and 3D datasets to the generated 3D
microstructure

One potential approach to addressing these challenges is leveraging generative adversarial networks
(GANs) to develop a mesoscopic digital twin for aerogels. Specifically, we explore the applica-
tion of a conditional GAN (cGAN) for reconstructing 3D aerogel microstructures from a batch of
2D microstructure images. By incorporating convolutional neural networks (CNNs) to predict key
structural parameters—such as pore radius, relative density, and pore size distribution—our frame-
work aims to enable accurate structure-property predictions in a data-driven manner. Prior works
have demonstrated the use of GANs for 3D microstructure reconstruction (Hsu et al., 2020; Kench
& Cooper, 2021; Li et al., 2023); however, a key limitation of these approaches is the stochastic
nature of their outputs, which can lead to variability in generated microstructures and hinder con-
sistency in reconstruction fidelity. By conditioning the generative model on morphological features,
our approach ensures that the generated 3D microstructures preserve essential physical characteris-
tics. Other studies have applied similar microstructure conditioning techniques (Iyer et al., 2019);
however, these efforts were confined to aligning the material with the processing parameters.

While physics-based simulations such as diffusion-limited cluster cluster aggregation (DLCA) or
coarse-grained molecular dynamics can model microstructural formation, they can become compu-
tationally intensive—especially when the underlying physics includes fine-grained interaction po-
tentials or time-resolved aggregation behavior. These methods are typically not well-suited for in-
verse design tasks or rapid sampling of diverse yet morphology-consistent structures across a param-
eter space. The proposed framework, in contrast, provides a scalable and energy-efficient alternative
to traditional experimental characterization techniques and simulation-heavy approaches, offering a
practical route toward generative microstructure modeling with structural fidelity. Figure 1 presents
a schematic representation of the workflow.
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2 METHODS

2.1 MICROSTRUCTURE DATA GENERATION

To provide sufficient training data, the CNN and the cGAN were both trained on microstructures
produced using the diffusion-limited cluster-cluster aggregation (DLCA). The DLCA algorithm is
well-established in the literature for accurately simulating the structural features and the kinetic
characteristics involved in the formation of certain aerogels, such as silica aerogels (Abdusalamov
et al., 2021). Furthermore, the structures derived from this algorithm can be easily processed to
ascertain properties such as porosity, pore size distribution, and the pore network associated with
the specified aerogel. The microstructure dataset was generated using the DLCA algorithm with
particle radii between 2–7 nm, relative densities of 0.04–0.1, and a domain size of 300 nm. The
DLCA model outputs particle coordinates, which are voxelized based on their radii to construct
the final image array. This voxelization process generates a three-dimensional array with a prede-
fined resolution (1283) based on the domain size, particle coordinates, and their respective radii.
Within this 3D array, each voxel is assigned a value of 1 if occupied by a particle and 0 if left un-
occupied, resulting in the formation of a 3D binary image representation of the aerogel structure at
the specified resolution. To generate a training dataset for the CNN while mitigating the resource-
intensive nature of acquiring large-scale SEM images, we synthesize 2D SEM-like images from 3D
microstructures. We utilize PORESPY visualization module (Gostick et al., 2019) to generate the
image dataset. For a 3D binary structure of size 1283, we apply a stacking factor of 8, producing 16
SEM-like grayscale images per sample. These synthesized images retain depth information, closely
resembling experimentally acquired SEM images.

2.2 DEEP LEARNING FRAMEWORK

2.2.1 CNN MODEL AND TRAINING

To efficiently predict 3D structural features from 2D SEM-like images, we adopt a lightweight CNN
architecture instead of computationally expensive models like U-Net, which would consume signif-
icant memory from the 3D cGAN. As a baseline, we extend the LeNet (LeCun et al., 1998) archi-
tecture by incorporating three convolutional layers interspersed with max pooling layers for feature
extraction and dimensionality reduction. The fully connected layers are modified for regression, pre-
dicting key structural parameters such as pore radius, relative density, and pore size distribution. For
training, synthetic 2D SEM-like images are preprocessed to enhance feature extraction. A dataset
class loads images and parses filenames to extract target values. The dataset is initially split into
80% training and 20% testing. The training set is further partitioned into 80% training and 20%
validation. The CNN is trained using mean squared error (MSE) loss with backpropagation, and the
performance is monitored on the validation set to ensure generalization. The trained CNN is then
used to condition the 3D cGAN, improving the fidelity of reconstructed aerogel microstructures.

