
GT-GAN: General Purpose Time Series Synthesis
with Generative Adversarial Networks

Jinsung Jeon
Yonsei University

jjsjjs0902@yonsei.ac.kr

Jeonghak Kim
Kakao Corp.

haggie.pro@kakaocorp.com

Haryong Song
Linger Studio Corp.

harong@lingercorp.com

Seunghyeon Cho
Yonsei University

seunghyeoncho@yonsei.ac.kr

Noseong Park
Yonsei University

noseong@yonsei.ac.kr

Abstract

Time series synthesis is an important research topic in the field of deep learning,
which can be used for data augmentation. Time series data types can be broadly
classified into regular or irregular. However, there are no existing generative
models that show good performance for both types without any model changes.
Therefore, we present a general purpose model capable of synthesizing regular
and irregular time series data. To our knowledge, we are the first designing a
general purpose time series synthesis model, which is one of the most challenging
settings for time series synthesis. To this end, we design a generative adversarial
network-based method, where many related techniques are carefully integrated into
a single framework, ranging from neural ordinary/controlled differential equations
to continuous time-flow processes. Our method outperforms all existing methods.

1 Introduction

Time series data occurs frequently in real-world applications [Reinsel, 2003, Fu, 2011, Li et al., 2018,
Yu et al., 2018, Wu et al., 2019, Guo et al., 2019, Bai et al., 2019, Song et al., 2020, Huang et al., 2020a,
Ren et al., 2021, Tekin et al., 2021]. Among many tasks related to time series, synthesizing time series
data is one of the most important tasks because real-world time series data is frequently imbalanced
and/or insufficient. Since regular and irregular time series data have different characteristics, however,
different model designs had been adopted for them. Therefore, existing time series synthesis work
focuses on either regular or irregular time series synthesis [Yoon et al., 2019, Alaa et al., 2021]. To
our knowledge, there are no existing methods that work well for both types.

Regular time series means regularly sampled observations without any missing ones, and irregular
times series means that some observations are missing from time to time. Irregular time series is much
harder to process than regular time series. For instance, it is known that neural networks perform
better after transforming time series data into its frequency domain, i.e., the Fourier transform, and
some time series generative models use this approach [Alaa et al., 2021]. However, it is not easy to
observe pre-determined frequencies from highly irregular time series [Kidger et al., 2019]. However,
continuous-time models [Chen et al., 2018, Kidger et al., 2020, Brouwer et al., 2019] show good
performance in processing both regular and irregular time series. By resorting to them, we propose a
general purpose model that can synthesize both time series types without any model changes.

To achieve the goal, we design a sophisticated model which utilizes a diverse set of technologies,
ranging from generative adversarial networks (GANs [Goodfellow et al., 2014]), and autoencoders
(AEs) to neural ordinary differential equations (NODEs [Chen et al., 2018]), neural controlled differ-

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Encoder

real
or
fake

Wiener process

 AE GAN Log-density Synthesis

Decoder

Disc.Generator

Figure 1: The overall design of our method, GT-GAN. Each color means a separate workflow. The
autoencoder and the GAN share the workload to synthesize regular and irregular time series.

ential equations (NCDEs [Kidger et al., 2020]), and continuous time-flow processes (CTFPs [Deng
et al., 2020]), which reflects the difficulty of the problem.

Fig. 1 shows the overall design of our proposed method. One of the key points in our model design
is that we combine the adversarial training of GANs and the exact maximum likelihood training of
CTFPs into a single framework. However, the exact maximum likelihood training is applicable only
to invertible mapping functions whose input and output sizes are the same. Therefore, we design
an invertible generator, and adopt an autoencoder, on whose hidden space our GAN performs the
adversarial training.

Decoder
(GRU-ODE)

Figure 2: An example of sampling two irregular time se-
ries from a fake continuous path represented by an ordinary
differential equation (ODE). In other words, we solve ODE
problems to sample regular/irregular time series.

In other words, i) the hidden vector
size of the encoder is the same as the
noisy vector of the generator, ii) the
generator produces a set of fake hid-
den vectors, iii) the decoder converts
the set into a fake continuous path
(cf. Fig. 2), and iv) the discriminator
provides feedback after reading the
sampled fake sample. We note that
in the third step, a fake continuous
path is created by the decoder. There-
fore, we can sample any arbitrary reg-

ular/irregular time series sample from the fake path, which shows the flexibility in our method.

We conduct experiments with 4 datasets and 7 baselines. Since our method is able to support both the
regular and irregular time series synthesis, we test for both of them. Our method outperforms other
baselines in both environments. Our contributions can be summarized as follows:

1. We design a model based on various state-of-the-art deep learning technologies. Our method
is able to process any types of time series data, ranging from regular to irregular, without
any model changes.

