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Abstract— This document summarizes the latest results
achieved in the field of robotic non-prehensile tray-based object
transportation. The problem consists in transporting along
a trajectory an object placed on a tray-like end-effector of
a robotic manipulator preventing it to slide and potentially
fall. We developed a model-predictive control approach that
computes optimal jerk-based inputs for the considered system
to accomplish the task while enforcing both system and non-
sliding manipulation constraints. Experiments performed on the
RoDyMan humanoid robot validated our approach.

I. INTRODUCTION

The nonprehensile transportation of an object along a
desired trajectory by means of a tray-like robot end-effector
is a longstanding problem in service robotics. Several authors
have proposed different modeling, planning, and control
strategies to accomplish the transporting task while enforcing
non-sliding manipulation constraints [1]–[3].

Recently, with the increase of computing power endowed
into robots, numerical optimal control techniques started
to be devised. Among these, the Model-Predictive Control
(MPC) aims to compute solutions for the control input
that are optimal along the future predicted states of the
system. In [4], we embraced this approach and developed
a MPC that uses the combined manipulator/object dynamics
for prediction and enforces the related non-sliding manip-
ulation constraints. The controller features online contact
forces calculation, and outputs optimal jerk-based control
solutions for the robotic system to perform the considered
task [5]. In this paper, we summarize the most relevant
results achieved by the proposed controller evaluated on our
RoDyMan humanoid robot.

II. METHODOLOGY

A. System Modeling

In absence of external interactions, the combined manip-
ulator/object dynamics can be written in compact form as
follows

M̃ (q) q̈ + C̃ (q, q̇) q̇ + ñ (q, q̇) = τ, (1)

The research leading to these results has been supported by the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 101017008 (Harmony).

The authors are with the Department of Electrical Engineer-
ing and Information Technology, University of Naples Federico II,
name.surname@unina.it

Fig. 1. Illustration of the main problem addressed in this paper: a robotic
manipulator (blue) has to transport an object (black cube) along a desired
trajectory (dashed grey) on a tray-like end-effector (orange/white) while
guaranteeing a non-sliding behaviour.

with (dropping dependencies)

M̃ = Mm + JT
o MoJo,

C̃ = Cm + JT
o

(
CoJo +MoJ̇o

)
,

ñ = nm + JT
o no.

(2)

where q, q̇ ∈ Rn represent the state of the robotic system in
generalised coordinates, Jo(q) ∈ R6×n represents the Jaco-
bian matrix relating q̇ to the object linear/angular velocities,
Mm (q) ∈ Rn×n is the symmetric positive-definite manip-
ulator joint-space inertia matrix, Cm (q, q̇) ∈ Rn×n is the
manipulator matrix of centrifugal/Coriolis terms, nm (q) ∈
Rn is the manipulator gravity vector, τ ∈ Rn is the vector
of manipulator joint torques (representing the overall control
input of the robotic system), Mo (q) ∈ R6×6 is the object
positive-definite mass/inertia matrix, Co (q, q̇) ∈ R6×6 is the
object matrix of centrifugal/Coriolis terms, no (q) ∈ R6 is the
object gravity vector. The model in (1) is derived assuming
that the object does exhibit sliding with respect to the tray.
To satisfy this assumption the contact forces between the
object and the tray must be confined within the friction cone
space. This constraint is enforced by control considering the
contact surface of the object (assumed a cuboid) discretized
with nc = 4 contact points located in the object vertices
in contact with the tray and approximating friction cones
with polyhedrals (see Fig. 2). This allows writing the stacked
vector of contact forces Fc = [fT

c1 , . . . , f
T
cnc

]T ∈ R3nc as a
linear combination of the friction cone edges, i.e.

Fc = F̂cΛ, Λ =
(
λc1,1, . . . , λcnc ,k

)
∈ Rknc , (3)
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Fig. 2. (a) Drawing of the object body wrench Fo = (fo, τo), i−th contact
force fci and friction cone (shaded green). po,ci is the vector defining
the i−th contact position in the body frame {O}. (b) Approximation of
circular friction cones (in shaded green) with polyhedral cones (black lines)
identified by unit vectors f̂ci,j .

where

F̂c = diag
(
F̂c,1, . . . , F̂c,nc

)
, F̂c,i =

[
f̂ci,1, . . . , f̂ci,k

]
(4)

is the matrix whose columns denote the friction cone edges
unit vectors, while Λ is the vector of contact force pa-
rameters. At this point, for Fc to belong to the derived
approximated friction cone space, it is sufficient to enforce

Λi ≥ 0, ∀ i = 1, . . . , knc, (5)

which constitutes the non-sliding manipulation constraint.

