

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS SEED-INVARIANT SAFETY ALIGNMENT IN TEXT-TO-IMAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Text-to-image diffusion models have achieved remarkable success in generating high-quality images, yet existing safety mechanisms exhibit critical *cross-seed instability* where defense performance varies significantly under different random seed conditions. This instability stems from the fact that a single malicious prompt generates diverse harmful variants across different noise initializations, forming complex distributional clusters that current methods cannot adequately address. We investigate extending Noise Contrastive Alignment (NCA) to diffusion models due to its native capability of handling multiple negative samples through probabilistic weighting, but our theoretical analysis reveals two fundamental flaws in direct extension: *gradient reversal* caused by positive regularization terms that paradoxically penalize safe content generation, and *uniform suppression* of harmful samples that ignores severity variations. To tackle these issues, we propose *Noise Contrastive Diffusion* (NCD), which incorporates targeted algorithmic modifications including elimination of problematic regularization and introduction of pairwise regularization mechanisms that establish individualized preference relationships between safe and harmful variants. Extensive experiments further demonstrate that NCD achieves superior cross-seed stability, reducing attack success rates (ASRs) from 11.1% to 6.2% compared to SOTA methods while maintaining exceptional generation quality, exhibiting robust resistance against sophisticated jailbreak prompts and strong generalizability across different T2I architectures.

WARNING: This paper may contain examples of harmful texts and images.

1 INTRODUCTION

Recently, driven by great improvements in model architecture and advancements in semantic understanding techniques (Saharia et al., 2022; Ramesh et al., 2022; Podell et al., 2023; Esser et al., 2024), text-to-image (T2I) models have become capable of generating high-quality images with remarkable fidelity to user instructions. Although this technique exhibits remarkable capabilities for content creation (Peebles & Xie, 2023; Zhang et al., 2023) and artistic rendering (Ruiz et al., 2023; Wang et al., 2024), it also poses several risks. Since their trainings rely on vast, uncurated internet data, T2I models can be exploited to produce harmful imagery depicting sexual (Wen et al., 2024), violent (Schramowski et al., 2023), or biased content (Friedrich et al., 2023). This escalating concern has compelled the research community to prioritize the safe output of T2I models.

To mitigate the generation of harmful content, current research has focused on applying rigorous safety mechanisms to T2I models. External filter-based methods (CompVis, 2023; Khader et al., 2024; Huggingface, 2025) employ post-hoc detection of harmful content through dedicated classifiers, while training-free approaches (Schramowski et al., 2023; Yoon et al., 2024) modulate generation behavior during inference without parameter modification. However, filter-based methods suffer from limited robustness against jailbreak attacks (Huang et al., 2024b), and simultaneously, training-free methods require careful hyperparameter tuning and may compromise overall generation quality. Due to such limitations, increasing focus has shifted toward parameter modification approaches that directly alter model weights for more robust and permanent safety guarantees. For instance, concept erasing methods (Kumari et al., 2023; Gandikota et al., 2023; Zhang et al., 2024a) train models to forget inappropriate concepts, while model editing techniques (Gandikota et al.,

080
081
082
083
084
085

Figure 1: We propose NCD, a multi-objective preference calibration framework for safety alignment that effectively mitigates the defense vulnerabilities of diffusion model safety mechanisms when facing malicious prompts across multiple noise seed variants. **(A)** Defense performance comparison of various mechanisms under different random seeds for harmful inputs. NCD consistently defends against all noise variants while other methods show vulnerability. **(B)** Demonstration of NCD framework’s generalizability on additional models including SD-v2.1 and SDXL.

086
087
088
089
090
2024; Gong et al., 2024) achieve targeted interventions by modifying attention projection matrices to redirect harmful embeddings toward safe alternatives.

091
092
093
094
095
However, despite demonstrating effectiveness in mitigating harmful content generation, existing safety mechanisms exhibit significant performance variations under different random seed conditions, as illustrated in Fig 1. This *cross-seed instability* exposes a fundamental limitation: current approaches fail to establish robust safety alignment that can consistently address the diverse harmful variants produced by malicious prompts across different noise initializations.

096
097
098
099
100
101
102
103
104
105
106
107
Given the one-to-many nature of the cross-seed instability challenge, Noise Contrastive Alignment (NCA) (Chen et al., 2024) emerges as a particularly suitable framework. Specifically, through extending NCA to diffusion models, we could simultaneously address diverse harmful variants generated from different seeds within a unified optimization framework. However, through rigorous theoretical analysis and verification, we identify that the direct extension of NCA to diffusion mode introduces two fundamental algorithmic flaws that severely compromise training stability and alignment effectiveness: First, the positive regularization term in the original NCA objective exhibits a critical ① *gradient reversal pathology*: as safety alignment progresses and rewards for safe content improve, the regularization term paradoxically begins to dominate gradient updates, causing the optimization to penalize rather than promote safe content generation. Furthermore, we demonstrate that NCA’s ② *uniform suppression strategy for harmful samples* creates a severe mismatch with the inherent diversity of cross-seed harmful content, where samples exhibit varying degrees of severity yet receive identical optimization signals, preventing the model from developing nuanced discriminative capabilities across different manifestations of harmful content.

To address these inherent issues, we propose Noise Contrastive Diffusion (NCD), a novel multi-seed alignment framework that incorporates targeted algorithmic modifications to overcome the limitations of direct NCA extension. Specifically, our NCD eliminates the problematic positive regularization term to ensure consistent gradient directions for safe content optimization while introducing pairwise regularization mechanisms that establish individualized preference relationships between safe samples and each harmful variant. Extensive experimental validation further demonstrates that NCD could achieve exceptional cross-seed stability, reducing ASRs from 11.1% to 6.2% compared to RECE while maintaining superior generation quality. Additionally, against sophisticated jailbreak prompts, NCD exhibits robust defense capabilities, achieving a 5.0% ASR on Sneaky-Prompt (SP) compared to 10.5% for the state-of-the-art method AlignGuard. Moreover, NCD demonstrates strong generalizability across T2I architectures, consistently outperforming existing methods on both SD v2.1 and SDXL with significant performance improvements across all safety metrics.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE (T2I) GENERATION

Owing to more stable training dynamics and improved generation fidelity, diffusion models have gained prominence over early GAN-based approaches (Goodfellow et al., 2020; Esser et al., 2021). This transformation begins with Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), which establishes the foundational denoising framework. Subsequently, Latent Diffusion Models (Rombach et al., 2022) advance the paradigm by operating in latent space and incorporating classifier-free guidance (Ho & Salimans, 2022), thereby achieving improved computational efficiency and text-image alignment. Building on these foundations, contemporary state-of-the-art models, including Imagen (Saharia et al., 2022), DALL-E (Ramesh et al., 2021; 2022), and the Stable Diffusion series (Rombach et al., 2022; Podell et al., 2023; Esser et al., 2024), showcase the remarkable capabilities of large-scale diffusion architectures in generating photorealistic images from textual descriptions. Moreover, recent developments in human preference alignment, such as Diffusion-DPO (Wallace et al., 2024), D3PO (Yang et al., 2024a), and DSPO (Zhu et al., 2025), further enhance these models through reinforcement learning from human feedback. However, alongside their impressive generation capabilities, these powerful T2I models introduce significant safety concerns, including the potential for harmful content generation, thereby necessitating robust defense mechanisms.

2.2 SAFETY MECHANISMS IN T2I MODELS

Ensuring safety and adherence to ethical norms in generation has become a critical issue in Text-to-Image (T2I) models, with existing approaches falling into three main paradigms. *Filter-based methods* serve as external safety mechanisms that detect harmful content through textual filtering (CompVis, 2023; Khader et al., 2024), LLM determination (Markov et al., 2023), or image analysis (Rombach et al., 2022). For instance, Stable Diffusion’s safety checker computes cosine similarity between generated images and predefined harmful concept embeddings to reject unsafe outputs. However, these external approaches suffer from limited robustness against adversarial attacks (Rando et al., 2022; Yang et al., 2024d) and thus can be easily bypassed by advanced jailbreak prompts. *Training-free methods* offer an intermediate solution that modulates generation behavior during inference. For example, SLD (Schramowski et al., 2023) employs classifier-free safety guidance by incorporating negative prompts during the denoising process, while Safree (Yoon et al., 2024) identifies toxic concept subspaces in text embedding space and steers prompt embeddings away from these harmful regions. Due to the need for more robust and permanent safety guarantees, recent research has increasingly focused on *parameter modification approaches* that directly alter model weights to suppress harmful concept generation from within the model itself. Supervised methods like ESD (Gandikota et al., 2023) and CA (Kumari et al., 2023) train models to “forget” specific concepts, while attention-based techniques such as Forget-Me-Not (Zhang et al., 2024a) fine-tune cross-attention layers to redirect attention away from harmful content. Model editing methods, including UCE (Gandikota et al., 2024) and RECE (Gong et al., 2024) achieve more targeted interventions by directly modifying cross-attention projection matrices through closed-form solutions.

