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Abstract

Reinforcement learning has demonstrated success
in learning strategic behaviors in multi-agent set-
tings. However, achieving robust performance in
dynamic, continuous state-action games remains a
significant challenge. Agents must anticipate di-
verse and potentially unseen opponent strategies
to ensure adaptability in multi-agent environments.
These challenges often lead to slow convergence
or even failure to converge to a Nash equilib-
rium. To address these challenges, we propose
DiffFP, a fictitious-play (FP) framework that esti-
mates the best response to unseen opponents while
learning a robust and multimodal behavioral pol-
icy. Specifically, we approximate the best response
using a diffusion-policy that leverages generative
modeling to learn adaptive and multimodal strate-
gies. Through extensive empirical evaluation, we
demonstrate that the proposed FP framework con-
verges towards an approximate Nash equilibrium in
continuous state-action zero-sum games. We vali-
date our method on complex multi-agent environ-
ments, including racing and multi-particle dynamic
games. Our results show that the learned policies
are robust against diverse opponents and outper-
form baseline reinforcement learning policies. Our
approach achieves upto 3x faster convergence and
30x higher success rates on average against RL
baselines, demonstrating its robustness to opponent
strategies and stability across training iteration.

1 Introduction

Multi-agent reinforcement learning (MARL) has achieved re-
markable success in domains like Go, Atari, chess, shogi, and
StarCraft 2 [18, 22,23, 25]. In these systems, agents learn
strategies via policy optimization techniques parameterized
by deep neural networks, demonstrating the transformative
impact of MARL in complex, dynamic environments.

A common approach to learning robust policies in interac-
tive, competitive settings is self-play, where agents iteratively
improve by training against copies of themselves or evolv-
ing opponents. Fictitious Play (FP) [2] is a game-theoretic

algorithm that formalizes this idea. In FP, each agent com-
putes the best response to the empirical average of its oppo-
nents’ past actions. Under certain conditions, the sequence
of strategies converges to a Nash equilibrium. Recent ad-
vances have extended FP to more complex settings, including
extensive-form and Markov games [10, 20]. Fictitious Self
Play (FSP) [10] thus introduces a learning-based class of al-
gorithms that approximate Extensive-Form Fictitious Play by
using reinforcement learning to estimate best responses and
supervised learning to update the average strategy.

In practice, computing an exact best response in continu-
ous and high-dimensional environments is challenging. Re-
inforcement learning (RL) methods are typically employed to
approximate the best responses; however, standard RL poli-
cies tend to be unimodal. This unimodality limits their ability
to capture the inherent multimodality of complex tasks, often
resulting in policies that overfit to recent opponent behaviors
while neglecting previously encountered strategies.

Related Work. Recent work has demonstrated the power
of diffusion models as expressive generative tools for captur-
ing diverse data distributions, with notable success in behav-
ioral cloning, imitation learning, and planning [1,3,4,11, 13,
19, 24]. However, most existing approaches focus on learn-
ing from demonstrations, while applications to learning from
scratch in online Reinforcement Learning (RL) remain rel-
atively under-explored. Although several methods have ex-
plored the use of diffusion models in offline RL [14,27], their
integration into online settings poses significant challenges
due to the dynamic nature of value estimation as policies
evolve. Moreover, diffusion policies are defined implicitly
through a stochastic process rather than an explicit parametric
mapping; it is non-trivial to apply policy gradient methods:
unlike traditional policy-based RL algorithms. Furthermore,
we aim to extend this framework to multi-agent and dynamic
environments, where interactions and opponent adaptations
introduce additional complexity.

Contributions. In this work, we propose a FP-based frame-
work that leverages diffusion policies to estimate best re-
sponses. This integration enables (i) learning from scratch
via an iterative fictitious-play, (ii) capturing multimodal ac-
tion and behavior distributions, and (iii) improving sample ef-
ficiency and convergence toward an approximate Nash equi-
librium. By harnessing the expressiveness of diffusion mod-
els, our approach addresses key limitations of traditional RL-



based best-response approximations in continuous spaces, re-
sulting in more robust and adaptable MARL policies.