2. Our experimental results and visualization prove the efficacy of the proposed model.
3. Since our task is one of the most challenging tasks for time series synthesis, the proposed

model architecture is carefully designed. Our ablation studies show that our proposed model
does not work well if any part is missing.

2 Related work and preliminaries

GANs are one of the most representative generative technology. Ever since the first introduction in its
seminal research paper, GANs have been adopted to main different domains. Recently, researchers
focused on their synthesis for time series data. Therefore, there have been proposed several GANs for
time series synthesis. C-RNN-GAN [Mogren, 2016] has a regular GAN framework that can be applied
to sequential data by using LSTM in its generator and discriminator. Recurrent Conditional GAN
(RCGAN [Esteban et al., 2017]) took a similar approach except that its generator and discriminator
take conditional input for better synthesis. WaveNet [van den Oord et al., 2016] also generates time
series data from the conditional probability of previous data by using the dilated casual convolution.

2

Encoder
 Decoder

Discriminator

Invertible Generator

real
or
fake

 AE GAN Log-density Synthesis

Wiener process

Figure 3: The detailed architecture of our proposed method. Neural CDEs (or NCDEs) are a recent
breakthrough for processing time series. GRU-ODEs are a continuous interpretation of gated recurrent
units (GRUs) based on NODEs. CTFPs are a flow-based concept to convert an input time series
process into a target process. CTFPs are not a GAN-based concept but we integrate them into our
framework, considering the challenging nature of the general purpose time series synthesis.

WaveGAN [Donahue et al., 2019] has a similar approach with DCGAN [Radford et al., 2016], where
its generator is based on WaveNet. We can modify the teacher-forcing (T-Forcing [Graves, 2014])
and professor-forcing (P-Forcing [Lamb et al., 2016]) models to generate time series data from noise
vectors, although they are not GAN models, by using the forecasting characteristic of those models.

TimeGAN [Yoon et al., 2019] is yet another model for time series synthesis. This model aims mainly
at synthesizing fake regular time series samples. They proposed a framework where the adversarial
training of GANs and the supervised training of predicting xi+1 from xi, where xi and xi+1 mean
two multivariate time series values at time ti and ti+1, respectively.

3 Proposed method

In this section, we describe our design. Since our general purpose time series synthesis is a challenging
task, the proposed design is much more complicated than other baselines.

3.1 Overall workflow

We first describe the overall workflow in our model design, which consists of several different data
paths (and several different training methods based on the data paths) as follows:

1. Autoencoder path: Given an time series sample {(ti,xreal
i)}Ni=0, the encoder produces

a set of hidden vectors {hreal
i }Ni=0. The decoder recovers a continuous path X̂real,

which enhances the flexibility of our proposed method. From the path X̂real, we sam-
ple {(ti, x̂real

i)}Ni=0. We train the encoder and the decoder using the standard autoencoder
(AE) loss to match xreal

i and x̂real
i for all i.

2. Adversarial path: Given a set of noisy vectors {zi}Ni=0, our generator produces a set of
fake hidden vectors {hfake

i }Ni=0. The decoder recovers a fake continuous path X̂fake from
{hfake

i }Ni=0. We sample {(tj ,xfake
j)}Mj=0 from X̂fake and feed it into the discriminator.

For irregular time series synthesis, we sample tj in [0, T]. We train the generator, the
decoder, and the discriminator using the standard adversarial loss.

3. Log-density path: Given a set of hidden vectors {hreal
i }Ni=0 for an time series sample

{(ti,xreal
i)}Ni=0, the inverse path of the generator reproduces a set of noisy vectors {ẑi}Ni=0.

We feed {ẑi}Ni=0 into its forward path again to reproduce {ĥreal
i }Ni=0, where ĥreal

i = hreal
i

for all i. During the forward pass, we calculate the negative log probability of− log p(ĥreal
i)

for all i with the change of variable theorem and minimize it for training, being inspired
by Grover et al. [2018] and Deng et al. [2020].

In particular, we note that the dimensionality of the hidden space in the autoencoder is the same as
that of the latent input space of the generator, i.e., dim(h) = dim(z). This is needed for the exact
likelihood training in the generator — the change of variable theorem requires that the input and

3

output sizes are the same to estimate the exact likelihood. In addition to it, we let the autoencoder
and the generator share the workload to synthesize fake time series by combining them into a
single framework, i.e., the generator synthesizes fake hidden vectors and the decoder reproduces
human-readable fake time series from them.