Despite these advances, existing methods struggle to balance generation quality with safety and lack systematic defense against input noise variations, leading to inconsistent protection across different

162 random seeds. In contrast, our proposed NCD framework addresses these limitations through multi-
 163 noise contrastive alignment and preference calibration optimization, which we detail in Secs 3 and 4.
 164

165 3 SEED-INVARIANT SAFETY ALIGNMENT VIA NCA

166 3.1 PRELIMINARIES

169 **Direct Preference Optimization for Diffusion Models.** Direct Preference Optimization (DPO) is
 170 a contrastive learning framework that aligns large language models with human preferences without
 171 requiring explicit reward model training. The algorithm leverages paired preference data consisting
 172 of preferred samples y^w and rejected samples y^l , optimizing the following objective:
 173

$$\mathcal{L}_{\text{DPO}}(p_\theta; p_{\text{ref}}) = -\mathbb{E}_{(x, y^w, y^l) \sim \mathcal{D}} [\log \sigma(r_\theta(x, y^w) - r_\theta(x, y^l))], \quad (1)$$

175 where x denotes the input prompt, $r_\theta(x, y) = \beta \log \frac{p_\theta(y|x)}{p_{\text{ref}}(y|x)}$, $\sigma(\cdot)$ is the sigmoid function, p_θ is the
 176 policy being optimized, p_{ref} is the reference policy, and β controls the KL regularization strength.
 177 The implicit reward function $r(x, y) = \beta \log \frac{p_\theta(y|x)}{p_{\text{ref}}(y|x)}$ encourages the model to increase the likeli-
 178 hood of preferred outputs relative to rejected ones while maintaining proximity to the reference.
 179

180 Recently, DPO has been successfully extended to diffusion models for image generation tasks.
 181 Diffusion-DPO adapts this framework to align text-to-image diffusion models with human pref-
 182 erences. Given a text prompt c and corresponding preferred image x^w and rejected image x^l , the
 183 objective function is formulated as:
 184

$$\mathcal{L}_{\text{Diff-DPO}}(\theta) = -\mathbb{E}_{t \sim \mathcal{U}(1, T)} [\log \sigma(R_\theta(c, x_t^w) - R_\theta(c, x_t^l))], \quad (2a)$$

$$R_\theta(c, x_t) = K \cdot [\mathcal{L}_{\text{diff}}(\epsilon_{\text{ref}}, x_t, c, t) - \mathcal{L}_{\text{diff}}(\epsilon_\theta, x_t, c, t)], \quad (2b)$$

185 where ϵ_θ denotes the denoising network being optimized, ϵ_{ref} represents the frozen reference net-
 186 work, $K > 0$ is a scaling hyperparameter, and $t \sim \mathcal{U}(1, T)$ indicates uniform sampling over diffu-
 187 sion timesteps. The diffusion loss $\mathcal{L}_{\text{diff}}(\epsilon, x_t, c, t) = \|\tilde{\epsilon}_t - \epsilon(x_t, c, t)\|^2$ measures the mean squared
 188 error between the ground-truth noise $\tilde{\epsilon}_t$ and the network's prediction. The step-wise implicit reward
 189 $R(c, x_t) = K \cdot \Delta \mathcal{L}_t$ is determined by the relative improvement in denoising performance, encour-
 190 aging the diffusion model to generate images that align with human preferences by maximizing the
 191 likelihood of preferred samples while reducing that of rejected samples.
 192

193 **Noise Contrastive Alignment (NCA).** NCA (Chen et al., 2024) is an alignment framework based
 194 on Noise Contrastive Estimation (NCE) that addresses the limitation of DPO methods which can
 195 only handle pairwise preference data. NCA reformulates the language model alignment problem
 196 as a multi-choice binary classification task: given candidate responses $\{y_1, y_2, \dots, y_N\}$ for input
 197 x , the model learns by predicting the probability of sampling the corresponding response from the
 198 target policy π_θ as $p_\theta(\nu = 1|x, y_i) = \sigma(r_\theta(x, y_i))$. By maximizing the likelihood estimation of
 199 these probabilities, NCA constructs the following objective:
 200

$$\mathcal{L}_{\text{NCA}}(\theta) = -\mathbb{E}_{(x, \{y_i, r_i\}_{1:N}) \sim \mathcal{D}} \left[\sum_{i=1}^N w_i \log \sigma(r_\theta(x, y_i)) + \frac{1}{N} \sum_{i=1}^N \log \sigma(-r_\theta(x, y_i)) \right], \quad (3)$$

201 where $w_i = \frac{e^{r_i/\alpha}}{\sum_{j=1}^N e^{r_j/\alpha}}$ represents the softmax-normalized weight based on explicit reward r_i ,
 202 $\alpha > 0$ is the temperature parameter, and $r_\theta(x, y) = \beta \log \frac{p_\theta(y|x)}{p_{\text{ref}}(y|x)}$ is the implicit reward function.
 203 The first term encourages high-quality responses based on their reward-weighted importance, while
 204 the second term provides contrastive learning by treating all candidates as negative samples with
 205 equal weight. Unlike DPO, which primarily focuses on adjusting relative likelihood across differ-
 206 ent responses, NCA optimizes the absolute likelihood of each response, effectively preventing the
 207 likelihood degradation of preferred responses that commonly occurs in DPO training.
 208

209 3.2 EXTENDING NCA TO MULTI-SEED SAFETY ALIGNMENT (A DIRECT EXTENSION)

210 The NCA framework's ability to simultaneously handle multiple preference samples and optimize
 211 through probabilistic weighting aligns well with the requirements of multi-seed safety alignment.
 212 Building upon NCA, we develop a multi-seed safety alignment method for diffusion models.
 213

In the first, considering the multi-step generation nature of diffusion models, we follow Diffusion-DPO by replacing the original policy distribution with the diffusion model’s conditional distribution $p(x_{0:T}|c)$ and implicitly expressing the reward function through the ratio of conditional distributions. The corresponding objective function of NCA becomes:

$$\mathcal{L}_\theta = -\mathbb{E} \left[\sum_{i=1}^N \left(w_i \log \sigma(r_\theta(c, x^i)) + \frac{1}{N} \log \sigma(-r_\theta(c, x^i)) \right) \right], \quad (4)$$

where $w_i = \frac{e^{s_i/\alpha}}{\sum_{j=1}^N e^{s_j/\alpha}}$ represents the softmax weight of the i -th sample based on safety score s_i , and $r_\theta(c, x^i) = \beta \mathbb{E} \left[\log \frac{p_\theta(x_{0:T}^i|c)}{p_{\text{ref}}(x_{0:T}^i|c)} \right]$ denotes the implicit reward for the whole denoising trajectory. However, optimizing over entire trajectories is computationally expensive. Following the upper bound derivation in Diffusion-DPO, we extend their Jensen’s inequality-based approach to our multi-seed weighted setting. Under the Markov property of the diffusion process and applying Jensen’s inequality, we obtain:

$$\mathcal{L}_\theta \leq -\mathbb{E}_t \left[\sum_{i=1}^N \left(w_i \log \sigma(\tilde{r}_\theta(c, x_t^i)) + \frac{1}{N} \log \sigma(-\tilde{r}_\theta(c, x_t^i)) \right) \right], \quad (5)$$

where $\tilde{r}_\theta(c, x_t^i) = \beta T \log \frac{p_\theta(x_t^i|x_{t+1}^i, c)}{p_{\text{ref}}(x_t^i|x_{t+1}^i, c)}$ represents the step-wise reward approximation. This extension enables efficient step-wise optimization with theoretical guarantees.