2 Preliminaries and Problem Statement

We  consider a  Partially  Observable
Games (POMG) [71 defined by the
(Z,8,°,{A;},{0;}, T,{R;}), where:

* T ={1,---,n} is the finite set of agents;

Markov
tuple

e S, C R% is the continuous state space for agent 1,
and § = [, S; is the joint state space, with T =
(s1,- - ,Sn) € S denoting the joint state;

b € A(S) denotes the initial state distribution;

o A; C R% is the continuous action space for agent 1,
and A = [],.7 A; is the joint action space, with ad =
(a1, ,an) € A;

e (; is the continuous observation space for agent ¢, and
O =[],z O is the joint observation space, with 7=
(01,-++,0p) € O;

o T:8x A— A(S) is the (joint) transition function;

* R, : 8§ X A = [Fmin, "max] C R is the bounded reward
function for agent i, where ry;, < Ri(?, E)) < Pmax

forall (3, ) € S x A.

A (stochastic) policy for agent ¢ is defined as a mapping
7t O; — A(A;), where O; is the observation space of agent
i and A(A;) denotes the set of probability distributions over
the action space A;. The joint strategy of all agents is denoted
asm = (7l,...,7") = (7', w~%), where " represents the
strategy profile of all agents except agent .

We consider a two-player game without loss of general-
ity, noting that this formulation extends naturally to multi-
agent settings with more than two agents or teams. The joint
strategy is denoted by 7w = (7°8°, 7°PP), where 7°¢° and PP
represent the behavioral strategies of the ego and opponent
agents, respectively.

Definition 1 (Best Response). Given the opponent’s strategy

7%, the best-response strategy T°X for agent i is defined as
7BR € argmax f; (7%, 7Y, (D
wiell?

where TI* denotes the set of admissible policies for agent i,
and f; : ™ — R is a continuous payoff function representing
the expected cumulative reward for agent i.

Definition 2 (e-Nash Equilibrium). In a zero-sum game, the
reward functions satisfy R®¢° = —R°PP, yielding a minimax
structure where one agent’s gain equals the other’s loss. The
objective is to find equilibrium strategies that minimize ex-
ploitability in the presence of an adversarial opponent. A
joint strategy w* = (mw®%* 7wPP*) constitutes an e-Nash
equilibrium if, for all i € {ego,opp}, the following condi-
tion holds:

fi(@ w7 ) > fi(nt, ) —e, VAl eIl (2)
The deviation from exact equilibrium is quantified by the ex-
ploitability of agent i, defined as

&= fi(mm ) = fi(r' w7, 3)
and the total exploitability is given by e = ), 1 €;.

Algorithm 1 Fictitious-Play

1: Initialize 7 randomly for each agent i € {ego, opp}.
2: fork=0,..., K —1do

3:  for each agent ¢ € {ego,opp} do

4 Compute best response: BR, 41— BR(7,").
5 Update strategy: 7}, ; < 725 Th + 77 BRjj1.
6: end for
7: end for

Problem Statement We consider a two-agent zero-sum
POMG, where agents interact in continuous state and action
spaces. Each agent i € {ego, opp} seeks to maximize its ex-
pected return J;(7¢, w=*) while anticipating worst-case be-
havior from its opponent. This induces a minimax optimiza-
tion problem over joint policies.

T
Ji(m', ") = ESONbO, @~ (T e), [Z ’Yt Ri(s_t>7 Et})l )

Seri~T(Is0ar)  Le=o

The goal of each agent is to solve the following minimax op-
timization:
7" = argmax min
riemi  wotell—?

3 DiffFP: Method

To solve the minimax problem in continuous zero-sum games
(Section 2), we adopt a Fictitious Play-style learning frame-
work, as described in Algorithm 1. We model the best re-
sponse using a Diffusion Policy (DP) to represent stochas-
tic strategies directly in action space. At each iteration, a
diffusion-based policy is trained to approximate the best re-
sponse to a fixed opponent strategy.

Ji(’f(i,ﬂ'_i). (4)

3.1 Fictitious Play

Fictitious Play [2] is an iterative algorithm in which agents
update their strategies based on the empirical distribution of
their opponents’ past strategies. At each iteration k, each
agent 7 computes a best response BRj, | ; to the current av-

erage opponent strategy 7rk_i and updates its own strategy ac-
cordingly, as shown in line 5 of Algorithm 1.