3.2 Autoencoder

Encoder General NCDEs, which are considered as a continuous analogue to recurrent neural
networks (RNNs), are defined as follows:

h(ti+1) = h(ti) +

∫ ti+1

ti

f(h(t); θf)dX(t)

= h(ti) +

∫ ti+1

ti

f(h(t); θf)
dX(t)

dt
dt,

(1)

whereX(t) is a continuous path created from a raw discrete time series sample {(ti,xreal
i)}Ni=0 by an

interpolation algorithm — we note that X(ti) = (ti,x
real
i) for all i, and for other non-observed time-

points the interpolation algorithm fills out values. Note that NCDEs keep reading the time-derivative
of X(t), denoted Ẋ(t)

def
= dX(t)

dt . In our case, we collect {hreal
i }Ni=0 as follows:

hreal
i+1 = hreal

i +

∫ ti+1

ti

f(h(t); θf)
dX(t)

dt
dt, (2)

where hreal
0 = FCdim(x)→dim(h)(x

real
0) and FCinput_size→output_size is a fully-connected layer with

specific input and output sizes. We refer to Appendix B for the ODE function f definition.

Therefore, the input time series {(ti,xreal
i)}Ni=0 is represented by a set of hidden vectors

{(ti,hreal
i)}Ni=0. Because NCDEs are a continuous analogue to RNNs, it shows the best fit to

processing irregular time series [Kidger et al., 2020].

Decoder Our decoder, which reproduces a time series from its hidden representations, is based on
GRU-ODEs [Brouwer et al., 2019] and is defined as follows:

d̄(ti+1) = d(ti) +

∫ ti+1

ti

g(d(t), t; θg)dt, (3)

d(ti+1) = GRU(hi+1, d̄(ti+1)), (4)
(ti+1, x̂i+1) = (ti+1, FCdim(d)→dim(x)(d(ti+1))), (5)

where d(t0) = FCdim(h)→dim(d)(h0) and hi means either the i-th real or fake hidden vector, i.e.,
hreal
i or hfake

i — recall that in Fig. 3, the decoder is involved in both the autoencoder and the
synthesis processes. x̂ means a reproduced copy of x. GRU-ODEs uses the technology called neural
ordinary differential equations (NODEs) to continuously interpret GRUs and we refer to Appendix B
for the ODE function g definition.

In particular, the gated recurrent unit (GRU) at Eq. (4) is called as jump which is known to be effective
in processing time series with NODEs [Brouwer et al., 2019, Jia and Benson, 2019]. We train the
encoder-decoder using the standard reconstruction loss between xreal

i and x̂real
i for all i in all training

time series samples.

3.3 Generative adversarial network

Generator Whereas generators typically read a noisy vector to generate a fake sample in standard
GANs, our generator reads a continuous path (or time series) sampled from a Wiener process to
generate a fake time series sample — this generation concept is known as continuous time flow
processes (CTFPs [Deng et al., 2020]). Appendix. B.3 shows an example of our generation process.
The input to our generation process is a random path sampled from a Wiener process, which is
represented by a time series of latent vectors {(ti, zi)}Ni=0 in the path, and the output is a path
of hidden vectors which is also represented by a time series of hidden vectors {(ti,hfake

i)}Ni=0.

4

Therefore, our generator can be written as follows:

hfake
i = wi(1) = wi(0) +

∫ 1

0

r(wi(τ), ai(t), t; θr)dτ, (6)

where wi(0) = zi, ai(0) = ti. Here, τ means a virtual time variable of the integral problem, and ti
is a real physical time contained in a time series sample {(ti,xreal

i)}Mi=0. We note that this design
corresponds to a NODE model augmented with ai(t). We refer to Appendix B for the ODE function
r definition.

Owing to the invertible nature of NODEs, we can calculate the exact log-density of hreal
i , i.e., the

probability that hreal
i is generated by the generator, using the change of variable theorem and the

Hutchinson’s stochastic trace estimator as follows [Grathwohl et al., 2019, Deng et al., 2020]:

ŵ(0) = hreal
i +

∫ 0

1

r(w(τ), ai(τ), t; θr)dτ, (7)

log Pr(ĥreal
i) = log Pr(ŵ(0))

+

∫ 1

0

tr
(∂r(w(τ), ai(τ), t; θr)

∂w(τ)

)
dτ,

(8)

where ŵ(0) means ẑreali in Fig. 3. ĥreal
i means a reproduced copy of hreal

i by our generator. Eq. (7)
corresponds to “CTFP−1”, and Eqs. (6) and (8) to “CTFP” in Fig. 3. We note that in Eq. (7), the
integral time is reversed to solve the reverse-mode integral problem.

Therefore, we minimize the negative log-density, denoted − log Pr(ĥreal
i), for each ti, and our

generator is trained by the two different training paradigms: i) the adversarial training against the
discriminator, and ii) the maximum likelihood estimator (MLE) training with the log-density.

