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ABSTRACT

Text-to-image diffusion models have achieved remarkable success in generating
high-quality images, yet existing safety mechanisms exhibit critical cross-seed
instability where defense performance varies significantly under different random
seed conditions. This instability stems from the fact that a single malicious prompt
generates diverse harmful variants across different noise initializations, forming
complex distributional clusters that current methods cannot adequately address.
We investigate extending Noise Contrastive Alignment (NCA) to diffusion models
due to its native capability of handling multiple negative samples through proba-
bilistic weighting, but our theoretical analysis reveals two fundamental flaws in di-
rect extension: gradient reversal caused by positive regularization terms that para-
doxically penalize safe content generation, and uniform suppression of harmful
samples that ignores severity variations. To tackle these issues, we propose Noise
Contrastive Diffusion (NCD), which incorporates targeted algorithmic modifica-
tions including elimination of problematic regularization and introduction of pair-
wise regularization mechanisms that establish individualized preference relation-
ships between safe and harmful variants. Extensive experiments further demon-
strate that NCD achieves superior cross-seed stability, reducing attack success
rates (ASRs) from 11.1% to 6.2% compared to SOTA methods while maintaining
exceptional generation quality, exhibiting robust resistance against sophisticated
jailbreak prompts and strong generalizability across different T2I architectures.
WARNING: This paper may contain examples of harmful texts and images.

1 INTRODUCTION

Recently, driven by greate improvements in model architecture and advancements in semantic un-
derstanding techniques (Saharia et al., 2022; Ramesh et al., 2022; Podell et al., 2023; Esser et al.,
2024), text-to-image (T2I) models have become capable of generating high-quality images with re-
markable fidelity to user instructions. Although this technique exhibits remarkable capabilities for
content creation (Peebles & Xie, 2023; Zhang et al., 2023) and artistic rendering (Ruiz et al., 2023;
Wang et al., 2024), it also poses several risks. Since their trainings rely on vast, uncurated internet
data, T2I models can be exploited to produce harmful imagery depicting sexual (Wen et al., 2024),
violent (Schramowski et al., 2023), or biased content (Friedrich et al., 2023). This escalating concern
has compelled the research community to prioritize the safe output of T2I models.

To mitigate the generation of harmful content, current research has focused on applying rigorous
safety mechanisms to T2I models. External filter-based methods (CompVis, 2023; Khader et al.,
2024; Huggingface, 2025) employ post-hoc detection of harmful content through dedicated classi-
fiers, while training-free approaches (Schramowski et al., 2023; Yoon et al., 2024) modulate genera-
tion behavior during inference without parameter modification. However, filter-based methods offer
suffer from limited robustness against jailbreak attacks (Huang et al., 2024b), and simultaneously,
training-free methods require careful hyperparameter tuning and may compromise overall genera-
tion quality. Due to such limitations, increasing focus has shifted toward parameter modification
approaches that directly alter model weights for more robust and permanent safety guarantees. For
instance, concept erasing methods (Kumari et al., 2023; Gandikota et al., 2023; Zhang et al., 2024a)
train models to forget inappropriate concepts, while model editing techniques (Gandikota et al.,
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Figure 1: We propose NCD, a multi-objective preference calibration framework for safety align-
ment that effectively mitigates the defense vulnerabilities of diffusion model safety mechanisms
when facing malicious prompts across multiple noise seed variants. (A) Defense performance com-
parison of various mechanisms under different random seeds for harmful inputs. NCD consistently
defends against all noise variants while other methods show vulnerability. (B) Demonstration of
NCD framework’s generalizability on additional models including SD-v2.1 and SDXL.

2024; Gong et al., 2024) achieve targeted interventions by modifying attention projection matrices
to redirect harmful embeddings toward safe alternatives.

However, despite demonstrating effectiveness in mitigating harmful content generation, existing
safety mechanisms exhibit significant performance variations under different random seed condi-
tions, as illustrated in Fig 1. This cross-seed instability exposes a fundamental limitation: current
approaches fail to establish robust safety alignment that can consistently address the diverse harmful
variants produced by malicious prompts across different noise initializations.

Given the one-to-many nature of the cross-seed instability challenge, Noise Contrastive Alignment
(NCA) (Chen et al., 2024) emerges as a particularly suitable framework. Specifically, through ex-
tending NCA to diffusion models, we could simultaneously address diverse harmful variants gen-
erated from different seeds within a unified optimization framework. However, through rigorous
theoretical analysis and verification, we identify that the direct extension of NCA to diffusion mode
introduces two fundamental algorithmic flaws that severely compromise training stability and align-
ment effectiveness: First, the positive regularization term in the original NCA objective exhibits a
critical ❶ gradient reversal pathology: as safety alignment progresses and rewards for safe con-
tent improve, the regularization term paradoxically begins to dominate gradient updates, causing
the optimization to penalize rather than promote safe content generation. Furthermore, we demon-
strate that NCA’s ❷ uniform suppression strategy for harmful samples creates a severe mismatch
with the inherent diversity of cross-seed harmful content, where samples exhibit varying degrees of
severity yet receive identical optimization signals, preventing the model from developing nuanced
discriminative capabilities across different manifestations of harmful content.
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To address these inherent issues, we propose Noise Contrastive Diffusion (NCD), a novel multi-seed
alignment framework that incorporates targeted algorithmic modifications to overcome the limita-
tions of direct NCA extension. Specifically, our NCD eliminates the problematic positive regular-
ization term to ensure consistent gradient directions for safe content optimization while introducing
pairwise regularization mechanisms that establish individualized preference relationships between
safe samples and each harmful variant. Extensive experimental validation further demonstrates that
NCD could achieve exceptional cross-seed stability, reducing ASRs from 11.1% to 6.2% compared
to RECE while maintaining superior generation quality. Additionally, against sophisticated jail-
break prompts, NCD exhibits robust defense capabilities, achieving a 5.0% ASR on Sneaky-Prompt
(SP) compared to 10.5% for the state-of-the-art method AlignGuard. Moreover, NCD demonstrates
strong generalizability across T2I architectures, consistently outperforming existing methods on
both SD v2.1 and SDXL with significant performance improvements across all safety metrics.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE (T2I) GENERATION