To make this practically computable, we then leverage the DDPM parameterization. Under DDPM, the reverse process can be approximated by the posterior distribution $q(x_{t-1}|x_t, x_0)$, enabling the transformation of log probability ratios into KL divergences at each timestep. The KL divergence terms can be expressed as mean squared loss of noise prediction, yielding the simplified objective:

$$\mathcal{L}(\theta) = -\mathbb{E}_t \left[\sum_{i=1}^N \left(w_i \log \sigma(R_\theta(c, x_t^i)) + \frac{1}{N} \log \sigma(-R_\theta(c, x_t^i)) \right) \right], \quad (6)$$

where $R_\theta(c, x_t^i) = K(\mathcal{L}_{\text{diff}}(\epsilon_{\text{ref}}, x_t^i, c) - \mathcal{L}_{\text{diff}}(\epsilon_\theta, x_t^i, c))$ represents the step-wise implicit reward, and $\mathcal{L}_{\text{diff}}(\epsilon, x_t, c) = \|\tilde{\epsilon}_t - \epsilon(x_t, c)\|^2$ is the standard denoising loss.

Finally, we reformulate the loss function into an explicit preference form. Specifically, for each malicious prompt, we have one safe response x^w (preferred) and multiple harmful responses $\{x_t^{l_j}\}_{j=1}^{N-1}$ (rejected) generated with different random seeds. The safety-oriented objective becomes:

$$\begin{aligned} \mathcal{L}(\theta) = & -\mathbb{E}_t \left[\mathbf{w}^w \log \sigma(R_\theta(x_t^w)) + \frac{1}{N} \log \sigma(-R_\theta(x_t^w)) \right. \\ & \left. + \sum_{j=1}^{N-1} \left(w^{l_j} \log \sigma(R_\theta(x_t^{l_j})) + \frac{1}{N} \log \sigma(-R_\theta(x_t^{l_j})) \right) \right], \end{aligned} \quad (7)$$

where $R_\theta(x_t^w)$ and $R_\theta(x_t^{l_j})$ represent step-wise rewards for the safe and j -th harmful samples, respectively, and \mathbf{w}^w, w^{l_j} denote their corresponding importance weights. In practice, we set $\mathbf{w}^w \approx 1$ and $w^{l_j} \approx -1$ to enforce safety alignment during training.

3.3 POTENTIAL ISSUES OF DIRECT EXTENSION

While models trained following the above paradigm successfully mitigate harmful content generation across multiple random seed settings, our practical implementation reveals two fundamental limitations when directly adapting NCA algorithms to diffusion models. These limitations arise from the intrinsic design differences between NCA and the safety finetuning requirements.

3.3.1 REVERSE UPDATE INDUCED BY POSITIVE REGULARIZATION TERM

In the direct extension, the $1/N$ regularization term is designed to collaborate with the optimization objective in jointly determining the loss update direction. However, upon direct application to diffusion model safety alignment tasks, we identify a critical issue that undermines training stability.

270 **Theorem 3.1. (Gradient Reversal)** For the safety-oriented diffusion loss $\mathcal{L}(\theta)$ defined in Equation (7), the gradient component for safe samples with weight $w^w \approx 1$ is given by:
 271
 272

$$273 \quad \nabla_{\theta} \mathcal{L}^w = -\mathbb{E}_t \left[\left(1 - \frac{N+1}{N} \sigma(R_{\theta}(x_t^w)) \right) \nabla_{\theta} R_{\theta}(x_t^w) \right], \quad (8)$$

$$274$$

275 When $\sigma(R_{\theta}(x_t^w)) > \frac{N}{N+1}$, the gradient coefficient becomes negative, causing reverse update be-
 276 havior that reduces the likelihood of generating safe content.
 277

278 *Proof.* The diffusion loss for safe samples \mathcal{L}^w has the following form:
 279

$$280 \quad \mathcal{L}^w(\theta) = -\mathbb{E}_t \left[\mathbf{w}^w \log \sigma(R_{\theta}(x_t^w)) + \frac{1}{N} \log \sigma(-R_{\theta}(x_t^w)) \right]. \quad (9)$$

$$281$$

$$282$$

283 We directly calculate the gradient with respect to θ :
 284

$$285 \quad \nabla_{\theta} \mathcal{L}^w = -\mathbb{E}_t \left[\left(\mathbf{w}^w - \left(\mathbf{w}^w + \frac{1}{N} \right) \sigma(R_{\theta}(x_t^w)) \right) \nabla_{\theta} R_{\theta}(x_t^w) \right]. \quad (10)$$

$$286$$

$$287$$

288 Since the importance weight for safe samples $\mathbf{w}^w \approx 1$, the above equation simplifies to:
 289

$$290 \quad \nabla_{\theta} \mathcal{L}^w = -\mathbb{E}_t \left[\left(1 - \frac{N+1}{N} \sigma(R_{\theta}(x_t^w)) \right) \nabla_{\theta} R_{\theta}(x_t^w) \right]. \quad (11)$$

$$291$$

$$292$$

293 This theorem reveals a fundamental flaw in the direct application of NCA to safety alignment: as
 294 safe content rewards improve, the $1/N$ regularization term causes gradient reversal, paradoxically
 295 penalizing safe generation when $\sigma(R_{\theta}(x_t^w)) > \frac{N}{N+1}$.
 296

297 3.3.2 UNIFORM TREATMENT OF DIVERSE HARMFUL CONTENT

$$298$$

299 The second limitation arises from the uniform optimization treatment applied to all harmful samples,
 300 regardless of their diverse characteristics and severity levels. In the original NCA formulation, while
 301 the framework assigns different weights to samples based on safety scores, it fails to differentiate
 302 between various types of harmful content when applying suppression signals.
 303

304 Specifically, in the original NCA-based loss $\mathcal{L}(\theta)$, the optimization signal for suppressing any harmful
 305 sample $x_t^{l_i}$ is determined uniformly by the global weight $\frac{1}{N}$:
 306

$$306 \quad \nabla_{\theta} \mathcal{L}^{l_i} = -\mathbb{E}_t \left[\frac{1}{N} (1 - \sigma(R_{\theta}(x_t^{l_i}))) \nabla_{\theta} R_{\theta}(x_t^{l_i}) \right] \quad (12)$$

$$307$$

308 This uniform treatment creates a fundamental mismatch between the optimization strategy and the
 309 inherent diversity of harmful content generated from different random seeds. Some samples may
 310 contain subtle safety violations while others exhibit explicit harmful content, yet all receive identi-
 311 cal suppression intensity. Moreover, the absence of explicit comparison between safe and harmful
 312 samples prevents the model from learning discriminative preference margins, leading to suboptimal
 313 safety alignment performance across diverse harmful content types.
 314

315 4 NOISE CONTRASTIVE DIFFUSION (NCD)

$$316$$

317 To address the fundamental limitations identified in Sec 3.3, we propose the Noise Contrastive Diff-
 318 fusion (NCD) framework, which incorporates two key algorithmic improvements that enhance the
 319 stability and effectiveness of multi-seed safety alignment in diffusion models.
 320

321 4.1 ELIMINATING GRADIENT REVERSAL THROUGH REGULARIZATION REMOVAL

$$322$$

323 Based on the gradient analysis presented in Theorem 3.1, we observe that the positive sample reg-
 324 ularization term $\frac{1}{N} \log \sigma(-R(x_t^w))$ leads to undesirable gradient reversal when safety alignment

324 progresses. To address this critical issue, we adopt a principled approach by eliminating this problematic term from the original NCA-based loss function. The modified objective function becomes:
 325

$$327 \quad \mathcal{L}_{\text{mod}}(\theta) = -\mathbb{E}_t \left[\mathbf{w}^w \log \sigma(R_\theta(x_t^w)) + \sum_{i=1}^{N-1} \frac{1}{N} \log \sigma(-R_\theta(x_t^{l_i})) \right] \quad (13)$$

328 where \mathbf{w}^w represents the importance weight for the safe sample, and $R_\theta(x_t^{l_i})$ denotes the step-wise
 329 reward for the i -th harmful sample. This modification fundamentally prevents the gradient coefficient
 330 for preferred safe samples from becoming negative, ensuring that the optimization maintains a
 331 consistent gradient direction throughout training.
 332

334 4.2 PAIRWISE REGULARIZATION FOR ADAPTIVE DISCRIMINATION

335 While the modified loss function resolves the gradient reversal issue, it does not address the uniform
 336 treatment limitation identified in Sec 3.3.2. To overcome this, we introduce a pairwise regularization
 337 mechanism that provides adaptive discrimination for diverse harmful content through explicit
 338 preference comparisons between safe and harmful samples, which can be formulated as follows:
 339

$$340 \quad \mathcal{L}_{\text{pair}}(\theta) = -\mathbb{E}_t \left[\sum_{i=1}^{N-1} \log \sigma(R_\theta(x_t^w) - R_\theta(x_t^{l_i})) \right] \quad (14)$$