Discriminator We design our discriminator based on the GRU-ODE technology as follows:

c̄(ti+1) = c(ti) +

∫ ti+1

ti

q(c(t), t; θq)dt, (9)

c(ti+1) = GRU(xi+1, c̄(ti+1)), (10)

where c(t0) = FCdim(x)→dim(c)(x0), and xi means the i-th time series value, i.e., xreal
i or xfake

i .
The ODE function q has the same architecture as g but with its own parameters θq. After that, we
calculate the real or fake classification y = σ(FCdim(c)→2(c(tN))), where σ is a softmax activation.

The role of each part of our proposed model is in Appendix M.

3.4 Training method

We use the mean squared reconstruction loss, i.e., the mean of ‖xreal
i − x̂real

i ‖22 for all i, to train the
encoder-decoder architecture. Then, we use the standard GAN loss to train the generator and the
discriminator. In our preliminary experiments, we found that the original GAN loss is suitable for our
task. Instead of other variations, such as WGAN-GP [Gulrajani et al., 2017], therefore, we use the
standard GAN loss. We train our model in the following sequence:

1. We pre-train the encoder-decoder networks the reconstruction loss for KAE iterations.
2. After the above pre-training step, we start to jointly train all networks in the following

sequence for KJOINT iterations: i) training the encoder-decoder networks with the re-
construction loss, ii) training the discriminator-generator networks with the GAN loss, iii)
training the decoder to improve the discriminator’s classification output with the discrimina-
tor loss and iv) the generator with the MLE loss every PMLE iteration. We found that too
frequent MLE training incurs mode-collapse so we use it every PMLE iteration.

In particular, the 2-ii step to train the decoder to help the discriminator out is one additional point
where the autoencoder and the GAN are integrated into a single framework. In other words, the
generator should deceive both the decoder and the discriminator. Our training algorithm refer to
Appendix 1

5

The well-posedness1 of NCDEs and GRU-ODEs was already proved in Lyons et al. [2007, Theorem
1.3] and Brouwer et al. [2019] under the mild condition of the Lipschitz continuity. We show that
our NCDE layers are also well-posed problems. Almost all activations, such as ReLU, Leaky ReLU,
SoftPlus, Tanh, Sigmoid, ArcTan, and Softsign, have a Lipschitz constant of 1. Other common
neural network layers, such as dropout, batch normalization and other pooling methods, have explicit
Lipschitz constant values. Therefore, the Lipschitz continuity of ODE/CDE functions can be fulfilled
in our case. In other words, it is a well-posed training problem. As a result, our training algorithm
solves a well-posed problem so its training process is stable in practice.

4 Experimental evaluations

Our software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON 3.8.10,
PYTORCH 1.8.1, TENSORFLOW 2.5.0, CUDA 11.2, and NVIDIA Driver 417.22, i9 CPU, and
NVIDIA RTX 3090. The mean and variance of 10 runs are reported for model evaluation.

4.1 Experimental environments

Datasets We conduct experiments with 2 simulated and 2 real-world datasets. Sines has 5 features
where each feature is created with different frequencies and phases independently. For each feature,
i ∈ {1, ..., 5}, xi(t) = sin(2πfit + θi), wherefi ∼ U [0, 1] and θi ∼ U [−π, π]. MuJoCo is
multivariate physics simulation time series data with 14 features. Stocks is the Google stock price
data from 2004 to 2019. Each observation represents one day and has 6 features. Energy is a UCI
appliance energy prediction dataset with 28 values. To create the challenging irregular environments,
30, 50, 70% of observations from each time series sample {(ti,xreal

i)}Ni=0 is randomly dropped —
in other words, N decreases to 0.7N, 0.5N, 0.3N . Dropping random values has been mainly used to
create irregular time series environments in the literature [Kidger et al., 2019, Xu and Xie, 2020,
Huang et al., 2020b, Tang et al., 2020, Zhang et al., 2021, Jhin et al., 2021, Deng et al., 2021].
Therefore, we conduct experiments with both the regular and the irregular environments.

Baselines We consider the following baselines for the regular time series experiments: TimeGAN,
RCGAN, C-RNN-GAN, WaveGAN, WaveNet, T-Forcing, and P-Forcing. For the irregular experi-
ments, we exclude WaveGAN and WaveNet, which cannot handle irregular time series, and redesign
other baselines by replacing their GRU with GRU-4t and GRU-Decay (GRU-D) [Che et al., 2018].
GRU-4t and GRU-D are effective models for processing irregular time series data. GRU-4t addi-
tionally uses the time difference between observations as input. GRU-D is a modification of GRU-4t
to learnt exponential decays between observations. TimeGAN-4t, RCGAN-4t, C-RNN-GAN-4t,
T-Forcing-4t, and P-Forcing-4t (resp. TimeGAN-D, RCGAN-D, C-RNN-GAN-D, T-Forcing-D,
and P-Forcing-Decay) are modified with GRU-4t (resp. GRU-D) and can handle irregular data.