Owing to more stable training dynamics and improved generation fidelity, diffusion models have
gained prominence over early GAN-based approaches (Goodfellow et al., 2020; Esser et al., 2021).
This transformation begins with Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), which es-
tablishes the foundational denoising framework. Subsequently, Latent Diffusion Models(Rombach
et al., 2022) advance the paradigm by operating in latent space and incorporating classifier-free
guidance (Ho & Salimans, 2022), thereby achieving improved computational efficiency and text-
image alignment. Building on these foundations, contemporary state-of-the-art models, including
Imagen (Saharia et al., 2022), DALL·E (Ramesh et al., 2021; 2022), and the Stable Diffusion se-
ries (Rombach et al., 2022; Podell et al., 2023; Esser et al., 2024), showcase the remarkable capabil-
ities of large-scale diffusion architectures in generating photorealistic images from textual descrip-
tions. Moreover, recent developments in human preference alignment, such as Diffusion-DPO (Wal-
lace et al., 2024), D3PO (Yang et al., 2024a), and DSPO (Zhu et al., 2025), further enhance these
models through reinforcement learning from human feedback. However, alongside their impressive
generation capabilities, these powerful T2I models introduce significant safety concerns, including
the potential for harmful content generation, thereby necessitating robust defense mechanisms.

2.2 SAFETY MECHANISMS IN T2I MODELS

Ensuring safety and adherence to ethical norms in generation has become a critical issue in Text-
to-Image (T2I) models, with existing approaches falling into three main paradigms. Filter-based
methods serve as external safety mechanisms that detect harmful content through textual filter-
ing (CompVis, 2023; Khader et al., 2024), LLM determination (Markov et al., 2023), or image
analysis (Rombach et al., 2022). For instance, Stable Diffusion’s safety checker computes cosine
similarity between generated images and predefined harmful concept embeddings to reject unsafe
outputs. However, these external approaches suffer from limited robustness against adversarial at-
tacks (Rando et al., 2022; Yang et al., 2024d) and thus can be easily bypassed by advanced jailbreak
prompts. Training-free methods offer an intermediate solution that modulates generation behavior
during inference. For example, SLD (Schramowski et al., 2023) employs classifier-free safety guid-
ance by incorporating negative prompts during the denoising process, while Safree (Yoon et al.,
2024) identifies toxic concept subspaces in text embedding space and steers prompt embeddings
away from these harmful regions. Due to the need for more robust and permanent safety guaran-
tees, recent research has increasingly focused on parameter modification approaches that directly
alter model weights to suppress harmful concept generation from within the model itself. Super-
vised methods like ESD (Gandikota et al., 2023) and CA (Kumari et al., 2023) train models to
“forget” specific concepts, while attention-based techniques such as Forget-Me-Not (Zhang et al.,
2024a) fine-tune cross-attention layers to redirect attention away from harmful content. Model edit-
ing methods, including UCE (Gandikota et al., 2024) and RECE (Gong et al., 2024) achieve more
targeted interventions by directly modifying cross-attention projection matrices through closed-form
solutions.

Despite these advances, existing methods struggle to balance generation quality with safety and lack
systematic defense against input noise variations, leading to inconsistent protection across different
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random seeds. In contrast, our proposed NCD framework addresses these limitations through multi-
noise contrastive alignment and preference calibration optimization, which we detail in Secs 3 and 4.

3 SEED-INVARIANT SAFETY ALIGNMENT VIA NCA

3.1 PRELIMINARIES

Direct Preference Optimization for Diffusion Models. Direct Preference Optimization (DPO) is
a contrastive learning framework that aligns large language models with human preferences without
requiring explicit reward model training. The algorithm leverages paired preference data consisting
of preferred samples yw and rejected samples yl, optimizing the following objective:

LDPO(pθ; pref) = −E(x,yw,yl)∼D
[
log σ

(
rθ(x, y

w)− rθ(x, y
l)
)]

, (1)

where x denotes the input prompt, rθ(x, y) = β log pθ(y|x)
pref(y|x) , σ(·) is the sigmoid function, pθ is the

policy being optimized, pref is the reference policy, and β controls the KL regularization strength.
The implicit reward function r(x, y) = β log pθ(y|x)

pref(y|x) encourages the model to increase the likeli-
hood of preferred outputs relative to rejected ones while maintaining proximity to the reference.

Recently, DPO has been successfully extended to diffusion models for image generation tasks.
Diffusion-DPO adapts this framework to align text-to-image diffusion models with human pref-
erences. Given a text prompt c and corresponding preferred image xw and rejected image xl, the
objective function is formulated as:

LDiff-DPO(θ) = −Et∼U(1,T )

[
log σ

(
Rθ(c, x

w
t )−Rθ(c, x

l
t)
)]

, (2a)

Rθ(c, xt) = K · [Ldiff(ϵref, xt, c, t)− Ldiff(ϵθ, xt, c, t)] , (2b)

where ϵθ denotes the denoising network being optimized, ϵref represents the frozen reference net-
work, K > 0 is a scaling hyperparameter, and t ∼ U(1, T ) indicates uniform sampling over diffu-
sion timesteps. The diffusion loss Ldiff(ϵ, xt, c, t) = ∥ϵ̃t − ϵ(xt, c, t)∥2 measures the mean squared
error between the ground-truth noise ϵ̃t and the network’s prediction. The step-wise implicit reward
R(c, xt) = K ·∆Lt is determined by the relative improvement in denoising performance, encour-
aging the diffusion model to generate images that align with human preferences by maximizing the
likelihood of preferred samples while reducing that of rejected samples.

Noise Contrastive Alignment (NCA). NCA (Chen et al., 2024) is an alignment framework based
on Noise Contrastive Estimation (NCE) that addresses the limitation of DPO methods which can
only handle pairwise preference data. NCA reformulates the language model alignment problem
as a multi-choice binary classification task: given candidate responses {y1, y2, . . . , yN} for input
x, the model learns by predicting the probability of sampling the corresponding response from the
target policy πθ as pθ(ν = 1|x, yi) = σ(rθ(x, yi)). By maximizing the likelihood estimation of
these probabilities, NCA constructs the following objective:

LNCA(θ) = −E(x,{yi,ri}1:N )∼D

[
N∑
i=1

wi log σ
(
rθ(x, yi)

)
+

1

N

N∑
i=1

log σ
(
− rθ(x, yi)

)]
, (3)

where wi = eri/α∑N
j=1 erj/α

represents the softmax-normalized weight based on explicit reward ri,

α > 0 is the temperature parameter, and rθ(x, y) = β log pθ(y|x)
pref(y|x) is the implicit reward function.