B. Model-predictive Control

MPC is realized solving the following Optimal Control
Problem (OCP) at each time step

min
u(·)

Φ(x(T )) +

∫ T

0

L(x(t), u(t), t) dt (6a)

s.t. x(0) = x0 (6b)
ẋ = f(x(t), u(t)) (6c)

¯
x ≤ x(t) ≤ x̄ (6d)

¯
u ≤ u(t) ≤ ū (6e)

where Φ(x(T )) = ∥x∗(T )−x(T )∥2Qe
and L(x(t), u(t), t) =

∥x∗(t)−x(t)∥2Q+∥u(t)∥2R, T is the prediction horizon, Qe,
Q and R are diagonal positive semi-definite weight matrices,
and x∗ is the reference state. We defined an extended system
state which includes, besides the proper manipulator state q
and q̇, the contact force coefficients Λ (defined in (3)) and the
control torques τ . Their time derivative τ̇ , which is related
to the system jerk and affects the variation of the contact
forces, is directly specified by the control signal u computed
solving (6). With this choice, the continuous time dynamic
evolution of the system state writes as follows

ẋ = f (x, u) =


τ̇ = u

q̇ = q̇

q̈ = M̃−1(τ − C̃q̇ − ñ)

Λ̇ =
(
GF̂c

)†
(Aτ̇ +Bτ + C)

, (7)

where

A = MoJM̃
−1, B = MoJ̇M̃

−1, C = −2MoJ̇M̃
−1ñ.

(8)
To derive the last equation in (7) we adopt for Λ the
minimum two-norm solution of Fo = GF̂cΛ, where Fo =
(fo, τo) represents the object body wrench and G ∈ R6×3nc ,
usually referred to as grasp matrix, maps Fc to Fo. This is
realized by the Moore–Penrose inverse operator applied to
the matrix GF̂c. Moreover, we assume that all the matrices
entering the dynamic model hold constant over the time
horizon, i.e. their time derivative is null.

It is worth mentioning that our ultimate goal is to transport
the object to the target pose following a desired trajectory
(see Fig. 1), i.e., we aim to realize xo = x∗

o(t) and
ẋo = ẋ∗

o(t), where x∗
o(t), ẋ

∗
o(t) are the desired object

states (parametrized pose and its time derivative), while
satisfying both non-sliding manipulation and robotic system
constraints. From this, we can calculate the reference values
for the extended state x∗, in particular q∗o , q̇

∗
o using an a

standard inverse kinematics routine, under the assumption
that the object is rigidly attached to the manipulator.

As for the constraints, lower/upper bounds on the system
(joint positions, joint velocities, joint torques) and manipu-
lation states (contact force coefficients), are included in (6d)
via

¯
x, x̄, respectively, while those on input are included

in (6e) via
¯
u, ū, respectively. The feedback term denoted

by (6b) is directly retrieved from the robotic system. Note
that while the measure of q, q̇, τ is readily available in
torque-controlled manipulators, the measure of Λ (or Fc)
must be retrieved indirectly from the measure of Fo (which
can be instead conveniently measured through a F/T sensor
installed at the end-effector of the manipulator).

The solution of the problem in (6) (i.e., the time derivative
of the joint torques) is used to obtain the required torque at
each time instant t according to the following integration rule

τ(t) =

∫ t

0

τ̇(t) dt. (9)

The problem in (6), together with the dynamics (7), and
the integration rule (9) are discretized with time step equal
to the control loop cycle time. The controller has been
realized using the acados which allowed to conveniently
formulating the OCP in MATLAB and later generate the
C/C++ library for the real world implementation. For details
about the controller/solver settings the reader can refer to [4].

The devised controller with an NMPC horizon length N =
10 takes 5.4 ms on an average (1.3 ms standard deviation)
to solve one step of the problem on a Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz.

