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ABSTRACT

Generative models with discrete latent representations have recently demonstrated
an impressive ability to learn complex high-dimensional data distributions. How-
ever, their performance relies on a long sequence of tokens per instance and a large
number of codebook entries, resulting in long sampling times and considerable
computation to fit the categorical posterior. To address these issues, we propose
the Masked Vector Quantization (MVQ) framework which increases the repre-
sentational capacity of each code vector by learning mask configurations via a
stochastic winner-takes-all training regime called Multiple Hypotheses Dropout
(MH-Dropout). On ImageNet 64⇥64, MVQ reduces FID in existing vector quan-
tization architectures by up to 68% at 2 tokens per instance and 57% at 5 tokens.
These improvements widen as codebook entries is reduced and allows for 7–45⇥
speed-up in token sampling during inference. As an additional benefit, we find that
smaller latent spaces lead to MVQ identifying transferable visual representations
where multiple can be smoothly combined.

1 INTRODUCTION

In deep generative modelling, the choice of latent representation is an important consideration due
to trade-offs in sample stability, quality, model size and compatibility with different modalities.
Generative models with continuous latent random variables that assume parametric distributions have
led the field in sample quality for the past decade (Vahdat & Kautz, 2020; Donahue & Simonyan,
2019). Despite their impressive performance, these models can be challenging to stabilise, resulting
in problems such as posterior collapse (Lucas et al., 2019a; He et al., 2019; Lucas et al., 2019b).

Interest in discrete representations to address these challenges has seen a revival recently with the
development of several discrete autoencoders (Van Den Oord et al., 2017; Razavi et al., 2019; Ramesh
et al., 2021; Esser et al., 2021; Nichol et al., 2021; Rombach et al., 2022) with improved stability
in high-dimensional visual and audio domains. This approach maps each instance to a discrete
sequence of codebook indices (tokens) using vector quantisation (VQ) (Van Den Oord et al., 2017),
Gumbel-softmax (Jang et al., 2016) or Concrete distributions (Maddison et al., 2016). In a secondary
training stage, an autoregressive probabilistic model, such as a PixelCNN (Van Oord et al., 2016) or
Transformer (Vaswani et al., 2017), learns the categorical posterior, representing the distribution of
observable token sequences.

Despite these improvements, growing the representational capacity of discrete autoencoders remains
tied to increasing the number of tokens assigned to each instance and the number of total codebook
entries. Increasing both hyper-parameters can scale performance to high quality images as seen
in Razavi et al. (2019) where the authors used 1280 tokens per image. However this resulted
in unrealistically long ancestral sampling times and significantly higher computational resource
use to fit the categorical posterior. More recent works, such as VQGAN (Esser et al., 2021) and
Stable Diffusion (Rombach et al., 2022), introduced a discriminator (Goodfellow et al., 2014) and
diffusion models (Sohl-Dickstein et al., 2015) to reduce token length to 256 per image however
total sampling times remain rather long at 7258 seconds per image with a single Nvidia Titan X.
Whilst demonstrating impressive quality, these times may continue to hinder the use of discrete
autoencoders in challenging domains such as video generation and real-time applications particularly
where compute resources are constrained.

To address this problem, we explore whether each instance can be compressed into a shorter sequence
of tokens using a smaller codebook. We achieve this goal by introducing Masked Vector Quantization
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Figure 1: MVQ (bottom) compared to VQ (top). A unique pair of primary and secondary code
vectors can encode up to 2D

0
reconstructions. Multiple Hypotheses Dropout trains sampled mask

configurations of the secondary code vector to represent different factors of variation (age, hair, skin
tone, background, etc.). For example, by comparing D(e) to x̂2, the masked secondary code vector
represents older age and make-up skin tone.