The first term encourages high-quality responses based on their reward-weighted importance, while
the second term provides contrastive learning by treating all candidates as negative samples with
equal weight. Unlike DPO, which primarily focuses on adjusting relative likelihood across differ-
ent responses, NCA optimizes the absolute likelihood of each response, effectively preventing the
likelihood degradation of preferred responses that commonly occurs in DPO training.

3.2 EXTENDING NCA TO MULTI-SEED SAFETY ALIGNMENT (A DIRECT EXTENSION)

The NCA framework’s ability to simultaneously handle multiple preference samples and optimize
through probabilistic weighting aligns well with the requirements of multi-seed safety alignment.
Building upon NCA, we develop a multi-seed safety alignment method for diffusion models.
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In the first, considering the multi-step generation nature of diffusion models, we follow Diffusion-
DPO by replacing the original policy distribution with the diffusion model’s conditional distribution
p(x0:T |c) and implicitly expressing the reward function through the ratio of conditional distributions.
The corresponding objective function of NCA becomes:

Lθ = −E

[
N∑
i=1

(
wi log σ

(
rθ(c, x

i)
)
+

1

N
log σ

(
−rθ(c, x

i)
))]

, (4)

where wi = esi/α∑N
j=1 esj/α

represents the softmax weight of the i-th sample based on safety score

si, and rθ(c, x
i) = βE

[
log

pθ(x
i
0:T |c)

pref(xi
0:T |c)

]
denotes the implicit reward for the whole denoising tra-

jectory. However, optimizing over entire trajectories is computationally expensive. Following the
upper bound derivation in Diffusion-DPO, we extend their Jensen’s inequality-based approach to
our multi-seed weighted setting. Under the Markov property of the diffusion process and applying
Jensen’s inequality, we obtain:

Lθ ≤ −Et

[
N∑
i=1

(
wi log σ

(
r̃θ(c, x

i
t)
)
+

1

N
log σ

(
−r̃θ(c, x

i
t)
))]

, (5)

where r̃θ(c, x
i
t) = βT log

pθ(x
i
t|x

i
t+1,c)

pref(xi
t|xi

t+1,c)
represents the step-wise reward approximation. This exten-

sion enables efficient step-wise optimization with theoretical guarantees.

To make this practically computable, we then leverage the DDPM parameterization. Under DDPM,
the reverse process can be approximated by the posterior distribution q(xt−1|xt, x0), enabling the
transformation of log probability ratios into KL divergences at each timestep. The KL divergence
terms can be expressed as mean squared loss of noise prediction, yielding the simplified objective:

L(θ) = −Et

[
N∑
i=1

(
wi log σ

(
Rθ(c, x

i
t)
)
+

1

N
log σ

(
−Rθ(c, x

i
t)
))]

, (6)

where Rθ(c, x
i
t) = K

(
Ldiff(ϵref, x

i
t, c)− Ldiff(ϵθ, x

i
t, c)

)
represents the step-wise implicit reward,

and Ldiff(ϵ, xt, c) = ∥ϵ̃t − ϵ(xt, c)∥2 is the standard denoising loss.

Finally, we reformulate the loss function into an explicit preference form. Specifically, for each ma-
licious prompt, we have one safe response xw (preferred) and multiple harmful responses {xlj}N−1

j=1
(rejected) generated with different random seeds. The safety-oriented objective becomes:

L(θ) = −Et

[
ww log σ (Rθ(x

w
t )) +

1

N
log σ (−Rθ(x

w
t ))

+

N−1∑
j=1

(
wlj log σ

(
Rθ(x

lj
t )

)
+

1

N
log σ

(
−Rθ(x

lj
t )

)) ,

(7)

where Rθ(x
w
t ) and Rθ(x

lj
t ) represent step-wise rewards for the safe and j-th harmful samples,

respectively, and ww, wlj denote their corresponding importance weights. In practice, we set ww ≈
1 and wlj ≈ −1 to enforce safety alignment during training.

3.3 POTENTIAL ISSUES OF DIRECT EXTENSION

While models trained following the above paradigm successfully mitigate harmful content gener-
ation across multiple random seed settings, our practical implementation reveals two fundamental
limitations when directly adapting NCA algorithms to diffusion models. These limitations arise
from the intrinsic design differences between NCA and the safety finetuning requirements.

3.3.1 REVERSE UPDATE INDUCED BY POSITIVE REGULARIZATION TERM

In the direct extension, the 1/N regularization term is designed to collaborate with the optimiza-
tion objective in jointly determining the loss update direction. However, upon direct application to
diffusion model safety alignment tasks, we identify a critical issue that undermines training stability.

5
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Theorem 3.1. (Gradient Reversal) For the safety-oriented diffusion loss L(θ) defined in Equa-
tion (7), the gradient component for safe samples with weight ww ≈ 1 is given by:

∇θLw = −Et

[(
1− N + 1

N
σ(Rθ(x

w
t ))

)
∇θRθ(x

w
t )

]
, (8)

When σ(Rθ(x
w
t )) > N

N+1 , the gradient coefficient becomes negative, causing reverse update be-
havior that reduces the likelihood of generating safe content.

Proof. The diffusion loss for safe samples Lw has the following form:

Lw(θ) = −Et

[
ww log σ(Rθ(x

w
t )) +

1

N
log σ(−Rθ(x

w
t ))

]
. (9)

We directly calculate the gradient with respect to θ:

∇θLw = −Et

[(
ww − (ww +

1

N
)σ(Rθ(x

w
t ))

)
∇θRθ(x

w
t )

]
. (10)

Since the importance weight for safe samples ww ≈ 1, the above equation simplifies to:

∇θLw = −Et

[(
1− N + 1

N
σ(Rθ(x

w
t ))

)
∇θRθ(x

w
t )

]
. (11)

This theorem reveals a fundamental flaw in the direct application of NCA to safety alignment:as
safe content rewards improve, the 1/N regularization term causes gradient reversal, paradoxically
penalizing safe generation when σ(Rθ(x

w
t )) >

N
N+1 .

3.3.2 UNIFORM TREATMENT OF DIVERSE HARMFUL CONTENT

The second limitation arises from the uniform optimization treatment applied to all harmful samples,
regardless of their diverse characteristics and severity levels. In the original NCA formulation, while
the framework assigns different weights to samples based on safety scores, it fails to differentiate
between various types of harmful content when applying suppression signals.