A simulation environment that uses a KUKA LWR-
IIWA manipulator can be downloaded from the follow-
ing link: https://github.com/prisma-lab/nonprehensile-object-
transp, while the video of both simulation and real-world
experiments is at this link: https://youtu.be/H14NDnmpcNg.
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Fig. 3. Experiments using the proposed model-predictive non-sliding manipulation control approach. The desired trajectory is shown as a white dashed
line. (a) – (d) Key frames of RoDyMan robot tracking a 5.5 s Lemniscate-like trajectory. (e) – (h) Key frames of RoDyMan robot tracking a 4.5 s
rectangular trajectory featuring three via points.

III. RESULTS

To demonstrate the validity of our approach, we conducted
real experiments employing the RoDyMan humanoid robot.
It is a 21-DoF robot made of a custom-built mobile base, a
two-DoFs torso, two one-Dof shoulders, and two six-DoFs
Shunk Powerball arms. Additional construction details can
be found in [6]. For our experiments, we employed only the
kinematic chain starting at the torso and ending at the tip
of the robot’s right arm (9 DoFs). A plastic tray-like end-
effector was attached to it through a 3D printed support,
which embedded a Shunk 6-Axis F/T sensor. A calibrated
Intel RealSense Depth Camera D415 was mounted on the
tray with the purpose of tracking and recording the object
displacement thanks to a QR-code pattern and the VISP auto
tracker module. The object is a steel hollowed cuboid of
dimensions 60× 60× 70 mm, whose inertial properties are:
mass mo = 0.236 kg and diagonal inertial matrix, Io =
diag(4.5375× 10−5) kgm2. The friction coefficient between
the object and the tray has been experimentally identified
in µ = 0.2. The robot was position-controlled, and its set
point was extracted from the output trajectory solution of
the MPNSM controller given in (6). The robot control cycle
time is set to 8 ms. Tables that contains the real system
control parameters and the robot physical limits are given
in [4]. A picture of the experimental setup is given in Fig. 1.

To prove the robustness of our controller we consider two
trajectories: (i) a rectangular path in the horizontal plane,
shown at the top of Fig. 4, featuring three via points obtained
imposing trapezoidal velocity profiles with acceleration time
equal to 0.2 seconds at the transitions between segments;
(ii) a Lemniscate-like path in the vertical plane, shown at the
top of Fig. 5, obtained employing a piecewise cubic B-spline
curve enclosed by its control points. The validation of the
performance using the proposed MPNSM control onto the
Rodyman robot is shown in the graphs of Fig. 4 and Fig. 5,
respectively. A timed sequence of key frames taken during

the performed experiments is shown in Fig. 3 (a) – (d), (e)
– (h), where the desired trajectory is shown in overlay. As a
measure of the tracking performance we introduce the error
term E(t) = (ep(t), eo(t)), with ep(t) = ||p∗o(t)−po(t)|| and
eo(t) = ||ϕe(t)||, where ϕe is the vector of Euler Angles
extracted from the rotation matrix error, i.e. R∗T

o Ro, where
R∗

o and Ro are is the desired and the current object rotation
matrix, respectively. In both cases, it can be noted that when
the robotic system constraints become binding (q̇ - bottom
graph), the tracking performance is penalised (E - top graph),
while the contact force coefficients (Λ - middle graph) are
still kept greater than zero.

IV. CONCLUSIONS

This paper summarized results achieved by the model-
predictive non-sliding manipulation control approach for
non-prehensile object transportation developed in [4]. We
reported the combined manipulator/object dynamic model
and the associated non-sliding constraints that are enforced
by the controller. The proposed optimization-based controller
has been capable of safely accomplishing trajectory tracking
tasks with an object being transported in a non-prehensile
way on a tray-like manipulator end-effector. The controller
imposes that the manipulation and physical constraints of
the robotic system are always respected during the executed
trajectory at the expense of the tracking performances. An
interesting future research direction on this topic is the in-
clusion of the variable tray orientation technique introduced
in [7].
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Fig. 5. Validation of the tracking performance along the Lemniscate-like,
5.5 s duration trajectory. The black dot denotes the start/end point, the
arrows indicate the direction. The norm of the error terms (ep and eo – top
graph) is higher as manipulation (Λ – middle graph) and system velocity
constraints (q̇ – bottom graph) are met.
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