(MVQ), a novel variant of VQ that allows the masked configuration of each codebook vector to be
individually mapped to separate instances. More precisely, in our framework each instance is encoded
with three components: a primary code e, a secondary code e0 and a mask mj , as shown in Figure 1.
In comparison to standard VQ, each primary code can represent a further 2D

0
instances, where D0 is

the embedding dimension of the secondary code.

During training, the best primary and secondary code vector for each instance can be found using
standard nearest neighbor lookup from the codebook. It is, however, computationally infeasible to
search for the best mask across all 2D

0
possibilities in latent spaces of dimension typically used in

practice. To overcome this, we introduce Multiple Hypotheses Dropout (MH-Dropout) a novel variant
of dropout (Hinton et al., 2012) that incorporates multiple hypotheses training (Guzman-Rivera et al.,
2012; Rupprecht et al., 2017). During the forward pass, J < 2D

0
masks are randomly sampled,

yielding J latent representations. During the backward pass, we use a winner-takes-all reconstruction
loss where only the best of the J representations affects the gradient.

The MVQ framework improves existing VQ architectures, such as VQ-VAE2 (Razavi et al., 2019)
and VQGAN (Esser et al., 2021), particularly when the number of tokens per instance and codebook
size is reduced. Across multiple medium resolution datasets, we observe FID reductions up to 82%
at 2 tokens per instance, 57% at 5 tokens and 14% at 17 tokens. These improvements consistently
grow as the number of codebook entries decrease and also reduce token sampling times by 58–87%
on a consumer grade GPU and 80–97% on CPU.

We also find that the dimensions of masked codes learn characteristics that can be smoothly inter-
polated, combined and transferred to other primary codes. These features are sometimes clearly
interpretable (such as the presence of eyeglasses or a smile) and can correspond to individual
dimensions as seen in Figure 2.

Our paper is outlined as follows: In Section 2, we review related work on discrete autoencoders,
dropout and multiple hypotheses training. In Section 3, we present background on the popular vector
quantization framework which our work builds upon. In Section 4, we introduce our Masked Vector
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Figure 2: Each dimension of secondary code vector e
0 learns interpretable characteristics completely

unsupervised. These characteristics can be controlled with mask m as seen above.

Quantization framework and Multiple Hypotheses Dropout. In Section 5, we describe the results of
extensive experiments on our MVQ framework, benchmarking performance against both VQVAE-2
and VQGAN at multiple compression rates and datasets.

2 RELATED WORK

Our work is closely related to three areas of research: discrete autoencoders, dropout and multiple
choice learning.

Discrete Latent Models. Autoencoders with discrete latent representations appeared as early as the
work of Hinton & Zemel (1993), where the authors proposed learning a codebook with stochastic
vector-quantization (VQ) in accordance with the Minimum Description Length (MDL) principle
(Rissanen, 1987). Recent works have proposed the use of Gumbel-softmax (Jang et al., 2016) or
Concrete distribution (Maddison et al., 2016) to learn codebooks with continuous reparameterization.
In the work of Van Den Oord et al. (2017), the authors propose training codebooks with winner-
takes-all VQ and an autoregressive model to learn the categorical posterior. Others have since
combined codebooks with hierarchical latents Razavi et al. (2019), transformers (Ramesh et al.,
2021), generative adversarial networks (GANs) (Esser et al., 2021) and diffusion models (Nichol
et al., 2021; Rombach et al., 2021; 2022) to produce remarkable high quality data reconstructions.

However, contemporary discrete autoencoders come with a trade-off between compression and
computational resources to learn the categorical posterior. Larger latent representations reduce
reconstruction error, but require more computational resources and are slower to sample from, as
outlined in Section 1. Our MVQ framework addresses this by learning a more efficient latent
representations that uses MH-Dropout, a variant of binary dropout (Hinton et al., 2012).

Dropout. Binary dropout regularizes deep neural networks by randomly dropping hidden units to
prevent co-adaption of features. This can be seen as a computationally tractable approach to bagging
during inference by forming ensembles of sub-networks (Srivastava et al., 2014). In contrast to
binary dropout, MH-Dropout actively recovers these representations during inference, leading to
accurate multiple predictions by the ensemble. This increases compression as the same distribution is
represented with significantly fewer parameters.