Specifically, in the original NCA-based loss L(θ), the optimization signal for suppressing any harm-
ful sample xli

t is determined uniformly by the global weight 1
N :

∇θLli = −Et

[
1

N
(1− σ(Rθ(x

li
t )))∇θRθ(x

li
t )

]
(12)

This uniform treatment creates a fundamental mismatch between the optimization strategy and the
inherent diversity of harmful content generated from different random seeds. Some samples may
contain subtle safety violations while others exhibit explicit harmful content, yet all receive identi-
cal suppression intensity. Moreover, the absence of explicit comparison between safe and harmful
samples prevents the model from learning discriminative preference margins, leading to suboptimal
safety alignment performance across diverse harmful content types.

4 NOISE CONTRASTIVE DIFFUSION (NCD)

To address the fundamental limitations identified in Sec 3.3, we propose the Noise Contrastive Dif-
fusion (NCD) framework, which incorporates two key algorithmic improvements that enhance the
stability and effectiveness of multi-seed safety alignment in diffusion models.

4.1 ELIMINATING GRADIENT REVERSAL THROUGH REGULARIZATION REMOVAL

Based on the gradient analysis presented in Theorem 3.1, we observe that the positive sample reg-
ularization term 1

N log σ(−R(xw
t )) leads to undesirable gradient reversal when safety alignment

6
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progresses. To address this critical issue, we adopt a principled approach by eliminating this prob-
lematic term from the original NCA-based loss function. The modified objective function becomes:

Lmod(θ) = −Et

[
ww log σ (Rθ(x

w
t )) +

N−1∑
i=1

1

N
log σ

(
−Rθ(x

li
t )

)]
(13)

where ww represents the importance weight for the safe sample, and Rθ(x
li
t ) denotes the step-wise

reward for the i-th harmful sample. This modification fundamentally prevents the gradient coeffi-
cient for preferred safe samples from becoming negative, ensuring that the optimization maintains a
consistent gradient direction throughout training.

4.2 PAIRWISE REGULARIZATION FOR ADAPTIVE DISCRIMINATION

While the modified loss function resolves the gradient reversal issue, it does not address the uniform
treatment limitation identified in Sec 3.3.2. To overcome this, we introduce a pairwise regulariza-
tion mechanism that provides adaptive discrimination for diverse harmful content through explicit
preference comparisons between safe and harmful samples, which can be formulated as follows:

Lpair(θ) = −Et

[
N−1∑
i=1

log σ
(
Rθ(x

w
t )−Rθ(x

li
t )

)]
(14)

Rather than applying uniform suppression, this regularization establishes individualized preference
relationships between the safe sample and each harmful sample. The optimization signal for each
harmful sample xli now becomes proportional to σ(Rθ(x

w
t )−Rθ(x

li
t )), which automatically adapts

to the relative harmfulness compared to the safe sample. Above all, the complete NCD objective
function is LNCD(θ) = Lmod(θ) + λLpair(θ), where λ controls the regularization strength.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Baselines & Target models. We use SD-v1.5 as the primary target model and compare against
state-of-the-art T2I defense mechanisms, including filter-based approaches (SD-v1.5 w/ Safety Fil-
ter (CompVis, 2023)), concept erasure methods (CA (Kumari et al., 2023), ESD-u (Gandikota et al.,
2023)), weight editing techniques (UCE (Gandikota et al., 2024), RECE (Gong et al., 2024)),
training-free methods (SLD (Schramowski et al., 2023), SafFree (Yoon et al., 2024)), and prefer-
ence alignment approaches (AlignGuard (Liu et al., 2024b)). Additionally, we consider SD-v2.1
and SDXL as target models to evaluate the generalizability of our method across different T2I ar-
chitectures. Implementation details are provided in the Appendix A.1.

Datasets. We conduct comprehensive evaluations of NCD and baseline methods across four
common-used T2I defense performance benchmarks: (1) I2P-Sexual (Schramowski et al., 2023),
featuring sexually-explicit harmful prompts; (2) NSFW-56K (Li et al., 2024), comprising diverse
categories of Not-Safe-For-Work harmful prompts; (3) Sneaky-Prompt (Yang et al., 2024c) and (4)
MMA-Diffusion (Yang et al., 2024b), both providing adversarial jailbreak prompts designed to elicit
harmful content. Furthermore, to evaluate the preservation of generation quality under safety con-
straints, we incorporate the COCO-30K (Lin et al., 2014) benchmark, which consists of benign
prompts for standard content generation.

Metrics. Following previous research (Gong et al., 2024), we use Attack Success Rate (ASR) to
measure the proportion of NSFW content generated from adversarial prompts. We further extend
ASR with Seed Success Rate (SSR-N), which evaluates defense performance across N random seeds
by considering an attack successful if at least one of N generated images is detected as NSFW
content. NSFW detection uses the NudeNet (Bedapudi, 2019) classifier. For generation quality
evalution, we employ CLIPScore (Hessel et al., 2021), FID (Heusel et al., 2017), and LPIPS (Zhang
et al., 2018) on 3000 examples from COCO-30K.

5.2 EVALUATION RESULTS OF NCD FRAMEWORK

Superior Defense Performance with Effective Mitigation Against Seed-Variations. As shown in
Table 1, on the I2P-Sexual dataset, NCD achieves 6.2% SSR-10 and 0.6% ASR, demonstrating sub-
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Table 1: Performance comparison of different T2I defense mechanisms (including censorship & fil-
tering, concept erasure, model editing, training-free, and alignment-based methods) on SD-v1.5. For
prompts from different benchmarks, we generate images with 10 randomly sampled seeds from the
range (1, 1024) and report SSR-10 and ASR to evaluate safety alignment effectiveness. Additionally,
we evaluate CLIP-Score and FID on COCO-30K to evaluate generation quality.