Our ablation studies also involve many advanced methods, based on NODEs, VAEs, flow models, and
so forth. We intentionally leave these advanced methods for our ablation studies since our proposed
method internally has them as sub-parts.

Evaluation metrics For quantitative evaluation of synthesized data, it is evaluated with the discrim-
inative score and the predictive score used in TimeGAN [Yoon et al., 2019]. The discriminative score
measures the similarity between the original data and the synthesized data. After learning a model
that classifies the original data and the synthesized data using a neural network, it is tested whether the
original data and the synthesized data are classified well. The discriminative score is |Accuracy-0.5|,
and if the score is low, classification is difficult, so the original data and the synthesized data are
decided to be similar. The predictive score measures the effectiveness of the synthesized data using
the train-synthesis-and-test-real (TSTR) method. After training a model that predicts the next step
using the synthesized data, the mean absolute error (MAE) is calculated between the predicted values
and the ground-truth values in test data. If the MAE is small, the model trained using the synthesized
data is decoded to be similar to the original data. For qualitative evaluation, the synthetic data is
visualized with the original data. There are two methods for visualization. One is to project original

1A well-posed problem means i) its solution uniquely exists, and ii) its solution continuously changes as
input data changes.

6

Table 1: Regular time series

Method Sines Stocks Energy MuJoCo
D

is
cr

im
in

at
iv

e
Sc

or
e GT-GAN .012±.014 .077±.031 .221±.068 .245±.029

TimeGAN .011±.008 .102±.021 .236±.012 .409±.028
RCGAN .022±.008 .196±.027 .336±.017 .436±.012

C-RNN-GAN .229±.040 .399±.028 .499±.001 .412±.095
T-Forcing .495±.001 .226±.035 .483±.004 .499±.000
P-Forcing .430±.227 .257±.026 .412±.006 .500±.000
WaveNet .158±.011 .232±.028 .397±.010 .385±.025

WaveGAN .277±.013 .217±.022 .363±.012 .357±.017

Pr
ed

ic
tiv

e
Sc

or
e

GT-GAN .097±.000 .040±.000 .312±.002 .055±.000
TimeGAN .093±.019 .038±.001 .273±.004 .082±.006
RCGAN .097±.001 .040±.001 .292±.005 .081±.003

C-RNN-GAN .127±.004 .038±.000 .483±.005 .055±.004
T-Forcing .150±.022 .038±.001 .315±.005 .142±.014
P-Forcing .116±.004 .043±.001 .303±.006 .102±.013
WaveNet .117±.008 .042±.001 .311±.005 .333±.004

WaveGAN .134±.013 .041±.001 .307±.007 .324±.006
Original .094±.001 .036±.001 .250±.003 .031±.003

Table 2: Irregular time series (30% dropped)

Method Sines Stocks Energy MuJoCo

D
is

cr
im

in
at

iv
e

Sc
or

e

GT-GAN .363±.063 .251±.097 .333±.063 .249±.035
TimeGAN-4t .494±.012 .463±.020 .448±.027 .471±.016
RCGAN-4t .499±.000 .436±.064 .500±.000 .500±.000

C-RNN-GAN -4t .500±.000 .500±.001 .500±.000 .500±.000
T-Forcing-4t .395±.063 .305±.002 .477±.011 .348±.041
P-Forcing-4t .344±.127 .341±.035 .500±.000 .493±.010
TimeGAN-D .496±.008 .411±.040 .479±.010 .463±.025
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .408±.087 .409±.051 .347±.046 .494±.004
P-Forcing-D .500±.000 .480±.060 .491±.020 .500±.000

Pr
ed

ic
tiv

e
Sc

or
e

GT-GAN .099±.004 .021±.003 .066±.001 .048±.001
TimeGAN-4t .145±.025 .087±.001 .375±.011 .118±.032
RCGAN-4t .144±.028 .181±.014 .351±.056 .433±.021

C-RNN-GAN-4t .754±.000 .091±.007 .500±.000 .447±.000
T-Forcing-4t .116±.002 .070±.013 .251±.000 .056±.001
P-Forcing-4t .102±.002 .083±.018 .255±.001 .089±.011
TimeGAN-D .192±.082 .105±.053 .248±.024 .098±.006
RCGAN-D .388±.113 .523±.020 .409±.020 .361±.073

C-RNN-GAN-D .664±.001 .345±.002 .440±.000 .457±.001
T-Forcing-D .100±.002 .027±.002 .090±.001 .100±.001
P-Forcing-D .154±.004 .079±.008 .147±.001 .173±.002

Original .071±.004 .011±.002 .045±.001 .041±.002

(a) Stocks (b) Energy

Figure 4: Visualizations and distributions of the regular time series synthesized by GT-GAN and
TimeGAN

and synthetic data in a two dimensional space using t-SNE [Van der Maaten and Hinton, 2008]. The
other one is the kernel density estimation to draw data distributions.

