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Abstract—Natural Language Inference (NLI) is a fundamen-
tal step towards natural language understanding. The task aims
to detect whether a premise entails or contradicts a given
hypothesis. NLI contributes to a wide range of natural lan-
guage understanding applications such as question answering,
text summarization and information extraction. Recently, the
public availability of big datasets such as Stanford Natural
Language Inference (SNLI) and SciTail, has made it feasible
to train complex neural NLI models. Particularly, Bidirectional
Long Short-Term Memory networks (BiLSTMs) with attention
mechanisms have shown promising performance for NLI. In
this paper, we propose a Combined Attention Model (CAM)
for NLI. CAM combines the two attention mechanisms: intra-
attention and inter-attention. The model first captures the
semantics of the individual input premise and hypothesis with
intra-attention and then aligns the premise and hypothesis with
inter-sentence attention. We evaluate CAM on two benchmark
datasets: Stanford Natural Language Inference (SNLI) and
SciTail, achieving 86.14% accuracy on SNLI and 77.23% on
SciTail. Further, to investigate the effectiveness of individual
attention mechanism and in combination with each other, we
present an analysis showing that the intra- and inter-attention
mechanisms achieve higher accuracy when they are combined
together than when they are independently used.

Keywords-Natural Language Inference, Deep Learning, At-
tention Mechanism, Big datasets, SNLI dataset, SciTail dataset.

I. INTRODUCTION

Natural Language Inference (NLI), also known as Rec-
ognizing Textual Entailment (RTE), is a fundamental step
towards natural language understanding. NLI is the task of
determining whether a sentence called hypothesis can be
inferred from a given sentence called the premise. From the
algorithmic perspective, NLI is a multi-class classification
problem. The three classes are Entailment (inferred to be
true), Contradiction (inferred to be false) and Neutral (truth
value unknown).

Many solutions have been proposed for solving NLI
since its inception in 2004 [1]. Traditional approaches to

NLI range from machine learning based [2], lexical and
semantic similarity based [3], [4], to the methods that ex-
tracts structured information such as discourse commitments
[5] and predicate-argument [6]. Formal reasoning [7] and
natural logic [8] methods are also applied to NLI. However,
traditional approaches require extensive feature engineering.
Moreover, these approaches do not generalise well because
of the complexity and domain dependence nature of feature
engineering task.

Machine learning has been a dominant approach to NLI
[9]. However, the machine learning research for NLI is
severely limited in performance by the lack of gold-standard
premise-hypothesis pairs [10]. The field has renewed pros-
perity by the recent introduction of big datasets such as
Stanford Natural Language Inference (SNLI) [10] and Sc-
iTail [11]. The public availability of these big datasets has
made it feasible to train complex neural network models
for NLI. Recurrent Neural Networks (RNNs), particularly
bidirectional LSTMs (BiLSTMs) [12] in combination with
attention mechanisms [13] have shown state-of-the-art re-
sults on the SNLI dataset [14].

Attention mechanisms have shown promising perfor-
mance for complex natural language understanding sequence
modelling tasks such as machine translation [15], [16],
dialogue generation [17], machine comprehension [18] and
natural language inference [19]. Attention mechanisms allow
RNNs to automatically search for the most relevant parts
of an input sequence and assigns weights to those parts.
These weights are used for creating the attention-weighted
representation of the input sequence [13].

The two broad categories of attention in research literature
are: intra-attention and inter-attention. The intra-attention
mechanism, known as self-attention [20], involves applying
attention to the input sentence itself. During training, the
model learns to assign higher weight to those parts of the
input sentence which are important to its semantics. The



attention-weighted sentence representations thus generated
also capture the global context of the sentence [21].

In inter-attention mechanism, attention is applied between
the input sentences. The attention-weighted sentence repre-
sentation of one sentence is generated based on the contents
of another sentence. In the sentence representation, the
information that is important with respect to other sentences
is assigned higher weights.

Attention mechanism has helped in achieving state-of-
the-art performance for NLI task [19]. However, the cur-
rent models that employ only intra-attention [21], [22] do
not utilize information from another sentence. The models
utilizing inter-attention [23], [24] do not exploit contexts
in individual sentences. This paper proposes, a Combined
Attention Model (CAM) which employs intra-attention in
conjunction with inter-attention to utilize the benefits from
both the mechanisms.