Method I2P-Sexual NSFW-56K Sneaky-Prompt-P MMA-Diffusion COCO-30K

SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) CLIP (↑) FID (↓)

SD-v1.5 0.676 0.255 0.867 0.459 0.675 0.257 0.942 0.623 26.57 –

Safety Filter 0.361 0.073 0.545 0.116 0.435 0.090 0.754 0.210 – –
SD-v2.1 0.461 0.107 0.455 0.089 0.390 0.074 0.399 0.063 26.23 –

CA 0.258 0.051 0.370 0.071 0.175 0.031 0.494 0.143 26.30 21.18
ESD-u 0.246 0.037 0.262 0.042 0.145 0.020 0.308 0.048 25.61 19.96

UCE 0.245 0.039 0.357 0.066 0.195 0.028 0.532 0.127 25.75 21.74
RECE 0.111 0.020 0.251 0.048 0.315 0.060 0.648 0.239 26.03 19.09

SLD-STRONG 0.240 0.059 0.662 0.224 0.380 0.104 0.844 0.410 26.17 18.76
SLD-MAX 0.135 0.012 0.223 0.036 0.180 0.011 0.327 0.062 25.78 21.28
Safree 0.118 0.032 0.35 0.054 0.185 0.069 0.654 0.268 26.17 20.95

AlignGuard 0.248 0.051 0.214 0.034 0.105 0.014 0.250 0.030 25.84 22.90
NCD (Ours) 0.062 0.010 0.148 0.023 0.050 0.006 0.200 0.022 26.39 19.85

Table 2: Extended experiments on additional T2I model architectures (SD-v2.1 and SDXL). We
compare NCD with state-of-the-art defense mechanisms (AlignGuard and Safree). The evaluation
metrics are consistent with the settings in Table 1.

Method I2P-Sexual NSFW-56K Sneaky-Prompt-P MMA-Diffusion COCO-30K

SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) CLIP (↑) FID (↓)

SD-v2.1 0.461 0.107 0.455 0.089 0.390 0.074 0.399 0.063 26.23 –
SD-v2.1+AlignGuard 0.380 0.100 0.317 0.052 0.230 0.047 0.182 0.032 25.59 17.30
SD-v2.1+Safree 0.135 0.036 0.154 0.031 0.085 0.024 0.081 0.018 25.8 18.23
SD-v2.1+NCD (Ours) 0.057 0.008 0.072 0.009 0.075 0.010 0.106 0.015 26.11 17.91

SDXL 0.294 0.063 0.580 0.185 0.590 0.166 0.685 0.225 27.14 –
SDXL+AlignGuard 0.194 0.040 0.304 0.065 0.185 0.034 0.310 0.046 26.05 21.49
SDXL+Safree 0.133 0.022 0.144 0.023 0.12 0.005 0.104 0.012 27.04 21.57
SDXL+NCD (Ours) 0.038 0.005 0.092 0.012 0.090 0.010 0.102 0.013 27.07 21.30

stantial improvements over the previous second-best method, RECE (SSR-10: 11.1%, ASR: 2.0%).
Notably, all prior methods, despite exhibiting impressive ASR performance, maintain considerably
higher attack success rates under the SSR-10 metric (differing by approximately an order of mag-
nitude). This further reveals a critical limitation in existing T2I defense methods: their inability
to generalize adequately across different initial seeds. In contrast, NCD demonstrates particularly
pronounced improvements on the SSR-10 metric.

Exceptional Robustness Against Jailbreak Prompts. When confronted with carefully crafted
adversarial jailbreak prompts, NCD exhibits robust defense capabilities. As demonstrated in Table 1,
on the Sneaky-Prompt-P benchmark, NCD achieves 5.0% SSR-10 and 0.6% ASR, while the second-
best method AlignGuard still maintains relatively high rates of 10.5%/1.4% in SSR-10 and ASR. On
the more challenging MMA-Diffusion benchmark, NCD reduces SSR-10 from 94.2% to 20.0% and
ASR from 62.3% to 2.2%. These results indicate that NCD not only defends against explicit harmful
prompts but also effectively mitigates maliciously designed jailbreak prompts.

Optimal Trade-off Between Generation Quality and Defense Performance. Compared to other
alignment-based methods, NCD better preserves generation quality while providing strong defense.
As shown in Table 1, on the COCO-30K benchmark, NCD achieves a CLIP score of 26.39 and FID
of 19.85, significantly outperforming the previous best method AlignGuard (25.84/22.90). Remark-
ably, NCD’s generation quality is comparable or even superior to certain training-free methods (e.g.,
SLD-MAX: 25.78/21.28), while simultaneously providing enhanced safety alignment, achieving a
better balance between generation quality and defense performance.

Generalizability Across Various T2I Models. NCD demonstrates excellent generalizability across
different T2I architectures. As shown in Table 2, on SD-v2.1, NCD reduces SSR-10/ASR to
5.7%/0.8% (on I2P-Sexual) and 7.2%/0.9% (on NSFW-56K), achieving near order-of-magnitude
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Figure 2: Analysis of defense methods against seed variations. We evaluate SSR-N with different
N settings, and compare NCD with previous methods across four benchmarks. Results reveal that
previous methods suffer from significant performance degradation as seed count increases, while
NCD maintains consistently low seed success rates, validating its superior cross-seed stability.

Table 3: Ablation study on key components. We remove individual NCD components to assess their
contributions. Results show that parameter adaptation and the regularization term enhance both
generation quality and defense effectiveness.

Method Param. Adapt. Regularity NSFW-56K MMA-Diffusion COCO-30K

SSR-10 (↓) ASR (↓) SSR-10 (↓) ASR (↓) CLIP (↑) LPIPS (↓)

SD-v1.5 – – 0.867 0.459 0.942 0.623 27.14 –

SD-v1.5
+ NCD (Ours)

✗ ✗ 0.249 0.038 0.363 0.066 26.36 0.4312
✓ ✗ 0.197 0.029 0.322 0.060 26.40 0.4301
✓ ✓ 0.148 0.023 0.200 0.022 26.39 0.4308

improvements compared to AlignGuard (38.0%/10.0% and 31.7%/5.2%, respectively). On the
SDXL architecture, NCD consistently maintains its lead, achieving the lowest SSR-10 and ASR
across most of benchmarks, demonstrating the method’s high adaptability.

5.3 ABLATION STUDIES

Robustness Analysis Under Extended Seed Counts. To further evaluate the robustness improve-
ments of NCD against seed variations, we assess the changes in defense performance (SSR-N) when
increasing the number of random seeds N (from 3 to 50) compared to different methods, as shown in
Fig. 2. The experimental results further reveal critical limitations of existing methods: As the seed
count increases, the baseline methods exhibit a sharp deterioration in the SSR-N metrics. Taking
the I2P-Sexual dataset as an example, ESD-u’s attack success rate increases from 25% at SSR-3 to
49% at SSR-50, while RECE increases from 11% to 31%, indicating significant degradation in de-
fense effectiveness when faced with more seed variants. In contrast, NCD demonstrates exceptional
stability. Across all four datasets, NCD’s attack success rate growth remains within a controlled
range. This stability benefits from NCD’s multi-objective preference calibration mechanism, which
achieves comprehensive coverage of the seed space by simultaneously optimizing defense objectives
across multiple seeds. In particular, even in the most challenging 50 seed setting, NCD maintains
36.1% SSR-50 on the MMA-Diffusion, significantly outperforming other methods over 60%.