A similar approach using variational dropout (Kingma et al., 2015) appears in Molchanov et al.
(2017), where the parameters of large supervised networks are significantly reduced, at a minor cost
in accuracy. MH-Dropout samples masks during inference similar to Monte-Carlo dropout (Gal,
2016) and Concrete dropout (Gal et al., 2017). These, however, were primarily developed to quantify
uncertainty for tasks in reinforcement and supervised learning.

Multiple Choice Learning. Multiple Hypotheses Dropout is inspired by work from multiple choice
learning (MCL) which was first introduced by Guzman-Rivera et al. (2012) to address problems
with multiple outputs given the same input. These approaches propose initializing multiple support
vector machines (Guzman-Rivera et al., 2012) or multi-layer perceptrons (MLPs) (Rupprecht et al.,
2017; Lee et al., 2017; Nguyen et al., 2021) to increase the number of predictors per input. MH-
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Dropout takes a different approach, generating predictions by sampling from an ensemble of possible
sub-networks which is significantly more scalable.

MCL techniques are commonly criticized for suffering from modal collapse. This problem arises
when a subset of predictors are not trained due to poor weight initialization. MH-Dropout addresses
this by back-propagating through a shared set of weights which also forces the network to adopt
general features for multiple outputs.

3 MASKED VECTOR QUANTIZATION

Our solution extends the popular VQ autoencoder framework (Hinton & Zemel, 1993; Van Den Oord
et al., 2017), so we begin this section by reviewing the concept. We then introduce our proposed
architecture MVQ and MH-Dropout. For simplicity, throughout this section we use only one primary
and one secondary token per instance when describing the algorithm. In practice, sequences of tokens
are often used.

3.1 BACKGROUND: VECTOR QUANTIZATION

The winner-takes-all VQ framework utilizes a latent codebook containing a mixture of K centroids
ek 2 RD where k = 1 . . .K. Given a dataset X = (x1, . . . , xn) of n instances, this framework aims
to map each instance to a discrete latent variable z which refers to the codebook indices (tokens).

To achieve this, a primary encoder E is used to encode each instance to a vector y. This vector is
replaced with the indices of the nearest vector from the latent codebook, forming our discrete token z.
The reparameterization process involves a simple lookup against the codebook indices which yields
an equivalent vector representation ŷ. The representation ŷ is then input to the decoder D which
outputs a reconstruction of the instance x̂.

The goal is to minimize the reconstruction loss between each instance and reconstructed output:
Lrec(x, x̂) = kx� x̂k22 (1)

This is made possible by back-propagating through the codebook using the straight-through gradient
estimator (Bengio et al., 2013) which passes the gradients directly from the decoder to the encoder
with the following codebook loss:

Lcb(y, ŷ) = ksg[y]� ŷk22 + �ky � sg[ŷ]k22 (2)
where sg refers to the stop-gradient operation. This is commonly referred to as "commitment loss"
(Van Den Oord et al., 2017). An additional stage is required to learn the categorical posterior
distribution over the tokens using an autoregressive probabilistic model with cross-entropy loss.

A common approach to reducing both reconstruction and codebook loss is to increase the number of
codebook entries K or number of tokens per instance S. This scales representational capacity by
decreasing the expected distance between y ⇡ ŷ, at the cost of training larger autoregressive models
and longer sampling times. The MVQ framework scales representational capacity, but incurs these
costs at a much lower rate as codebook size and number of tokens grow, as we verify in Section 4.

3.2 INCREASING REPRESENTATIONAL CAPACITY WITH MASKED VECTORS

Our MVQ framework builds upon the representational capacity of each latent VQ centroid by
introducing a secondary code vector e0 2 RD0

and allowing its masked configurations to be mapped
to each instance.