341 Rather than applying uniform suppression, this regularization establishes individualized preference
 342 relationships between the safe sample and each harmful sample. The optimization signal for each
 343 harmful sample $x_t^{l_i}$ now becomes proportional to $\sigma(R_\theta(x_t^w) - R_\theta(x_t^{l_i}))$, which automatically adapts
 344 to the relative harmfulness compared to the safe sample. Above all, the complete NCD objective
 345 function is $\mathcal{L}_{\text{NCD}}(\theta) = \mathcal{L}_{\text{mod}}(\theta) + \lambda \mathcal{L}_{\text{pair}}(\theta)$, where λ controls the regularization strength.
 346

347 5 EXPERIMENTS

351 5.1 EXPERIMENTAL SETTINGS

352 **Baselines & Target models.** We use SD-v1.5 as the primary target model and compare against
 353 state-of-the-art T2I defense mechanisms, including filter-based approaches (SD-v1.5 w/ Safety Filter
 354 ([CompVis, 2023](#))), concept erasure methods (CA ([Kumari et al., 2023](#)), ESD-u ([Gandikota et al., 2023](#))),
 355 weight editing techniques (UCE ([Gandikota et al., 2024](#)), RECE ([Gong et al., 2024](#))),
 356 training-free methods (SLD ([Schramowski et al., 2023](#)), SafFree ([Yoon et al., 2024](#))), and
 357 preference alignment approaches (AlignGuard ([Liu et al., 2024b](#))). Additionally, we consider SD-v2.1
 358 and SDXL as target models to evaluate the generalizability of our method across different T2I ar-
 359 chitectures. Implementation details are provided in the Appendix A.1.

360 **Datasets.** We conduct comprehensive evaluations of NCD and baseline methods across four
 361 common-used T2I defense performance benchmarks: (1) I2P-Sexual ([Schramowski et al., 2023](#)),
 362 featuring sexually-explicit harmful prompts; (2) NSFW-56K ([Li et al., 2024](#)), comprising diverse
 363 categories of Not-Safe-For-Work harmful prompts; (3) Sneaky-Prompt ([Yang et al., 2024c](#)) and (4)
 364 MMA-Diffusion ([Yang et al., 2024b](#)), both providing adversarial jailbreak prompts designed to elicit
 365 harmful content. Furthermore, to evaluate the preservation of generation quality under safety con-
 366 straints, we incorporate the COCO-30K ([Lin et al., 2014](#)) benchmark, which consists of benign
 367 prompts for standard content generation.

368 **Metrics.** Following previous research ([Gong et al., 2024](#)), we use Attack Success Rate (ASR) to
 369 measure the proportion of NSFW content generated from adversarial prompts. We further extend
 370 ASR with Seed Success Rate (SSR-N), which evaluates defense performance across N random seeds
 371 by considering an attack successful if at least one of N generated images is detected as NSFW
 372 content. NSFW detection uses the NudeNet ([Bedapudi, 2019](#)) classifier. For generation quality
 373 evalution, we employ CLIPScore ([Hessel et al., 2021](#)), FID ([Heusel et al., 2017](#)), and LPIPS ([Zhang
 374 et al., 2018](#)) on 3000 examples from COCO-30K.

375 5.2 EVALUATION RESULTS OF NCD FRAMEWORK

376 **Superior Defense Performance with Effective Mitigation Against Seed-Variations.** As shown in
 377 Table 1, on the I2P-Sexual dataset, NCD achieves 6.2% SSR-10 and 0.6% ASR, demonstrating sub-

378
379
380
381
382
383

Table 1: Performance comparison of different T2I defense mechanisms (including censorship & filtering, concept erasure, model editing, training-free, and alignment-based methods) on SD-v1.5. For prompts from different benchmarks, we generate images with 10 randomly sampled seeds from the range (1, 1024) and report SSR-10 and ASR to evaluate safety alignment effectiveness. Additionally, we evaluate CLIP-Score and FID on COCO-30K to evaluate generation quality.

Method	I2P-Sexual		NSFW-56K		Sneaky-Prompt-P		MMA-Diffusion		COCO-30K	
	SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	CLIP (↑)	FID (↓)
SD-v1.5	0.676	0.255	0.867	0.459	0.675	0.257	0.942	0.623	26.57	–
Safety Filter	0.361	0.073	0.545	0.116	0.435	0.090	0.754	0.210	–	–
SD-v2.1	0.461	0.107	0.455	0.089	0.390	0.074	0.399	0.063	26.23	–
CA	0.258	0.051	0.370	0.071	0.175	0.031	0.494	0.143	26.30	21.18
ESD-u	0.246	0.037	0.262	0.042	0.145	0.020	0.308	0.048	25.61	19.96
UCE	0.245	0.039	0.357	0.066	0.195	0.028	0.532	0.127	25.75	21.74
RECE	0.111	0.020	0.251	0.048	0.315	0.060	0.648	0.239	26.03	19.09
SLD-STRONG	0.240	0.059	0.662	0.224	0.380	0.104	0.844	0.410	26.17	18.76
SLD-MAX	0.135	0.012	0.223	0.036	0.180	0.011	0.327	0.062	25.78	21.28
Safree	0.118	0.032	0.35	0.054	0.185	0.069	0.654	0.268	26.17	20.95
AlignGuard	0.248	0.051	0.214	0.034	0.105	0.014	0.250	0.030	25.84	22.90
NCD (Ours)	0.062	0.010	0.148	0.023	0.050	0.006	0.200	0.022	26.39	19.85

397
398
399
400

Table 2: Extended experiments on additional T2I model architectures (SD-v2.1 and SDXL). We compare NCD with state-of-the-art defense mechanisms (AlignGuard and Safree). The evaluation metrics are consistent with the settings in Table 1.

Method	I2P-Sexual		NSFW-56K		Sneaky-Prompt-P		MMA-Diffusion		COCO-30K	
	SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	CLIP (↑)	FID (↓)
SD-v2.1	0.461	0.107	0.455	0.089	0.390	0.074	0.399	0.063	26.23	–
SD-v2.1+AlignGuard	0.380	0.100	0.317	0.052	0.230	0.047	0.182	0.032	25.59	17.30
SD-v2.1+Safree	0.135	0.036	0.154	0.031	0.085	0.024	0.081	0.018	25.8	18.23
SD-v2.1+NCD (Ours)	0.057	0.008	0.072	0.009	0.075	0.010	0.106	0.015	26.11	17.91
SDXL	0.294	0.063	0.580	0.185	0.590	0.166	0.685	0.225	27.14	–
SDXL+AlignGuard	0.194	0.040	0.304	0.065	0.185	0.034	0.310	0.046	26.05	21.49
SDXL+Safree	0.133	0.022	0.144	0.023	0.12	0.005	0.104	0.012	27.04	21.57
SDXL+NCD (Ours)	0.038	0.005	0.092	0.012	0.090	0.010	0.102	0.013	27.07	21.30

401
402
403
404
405
406
407
408

stantial improvements over the previous second-best method, RECE (SSR-10: 11.1%, ASR: 2.0%). Notably, all prior methods, despite exhibiting impressive ASR performance, maintain considerably higher attack success rates under the SSR-10 metric (differing by approximately an order of magnitude). This further reveals a critical limitation in existing T2I defense methods: their inability to generalize adequately across different initial seeds. In contrast, NCD demonstrates particularly pronounced improvements on the SSR-10 metric.

410
411
412
413
414
415

Exceptional Robustness Against Jailbreak Prompts. When confronted with carefully crafted adversarial jailbreak prompts, NCD exhibits robust defense capabilities. As demonstrated in Table 1, on the Sneaky-Prompt-P benchmark, NCD achieves 5.0% SSR-10 and 0.6% ASR, while the second-best method AlignGuard still maintains relatively high rates of 10.5%/1.4% in SSR-10 and ASR. On the more challenging MMA-Diffusion benchmark, NCD reduces SSR-10 from 94.2% to 20.0% and ASR from 62.3% to 2.2%. These results indicate that NCD not only defends against explicit harmful prompts but also effectively mitigates maliciously designed jailbreak prompts.