2.3 CGAN MODEL

The baseline architecture is a Conditional Wasserstein Generative Adversarial Network (cWGAN),
comprising a generator and a discriminator conditioned on structural properties, specifically relative
density. The generator consists of six ConvTranspose3D layers with batch normalization and ReLU
activations, except for a sigmoid activation in the final layer. The one-hot encoded relative density
label is transformed via a linear layer to match the latent space before concatenation with the noise
vector. The discriminator mirrors the generator, employing Conv3D layers with instance normaliza-
tion and leaky ReLU activations. The relative density label is transformed into a 3D tensor (1283)
and is element-wise multiplied with the input before convolution. Wasserstein distance and gradient
norm statistics are monitored during training to ensure stability. We apply an adaptive binarization
to the generator’s output, which employs a sigmoid activation in its final layer. The binarization
threshold is set as the mean value µ of the generated volume G(z), where z is the input noise. Each
voxel vijk is then transformed as:

B(vijk) =

{
1, G(z)ijk ≥ µ

0, otherwise
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This ensures alignment with the binary training data while improving interpretability and structural
consistency.

3 RESULTS

Three CNNs were trained to predict key 3D microstructural properties—radius, relative density, and
pore size distribution mean (PSD mean)—from 2D slices. All models shared the same architecture
as previously described and were trained on a dataset comprising 2D stacked slices annotated with
corresponding global 3D properties. The CNNs mapped the 2D slice features during evaluation to
predict the global 3D properties, achieving prediction accuracy within an acceptable range for the
given dataset. The error distributions on the test set are visualized in histograms for each property.
For radius predictions (Figure 2a), the CNN achieved low errors, with a mean error of approximately
0.1, and the results were within 10% of the true values. Similarly, predictions for the mean pore size
distribution (PSD) (Figure 2b) exhibited slightly higher variance but remained within acceptable
bounds. The predictions for relative density (Figure 2c) also showed a small spread of errors.

(a) Radius errors (b) PSD mean errors (c) Relative density errors

Figure 2: Histograms of the MAE between predicted and ground truth values for (a) particle radius,
(b) mean pore size from the pore size distribution (PSD), and (c) relative density.

As a proof of concept, the cGAN was tested under a single conditioning parameter—the relative
density of the 3D microstructure, which was predicted by the CNN from the 2D SEM image. The
results demonstrated that the cGAN, when conditioned on a specific relative density, was able to
generate aerogel microstructures corresponding to the given condition.

The generated microstructures effectively captured the baseline connectivity and overall structure of
the aerogel. However, certain limitations were observed. The generator struggled to reproduce the
spherical morphology of particles seen in the dataset, resulting in irregularly shaped blobs instead
of well-defined spheres, which is also the case when reconstructing surfaces from CT scans. This
discrepancy suggests that while the learned representations preserve global structural features, they
may lack the granularity required to replicate fine morphological details seen in experimental sam-
ples. A more rigorous comparison with experimental datasets, such as reconstructed tomography
images, would help quantify these deviations and refine the fidelity of the generated microstruc-
tures. Figure 3 illustrates three such outputs from the trained cGAN when conditioned over the
relative density.

4 CONCLUSION

In this study, we introduced a conditional Generative Adversarial Network (cGAN) framework for
the generation of 3D aerogel microstructures conditioned on relative density. The effectiveness
of conditioning on relative density was demonstrated through the generation of 3D structures that
exhibit realistic connectivity and density-dependent variability. While the generated microstruc-
tures capture the fundamental structural features, challenges exist in accurately reproducing particle
shapes and sizes. Additionally, the cGAN framework has the potential to violate physical constraints
inherent to aerogel morphologies, such as geometric packing limitations and inter-particle interac-
tions, due to the model’s reliance on data-driven generation rather than explicit physical principles.
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This highlights the importance of carefully considering the training data and perhaps the need for
incorporating physical constraints into the cGAN model to ensure the generation of physically plau-
sible microstructures. This CGAn-based reconstruction approach, however, is not restricted to just
the relative density of the microstructures; it can be extended to other microstructural parameters,
such as pore size distribution and particle radius, as predicted by Convolutional Neural Networks
(CNNs). A natural progression of this work would involve utilising the generated microstructures
to predict material properties, such as thermal conductivity and mechanical characteristics, through
the integration of the cGAN framework with physics-based simulations or data-driven predictive
models. This work highlights the potential of deep learning-based generative models in advancing
the design and characterization of novel materials, offering a data-driven alternative to traditional
experimental methods.

Dataset, ρ = 0.03 Dataset, ρ = 0.06 Dataset, ρ = 0.09

Generated, ρ = 0.03 Generated, ρ = 0.06 Generated, ρ = 0.09

Figure 3: Comparison of 3D voxel structures (1283) at varying relative densities ρ. The top row
shows dataset samples, and the bottom row shows corresponding generated structures.
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