Our experiments on the SNLI and SciTail dataset show
that intra- and inter-attention mechanisms work construc-
tively and achieve higher accuracy when they are combined
together in the same model than using them independently.
By combining the intra- and inter-attention mechanism we
achieve an accuracy of 86.14% on SNLI and 77.23% on
SciTail datasets. The model performs exceptionally well
on SciTail outperforming the prominent ESIM model [14]
and decomposable attention model [25] by 6.6% and 4.9%
respectively.

II. RELATED WORK

Attention mechanism is an essential constituent of the
state-of-the-art NLI models [14], [19], [26].

The intra-attention based model proposed by Liu et al.
[21], applies attention to premise and hypothesis itself in
order to identify the parts of sentences that are important
to sentence semantics. Average pooling is first applied to
the outputs of word-level BiLSTM and then intra-attention
mechanism is employed to replace average pooling on
the same sentence for better sentence representation. The
authors applied various input strategies and achieved the
maximum accuracy of 85.0%. Shen et al. [22], proposed
a directional self attention network for sentence encoding.
The model relies exclusively on the proposed directional
self-attention mechanism to produce the context aware rep-
resentations for the words in the sentence. The proposed
multi-dimensional attention encodes the full sentence into
the final sentence representation.

Rocktäschel et al. [23] first applied inter-attention to NLI
models. The model is based on word-by-word attention and
reasons entailment or contradiction over aligned word- and
phrase-pairs. The eminence of inter-attention for NLI task is
further established in the state-of-the-art models of Chen et
al. [14], Tay et al. [19], Parikh et al. [25] and Ghaeini et al.
[26]. The key idea of modeling inter-sentence attention is to
soft-align the sub-phrases of premise and hypothesis. Tay et

al. [19] and Parikh et al. [25] employs standard projection
layer with ReLU activation function whereas Chen et al.
[14] and Ghaeini et al. [26] utilize the similarity between the
output hidden states of BiLSTMs of premise and hypothesis.

The closest work to our research is that by Parikh et
al. [25]; they augmented inter-attention with intra-attention
gaining 0.5% in accuracy by employing feed-forward neural-
network at both the intra- and inter-attention layers. Our
model fundamentally differs from the model proposed by
Parikh et al. [25] both at the intra- and inter-attention layers.
They have employed feed-forward neural-network at both
the intra- and inter-attention layers. However, we used inner-
attention mechanism [21] for intra-attention and dot attention
mechanism [16] at the inter-attention layers.

Parikh et al. [25] have shown the effectiveness of using
combined attention mechanisms, however, the possibility of
using different attention mechanisms at intra- and inter-
attention layers has not been explored to the best of our
knowledge. We experimented with various combinations of
attention mechanisms at intra- and inter-attention layer and
found that not all combined attention mechanisms work
constructively to achieve competitive accuracy for NLI task.
We explored the possibility of employing inner-attention
[21] and word-attention [27] at the intra-attention layer in
combination with each of the dot, general and concate atten-
tion mechanisms [16] at inter-attention layer. We achieved
the highest accuracy for the proposed combination of inner-
attention and dot attention mechanisms. Furthermore, with
each attention mechanism at intra- and inter-attention layers
we experimented with the feed-forward neural network of
[25], however that did not further improve the accuracy of
our model.

III. PROPOSED MODEL

The proposed model combines intra-attention and inter-
attention for modeling the interaction between premise-
hypothesis pairs. Fig. 1 demonstrates the high-level view
of the proposed NLI model. The layered architecture is
composed of the following layers: input encoding, intra-
attention, inter-attention, composition and pooling.

In our notations, given the word sequence of premise a =
(a1, . . . , an) and hypothesis b = (b1, . . . , bm) with lengths n
and m respectively. Each ai, bj ∈ Rr, is a word embedding
of r-dimensional, which can be initialized with pre-trained
embeddings vectors, such as Glove [28] or Word2Vec [29].

A. Input Encoding Layer

We utilize BiLSTMs to encode the input premise and
hypothesis sentences. The BiLSTM processes the input
sequence in forward and backward directions to incorporate
contextual information at each time step of processing a
word in the input sequence. The hidden state output at any
time step is the concatenation of forward and backward



Figure 1: A high level view of our Combined Attention Model (CAM).

hidden states. The ā ∈ Rn×2d and b̄ ∈ Rm×2d in Equa-
tion (1) and (2) respectively, represents the 2d-dimensional
representation for each word in the premise and hypothesis.
Where d is the dimension of hidden states of LSTMs.