4.2 Experimental results

Regular time series synthesis In Table 1, we list the results of the regular time series synthesis.
GT-GAN shows better performance on most cases than TimeGAN, the previous state-of-the-art
model. As shown in the 1st row in Fig. 4, GT-GAN covers original data areas better than TimeGAN.
In addition, the 2nd row in Fig. 4 is the distributions of the fake data generated by GT-GAN and
TimeGAN. The synthesized data’s distributions from GT-GAN are more similar to those of the
original data than TimeGAN, which shows the efficacy of the explicit likelihood training of GT-GAN
against the implicit likelihood training of TimeGAN.

Irregular time series synthesis In Tables 2, 3, and 4, we list the results of the irregular time
series synthesis. GT-GAN shows better discriminative and predictive scores than other baselines
in all cases. In Table 2, where we drop random 30% of observations from each time series sample,
GT-GAN shows the best outcomes, outperforming TimeGAN by large margins. Baselines modified
with GRU-4t and those with GRU-Decay show comparable results and it is hard to say one is better
than the other in this table.

7

Table 3: Irregular time series (50% dropped)

Method Sines Stocks Energy MuJoCo

D
is

cr
im

in
at

iv
e

Sc
or

e
GT-GAN .372±.128 .265±.073 .317±.010 .270±.016

TimeGAN-4t .496±.008 .487±.019 .479±.020 .483±.023
RCGAN-4t .406±.165 .478±.049 .500±.000 .500±.000

C-RNN-GAN-4t .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing -4t .408±.137 .308±.010 .478±.011 .486±.005
P-Forcing-4t .428±.044 .388±.026 .498±.005 .491±.012
TimeGAN-D .500±.000 .477±.021 .473±.015 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .430±.101 .407±.034 .376±.046 .498±.001
P-Forcing-D .499±.000 .500±.000 .500±.000 .500±.000

Pr
ed

ic
tiv

e
Sc

or
e

GT-GAN .101±.010 .018±.002 .064±.001 .056±.003
TimeGAN-4t .123±.040 .058±.003 .501±.008 .402±.021
RCGAN-4t .142±.005 .094±.013 .391±.014 .277±.061

C-RNN-GAN-4t .741±.026 .089±.001 .500±.000 .448±.001
T-Forcing-4t .379±.029 .075±.032 .251±.000 .069±.002
P-Forcing-4t .120±.005 .067±.014 .263±.003 .189±.026
TimeGAN-D .169±.074 .254±.047 .339±.029 .375±.011
RCGAN-D .519±.046 .333±.044 .250±.010 .314±.023

C-RNN-GAN-D .754±.000 .273±.000 .438±.000 .479±.000
T-Forcing-D .104±.001 .038±.003 .090±.000 .113±.001
P-Forcing-D .190±.002 .089±.010 .198±.005 .207±.008

Original .071±.004 .011±.002 .045±.001 .041±.002

Table 4: Irregular time series (70% dropped)

Method Sines Stocks Energy MuJoCo

D
is

cr
im

in
at

iv
e

Sc
or

e

GT-GAN .278±.022 .230±.053 .325±.047 .275±.023
TimeGAN-4t .500±.000 .488±.009 .496±.008 .494±.009
RCGAN-4t .433±.142 .381±.086 .500±.000 .500±.000

C-RNN-GAN-4t .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-4t .374±.087 .365±.027 .468±.008 .428±.022
P-Forcing-4t .288±.047 .317±.019 .500±.000 .498±.003
TimeGAN-D .498±.006 .485±.022 .500±.000 .492±.009
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .436±.067 .404±.068 .336±.032 .493±.005
P-Forcing-D .500±.000 .449±.150 .494±.011 .499±.000

Pr
ed

ic
tiv

e
Sc

or
e

GT-GAN .088±.005 .020±.005 .076±.001 .051±.001
TimeGAN-4t .734±.000 .072±.000 .496±.000 .442±.000
RCGAN-4t .218±.072 .155±.009 .498±.000 .222±.041

C-RNN-GAN-4t .751±.014 .084±.002 .500±.000 .448±.001
T-Forcing-4t .113±.001 .070±.022 .251±.000 .053±.002
P-Forcing-4t .123±.004 .050±.002 .285±.006 .117±.034
TimeGAN-D .752±.001 .228±.000 .443±.000 .372±.089
RCGAN-D .404±.034 .441±.045 .349±.027 .420±.056

C-RNN-GAN-D .632±.001 .281±.019 .436±.000 .479±.001
T-Forcing-D .102±.001 .031±.002 .091±.000 .114±.003
P-Forcing-D .278±.045 .107±.009 .193±.006 .191±.005