One of the primary challenges in fictitious play is comput-
ing the best response policy, especially in environments with
continuous action spaces. To address this, we adopt a gener-
alized weakened fictitious play framework [15], which allows
for approximate best responses.

3.2 Approximating Best Response with RL

Finding an exact best response is often computationally in-
tractable, particularly in large or continuous spaces. Prior
work [9] demonstrates that instead of performing full-width
backups, one can approximate best responses using reinforce-
ment learning (RL), and estimate the average strategy via
supervised learning (SL). Following [29], we model best-
response policies using RL and represent the average strat-
egy as a mixture of past best responses. We propose using a
diffusion policy to approximate the best response. At each it-
eration of Fictitious Play (FP), the best-response computation



is formulated against a fixed but unknown average opponent
policy, denoted by 7r, . This opponent policy is assumed to
be stochastic and fixed during the best-response phase, but
unknown to the ego agent. Rather than approximating the av-
erage policy via supervised learning [9], we implement the
averaging rule directly by sampling from past best-response
policies, weighted by their corresponding update coefficients.
This corresponds to Line 5 in Algorithm 1.

Diffusion Policy (DP). Unlike unimodal Gaussian policy net-
works, DP’s do not maintain an explicit likelihood func-
tion. To learn expressive, multimodal policies for individ-
ual agents, we follow the framework introduced in [28],
which combines a behavior cloning loss [11] with double Q-
learning [8] to guide policy improvement. The policy im-
provement step is modeled via action gradients that refine
sampled actions stored in the replay buffer.
Implementation. In practice, we parameterize both the dif-
fusion actor and critic networks using multilayer perceptrons
(MLPs). The actor learns to iteratively denoise actions, while
the critic estimates the corresponding target value functions.

4 Simulation Studies

We aim to answer the following questions through our simu-
lation experiments:

* Convergence. Can DiffFP learn an approximately unex-
ploitable policy profile? Specifically, in continuous and
stochastic environments, can it converge to an approxi-
mate Nash equilibrium?

« Efficiency. What is the benefit of using a DiffFP for
continuous state-action games, in terms of stability and
sample efficiency?

* Robustness. Can our method learn diverse yet robust
strategies that generalize to unseen opponents?

Baselines. We evaluate DiffFP against several reinforcement
learning (RL) algorithms, adapting them as (approximate)
best-response within the FP (see Algorithm 1).

> QSM [21]: A score-based actor model trained by align-
ing the score function with the state-action gradient field, en-
abling policy learning via score-matching objective.

> SAC [6]: maximum entropy RL algorithm that estimates
a stochastic policy by maximizing a trade-off between ex-
pected return and entropy.

Iteration 25
A

Figure 1: Training Progression. Agent trajectories sampled from
different FP iterations, illustrating evolving behaviors. Attacking
agent (blue) is always initialized behind the defending agent (red).
As training progresses, agents learn to navigate more efficiently:
note the reduction in completion time from 80 to 45 timesteps, de-
spite identical initial positions.

> TD3 [5]: A deterministic actor-critic method that ad-
dresses overestimation bias in Q-learning through clipped
double Q-learning and target policy smoothing.
Metrics. We evaluate best responses using the total ex-
ploitability of the policy (see Equation 3). In practice, this
is computed as the difference in episodic rewards between
the best-response policy against the average opponent and the
average policy against the same opponent. Additionally, for
the racing task, we report normalized cumulative rewards to
assess overall performance.

4.1 Racing Environment

We consider a multi-agent racing scenario [16], where agents
must learn strategic behaviors such as overtaking, defending,
and navigating efficiently along a track. The environment is
modeled as a general-sum game [12,26], where agents are
rewarded based on minimizing or maximizing relative arc-
length distances, subject to track boundary constraints and
penalties for driving slowly. Additionally, we also evaluate
robustness against unseen opponents across different track
configurations.

Results. Figure 2 shows the exploitability convergence com-
parison. DiffFP consistently outperforms baselines, achiev-
ing faster and more stable convergence. Exploitability mea-
sures how much worse a joint policy profile is compared to
an approximate Nash equilibrium; a policy is considered less
exploitable when it is closer to a Nash strategy.