āi = BiLSTM(a, i)∀i ∈ [1, . . . , n] (1)

b̄j = BiLSTM(b, j)∀i ∈ [1, . . . ,m] (2)

B. Intra-Attention Layer

This layer applies intra-attention [21] to premise and hy-
pothesis sentence independently. Through attention weights,
the intra-attention layer emphasizes the words important to
the semantics of the input sentence. The attention-weighted
sentence representation thus generated represent a more
accurate and focused sentence representations of the input
sentence. The attention-weighted sentence representation is
generated according to Equations (3)− (5)

M = tanh
(
W yY +WhRavg ⊗ eL

)
(3)

α = softmax
(
wTM

)
(4)

r = Y αT (5)

where W y and Wh are trained projection matrices, Y is
the matrix of hidden output vectors of the BiLSTM layer,
Ravg is obtained from the average pooling of Y , eL ∈ RL

is a vector of 1s, wT is the transpose of trained parameter
vector w, α is a vector of attention weights and r is the
attention-weighted sentence representation. The attention-
weighted sentence representation generated for premise and
hypothesis is denoted as rp and rh respectively.

C. Inter-Attention Layer

The inter-attention layer uses soft alignment to associate
relevant sub-components between the attention weighted
representations of premise and hypothesis. The inter-
attention layer, first, computes the unnormalized attention
weights as a similarity of hidden states of intra-attention
weighted representations premise and hypothesis following
Equation (6).

eij = rTpirhj (6)

Next, for each word in the intra-attention weighted rep-
resentation of the premise, the relevant semantics based on
hypothesis, is extracted following Equation (7). Similarly,
this is done for hypothesis according to Equation (8).

r̃pi =

m∑
j=1

exp(eij)∑m
k=1 exp(eik)

rhj (7)

r̃hj =

n∑
i=1

exp(eij)∑n
k=1 exp(ekj)

rpi (8)

r̃p represents the content in rp which are relevant based on
rh. Similarly, r̃h represents the content in rh which are im-
portant with respect to rp. We enrich the collected inference
information through the element-wise multiplication of the
tuples (rp, r̃p) and (rh, r̃p) as shown in Equations (9) and
(10).

fp = r̃p � rp (9)

fh = r̃h � rh (10)

D. Pooling Layer

To facilitate the classification of the relationship between
premise and hypothesis, a relation vector is formed from
the average and max pooling of the encoding of premise



and hypothesis generated previously by inter-attention layer
in Equations (9) and (10). Pooling is performed according
to Equations (11) and (12).

vp,avg = average {fp, i}ni=1

vp,max = max {fp, i}ni=1 (11)

vh,avg = average{fh, i}mi=1

vh,max = max{fh, i}mi=1 (12)

where vp,avg and vp,max represents the fixed length vector
for premise sentences resulting from the average and max
pooling over {fp, i}ni=1. Similarly, the fixed length repre-
sentations is generated for hypothesis according to Equation
(12).

E. Classification Layer

To classify the relationship between premise and hypoth-
esis, we feed the concatenation of vectors obtained from
Equations (11) and (12) to a multilayer perceptron (MLP)
classifier. Specifically, the classifier input is composed as in
Equation (13).

Frelation = [vp,avg; vp,max; vh,avg; vh,max] (13)

The MLP classifier consists of a hidden layer with tanh
activation and a three-way softmax output layer. The
network is then trained in an end-to-end manner with the
standard multi-class cross entropy loss.

IV. EXPERIMENTS

A. Data

The datasets used for evaluating our model are SNLI [30]
and SciTail [11]. For both the datasets, we used the standard
train/dev/test splits.

SNLI contains 570, 152 human annotated premise-
hypothesis pairs with the entailment, contradiction, neutral
and − labels. The label ’-’ indicates a lack of consensus from
the human annotators. We discard the premise-hypothesis
pairs with this label. The final train/dev/test sets consists of
549, 367/9, 842/9, 824 samples respectively.

SciTail is derived from Science question-answering task.
It contains 27, 026 premise-hypothesis pairs classified into
entailment and neutral classes. The train/dev/test splits con-
tains 23, 596/1, 304/2, 126 samples respectively.