A masked configuration of a secondary code vector is defined as:
c = e0 �m (3)

where m 2 {0, 1}D0
is a binary mask and � is an element-wise or Hadamard product.

Let M = {m1, . . . ,mJmax} be the set of all Jmax = 2D
0

possible masks. If each mask in M is
multiplied element-wise with the same code vector e0, this constructs the set of all 2D

0
possible

masked configurations:
C = {c1, . . . , cJmax} = {(e0 �m1), . . . , (e

0 �mJmax)} (4)
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Figure 3: The MVQ architecture depicting the reconstruction of an instance during training. MVQ
introduces a secondary branch to the VQ framework where a secondary code and J random masks
are sampled. Only the best of J representations is passed to the decoder.

Thus in this framework, each instance is mapped from token to representation ŷ using two latent
code vectors from separate codebooks and a binary mask from M, (e, e0,m):

ŷ = e+ f(e0 �m) = e+ f(c) (5)

where f is a non-linear multi-layer neural network. The complete architecture is illustrated in Figure 3
where the outputs of a secondary encoder E 0 is quantized into e0 using a secondary codebook.

The training objective is to find the best combination of (e, e0,m) that minimizes the L2-norm
between ŷ ⇡ y. As the number of codebook entries is generally small, a simple codebook look-up
is feasible for code vectors e and e0. However when D0 is high dimensional, it is computationally
impractical to enumerate through all possible 2D

0
masks in M.

To resolve this, we use MH-Dropout which approximates the best mask by using multiple hypotheses
training. In this approach, only J < 2D

0
masks are randomly sampled from M and only the best

mask which results in the nearest representation ŷ ⇡ y is used during back-propagation. This
algorithm is described in the following section.

3.3 MULTIPLE HYPOTHESES DROPOUT

MH-Dropout can be seen as efficiently converting f into an ensemble of sub-networks {f1, . . . , fJ}
using the J masked code vectors C as input. As seen in Figure 4, each sub-network results from the
elimination of input connections by each mask, just as classic dropout sets connections to zero. Thus,
sampling J masks to find the nearest representation (in L2 norm) to y is equivalent to sampling J
sub-network predictions (hypotheses) to find the nearest representation.

Only the best of the J sub-network hypotheses is selected as the final representation and only the
gradients of the respective best sub-network are back-propagated.

In the forward pass, J masked code vectors are sampled from C and passed to f to give J sub-network
hypotheses {f(c1), . . . , f(cJ)}. The best sub-network is the one with its hypothesis closest to vector
y in L2-norm.

Only this sub-network is addressed in the backward pass. Gradients for the other sub-networks are
eliminated by multiplying their respective loss by zero, so the objective function is:

Lmhd(ŷ1:J ,y) =
JX

j=1

wjL2(ŷj ,y)

wj = �(j = argmin
j

kŷj � yk2)
(6)

where wj gates gradient of sub-networks by using �, which is the Kronecker-delta returning 1 for the
best hypothesis and 0 otherwise.
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Figure 4: A forward pass through a MH-Dropout layer where J random masks eliminate hidden
connections, creating J sub-networks that output J hypotheses.

The overall MVQ objective function combines the MH-Dropout loss, reconstruction error and two
VQ codebook losses:

LMVQ = Lrec(x, x̂) + Lcb(y, e) + Lcb(y
0, e0) + Lmhd(ŷ1:J ,y) (7)

This objective function can be flexibly modified to include a discriminator or perceptual loss (Johnson
et al., 2016) as seen in Section 4.

3.4 DISCUSSION

MH-Dropout mitigates two related problems in multiple choice learning and discrete autoencoders.
Multiple choice learning algorithms are commonly criticized for suffering from modal collapse. This
occurs when a subset of predictors are not trained, due to poor weight initialization for example,
and then used during inference. The same problem can be found in VQ autoencoders, when a
subset of all possible token sequences are not trained. This is usually mitigated by introducing
a probabilistic model to learn the categorical posterior over the used tokens, however it requires
additional computational resources as token sequence length and number of codebook entries increase.