Original .071±.004 .011±.002 .045±.001 .041±.002

(a) Stocks (b) Energy

Figure 5: Visualizations and distributions of the irregular time series (70% dropped) by GT-GAN,
T-Forcing-4t and T-Forcing-D

In Table 3 (50% dropped), many baselines do not show reasonable synthesis quality, e.g., TimeGAN-
D, TimeGAN-4t, RCGAN-D, C-RNN-GAN-D, and C-RNN-GAN-4t have a discriminative score
of 0.5. Surprisingly, T-Forcing-D, T-Forcing-4t, P-Forcing-D, and P-Forcing-4t work well in this
case. However, our model clearly shows the best performance in all datasets. Baselines modified
with GRU-4t show slightly better than them modified with GRU-Decay in this case.

Table 5: Ablation study for training options. Refer to Ap-
pendix E for other ablation studies with irregular time series.

Method (Regular) Sines Stocks Energy MuJoCo

D
is

c. GT-GAN .012 .077 .221 .245
w/o Eq. (8) .023 .159 .356 .278

w/o pre-training .046 .175 .312 .290

Pr
ed

. GT-GAN .097 .040 .312 .055
w/o Eq. (8) .097 .043 .315 .057

w/o pre-training .096 .038 .299 .052

Finally, Table 4 (70% dropped)
shows the results of the most chal-
lenging experiments in our paper. All
baselines do not work well because
of the high dropping rate. T-Forcing-
D, T-Forcing-4t, P-Forcing-D, and
P-Forcing-4t, which showed reason-
able performance with a dropping
rate no larger than 50%, do not work
well in this case. This shows that they are vulnerable to highly irregular time series data. Other
GAN-based baselines are vulnerable as well. Our method greatly outperforms all existing methods,
e.g., a discriminative score of 0.278 by GT-GAN vs. 0.436 by T-Forcing-D vs. 0.288 by P-Forcing-
4t for Sines, and a predictive score of 0.051 by GT-GAN vs. 0.114 by T-Forcing-D vs. 0.053 by
T-Forcing-4t for MuJoCo. Fig 5 visually compare our method and the best performing baseline for

8

Table 6: Ablation study for model architecture in MuJoCo.

Energy GT-GAN (w.o. AE) GT-GAN (Flow only) GT-GAN (AE only) GT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .500 .054 .467 .156 .495 .162 .249 .048
50% dropped .500 .064 .457 .111 .495 .162 .270 .056
70% dropped .500 .066 .455 .107 .496 .146 .275 .051

the dropping rate of 70% — figures for other dropping rates and data are in Appendix I and similar
patterns are observed in them.

Ablation & sensitivity analyses GT-GAN is characterized by the MLE training with the negative
log-density in Eq. (8), and the pre-training step of the encoder and decoder. Table 5 shows the results
of various GT-GAN modifications with some training mechanism removed. The model using the
negative log-density training shows better performance than the model not using it. That is, the MLE
training makes the synthetic data more like the real data. When the pre-trained autoencoder is not
used, the predictive score is better than GT-GAN. However, the discriminative score is the worst.

Figure 6: Visualization and distribution of Mu-
JoCo (70% dropped) by GT-GAN and Flow only

In Table 6, we alter the architecture for our model.
We modify our proposed GT-GAN model by re-
moving its sub-parts to create simpler ablation
models: i) In the first ablation model, we remove
the autoencoder and perform the adversarial train-
ing only with our generator and discriminator,
denoted “GT-GAN (w.o. AE)”. In other words,
our generation directly outputs raw observations
(instead of hidden vectors), which will be fed into
our GRU-ODE-based discriminator. ii) The second ablation model, denoted “GT-GAN (Flow only)”,
has only our CTFP-based generator and we train it with the maximum likelihood training — we
note that this construction is the same as training flow-based models. This model is equivalent to
the original CTFP model [Deng et al., 2020]. iii) The third ablation model has only the autoencoder,
denoted “GT-GAN (AE only)”. However, we convert it to a variational autoencoder (VAE) model.
In the full GT-GAN model, the encoder produces a set of hidden vectors {(ti,hreal

i)}Ni=0. In this
ablation model, however, this is changed to{(ti,N (hreal

i ,1))}Ni=0, whereN (hreal
i ,1) means the unit

Gaussian centered at hreal
i . The decoder is the same as its full model. We use the variational training

for this model. Among the ablation models, GT-GAN (Flow only) outperforms the discriminator
score in most cases. However, our full model is clearly the best in all cases. Our study shows that
the ablation models of GT-GAN do not perform as well as its full model if any parts are missing, as
shown in Fig 6. Refer to Appendix E for the ablation studies with other datasets.