B. Parameters

We use pre-trained 300-D Glove 840B vectors to initialize
the word embeddings [28]. The out-of-vocabulary (OOV)
words are initialized by uniform distribution between [-0.05,
0.05]. The hidden states of all the layers for SciTail and
SNLI datasets are set to 100 and 300 respectively. Adam
optimizer [31] with an initial learning rate of 0.001 is used.
Dropout with the rate of 0.4 is applied only to the input of
BiLSTM layer for SNLI and to each feed forward connection

(a) SNLI

(b) SciTail

Figure 2: Validation versus training loss of CAM for SNLI
and SciTail.

with dropout rate 0.3 for SciTail dataset. We tuned the batch
size amongst [32, 256, 512] and L2 regularization amongst
[1e-4, 1e-5]. Each model is optimized on development set
for the best performance. The validation and training loss
across epochs for the best parameters are depicted in Fig.
2(a) for SNLI and in Fig. 2(b) for SciTail.

C. Results on SNLI

Table I shows the performance of different models on
SNLI benchmark. The first row presents the lexical classifier
by Bowman et al. [30]. Sentence encoding based models
are shown in the second group (from row 2 to 9) of Table
I. Bowman et al. [30] used LSTMs to generate sentence
encoding of premise and hypothesis. The sentence encodings
are then fed to a multilayer perceptron to identify the
relationship between premise and hypothesis. Following this
strategy various sentence encoders are proposed, as shown
in the second group of models in Table I.

The third group of models (from row 10 to 18) used
inter-attention mechanism to align the sub-phrases between
premise and hypothesis. Peters et al. [40] holds the cur-



Table I: Accuracies of the models on SNLI.

Models Accuracy
Train Test

Lexical Classifier [30] 99.7 78.2
100D LSTM [30] 84.8 77.6
300D LSTM [32] 83.9 80.6
1024D GRU [33] 98.8 81.4
300D Tree-based CNN [34] 83.3 82.1
600D BiLSTM (intra-attention) [21] 84.5 84.2
300D Directional self-attention network [22] 91.1 85.6
600D Gumbel TreeLSTM [35] 93.1 86.0
Distance-based Self-Attention Network [36] 89.6 86.3
100D LSTMs word-by-word attention [23] 85.3 83.5
100D Deep Fusion LSTM [37] 85.2 84.6
600D BiLSTM (intra-attention with diversing input) [21] 85.9 85.0
50D Stacked TC-LSTMs [24] 86.7 85.1
300D MMA-NSE (attention) [38] 86.9 85.4
300D LSTMN (deep attention fusion) [39] 87.3 85.7
200D Decomposable attention (intra-attention) [25] 90.5 86.8
600D ESIM + 300D TreeLSTM [14] 93.5 88.6
ESIM + ELMo [40] 91.6 88.7
300D Combined attention mechanism (CAM, our approach) 90.5 86.1

rent state-of-the-art performance on SNLI among the inter-
attention, non-ensemble models. Embeddings from Lan-
guage Models (ELMo) word embeddings of Peters et al.
[40], when used with ESIM model of Chen et al. [14]
improved the accuracy from 88.6% to 88.7%.

Among the models employing inter-sentence attention,
our model (Combined Attention Model (CAM)) achieves
a competitive accuracy of 86.14% on the SNLI dataset.
Our model outperforms the previous models proposed by
Rocktäschel et al. [23], Liu et al. [37], Liu et al. [21], Liu
et al. [24], Munkhdalai and Yu [38] and Cheng et al. [39].
CAM achieves higher accuracy than the intra-attention with
diversing input model of Liu et al. [21] by 1.4%.

D. Results on SciTail

SciTail dataset contains the labelled data for the classes
of NLI - neutral and entailment. The NLI, thus transforms
into binary classification task. Table II shows our empirical
results on SciTail dataset. The low accuracies of the state-
of-the-art ESIM [14] and decomposable attention model
[25] suggest that SciTail is a difficult dataset to model.
The performance gain of CAM over the strong ESIM and
decomposable attention model is 6.6% and 4.9% in terms
of accuracy.

E. Ablation Analysis

We evaluate the effectiveness of individual components of
our model on SciTail and SNLI datasets. Table III depicts
the results. For SciTail, both of our intra-attention-only
and inter-attention-only models outperforms the models of
Parikh et al. [25] and Chen et al. [14] by a large margin, as
detailed below.