Contribution Analysis of NCD’s Key Components. Table 3 presents an ablation study of NCD’s
key components. The basic NCA framework reduces SSR-10 from 86.7% to 24.9% and ASR from
45.9% to 3.8% on NSFW-56K, validating the preference calibration approach. Adding parame-
ter adaptation further improves performance to 19.7% SSR-10 and 2.9% ASR, while the complete
NCD framework achieves optimal results with 14.8% SSR-10 and 2.3% ASR. On MMA-Diffusion,
the regularization term proves crucial, reducing SSR-10 from 32.2% to 20.0%. Importantly, gen-
eration quality remains consistent across configurations (CLIP: 26.36 to 26.39), confirming that all
components contribute positively without sacrificing image quality.

5.4 GENERALIZATION TO OTHER HARMFUL CATEGORIES

By design, NCD learns directly from safe-harmful sample pairs without relying on category-specific
features, enabling it to naturally extend to any harmful content category. To validate NCD’s gen-
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Table 4: Cross-category generalization results on I2P Benchmark. We report SSR-N and ASR
metrics under multi-seed evaluation (N=3, 10, 20) across three harmful content categories. Lower
values indicate better safety performance.

Metrics Methods Seed Num=3 Seed Num=10 Seed Num=20
Violence Self-Harm Shocking Violence Self-Harm Shocking Violence Self-Harm Shocking

SSR-N(↓)
Original 61.51 57.05 65.30 88.04 82.91 88.50 95.05 89.28 95.75

NCD (Ours) 41.09 30.63 38.90 61.77 51.31 60.98 75.00 63.80 72.70

ASR(↓)
Original 51.71 46.54 56.18 51.06 45.26 53.08 50.68 42.79 51.74

NCD (Ours) 32.27 20.93 28.47 31.31 20.49 28.87 31.61 20.53 28.47

(a) Violence

origion

+NCD
(OURS)

Seed1 Seed2 Seed3 Seed4

(b) Self-harm

origion

+NCD
(OURS)

Seed1 Seed2 Seed3 Seed4

(c) Shocking

origion

+NCD
(OURS)

Seed1 Seed2 Seed3 Seed4

(d) Illegal Activity

origion

+NCD
(OURS)

Seed1 Seed2 Seed3 Seed4

Figure 3: Qualitative results demonstrating NCD’s robust suppression of seed-induced harmful vari-
ations across different categories. We blur images that contain offensive content for safety concerns

eralizability across diverse harmful content types, we evaluate its performance on three additional
categories from the I2P Benchmark: violence, self-harm, and shocking content. We employ the
Q-16 classifier (Schramowski et al., 2022) to report SSR-N and ASR metrics under multiple random
seeds, assessing NCD’s defense effectiveness against seed-induced variations in harmful concept
generation. As shown in Table 4, NCD consistently outperforms baseline method across all eval-
uated categories, demonstrating its effectiveness in suppressing diverse types of harmful content.
More visualization results can be found in Fig. 3.

6 LIMITATIONS AND ETHICAL CONSIDERATIONS

Despite NCD’s improvements in cross-seed safety alignment, our NCD-10K dataset may not capture
all emerging harmful patterns, and performance on recent commercial models remains unexplored
due to accessibility limitations. We acknowledge the dual-use nature of our research and will imple-
ment strict vetting mechanisms when open-sourcing to ensure responsible usage.

7 CONCLUSION

We identify and address the cross-seed instability problem in text-to-image diffusion model safety
alignment, where existing mechanisms exhibit significant performance variations under different
random seed conditions. Through theoretical analysis, we reveal fundamental flaws in direct NCA
extension to diffusion models and propose Noise Contrastive Diffusion (NCD) with targeted algo-
rithmic modifications including elimination of problematic regularization and introduction of pair-
wise regularization mechanisms. Extensive experiments further demonstrate that NCD achieves
superior cross-seed stability across multiple T2I architectures.
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A EXPERIMENT DETAILS

A.1 IMPLEMENTATION DETAILS

We train NCD on SD-v1.5, SD-v2.1, and SDXL using four A800 80G GPUs. Training configura-
tions are: SD-v1.5/v2.1 use AdamW with batch size 8, gradient accumulation 2, and 3200 steps;
SDXL uses Adafactor with batch size 2, gradient accumulation 2, and 12500 steps. Learning rates
are 1e-6 (SD-v1.5, SDXL) and 5e-6 (SD-v2.1). We set α to 1e-1 (SD-v1.5, SDXL) and 2e-1 (SD-
v2.1), with regularization weight λ = 0.5 and linear loss scaling. Additional details are in the
supplementary materials.

A.2 NCD-10K DATASET

Harmful Vocabulary List 

BloodyNarcotic Provocative

Addictive

Heroin
……

Wound

Organs
……

Nude

Genitals
……

……

!!

Matching &  Filtering

DiffusionDB

"!

Harmful Prompts

a nude figure is captured in a 
dynamic pose amid splashes of 
vibrant color and abstract forms.

……
……

SDXL
Safety 

Rewrite

I2I SDXL
""

Seed1 Seed2 Seed3
1 Safe Sample

3 Malicious Samples
. .

NSFW

NSFW

NSFW

NSFW

NSFW

NSFW

NSFW

NSFW

Figure 4: Data Construction Pipeline

To effectively train NCD Framework, we introduce a multi-seed safety alignment dataset (NCD-
10K) that includes a variety of harmful concepts. This dataset is constructed based on a scalable
pipeline and consists of a collection of images with both harmful and safe features under harmful
prompts. The data construction process of NCD-10K is shown in Fig 4. For the harmful-safe image
pairs, we first define a target harmful vocabulary list Lh and use text-only GPT-4 to filter a set of
prompts Th from the DiffusionDB (Wang et al., 2022) that contain sensitive semantics from Lh.
Then, for each unsafe prompt Th, we sample four random seeds (seed1-seed4) and generate cor-
responding unsafe images using SDXL (Podell et al., 2023). Traditional methods often use hard
replacement of sensitive words to generate content-similar safe images. However, this method sig-
nificantly alters the features and structure of the original image, resulting in considerable ambiguity
in the representation of harmless concepts between image pairs, which is not ideal for semantic
alignment in the T2I model. To address this, we propose a safety-aware image inpainting process.