MH-Dropout avoids modal collapse because the shared set of weights are jointly trained in back-
propagation. The sub-networks with hypotheses not closest to the primary representation will still be
trained since their weights are shared with the winning sub-network. This forces the model to adopt a
set of weights for f and the secondary code vectors that generalize to multiple outputs. This is also
why searching the ensemble of sub-networks by sampling masks is effective and creates a beneficial
trade-off between computational resource use and finding the best mask (see Section 4.2).

We observe that degenerate outputs do not occur for any sampled mask applied to secondary code
vectors during inference. It is therefore not necessary to learn a distribution over masks for generation
(as is done for VQ-VAE codebooks), significantly reducing the size of categorical posterior models.

MH-Dropout has the binary dropout (Srivastava et al., 2014) property of tending to learn sparse
secondary code vectors, with smaller numbers of larger values. Specific dimensions of the code
vectors often correspond to distinct, interpretable characteristics such as a smile and glasses, as seen
in Figure 2. These characteristics can be smoothly combined and transferred to other primary code
vectors as we will demonstrate in the next section.
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A similar approach to ours is product quantization (PQ) Jegou et al. (2010), which also creates
multiple representation for each code vector. The difference is PQ breaks vectors into fixed partitions,
whereas ours conducts a stochastic search of the projections of the vector using an mask operation.

4 EXPERIMENTS

Here we focus on understanding the impact of adopting MVQ and MH-Dropout by integrating them
into two popular VQ architectures, VQVAE-2 and VQGAN. We discuss our experimental setup in
Section 4.1. We investigate the effects of increasing sampled masks on MVQ quality in Section 4.2,
and benchmark quality and reconstruction error across a wider range of datasets in Section 4.3. We
then demonstrate that MVQ identifies features that can be transferred and combined in Section 4.4.

4.1 SETUP

Model Comparisons. Benchmarking generative models is a challenging task due to the wide range
of factors that effect performance. To fairly assess MVQ we compare its performance to hierarchical
VQ latents proposed in Razavi et al. (2019), and keep as many factors equivalent as possible. Thus,
our comparative architecture to VQVAE-2 simply replaces the top-bottom hierarchical VQ codebooks
with MVQ, and is referred to as MVQVAE. Similarly, the hierarchical codebook version of VQGAN

is compared to MVQGAN, but uses the same encoder and decoder from VQVAE-2 due to the GPU
memory requirements of diffusion probabilistic models (Ho et al., 2020). The VQVAE2 models use a
PixelCNN as the categorical posterior model, while the VQGAN models use a Transformer model as
proposed in Rombach et al. (2021). Secondary codes are generated by conditioning on the sequence
of primary codes. As previous works use different hyper-parameters and datasets, we re-train and
evaluate their models based on open-source implementations.

Hyper-parameters. For each model, we vary two hyper-parameters to study the impact of masked
code vectors: the number of codebook entries and tokens per image. There are a total of K codebook
entries, with each primary and secondary codebook having K/2 entries. The number of tokens per
image is S + S0 where S and S0 are the numbers of primary and secondary tokens respectively.
Given an image x 2 Rh⇥w⇥3, we extend previous work of Esser et al. (2021); Rombach et al. (2021)
by studying a wider range of down-sampling factors, F =

p
(h⇥ w)/S, from 7–64. Every set of

comparative models are trained for equal epochs. For further hyper-parameters, see Appendix A.1.

Datasets. Experiments are conducted on medium resolution image datasets: FashionMNIST 28⇥28
(FMNIST) (Xiao et al., 2017), CIFAR10 32⇥32 (Krizhevsky et al., 2009), CelebA 64⇥64 (Liu et al.,
2018) and ImageNet 64⇥64 Deng et al. (2009). Using the down-sampling factors provided above,
the number of primary tokens per image are in the range 1–16. Due to this short length, we use 1
secondary token per image.