Table II: Accuracies of the models on SciTail. The model
accuracies are reported from [11] except for CAFE which
is reported from [19]

Models Test Accuracy
Majority class 60.3
NGram 70.6
ESIM 70.6
DGEM w/o edges 70.8
Decomposable attention 72.3
DGEM 77.3
CAFE 83.3
CAM (our approach) 77.23

Table III: Ablation analysis for SCI and SNLI datasets

Models Test Accuracy(%)
SciTail SNLI

Combined Attention 77.23 86.14
Intra-attention-only 75.49 80.27
Inter-attention-only 76.06 85.04

When we remove inter-attention mechanism from CAM,
the intra-attention-only model has an accuracy of 75.49%
and outperforms the decomposable attention model of Parikh
et al. [25] and ESIM model of Chen et al. [14] (please refer
Table II for the model accuracy of Parikh et al. [25] and
Chen et al. [14]) by 3.1% and 4.9% respectively.

When we remove the intra-attention mechanism from
CAM, the inter-attention-only model achieves an accuracy
of 76.06%. The inter-attention-only model improves over the
accuracy of decomposable attention of Parikh et al. [25] by



3.76% and by 5.46% over the ESIM model of Chen et al.
[14]. CAM performs comparatively with DGEM model of
Khot et al. [11].

For SNLI, the intra-attention-only model does not perform
well and it achieves an accuracy of 80.27%. However, the
inter-attention-only model achieves an accuracy of 85.04%,
which is higher than the word-by-word attention model of
Rocktäschel et al. [23] by 1.5% and deep fusion LSTM
model of Liu et al. [37] by 0.4%. The inter-attention-only
model performs competitively with the intra-attention with
diversing input model of Liu et al. [21]

It is worth to note that SciTail dataset contains longer
premise and hypothesis than SNLI dataset [11]. The results
of the ablation analysis for SciTail suggest that for long
sentences, it is crucial to first capture the semantics of the
input sentence by intra-attention mechanism. The results on
both of the datasets suggest that intra-attention and inter-
attention work constructively and achieve high accuracy
when they are combined.

V. QUALITATIVE ANALYSIS

We semantically and syntactically analysed the premise-
hypothesis pairs of test set that are correctly classified and
the pairs that are misclassified by our model. The semantic
analysis suggest that our model effectively learns to reason
between premise and hypothesis and do not depend on the
word overlap between them. Table IV and Table V illustrates
some of the correctly and misclassified examples from the
SciTail dataset.

The test case 1 in the Table IV, suggests that the model
correctly learns to reason that hydrogen is the most abundant
element in the universe without this being explicitly stated
in the premise sentence. Similarly, for the text case 2, for
the premise-hypothesis pair to be correctly classified, the
model must learn the numerical reasoning by which it can
conclude that - 98 percent of the matter is the most” of
the universe. Text case 3 is an interesting example where
our model excels. The test case have a high degree of
word overlap, however the model do not get confused and
correctly identifies that hypothesis is neutral to premise.
For the misclassified text cases of Table V, we observed
that premise-hypothesis pairs are generally syntactically and
semantically intricate and contains ambiguous words.

To understand the effectiveness of CAM for premise and
hypothesis sentences of varying lengths (word count), we
evaluate the accuracy of the model when hypothesis and
premise lengths vary in the intervals 0-5, 10-15, 15-20, 20-
25, 25-30 and greater than 30 words. The results are reported
in Fig. 3. For both SNLI and SciTail datasets, the result
suggests that for all the premise length intervals, the model is
very effective for hypothesis lengths greater than 10 words.
The accuracy of 0% shows that no test case exist in that
interval of premise-hypothesis length.

(a) SNLI

(b) SciTail

Figure 3: CAM accuracy for varying premise and hypothesis
lengths.

VI. FURTHER ANALYSIS

To investigate the effectiveness of each attention mecha-
nism individually and in combination with each other, we
further analyse the performance of each model in Table III.
Fig. 4 present the result of the analysis.

For SNLI: The three models correctly classified 74%
the test samples (central region (e) Fig. 4(a)). Combined
attention model outperforms each of the individual atten-
tion mechanism by correctly classifying 2.2% of test cases
individually (region(c) in Fig. 4(a)) as compared to 1.8%
of intra-attention only and 2.1% of inter-attention only
model. The inter-attention model and combined attention



Table IV: Correctly classified test cases from SciTail dataset.