Specifically, for each unsafe prompt Th, we use the text-only GPT-4 to replace its sensitive semantics
with approximate safe semantics, ensuring that the context is unaffected, thus generating a mild
prompt Ts. We then apply the Image-to-Image generation process of SDXL with Ts to the unsafe
image generated using seed4, modifying it into a similar safe image Is. Additionally, we use Th

combined with the remaining three seeds (seed1-seed3) to generate three harmful images Ih1, Ih2,
and Ih3. Ultimately, our dataset consists of five-tuples in the form of (Th, Is, Ih1, Ih2, Ih3), where
each entry contains one harmful prompt Th, one safe image Is, and three harmful images Ih1-Ih3.

Our dataset comprises a total of 10K entries of relevant data. Beyond the sexual category, we
extend the dataset to cover 7 harmful categories from the I2P Benchmark, with the sexual category
accounting for approximately 2/3 of the data. We test the SDv1-5 model fine-tuned under the NCD
framework on the complete I2P dataset and employ the Q-16 classifier (Schramowski et al., 2022)
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to detect harmful content generation. Experimental results demonstrate that NCD achieves effective
mitigation for other harmful content categories as well.

Table 5: The safety alignment performance of various methods under a broader range of harmful
concepts. We used harmful prompts from seven NSFW categories in I2P benchmark and reported
the inappropriate probability (IP, %) of images generated from these prompts.

Methods IP (↓)
Hate Harass Violence Self-harm Sexual Shocking Illegal Avg.

SD-v1.5 21.65 19.66 39.95 35.08 54.14 41.94 10.18 35.49

SLD Schramowski et al. (2023) 9.96 11.65 25.53 17.48 28.14 26.05 11.14 20.09
ESD-u Gandikota et al. (2023) 11.26 12.86 32.54 19.73 21.48 29.09 13.76 21.31
UCE Gandikota et al. (2024) 19.91 16.99 30.42 24.84 23.95 33.29 15.68 24.15

NCD (Ours) 9.52 12.14 17.2 15.11 14.61 11.33 13.81 17.07

B COMPARISON WITH ADDITIONAL DEFENSE MECHANISMS

To provide a comprehensive evaluation of our defense mechanism against harmful seed-variations,
we extend our experimental analysis to include comparisons with additional state-of-the-art baseline
methods. We evaluate defense performance (SSR-N) with N ranging from 3 to 50, and compare our
method with five recent defense approaches (Receler (Huang et al., 2024a), AdvUnlearn (Zhang
et al., 2024b), DUO (Liu et al., 2024a), AlignGuard (Liu et al., 2024b), and TRCE (Chen et al.,
2025)) on the I2P-Sexual and NSFW-56K benchmarks. As shown in Table 6, our NCD method
consistently maintains a low Seed Success Rate(SSR-N) across different numbers of random seeds,
demonstrating superior cross-seed stability compared to the baseline methods.

Table 6: Comparison of SSR-N across different methods on I2P-Sexual and NSFW-56K bench-
marks. Random seeds are sampled from (1, 1024) with N seeds per prompt. Lower values indicate
better cross-seed defense robustness. Best results are in bold, second-best are underlined.

Methods I2P-Sexual NSFW-56K
SSR-3 SSR-10 SSR-20 SSR-50 SSR-3 SSR-10 SSR-20 SSR-50

Receler Huang et al. (2024a) 4.19 13.32 23.42 36.63 6.94 25.45 36.72 70.91
AdvUnlearn Zhang et al. (2024b) 2.69 7.31 11.6 22.02 3.82 15.38 21.41 32.20
DUO Liu et al. (2024a) 6.48 14.82 24.60 37.45 27.67 51.91 66.90 72.23
AlignGuard Liu et al. (2024b) 10.31 20.48 30.83 47.48 9.05 21.40 33.80 51.41
TRCE Chen et al. (2025) 2.15 8.16 13.21 26.72 4.02 16.69 21.52 36.72

Ours (NCD) 1.61 6.23 9.45 19.76 5.43 14.79 20.22 30.99

Building on this foundation, we analyze ASR from the generated samples with seed counts of 3, 10,
and 20 in the same experiments, and additionally measure generation quality on COCO-30K using
CLIP-Score and FID metrics. As shown in Table 7, NCD achieves the lowest ASR across most
experimental settings and maintains strong generation quality with competitive CLIP-Score (26.39)
and FID (19.85) on COCO-30K. These results further demonstrate that NCD not only achieves
comprehensive mitigation of harmful seed-variations but also attains an optimal trade-off between
generation quality and overall defense performance.

C ANALYSIS OF REVERSE UPDATE PHENOMENON

In Section 3.3.1, we observed that positive regularization terms can paradoxically induce reverse
updates that move the model parameters in undesired directions. This section provides both
theoretical and empirical evidence to explain this phenomenon.
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Table 7: Comparison of defense mechanisms on I2P-Sexual, NSFW-56K, and COCO-30K bench-
marks. ASR is computed from the original experimental results with seed counts of N=3, 10, and
20, where N denotes the number of random seeds per prompt (lower is better). CLIP-Score and FID
evaluate generation quality on benign prompts (higher CLIP-Score and lower FID are better). Best
results are in bold, second-best are underlined.

Methods I2P-Sexual NSFW-56K COCO-30K

ASR (N=3) ASR (N=10) ASR (N=20) ASR (N=3) ASR (N=10) ASR (N=20) CLIP ↑ FID ↓

Receler 3.68 3.41 3.54 6.90 6.88 6.57 26.13 20.13
ADvunlearn 0.90 0.85 0.83 1.24 1.37 1.28 24.02 21.44
DUO 2.11 2.46 2.40 12.04 11.69 11.52 26.62 19.55
AlignGuard 4.10 5.10 7.65 3.52 3.40 3.26 25.84 22.90
TRCE 0.75 0.85 0.95 1.88 2.20 1.84 25.87 20.22

NCD (Ours) 0.61 0.83 0.93 1.57 2.00 1.94 26.39 19.85

C.1 THEORETICAL ANALYSIS: PROOF OF THEOREM 3.1

The diffusion loss for positive samples Lw has the following form:

Lw(θ) = −Et

[
ww log σ (Rθ(x

w
t )) +

1

N
log σ (−Rθ(x

w
t ))