423
424
425
426
427
428
429

Optimal Trade-off Between Generation Quality and Defense Performance. Compared to other alignment-based methods, NCD better preserves generation quality while providing strong defense. As shown in Table 1, on the COCO-30K benchmark, NCD achieves a CLIP score of 26.39 and FID of 19.85, significantly outperforming the previous best method AlignGuard (25.84/22.90). Remarkably, NCD’s generation quality is comparable or even superior to certain training-free methods (e.g., SLD-MAX: 25.78/21.28), while simultaneously providing enhanced safety alignment, achieving a better balance between generation quality and defense performance.

430
431

Generalizability Across Various T2I Models. NCD demonstrates excellent generalizability across different T2I architectures. As shown in Table 2, on SD-v2.1, NCD reduces SSR-10/ASR to 5.7%/0.8% (on I2P-Sexual) and 7.2%/0.9% (on NSFW-56K), achieving near order-of-magnitude

Figure 2: Analysis of defense methods against seed variations. We evaluate SSR-N with different N settings, and compare NCD with previous methods across four benchmarks. Results reveal that previous methods suffer from significant performance degradation as seed count increases, while NCD maintains consistently low **seed success rates**, validating its superior cross-seed stability.

Table 3: Ablation study on key components. We remove individual NCD components to assess their contributions. Results show that parameter adaptation and the regularization term enhance both generation quality and defense effectiveness.

Method	Param. Adapt.	Regularity	NSFW-56K		MMA-Diffusion		COCO-30K	
			SSR-10 (↓)	ASR (↓)	SSR-10 (↓)	ASR (↓)	CLIP (↑)	LPIPS (↓)
SD-v1.5	–	–	0.867	0.459	0.942	0.623	27.14	–
SD-v1.5	✗	✗	0.249	0.038	0.363	0.066	26.36	0.4312
+ NCD (Ours)	✓	✗	0.197	0.029	0.322	0.060	26.40	0.4301
+ NCD (Ours)	✓	✓	0.148	0.023	0.200	0.022	26.39	0.4308

improvements compared to AlignGuard (38.0%/10.0% and 31.7%/5.2%, respectively). On the SDXL architecture, NCD consistently maintains its lead, achieving the lowest SSR-10 and ASR across most of benchmarks, demonstrating the method’s high adaptability.

5.3 ABLATION STUDIES

Robustness Analysis Under Extended Seed Counts. To further evaluate the robustness improvements of NCD against seed variations, we assess the changes in defense performance (SSR-N) when increasing the number of random seeds N (from 3 to 50) compared to different methods, as shown in Fig. 2. The experimental results further reveal critical limitations of existing methods: As the seed count increases, the baseline methods exhibit a sharp deterioration in the SSR-N metrics. Taking the I2P-Sexual dataset as an example, ESD-u’s attack success rate increases from 25% at SSR-3 to 49% at SSR-50, while RECE increases from 11% to 31%, indicating significant degradation in defense effectiveness when faced with more seed variants. In contrast, NCD demonstrates exceptional stability. Across all four datasets, NCD’s attack success rate growth remains within a controlled range. This stability benefits from NCD’s multi-objective preference calibration mechanism, which achieves comprehensive coverage of the seed space by simultaneously optimizing defense objectives across multiple seeds. In particular, even in the most challenging 50 seed setting, NCD maintains 36.1% SSR-50 on the MMA-Diffusion, significantly outperforming other methods over 60%.

Contribution Analysis of NCD’s Key Components. Table 3 presents an ablation study of NCD’s key components. The basic NCA framework reduces SSR-10 from 86.7% to 24.9% and ASR from 45.9% to 3.8% on NSFW-56K, validating the preference calibration approach. Adding parameter adaptation further improves performance to 19.7% SSR-10 and 2.9% ASR, while the complete NCD framework achieves optimal results with 14.8% SSR-10 and 2.3% ASR. On MMA-Diffusion, the regularization term proves crucial, reducing SSR-10 from 32.2% to 20.0%. Importantly, generation quality remains consistent across configurations (CLIP: 26.36 to 26.39), confirming that all components contribute positively without sacrificing image quality.

5.4 GENERALIZATION TO OTHER HARMFUL CATEGORIES

By design, NCD learns directly from safe-harmful sample pairs without relying on category-specific features, enabling it to naturally extend to any harmful content category. To validate NCD’s gen-

486
 487 Table 4: Cross-category generalization results on I2P Benchmark. We report SSR-N and ASR
 488 metrics under multi-seed evaluation (N=3, 10, 20) across three harmful content categories. Lower
 489 values indicate better safety performance.

Metrics	Methods	Seed Num=3			Seed Num=10			Seed Num=20		
		Violence	Self-Harm	Shocking	Violence	Self-Harm	Shocking	Violence	Self-Harm	Shocking
SSR-N(↓)	Original	61.51	57.05	65.30	88.04	82.91	88.50	95.05	89.28	95.75
	NCD (Ours)	41.09	30.63	38.90	61.77	51.31	60.98	75.00	63.80	72.70
ASR(↓)	Original	51.71	46.54	56.18	51.06	45.26	53.08	50.68	42.79	51.74
	NCD (Ours)	32.27	20.93	28.47	31.31	20.49	28.87	31.61	20.53	28.47

513 Figure 3: Qualitative results demonstrating NCD’s robust suppression of seed-induced harmful variations
 514 across different categories. We blur images that contain offensive content for safety concerns
 515

516
 517 eralizability across diverse harmful content types, we evaluate its performance on three additional
 518 categories from the I2P Benchmark: violence, self-harm, and shocking content. We employ the
 519 Q-16 classifier (Schramowski et al., 2022) to report SSR-N and ASR metrics under multiple random
 520 seeds, assessing NCD’s defense effectiveness against seed-induced variations in harmful concept
 521 generation. As shown in Table 4, NCD consistently outperforms baseline method across all eval-
 522 uated categories, demonstrating its effectiveness in suppressing diverse types of harmful content.
 523 More visualization results can be found in Fig. 3.

524 6 LIMITATIONS AND ETHICAL CONSIDERATIONS

525
 526 Despite NCD’s improvements in cross-seed safety alignment, our NCD-10K dataset may not capture
 527 all emerging harmful patterns, and performance on recent commercial models remains unexplored
 528 due to accessibility limitations. We acknowledge the dual-use nature of our research and will imple-
 529 ment strict vetting mechanisms when open-sourcing to ensure responsible usage.

530 7 CONCLUSION

531
 532 We identify and address the *cross-seed instability* problem in text-to-image diffusion model safety
 533 alignment, where existing mechanisms exhibit significant performance variations under different
 534 random seed conditions. Through theoretical analysis, we reveal fundamental flaws in direct NCA
 535 extension to diffusion models and propose Noise Contrastive Diffusion (NCD) with targeted algo-
 536 rithmic modifications including elimination of problematic regularization and introduction of pair-
 537 wise regularization mechanisms. Extensive experiments further demonstrate that NCD achieves
 538 superior cross-seed stability across multiple T2I architectures.

540 REFERENCES
541

542 Praneeth Bedapudi. Nudenet: Neural nets for nudity classification, detection and selective censoring.
543 <https://github.com/notAI-tech/NudeNet>, 2019. GitHub repository.

544 Huayu Chen, Guande He, Lifen Yuan, Ganqu Cui, Hang Su, and Jun Zhu. Noise contrastive align-
545 ment of language models with explicit rewards. *arXiv preprint arXiv:2402.05369*, 2024.

546 Ruidong Chen, Honglin Guo, Lanjun Wang, Chenyu Zhang, Weizhi Nie, and An-An Liu. Trce:
547 Towards reliable malicious concept erasure in text-to-image diffusion models. In *IEEE/CVF
548 International Conference on Computer Vision (ICCV)*, 2025.

549 CompVis. Stable diffusion safety checker. *huggingface*: [https://huggingface.co/CompVis/stable-
551 diffusion-safety-checker](https://huggingface.co/CompVis/stable-
550 diffusion-safety-checker), 2023.

552 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
553 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
554 tion*, pp. 12873–12883, 2021.

555 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
556 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
557 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
558 2024.

559 Felix Friedrich, Manuel Brack, Lukas Struppek, Patrick Schramowski, and Kristian Kersting. Fair
560 Diffusion: Instructing text-to-image models to generate fair and unbiased visualizations. In *Pro-
561 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
562 2023.