Metrics. Reconstruction and sample quality is assessed using Fréchet Inception Distance (FID)
(Heusel et al., 2017) which measures similarity between real and generated samples. Reconstruction
error is assessed using perceptual loss (LPIPS) for VQGAN based models. For all the above metrics,
a lower value indicates better performance. F-score measures the coverage of diversity and quality in
a single number as per the work of Sajjadi et al. (2018). Due to lack of space, sample FID (FID*),
negative log-likelihood (NLL), F-score (F�=1/8) are reported in Appendix A.2.

4.2 IMPACT OF INCREASING SAMPLED MASKS PER FORWARD PASS

To explore the effects of masked vectors on quality, we use the FashionMNIST dataset as it allows
extensive testing of hyper-parameters due to its small size. Using VQVAE-2 as the baseline, multiple
MVQVAE models are trained using increasing numbers of sampled masks per forward pass at high
down-sampling factors of F = 28 in Figure 5(a) and F = 14 in Figure 5(b).

These results show that replacing hierarchical VQ with MVQ improves FID with as little as 16
sampled masks per pass. Increasing the masks per pass consistently improves reconstruction quality
across all codebook and token lengths. As a result, MVQVAE with only 2 tokens per image
outperforms several VQVAE2 models with 5 tokens which indicates better performance at higher
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(a) Tokens per Image = 1 + 1 (b) Tokens per Image = 4 + 1
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Figure 5: FID # on FashionMNIST validation split. Increasing sampled masks per forward pass J
consistently improve FID for MVQVAE (ours). VQVAE-2 scores are shown left of each chart.

Tokens per Instance 1 + 1 4 + 1 16 + 1

Metric Dataset Codebook Entries 16 256 16 256 16 256

FID
#

CIFAR10 VQGAN 266.55 153.45 68.95 46.79 41.92 37.05
MVQGAN 58.78 57.22 46.70 41.19 36.73 34.84

CelebA64 VQGAN 113.54 87.67 36.07 28.78 26.47 24.28
MVQGAN 33.88 31.63 31.85 27.86 23.81 21.19

ImageNet64 VQGAN 285.94 184.30 161.19 77.95 56.67 47.99
MVQGAN 91.03 75.09 68.33 58.01 52.50 45.47

LPIPS
#

CIFAR10 VQGAN 0.463 0.447 0.423 0.379 0.340 0.271
MVQGAN 0.406 0.390 0.377 0.342 0.322 0.266

CelebA64 VQGAN 0.345 0.327 0.288 0.251 0.230 0.186
MVQGAN 0.293 0.261 0.270 0.232 0.227 0.186

ImageNet64 VQGAN 0.558 0.537 0.531 0.488 0.466 0.406
MVQGAN 0.514 0.497 0.498 0.472 0.456 0.404

F�=8

"

CIFAR10 VQGAN 0.132 0.744 0.770 0.882 0.874 0.906
MVQGAN 0.846 0.815 0.863 0.885 0.892 0.909

CelebA64 VQGAN 0.418 0.584 0.860 0.891 0.917 0.937
MVQGAN 0.868 0.881 0.861 0.915 0.932 0.952

ImageNet64 VQGAN 0.125 0.428 0.206 0.571 0.787 0.849
MVQGAN 0.557 0.620 0.703 0.752 0.832 0.872

Table 1: FID, perceptual loss and F-score (F�=8) for MVQGAN (J = 2048) and VQGAN. MVQ
outperforms VQ particularly when tokens per instance and number of codebook entries are reduced.

levels of compression. Despite sampling only a subset of all 2D
0

possible masks, these results verify
that MH-Dropout allows us to trade-off computational resource use as discussed in Section 3.4.