We also compare against the generative baseline QSM,
which exhibits high instability due to sensitivity to value
function errors. This leads to noisy exploitability curves,
especially in multi-agent settings where non-stationary op-
ponent strategies make value estimation difficult. Moreover,
exploitability alone is insufficient, as policies may converge
to suboptimal local minima. Figure 3 reports normalized
episodic cumulative rewards. DiffFP is the only method
that consistently reaches near-optimal returns across oppo-
nent initializations. Although SAC and TD3 show apparent
exploitability convergence, their actual performance remains
poor when measured by cumulative rewards.

We also present agent trajectories from different FP itera-
tions in Figure 1. In panel A, the blue agent (attacker) trails
the red agent (defender). As training progresses (panel B),
the attacker improves its racing strategy and performs a lane
switch, prompting the defender to adapt. Near convergence
(panel C), both agents exhibit competitive behaviors: actively
attacking and defending resulting in faster lap times while at-
tempting to push each other toward the track limits.

4.2 Multiple Particle Environment

To demonstrate the generalizability of our approach and its
extension to broader multi-agent setups, we conduct experi-
ments on the Multiple Particle Environment (MPE) suite [17].
This benchmark is particularly challenging due to sparse re-
wards and the presence of multiple viable strategies.

* MPE-Adversary: Ego agents must coordinate around
fixed landmarks while simultaneously acting as decoys
to mislead adversaries.
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Figure 2: A. Exploitability convergence on the Racing task. We report the mean and standard deviation of exploitability as a function of
FP iterations, computed over 10 episodes per iteration. B. Normalized Episodic Cumulative Rewards. Mean normalized rewards reported
over 10 environments per FP iteration. This metric reflects policy performance and stability throughout training.
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Figure 3: Exploitability. We report exploitability (see Eq. 3) com-
puted over 100 evaluation runs. Lower values indicate better robust-
ness, with the proposed DiffFP achieving the lowest exploitability.

o
N

Ego Adv Ego Wins Adv Wins  Draws
Games where DiffFP is Ego

DiffFP SACFP 79 10 11

DiffFP TD3FP 75 11 14

DiffFP QSMFP 75 12 13

Games where DiffFP is Adversary
SACFP  DiffFP 62 (17)) 16 (67) 22 (117)
TD3FP  DiffFP 50 (25)) 18 (71) 32 (187)
QSMFP  DiffFP 63 (12)) 27 (157) 10 (3))

Table 1: Robustness Against Unseen Opponents. Head-to-head
evaluation in the MPE-Adversary environment. Colored numbers
indicate relative gains (1) or losses (/) when ego and adversary roles
are swapped.

Results. We report exploitability across 100 novel scenar-
ios in Figure 2. DiffFP achieves the lowest exploitability
with minimal variance, attributable to its generative modeling
framework. Here, policy robustness emerges from exposure
to a diverse range of adversaries during training. The combi-
nation of generative sampling and action gradient ascent en-
ables effective exploration and synthesis of multimodal solu-
tions.

The sparse reward setting further increases task difficulty.
Despite this, DiffFP maintains strong performance due to its
stochastic policy representation and gradient-based augmen-
tation, which facilitate better exploration and more accurate
estimation of the dynamic reward landscape under limited

feedback.

To assess zero-shot generalization, we conduct symmet-
ric matchups between all models, as shown in Table 1. In
this task, the ego agent wins if it reaches the true goal with-
out being intercepted; the adversary wins only if it inter-
cepts the goal-directed ego agent (catching a decoy is con-
sidered a failure). When playing as the ego agent, DiffFP
consistently outperforms all baselines, winning the majority
of games. Even when acting as the adversary, it improves
baseline win rates and increases the number of draws, demon-
strating robust performance across both roles. For example,
against SAC, DiffFP achieves a 79% win rate as ego com-
pared to SAC’s 62% when roles are reversed a relative gain
of 1 27%. As adversary, DiffFP improves its win rate from
10% to 16% (1 60%) and doubles the draw rate from 11% to
22% (1 100%).

5 Conclusion

We study the problem of learning policies in dynamic, con-
tinuous state-action games. We propose DiffFP, a fictitious-
play framework that models the best response using a dif-
fusion policy to capture diverse, multimodal action distribu-
tions. Extensive simulation results show that DiffFP achieves
faster convergence, more stable training, and learns policies
closer to equilibrium, while maintaining robust performance
against diverse and unseen opponents.
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