563 Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
564 from diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer
565 Vision*, pp. 2426–2436, 2023.

566 Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzyńska, and David Bau. Unified
567 concept editing in diffusion models. In *Proceedings of the IEEE/CVF Winter Conference on
568 Applications of Computer Vision*, pp. 5111–5120, 2024.

569 Chao Gong, Kai Chen, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Reliable and efficient
570 concept erasure of text-to-image diffusion models. In *European Conference on Computer Vision*,
571 pp. 73–88. Springer, 2024.

572 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
573 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
574 ACM*, 63(11):139–144, 2020.

575 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
576 reference-free evaluation metric for image captioning. In *Proceedings of the 2021 Conference
577 on Empirical Methods in Natural Language Processing*, pp. 7514–7528. Association for Compu-
578 tational Linguistics, 2021.

579 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
580 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances
581 in Neural Information Processing Systems*. NIPS, 2017.

582 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

583 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
584 neural information processing systems*, 33:6840–6851, 2020.

585 Chi-Pin Huang, Kai-Po Chang, Chung-Ting Tsai, Yung-Hsuan Lai, Fu-En Yang, and Yu-
586 Chiang Frank Wang. Receler: Reliable concept erasing of text-to-image diffusion models via
587 lightweight erasers. In *European Conference on Computer Vision (ECCV)*, 2024a.

594 Lianghua Huang, Di Chen, Yu-Kai Wang, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer:
 595 Creative and controllable image synthesis with composable conditions. In *The Twelfth Interna-*
 596 *tional Conference on Learning Representations (ICLR)*, 2024b.

597

598 Huggingface. The stable diffusion guide, 2025. URL [https://huggingface.co/docs/](https://huggingface.co/docs/diffusers/v0.13.0/en/stable_diffusion)
 599 [diffusers/v0.13.0/en/stable_diffusion](https://huggingface.co/docs/diffusers/v0.13.0/en/stable_diffusion).

600 Massine El Khader, Elias Al Bouzidi, Abdellah Oumida, Mohammed Sbaihi, Elliott Binard, Jean-
 601 Philippe Poli, Wassila Ouerdane, Boussad Addad, and Katarzyna Kapusta. Diffguard: Text-based
 602 safety checker for diffusion models. *arXiv preprint arXiv:2412.00064*, 2024.

603

604 Nupur Kumari, Bing-Chen Tsai, Nikhil Singh, and Stefano Ermon. Ablating concepts in text-to-
 605 image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer*
 606 *Vision (ICCV)*, pp. 7616–7626, 2023.

607

608 Xinfeng Li, Yuchen Yang, Jiangyi Deng, Chen Yan, Yanjiao Chen, Xiaoyu Ji, and Wenyuan Xu.
 609 Safegen: Mitigating sexually explicit content generation in text-to-image models. In *Proceedings*
 610 *of the 2024 ACM SIGSAC Conference on Computer and Communications Security (CCS)*. ACM,
 611 2024.

612

613 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 614 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 615 *Conference on Computer Vision (ECCV)*, pp. 740–755. Springer, 2014.

616

617 Runtao Liu, Alon Albalak, Lili Wang, and Jamie Callan. Direct unlearning optimization for robust
 618 and safe text-to-image models. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 619 2024a.

620

621 Runtao Liu, Chen I Chieh, Jindong Gu, Jipeng Zhang, Renjie Pi, Qifeng Chen, Philip Torr, Ashkan
 622 Khakzar, and Fabio Pizzati. Alignguard: Scalable safety alignment for text-to-image generation.
 623 *arXiv preprint arXiv:2412.10493*, 2024b.

624

625 Todor Markov, Chong Zhang, Sandhini Agarwal, Florentine Eloundou Nekoul, Theodore Lee,
 626 Steven Adler, Angela Jiang, and Lilian Weng. A holistic approach to undesired content detection
 627 in the real world. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
 628 pp. 15009–15018, 2023.

629

630 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 631 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4195–4205, 2023.

632

633 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 634 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 635 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

636

637 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 638 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 639 *learning*, pp. 8821–8831. Pmlr, 2021.

640

641 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 642 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

643

644 Javier Rando, Daniel Paleka, David Lindner, Lennart Heim, and Florian Tramèr. Red-teaming the
 645 stable diffusion safety filter. *arXiv preprint arXiv:2210.04610*, 2022.

646

647 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 648 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 649 *ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

650

651 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 652 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-*
 653 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 654 22500–22510, 2023.

648 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
649 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
650 text-to-image diffusion models with deep language understanding. *Advances in neural informa-*
651 *tion processing systems*, 35:36479–36494, 2022.

652 Patrick Schramowski, Christopher Turan, Nico Andersen, Constantin A Rothkopf, and Kristian Ker-
653 sting. Can machines help us answering question 16 in datasheets, and in turn reflecting on inap-
654 propriate content? In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and*
655 *Transparency*, pp. 1350–1361, 2022.

656

657 Patrick Schramowski, Manuel Brack, Björn Ommer, and Kristian Kersting. Safe Latent Diffusion:
658 Mitigating inappropriate degeneration in erotic art generation. In *Proceedings of the IEEE/CVF*
659 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16139–16148, 2023.

660 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
661 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
662 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
663 *and Pattern Recognition (CVPR)*, pp. 8228–8238. IEEE, 2024.

664

665 Zhi-Qiang Wang, Zhu-Zhuo-Jie-Zhen Chan, Yao-Chih-Lee, Jia-Xing Zhong, and Li-Wei Wang.
666 InstantStyle: Free-style stylization from a single image, 2024.

667 Zijie J Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng
668 Chau. Diffusiondb: A large-scale prompt gallery dataset for text-to-image generative models.
669 *arXiv preprint arXiv:2210.14896*, 2022.

670

671 Yuxin Wen, Xinyi Fu, Huanguo Zhang, Zhenghui Kuang, Chen-Xi Liu, Hong-ning Dai, and Ke-feng
672 Zhai. SneakyPrompt: Jailbreaking text-to-image generative models. In *Proceedings of the 2024*
673 *ACM SIGSAC Conference on Computer and Communications Security*. ACM, 2024.

674 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Qimai Li, Weihan Shen, Xiaolong Zhu,
675 and Xiu Li. Using human feedback to fine-tune diffusion models without any reward model. In
676 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
677 pp. 8941–8951. IEEE, 2024a.

678

679 Yijun Yang, Ruiyuan Gao, Xiaosen Wang, Tsung-Yi Ho, Nan Xu, and Qiang Xu. Mma-diffusion:
680 Multimodal attack on diffusion models. In *Proceedings of the IEEE Conference on Computer*
681 *Vision and Pattern Recognition (CVPR)*. IEEE, 2024b.

682

683 Yuchen Yang, Bo Hui, Haolin Yuan, Neil Gong, and Yinzhi Cao. Sneakyprompt: Jailbreaking text-
684 to-image generative models. In *Proceedings of the IEEE Symposium on Security and Privacy*.
685 IEEE, 2024c.

686

687 Yuchen Yang, Bo Hui, Haolin Yuan, Neil Gong, and Yinzhi Cao. Sneakyprompt: Jailbreaking text-
688 to-image generative models. In *2024 IEEE symposium on security and privacy (SP)*, pp. 897–912.
689 IEEE, 2024d.

690

691 Jaehong Yoon, Shoubin Yu, Vaidehi Patil, Huaxiu Yao, and Mohit Bansal. Safree: Training-free and
692 adaptive guard for safe text-to-image and video generation. *arXiv preprint arXiv:2410.12761*,
693 2024.

694

695 Jordan Y Zhang, Alon Bitton, Jaden F Balfour, Anant Garg, David Bau, Phillip Isola, and Taesung
696 Park. Forget-me-not: Learning to forget in text-to-image diffusion models. In *Proceedings of*
697 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6524–6534,
698 2024a.

699

700 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
701 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
702 pp. 3626–3637, 2023.

703

704 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
705 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE Conference on*
706 *Computer Vision and Pattern Recognition (CVPR)*. IEEE, 2018.

702 Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong,
703 Ke Ding, and Sijia Liu. Defensive unlearning with adversarial training for robust concept erasure
704 in diffusion models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024b.

705
706 Hongyuan Zhu, Tao Xiao, and Venkata G. Honavar. Dspo: Direct score preference optimization for
707 diffusion model alignment. In *The Thirteenth International Conference on Learning Representa-
708 tions (ICLR)*, 2025.