]
. (15)

For the entire loss, we directly calculate the gradient with respect to θ :

∇θLw = −Et

[
ww

(
1− σ (Rθ(x

w
t ))

)
∇θRθ(x

w
t )−

1

N
σ(Rθ(x

w
t ))∇θRθ(x

w
t )

]
= −Et

[(
ww −

(
ww +

1

N

)
σ (Rθ(x

w
t ))

)
∇θRθ(x

w
t )

]
(16)

Since the importance weight for positive samples ww ≈ 1, the above equation can be simplified to:

∇θLw = −Et

[(
1−

(
1 +

1

N

)
σ (Rθ(x

w
t ))

)
∇θRθ(x

w
t )

]
= −Et

[(
1− N + 1

N
σ(Rθ(x

w
t ))

)
∇θRθ(x

w
t )

]
, (17)

This corollary proves that if the 1/N regularization term for positive samples is not removed, when
σ (Rθ(x

w
t )) exceeds N

N+1 , gradient reversal of the safety loss will occur, which penalizes the model’s
safe generation.

C.2 EMPIRICAL EVIDENCE: LOSS VISUALIZATION

To further validate our theoretical findings, we empirically track the safe sample reward during
training. Specifically, we follow the training configuration detailed in Appendix A.1 to train the
NCA framework on Stable Diffusion v1.5 with N = 4 candidate samples, and compute the average
safe sample reward Exw∼D[σ(Rθ(x

w
t ))] across the entire dataset at each epoch.

As shown in Figure 5, the dataset-averaged safe sample reward follows a trajectory that clearly
demonstrates the gradient reversal phenomenon. Initially, the reward increases steadily from 0.562
(epoch 0) through 0.620 (epoch 4), 0.668 (epoch 8), and 0.731 (epoch 12), reflecting successful
safety learning. At epoch 16, the reward reaches 0.806, exceeding the critical threshold N

N+1 =
0.8. Beyond this point, the gradient coefficient becomes negative, causing the training to enter the
gradient reversal region (pink shaded area). The subsequent reward decrease to 0.746 at epoch 19
confirms that the safety alignment learned by the model is being undermined.

D HARMFULNESS-AWARE PAIRWISE REGULARIZATION LOSS

While the pairwise regularization loss in equation 14 effectively addresses the gradient reversal
issue, it overlooks the varying severity levels among harmful samples. To account for the different

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 4 8 12 16 19
Training Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

(R
(x

w t
))

Evolution of Safe Sample Rewards Throughout NCD Training

(R (xw
t ))

Critical Threshold N/(N + 1) = 0.8
Gradient Reversal Region

0.561
0.620

0.667

0.731

0.806

0.746

N=4

Figure 5: Safe sample reward during NCA training with N = 4 candidate samples. The blue curve
shows Exw [σ(Rθ(x

w
t ))] at each epoch (sampled every 4 epochs for clarity). The red dashed line

indicates the critical threshold N
N+1 = 0.8.

degrees of harmfulness in generated content, we propose Harmfulness-Aware NCD (NCD-HA),
which incorporates severity-based weighting into the pairwise regularization framework.

Method Design. We leverage the Q16 classifier to assess the harmfulness severity of each gen-
erated sample. For each harmful sample xli , the classifier produces a confidence score si ∈ [0, 1]
measuring the similarity to the corresponding harmful category. Higher si values indicate that the
content more closely resembles the harmful category definition.

For each harmful sample xli in the batch, we obtain its Q16 confidence score si ∈ [0, 1]. We rank
these samples by their confidence scores in descending order: sπ(1) ≥ sπ(2) ≥ · · · ≥ sπ(N−1),
where π denotes the ranking permutation. Based on each sample’s confidence score si, we assign a
regularization weight ω(si) through a stratified weighting function, where higher confidence scores
yield higher weights.

We modify the original pairwise loss from Equation (11):

Lpair(θ) = −Et

[
N−1∑
i=1

log σ
(
Rθ(x

w
t )−Rθ(x

li
t )

)]
(18)

to incorporate severity-based weighting:

Lharm-aware(θ) = −Et

[
N−1∑
i=1

ω(si) · log σ
(
Rθ(x

w
t )−Rθ(x

li
t )

)]
(19)

The overall training objective for NCD-HA becomes:

LNCD-HA(θ) = Lmod(θ) + λLharm-aware(θ) (20)

Experimental Evaluation. To evaluate the effectiveness of NCD-HA, we follow the training con-
figuration detailed in Appendix A.1 to train the model on Stable Diffusion v1.5 with N = 4 can-
didate samples. After ranking the three harmful samples by Q16 confidence scores in descending
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order (sπ(1) ≥ sπ(2) ≥ sπ(3)), we assign stratified weights: ω(sπ(1)) = 1.2, ω(sπ(2)) = 1.0, and
ω(sπ(3)) = 0.8. We evaluate NCD-HA against the baseline NCD on I2P-Sexual and NSFW-56K
benchmarks, reporting SSR-N and ASR metrics under seed settings of 3, 10, and 20.

Table 8: Comparison of NCD and NCD-HA

Metrics Methods I2P-Sexual NSFW-56K

Seed Num=3 Seed Num=10 Seed Num=20 Seed Num=3 Seed Num=10 Seed Num=20

SSR-N NCD 1.61 6.23 9.45 5.43 14.79 20.22
NCD-HA 1.72 6.12 9.28 4.83 13.88 20.05

ASR NCD 0.61 1.01 0.97 1.98 2.26 2.08
NCD-HA 0.61 0.98 0.97 1.74 1.95 2.07

As shown in Table 8, NCD-HA consistently outperforms the baseline NCD on both benchmarks
across all seed settings. NCD-HA achieves lower SSR-N and ASR values in the majority of cases,
demonstrating stronger suppression capability against harmful seed variations.

E LLM USAGE STATEMENT

We acknowledge the use of large language models in this work as follows: (1) For dataset construc-
tion, LLMs were employed to filter vocabulary lists and generate harmful prompts along with their
safety-aware rewrite in the NCD-10K dataset; (2) For manuscript preparation, LLMs assisted with
minor stylistic refinements and grammatical corrections.

F ADDITIONAL QUALITATIVE VISUALIZATION

Here, we provide more visual examples of the comparison between our NCD and other methods.
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Figure 6: Visualization Results.
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Figure 10: Visualization Results on SDv3.5 and FLUX.
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