The hyperparameters that significantly affect model performance are the absolute tolerance (atol),
the relative tolerance (rtol), and the period of the MLE training (PMLE) for the generator. The atol
and rtol determine the error control performed by the ODE solvers in CTFPs. We test with various
options of the hyperparameters in Appendix F. We found that there is an appropriate error tolerance
(atol, rtol) depending on the data input size. For example, the datasets with small input sizes (i.e.,
Sines, Stocks) have good discriminator scores with (1e-2, 1e-3), and the datasets with large input
sizes (i.e., Energy, MuJoCo) show good results with (1e-3, 1e-2).

5 Conclusions

Time series synthesis is an important research topic in deep learning and had been separately studied
for regular or irregular time series synthesis. However, there are still no existing generative models
that can handle both regular and irregular time series without model changes. Our proposed method,
GT-GAN, is based on various advanced deep learning technologies, ranging from GANs to NODEs,
and NCDEs, and is able to process all possible types of time series without any changes in its model
architecture and parameters. Our experiments, which incorporate various synthetic and real-world
datasets, prove the efficacy of the proposed method. In our ablation studies, only our full method
without any missing parts shows reasonable synthesis capabilities. The limitations and societal
impacts of our proposed model are in Appendix O.

9

Acknowledgments and Disclosure of Funding

Noseong Park is the corresponding author. This work was partly supported by the Yonsei University
Research Fund of 2022 (10%), the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial
Intelligence Graduate School Program at Yonsei University, 10%, and No. 2022-0-00113, Developing
a Sustainable Collaborative Multi-modal Lifelong Learning Framework, 70%), and the LG Display
research fund (C2022000673, 10%).

References
Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling with

fourier flows. In ICLR, 2021.

Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Quan Z. Sheng. Stg2seq: Spatial-temporal
graph to sequence model for multi-step passenger demand forecasting. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 1981–
1987, 7 2019. doi: 10.24963/ijcai.2019/274.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In NeurIPS, 2019.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):1–12, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ruizhi Deng, Bo Chang, Marcus A. Brubaker, Greg Mori, and Andreas M. Lehrmann. Modeling
continuous stochastic processes with dynamic normalizing flows. In NeurIPS, 2020.

Ruizhi Deng, Marcus A. Brubaker, Greg Mori, and Andreas M. Lehrmann. Continuous latent process
flows. In NeurIPS, 2021.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis, 2019.

Cristóbal Esteban, L. Stephanie Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans, 2017.

Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence,
24(1):164–181, 2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. In ICLR, 2019.

Alex Graves. Generating sequences with recurrent neural networks, 2014.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood and
adversarial learning in generative models. In AAAI, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):922–929, Jul. 2019. doi: 10.1609/aaai.v33i01.
3301922.

Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong. Lsgcn: Long short-
term traffic prediction with graph convolutional networks. In IJCAI, pages 2355–2361, 2020a.

10

Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from irregularly-
sampled partial observations. In NeurIPS, 2020b.

Sheo Yon Jhin, Heejoo Shin, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park, Seungbeom
Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled differential equations for
time-series classification and forecasting. In ICDM, 2021.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In NeurIPS, 2019.

Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and Terry J. Lyons. Deep
signature transforms. In NeurIPS, 2019.

Patrick Kidger, James Morrill, James Foster, and Terry J. Lyons. Neural controlled differential
equations for irregular time series. In NeurIPS, 2020.

Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio.
Professor forcing: A new algorithm for training recurrent networks, 2016.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International Conference on Learning Representations (ICLR

’18), 2018.

Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths.
Springer, 2007.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks, 2016.

Gregory C Reinsel. Elements of multivariate time series analysis. Springer Science & Business
Media, 2003.

Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang.
Deep learning-based weather prediction: A survey. Big Data Research, 23, 2021.

Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data forecasting. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(01):914–921, Apr. 2020. doi:
10.1609/aaai.v34i01.5438.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and Suhang Wang. Joint
modeling of local and global temporal dynamics for multivariate time series forecasting with
missing values. In AAAI, 2020.

Selim Furkan Tekin, Oguzhan Karaahmetoglu, Fatih Ilhan, Ismail Balaban, and Suleyman Serdar
Kozat. Spatio-temporal weather forecasting and attention mechanism on convolutional lstms. arXiv
preprint, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio, 2016.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pages 1907–1913, 7 2019.

Chen Xu and Yao Xie. Conformal prediction for dynamic time-series. In ICML, 2020.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
In NeurIPS, 2019.

11

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pages 3634–3640, 7 2018. doi: 10.24963/
ijcai.2018/505.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network
for irregularly sampled multivariate time series. In ICLR, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We did.
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See our
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Appendix G, we specify all the training details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In Section 4, We report the results of 10 experiments by
calculating the mean and variance.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix C
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We release our model. See our supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