4.3 RECONSTRUCTION QUALITY

To understand scalability of performance, we conduct benchmarks across a wider range of datasets.
VQGAN is used as the baseline as we find that the addition of perceptual loss and adversarial
discriminator to VQVAE2 consistently improve metrics. Our proposed model, MVQGAN uses a
fixed J = 2048 sampled masks per pass during training.

In Table 1, we present results which show that introduction of MVQ consistently improves FID,
perceptual loss and F-score at all down-sampling factors F in the range 7–64. As seen in the previous
section, improvement is greatest at reduced token lengths and number of codebook entries, which
again shows that MVQ is more robust at higher compression rates.

8



Under review as a conference paper at ICLR 2023

!(#!)

(a) Representation Transfer (b) Additive Composition

!(#! + & '!:# )

!(#$ + & '!:# )

glasses

blonde 
hair

sun burnbeard

!(# + & '%&'() )

!(# + & ')*+ )

!(# + & ')*+
+ & '%&'() )

!(#$)

Figure 6: Samples generated by MVQGAN using only 16 codebook entries and 4 + 1 tokens per
instance. (a) Transfer of visual representations between two primary codes with different base styles.
(b) Additive composition of multiple visual representations.

MVQGAN trained with only 2 tokens per image (F = 64) on CelebA64 is reasonably competitive
with VQGAN with 17 tokens (F = 16). The same pattern is observed with all other datasets for
MVQGAN with 5 tokens and 256 codebook entries in comparison to VQGAN with 17 tokens. These
improvements allows us to trade a minor decrease in quality (see Appendix A.3 for images) for a
more practical benefit of reducing sampling times during inference.

Increasing the down-sampling factor from 16 to 64 for 64⇥64 images would yield 7⇥ speed-up
in token sampling during inference on a consumer-grade Nvidia RTX2080, and 45⇥ speed-up for
an Intel i9 CPU as seen in the Appendix, Table 6. Similarly for 256⇥256 images, increasing the
down-sampling factor from 16 to 32 would yield a theoretical 20–24⇥ speed-up. These improvements
would be useful for embedded models in edge devices where low inference times are required and in
video generation or reinforcement learning research where sampling efficiency is low.

4.4 REPRESENTATION TRANSFER AND ADDITIVE COMPOSITION

We demonstrate that MVQ results in transferable visual representations that can be smoothly combined
in output space. Figure 6a illustrates 6 masked configurations being transferred from primary code
vector e1 to e2. Despite having different base styles, multiple visual representations (such as hair
fringe, styles and colours) are smoothly transferred. Figure 6b depicts a grid of 9 images where the
center image is the decoded primary code vector. Four sampled masked configurations are added
to the centre and are shown in the orthogonal grid positions. The corner images are the result of
summing the two masked configurations of their two nearest orthogonal images. These corner images
demonstrate the smooth combination of multiple visual characteristics.

As these features are learned completely unsupervised, the choice of which features become transfer-
able depends on the dataset. For example, on FashionMNIST we find that shades, patterns, width and
arm lengths are transferable (see Appendix A.5). We also observe that MVQ models with reduced
token lengths and codebook entries are better at transferability. This is because reducing primary VQ
centroids increases the reliance on learning factors of variations with secondary masked codes.

5 CONCLUSION

In this paper we introduced the MVQ framework which allows masked configurations to be mapped
to instances using a stochastic winner-takes-all training regime called MH-Dropout. MH-Dropout
produces code vectors which avoid modal collapse and can learn sparse, transferable features. MVQ
improves on both reconstruction error and sampling quality in comparison to VQ, and is considerably
more robust when tokens per instance and codebook entries are reduced.
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6 REPRODUCIBILITY STATEMENT

An anonymized codebase for ICLR reviewers has been uploaded to GitFront. The link is provided
here. This codebase will be open-sourced after publication. To help others replicate our work,
additional information on experiment hyper-parameters and metrics are found in Appendix A.1 and
Appendix A.2 respectively.
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