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A EXPERIMENT DETAILS**
757758 **A.1 IMPLEMENTATION DETAILS**
759

760 We train NCD on SD-v1.5, SD-v2.1, and SDXL using four A800 80G GPUs. Training configurations are: SD-v1.5/v2.1 use AdamW with batch size 8, gradient accumulation 2, and 3200 steps; SDXL uses Adafactor with batch size 2, gradient accumulation 2, and 12500 steps. Learning rates are 1e-6 (SD-v1.5, SDXL) and 5e-6 (SD-v2.1). We set α to 1e-1 (SD-v1.5, SDXL) and 2e-1 (SD-v2.1), with regularization weight $\lambda = 0.5$ and linear loss scaling. Additional details are in the supplementary materials.

766 **A.2 NCD-10K DATASET**
767787 **Figure 4: Data Construction Pipeline**

788 To effectively train NCD Framework, we introduce a multi-seed safety alignment dataset (NCD-
789 10K) that includes a variety of harmful concepts. This dataset is constructed based on a scalable
790 pipeline and consists of a collection of images with both harmful and safe features under harmful
791 prompts. The data construction process of NCD-10K is shown in Fig 4. For the harmful-safe image
792 pairs, we first define a target harmful vocabulary list L_h and use text-only GPT-4 to filter a set of
793 prompts T_h from the DiffusionDB (Wang et al., 2022) that contain sensitive semantics from L_h .
794 Then, for each unsafe prompt T_h , we sample four random seeds (seed1-seed4) and generate cor-
795 responding unsafe images using SDXL (Podell et al., 2023). Traditional methods often use hard
796 replacement of sensitive words to generate content-similar safe images. However, this method sig-
797 nificantly alters the features and structure of the original image, resulting in considerable ambiguity
798 in the representation of harmless concepts between image pairs, which is not ideal for semantic
799 alignment in the T2I model. To address this, we propose a safety-aware image inpainting process.

800 Specifically, for each unsafe prompt T_h , we use the text-only GPT-4 to replace its sensitive semantics
801 with approximate safe semantics, ensuring that the context is unaffected, thus generating a mild
802 prompt T_s . We then apply the Image-to-Image generation process of SDXL with T_s to the unsafe
803 image generated using seed4, modifying it into a similar safe image I_s . Additionally, we use T_h
804 combined with the remaining three seeds (seed1-seed3) to generate three harmful images I_{h1} , I_{h2} ,
805 and I_{h3} . Ultimately, our dataset consists of five-tuples in the form of $(T_h, I_s, I_{h1}, I_{h2}, I_{h3})$, where
806 each entry contains one harmful prompt T_h , one safe image I_s , and three harmful images I_{h1} - I_{h3} .

807 Our dataset comprises a total of 10K entries of relevant data. Beyond the sexual category, we
808 extend the dataset to cover 7 harmful categories from the I2P Benchmark, with the sexual category
809 accounting for approximately 2/3 of the data. We test the SDv1-5 model fine-tuned under the NCD
framework on the complete I2P dataset and employ the Q-16 classifier (Schramowski et al., 2022)

810 to detect harmful content generation. Experimental results demonstrate that NCD achieves effective
 811 mitigation for other harmful content categories as well.
 812

814 **Table 5:** The safety alignment performance of various methods under a broader range of harmful
 815 concepts. We used harmful prompts from seven NSFW categories in I2P benchmark and reported
 816 the inappropriate probability (IP, %) of images generated from these prompts.

Methods	IP (↓)							
	Hate	Harass	Violence	Self-harm	Sexual	Shocking	Illegal	Avg.
SD-v1.5	21.65	19.66	39.95	35.08	54.14	41.94	10.18	35.49
SLD Schramowski et al. (2023)	<u>9.96</u>	11.65	<u>25.53</u>	<u>17.48</u>	28.14	<u>26.05</u>	11.14	20.09
ESD-u Gandikota et al. (2023)	11.26	12.86	32.54	19.73	<u>21.48</u>	29.09	13.76	21.31
UCE Gandikota et al. (2024)	19.91	16.99	30.42	24.84	23.95	33.29	15.68	24.15
NCD (Ours)	9.52	<u>12.14</u>	17.2	15.11	14.61	11.33	13.81	17.07

B COMPARISON WITH ADDITIONAL DEFENSE MECHANISMS

829 To provide a comprehensive evaluation of our defense mechanism against harmful seed-variations,
 830 we extend our experimental analysis to include comparisons with additional state-of-the-art baseline
 831 methods. We evaluate defense performance (SSR-N) with N ranging from 3 to 50, and compare our
 832 method with five recent defense approaches (Receler (Huang et al., 2024a), AdvUnlearn (Zhang
 833 et al., 2024b), DUO (Liu et al., 2024a), AlignGuard (Liu et al., 2024b), and TRCE (Chen et al.,
 834 2025)) on the I2P-Sexual and NSFW-56K benchmarks. As shown in Table 6, our NCD method
 835 consistently maintains a low Seed Success Rate(SSR-N) across different numbers of random seeds,
 836 demonstrating superior cross-seed stability compared to the baseline methods.

838 **Table 6:** Comparison of SSR-N across different methods on I2P-Sexual and NSFW-56K bench-
 839 marks. Random seeds are sampled from (1, 1024) with N seeds per prompt. Lower values indicate
 840 better cross-seed defense robustness. Best results are in **bold**, second-best are underlined.

Methods	I2P-Sexual				NSFW-56K			
	SSR-3	SSR-10	SSR-20	SSR-50	SSR-3	SSR-10	SSR-20	SSR-50
Receler Huang et al. (2024a)	4.19	13.32	23.42	36.63	6.94	25.45	36.72	70.91
AdvUnlearn Zhang et al. (2024b)	<u>2.69</u>	<u>7.31</u>	<u>11.6</u>	<u>22.02</u>	<u>3.82</u>	<u>15.38</u>	<u>21.41</u>	<u>32.20</u>
DUO Liu et al. (2024a)	6.48	14.82	24.60	37.45	27.67	51.91	66.90	72.23
AlignGuard Liu et al. (2024b)	10.31	20.48	30.83	47.48	9.05	21.40	33.80	51.41
TRCE Chen et al. (2025)	2.15	8.16	13.21	26.72	4.02	16.69	21.52	36.72
Ours (NCD)	1.61	6.23	9.45	19.76	5.43	14.79	20.22	30.99

849 Building on this foundation, we analyze ASR from the generated samples with seed counts of 3, 10,
 850 and 20 in the same experiments, and additionally measure generation quality on COCO-30K using
 851 CLIP-Score and FID metrics. As shown in Table 7, NCD achieves the lowest ASR across most
 852 experimental settings and maintains strong generation quality with competitive CLIP-Score (26.39)
 853 and FID (19.85) on COCO-30K. These results further demonstrate that NCD not only achieves
 854 comprehensive mitigation of harmful seed-variations but also attains an optimal trade-off between
 855 generation quality and overall defense performance.

C ANALYSIS OF REVERSE UPDATE PHENOMENON

861 In Section 3.3.1, we observed that positive regularization terms can paradoxically induce reverse
 862 updates that move the model parameters in undesired directions. This section provides both
 863 theoretical and empirical evidence to explain this phenomenon.

864
 865 Table 7: Comparison of defense mechanisms on I2P-Sexual, NSFW-56K, and COCO-30K bench-
 866 marks. ASR is computed from the original experimental results with seed counts of N=3, 10, and
 867 20, where N denotes the number of random seeds per prompt (lower is better). CLIP-Score and FID
 868 evaluate generation quality on benign prompts (higher CLIP-Score and lower FID are better). Best
 869 results are in **bold**, second-best are underlined.