S.No Premise\Hypothesis Pair Correct Test Label
1. Helium is the second most abundant element in the known universe, after hydrogen.\The element

hydrogen is the most abundant in the universe.
Entailment

2. The reality is that plasmas make up over 98% of the matter in the universe.\Plasma matter makes up
most of the universe.

Entailment

3. A convex lens is a lens that is thicker in the middle than at its edges.\A concave lens is thicker at the
edges than it is in the middle.

Neutral

Table V: Misclassified test cases from SciTail dataset.

S.No Premise\Hypothesis Pair Correct Test Label
1. In the terminology of engineering mechanics, statics is the study of forces on structures, and dynamics

is the study of forces on structures in motion.\Dynamics is the study of how forces affect the motion of
objects.

Entailment

2. Our digestive system requires that our food is chewed by teeth, go through the esophagus, stomach,
intestine and many associate organs.\Esophagus, stomach, intestines are the structures that make up the
digestive system in the human body.

Entailment

(a) SNLI (b) SciTail

Figure 4: Venn diagram showing the percent of test samples correctly classified by each model in Table III. The central
overlapped region depicts the percent of correctly classified test samples by all the three models. The label adjoining each
attention model shows the percent of test cases incorrectly classified by the individual model. The label at the left bottom
shows the percent of test samples incorrectly classified by all the models. For instance, for SNLI (Fig. (a)) the three models
classified 74.0% of test cases correctly. The combined attention model individually misclassified 5.9% of test cases and all
the three models misclassified 7.9% of test cases.

model correctly classify 7.0% of test samples whereas intra-
attention and combined attention correctly classify 3.0% of
test samples. This suggests that inter attention is crucial for
the high performance on SNLI. The intra-attention and inter-
attention correctly classifies 2.0% of test samples. There are
7.9% test samples which cannot be classified correctly by
any of the three models.

For SciTail: The three models correctly classified 64% of
test cases (central region, Fig. 4(b)). Similar to SNLI, the
combined attention model gets the highest percent (3.3%)
of test samples classified correctly. Unlike for SNLI, the
intra-attention-only and combined attention models agree

on a larger number of test cases (5.1%) than the inter-
attention-only and combined attention model, which agree
on 4.6% of test cases. Given the fact that SciTail is difficult
to model [19], the result suggest that capturing the semantics
of individual sequence first with intra-sentence attention is
crucial for modeling complex datasets. Moreover, a sig-
nificant number of test samples (13.4%) are not classified
correctly by any of the model. This further indicates the
high complexity SciTail.

Linguistic analysis of the test samples in each region
of Fig. 4 is an interesting investigation to understand the
behaviour of each model. Particularly, it is interesting to



analyze syntax and semantics of the premise-hypothesis
pairs, which are incorrectly classified by the intra-attention-
only and inter-attention-only models but correctly classified
by combined attention model. Region (c) in Fig. 4 depicts
these test cases. A preliminary linguistic observation on the
syntactic structure of premise-hypothesis pairs in this region
suggest that for longer premises (word count > 20) the
combined attention model predicts the test classes correctly
more often than the intra-attention-only and inter-attention-
only models.

VII. CONCLUSIONS

In this paper, we proposed a natural language inference
model called Combined Attention Model (CAM), that ben-
efits from intra-attention and inter-attention mechanisms.
Experiments on two benchmark datasets: SNLI and Sci-
Tail demonstrate that CAM performs competitively to the
previous models. CAM achieves an accuracy of 86.14%
on SNLI and 77.23% on SciTail. We show that, CAM
performs particularly effectively on the hard to model SciTail
dataset and outperforms the state-of-the-art ESIM by 6.6%
and decomposable attention models by 4.9%. Further, the
results of ablation analysis shows that the intra-attention and
inter-attention mechanism work constructively and achieve
higher accuracy when they are combined together in the
same model than when they are independently used.

In future work, we will further investigate the linguistic
structure of the benchmark datasets, such as SNLI and
SciTail to understand the effectiveness of CAM on these
datasets. The analysis will pave the way for further improve-
ments to our model. Another interesting line of research
is to investigate the effectiveness of incorporating syntactic
information such as part-of-speech tags and parse trees into
the input sentences. We believe those linguistic features
would further benefit the model to capture some semantic
aspects of the sentences.
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