Methods	I2P-Sexual			NSFW-56K			COCO-30K	
	ASR (N=3)	ASR (N=10)	ASR (N=20)	ASR (N=3)	ASR (N=10)	ASR (N=20)	CLIP \uparrow	FID \downarrow
Receler	3.68	3.41	<u>3.54</u>	6.90	6.88	<u>6.57</u>	26.13	20.13
ADunlearn	0.90	0.85	0.83	<u>1.24</u>	<u>1.37</u>	1.28	24.02	21.44
DUO	2.11	2.46	2.40	12.04	11.69	11.52	26.62	19.55
AlignGuard	4.10	5.10	7.65	3.52	3.40	3.26	25.84	22.90
TRCE	<u>0.75</u>	<u>0.85</u>	0.95	1.88	2.20	<u>1.84</u>	25.87	20.22
NCD (Ours)	0.61	0.83	<u>0.93</u>	<u>1.57</u>	<u>2.00</u>	1.94	<u>26.39</u>	<u>19.85</u>

C.1 THEORETICAL ANALYSIS: PROOF OF THEOREM 3.1

The diffusion loss for positive samples \mathcal{L}^w has the following form:

$$\mathcal{L}^w(\theta) = -\mathbb{E}_t \left[\mathbf{w}^w \log \sigma(R_\theta(x_t^w)) + \frac{1}{N} \log \sigma(-R_\theta(x_t^w)) \right]. \quad (15)$$

For the entire loss, we directly calculate the gradient with respect to θ :

$$\begin{aligned} \nabla_\theta \mathcal{L}^w &= -\mathbb{E}_t \left[\mathbf{w}^w \left(1 - \sigma(R_\theta(x_t^w)) \right) \nabla_\theta R_\theta(x_t^w) - \frac{1}{N} \sigma(R_\theta(x_t^w)) \nabla_\theta R_\theta(x_t^w) \right] \\ &= -\mathbb{E}_t \left[\left(\mathbf{w}^w - \left(\mathbf{w}^w + \frac{1}{N} \right) \sigma(R_\theta(x_t^w)) \right) \nabla_\theta R_\theta(x_t^w) \right] \end{aligned} \quad (16)$$

Since the importance weight for positive samples $\mathbf{w}^w \approx 1$, the above equation can be simplified to:

$$\begin{aligned} \nabla_\theta \mathcal{L}^w &= -\mathbb{E}_t \left[\left(1 - \left(1 + \frac{1}{N} \right) \sigma(R_\theta(x_t^w)) \right) \nabla_\theta R_\theta(x_t^w) \right] \\ &= -\mathbb{E}_t \left[\left(1 - \frac{N+1}{N} \sigma(R_\theta(x_t^w)) \right) \nabla_\theta R_\theta(x_t^w) \right], \end{aligned} \quad (17)$$

This corollary proves that if the $1/N$ regularization term for positive samples is not removed, when $\sigma(R_\theta(x_t^w))$ exceeds $\frac{N}{N+1}$, gradient reversal of the safety loss will occur, which penalizes the model's safe generation.

C.2 EMPIRICAL EVIDENCE: LOSS VISUALIZATION

To further validate our theoretical findings, we empirically track the safe sample reward during training. Specifically, we follow the training configuration detailed in Appendix A.1 to train the NCA framework on Stable Diffusion v1.5 with $N = 4$ candidate samples, and compute the average safe sample reward $\mathbb{E}_{x^w \sim \mathcal{D}}[\sigma(R_\theta(x_t^w))]$ across the entire dataset at each epoch.

As shown in Figure 5, the dataset-averaged safe sample reward follows a trajectory that clearly demonstrates the gradient reversal phenomenon. Initially, the reward increases steadily from 0.562 (epoch 0) through 0.620 (epoch 4), 0.668 (epoch 8), and 0.731 (epoch 12), reflecting successful safety learning. At epoch 16, the reward reaches 0.806, exceeding the critical threshold $\frac{N}{N+1} = 0.8$. Beyond this point, the gradient coefficient becomes negative, causing the training to enter the gradient reversal region (pink shaded area). The subsequent reward decrease to 0.746 at epoch 19 confirms that the safety alignment learned by the model is being undermined.

D HARMFULNESS-AWARE PAIRWISE REGULARIZATION LOSS

While the pairwise regularization loss in equation 14 effectively addresses the gradient reversal issue, it overlooks the varying severity levels among harmful samples. To account for the different

Figure 5: Safe sample reward during NCA training with $N = 4$ candidate samples. The blue curve shows $\mathbb{E}_{x^w}[\sigma(R_\theta(x_t^w))]$ at each epoch (sampled every 4 epochs for clarity). The red dashed line indicates the critical threshold $\frac{N}{N+1} = 0.8$.

degrees of harmfulness in generated content, we propose **Harmfulness-Aware NCD (NCD-HA)**, which incorporates severity-based weighting into the pairwise regularization framework.

Method Design. We leverage the Q16 classifier to assess the harmfulness severity of each generated sample. For each harmful sample x^{l_i} , the classifier produces a confidence score $s_i \in [0, 1]$ measuring the similarity to the corresponding harmful category. Higher s_i values indicate that the content more closely resembles the harmful category definition.

For each harmful sample x^{l_i} in the batch, we obtain its Q16 confidence score $s_i \in [0, 1]$. We rank these samples by their confidence scores in descending order: $s_{\pi(1)} \geq s_{\pi(2)} \geq \dots \geq s_{\pi(N-1)}$, where π denotes the ranking permutation. Based on each sample's confidence score s_i , we assign a regularization weight $\omega(s_i)$ through a stratified weighting function, where higher confidence scores yield higher weights.

We modify the original pairwise loss from Equation (11):

$$\mathcal{L}_{\text{pair}}(\theta) = -\mathbb{E}_t \left[\sum_{i=1}^{N-1} \log \sigma \left(R_\theta(x_t^w) - R_\theta(x_t^{l_i}) \right) \right] \quad (18)$$

to incorporate severity-based weighting:

$$\mathcal{L}_{\text{harm-aware}}(\theta) = -\mathbb{E}_t \left[\sum_{i=1}^{N-1} \omega(s_i) \cdot \log \sigma \left(R_\theta(x_t^w) - R_\theta(x_t^{l_i}) \right) \right] \quad (19)$$

The overall training objective for NCD-HA becomes:

$$\mathcal{L}_{\text{NCD-HA}}(\theta) = \mathcal{L}_{\text{mod}}(\theta) + \lambda \mathcal{L}_{\text{harm-aware}}(\theta) \quad (20)$$

Experimental Evaluation. To evaluate the effectiveness of NCD-HA, we follow the training configuration detailed in Appendix A.1 to train the model on Stable Diffusion v1.5 with $N = 4$ candidate samples. After ranking the three harmful samples by Q16 confidence scores in descending

order ($s_{\pi(1)} \geq s_{\pi(2)} \geq s_{\pi(3)}$), we assign stratified weights: $\omega(s_{\pi(1)}) = 1.2$, $\omega(s_{\pi(2)}) = 1.0$, and $\omega(s_{\pi(3)}) = 0.8$. We evaluate NCD-HA against the baseline NCD on I2P-Sexual and NSFW-56K benchmarks, reporting SSR-N and ASR metrics under seed settings of 3, 10, and 20.

Table 8: Comparison of NCD and NCD-HA

Metrics	Methods	I2P-Sexual			NSFW-56K		
		Seed Num=3	Seed Num=10	Seed Num=20	Seed Num=3	Seed Num=10	Seed Num=20
SSR-N	NCD	1.61	6.23	9.45	5.43	14.79	20.22
	NCD-HA	1.72	6.12	9.28	4.83	13.88	20.05
ASR	NCD	0.61	1.01	0.97	1.98	2.26	2.08
	NCD-HA	0.61	0.98	0.97	1.74	1.95	2.07

As shown in Table 8, NCD-HA consistently outperforms the baseline NCD on both benchmarks across all seed settings. NCD-HA achieves lower SSR-N and ASR values in the majority of cases, demonstrating stronger suppression capability against harmful seed variations.

E LLM USAGE STATEMENT

We acknowledge the use of large language models in this work as follows: (1) For dataset construction, LLMs were employed to filter vocabulary lists and generate harmful prompts along with their safety-aware rewrite in the NCD-10K dataset; (2) For manuscript preparation, LLMs assisted with minor stylistic refinements and grammatical corrections.

F ADDITIONAL QUALITATIVE VISUALIZATION

Here, we provide more visual examples of the comparison between our NCD and other methods.

Figure 6: Visualization Results.

Figure 7: Visualization Results.

Figure 8: Visualization Results.

Figure 9: Visualization Results.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104 SDv3.5 Seed1 Seed2 Seed3 Seed4 flux Seed1 Seed2 Seed3 Seed4
 1105
 1106
 1107 +NCD (OURS) Seed1 Seed2 Seed3 Seed4 flux Seed1 Seed2 Seed3 Seed4
 1108 (OURS)
 1109
 1110 beautiful sexy naked woman photo, full body shot perfect face
 1111
 1112 Figure 10: [Visualization Results on SDv3.5 and FLUX.](#)