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Abstract

Existing methods fail to effectively steer Large
Language Models (LLMs) between textual
reasoning and code generation, leaving sym-
bolic computing capabilities underutilized.
We introduce CodeSteer, an effective method
for guiding LLM code/text generation. We
construct a comprehensive benchmark SymBench
comprising 37 symbolic tasks with adjustable
complexity and also synthesize datasets of 12k
multi-turn guidance/generation trajectories and
5.5k guidance comparison pairs. We fine-tune
the Llama-3-8B model with a newly designed
multi-turn supervised fine-tuning (SFT) and direct
preference optimization (DPO). The resulting
model, CodeSteerLLM, augmented with the
proposed symbolic and self-answer checkers, ef-
fectively guides the code/text generation of larger
models. Augmenting GPT-4o with CodeSteer
raises its average performance score from 53.3
to 86.4, even outperforming the existing best
LLM OpenAI o1 (82.7), o1-preview (74.8), and
DeepSeek R1 (76.8) across all 37 tasks (28
seen, 9 unseen). Trained for GPT-4o, CodeSteer
demonstrates superior generalizability, providing
an average 41.8 performance boost on Claude,
Mistral, and GPT-3.5. CodeSteer-guided LLMs
fully harness symbolic computing to maintain
strong performance on highly complex tasks.
Models, Datasets, and Codes are available at
https://github.com/yongchao98/
CodeSteer-v1.0 and https:
//huggingface.co/yongchao98.
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1. Introduction
While the reasoning and planning capabilities of LLMs
have improved significantly (Wang et al., 2024; Chen et al.,
2024c; Li et al., 2023), they still fail in ostensibly simple
tasks (Zhou et al., 2024a). Crucially, many tasks in exist-
ing benchmarks—such as Blocksworld (Valmeekam et al.,
2024) and Game 24 (Zhou et al., 2023b)—can be completely
solved with code solutions. Text-based reasoning excels at
semantic understanding and commonsense inference but is
less suited for exact computation, symbolic manipulation,
optimization, and algorithmic processing (Valmeekam et al.,
2022). In contrast, symbolic computing via code generation
is adept at handling rigorous operations and can easily lever-
age specialized tools (e.g., equation solvers). In many tasks,
prompting LLMs to generate and execute code outperforms
purely textual reasoning (Madaan et al., 2022; Liang et al.,
2022; Chen et al., 2022).

A key challenge is guiding LLMs to decide when to rely
on textual reasoning versus programmatic solutions, given
that most input questions lack explicit cues about which
approach is best. Recent OpenAI GPT models address this
by providing a Code Interpreter module, allowing the model
to iteratively generate and execute code, then further rea-
son with the output (Achiam et al., 2023). Multi-agent
frameworks like AutoGen (Wu et al., 2023) adopt a spe-
cialized system prompt to steer LLM for code generation
when needed. However, recently Chen et al. (2025) finds
that all these existing methods struggle to effectively steer
between textual reasoning and code generation, failing to
fully leverage symbolic computing capabilities.

Our work tries to bridge this gap by developing an assistant
framework (CodeSteer) to guide the code/text generation
of the LLM solving the task (TaskLLM). By fine-tuning a
small model (Llama-3-8B (Dubey et al., 2024)) to be the
assistant, we enable large models (GPT-4o (Achiam et al.,
2023)) to fully leverage symbolic computing via code gener-
ation while preserving other capabilities. Recognizing that
iterative “executing and exploring” is the most effective way
to solve tasks, we build CodeSteer to generate prompts that
guide the TaskLLM through multiple turns of interaction
before finalizing answers.

To achieve a comprehensive evaluation, we gather and de-
velop a benchmark with 37 symbolic tasks, referred as Sym-

1

https://github.com/yongchao98/CodeSteer-v1.0
https://github.com/yongchao98/CodeSteer-v1.0
https://huggingface.co/yongchao98
https://huggingface.co/yongchao98


CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance

Figure 1: Examples and performance of CodeSteer on guiding LLM code/text generation to integrate symbolic computing.
At each interaction with TaskLLM, it reviews current and previous answers, then provides guidance for the next turn.
CodeSteer returns final answers when it deems them ready. With CodeSteer, GPT-4o outperforms OpenAI Code Interpreter,
o1, and o1-preview models.

Bench. On SymBench, augmenting GPT-4o with CodeSteer
greatly improves its average performance score from 53.3
to 86.4, even outperforming the current leading pure-text
model, OpenAI o1 (82.7) (Jaech et al., 2024) and DeepSeek
R1 (76.8) (Guo et al., 2025). Although trained for GPT-4o,
CodeSteer shows great generalizability, delivering an aver-
age 41.8 performance gain on Claude-3-5-Sonnet, Mistral-
Large, and GPT-3.5. By fully leveraging symbolic comput-
ing, CodeSteer-guided LLMs maintain strong performance
on highly complex tasks even when o1 fails in all testing
cases. Our key contributions are:

1) Developing and publishing SymBench: Prior works
by Chen et al. (2025) and Gui et al. (2024) gathered and de-
veloped 14 and 31 tasks, respectively, targeting challenges
in computation, symbolic manipulation, logic, optimization,
spatial reasoning, and constrained planning. However, nei-
ther study published the complete code for question/solution
synthesis or the full datasets. From these 45 tasks, we se-
lect 37 that remain challenging for GPT-4o and redevelop
their generation code to produce samples with adjustable
complexity. We refer to this newly published benchmark as
SymBench.

2) New methods for dataset construction and model
fine-tuning of SFT and DPO: We fine-tune Llama-3-
8B with the synthesized datasets of 12k multi-turn guid-
ance/generation trajectories (SFT) and 5.5k guidance com-
parison pairs (DPO). Unlike standard multi-step settings,
in CodeSteer’s multi-turn guidance, the TaskLLM outputs
a complete answer each turn rather than only at the end.
Consequently, we introduce novel components to both the
dataset construction and training processes for SFT and
DPO, such as data synthesis of dynamic guidance adapta-
tion, emphasis on the final two turns in SFT, comparison
score design, and efficient answer sampling in DPO. These
modifications result in better performance. Both the final
CodeSteer model and created datasets will be released.

3) Symbolic checker and self-answer checker: Observing
that TaskLLM frequently produces text-like code that hard-
codes answers, neglecting efficient symbolic computation,
we introduce a Symbolic Checker to help CodeSteerLLM
evaluate code complexity and efficiency. Since most reason-
ing and planning tasks can be better verified with coding, we
add a Self-answer Checker for better judgment of answer
correctness of CodeSteerLLM. These two new checkers
have been proven to significantly improve the efficiency of
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dataset synthesis and CodeSteerLLM fine-tuning.

4) Proposed CodeSteer Outperforms Nine Baselines and
o1: CodeSteer’s superior performance highlights the im-
portance of enhancing LLM reasoning and planning with
symbolic computing. This also demonstrates the potential
for steering large models to generate smarter code and text
by leveraging specialized smaller models.

2. Symbolic Tasks and SymBench
Challenges in Code/Text Choices For tasks requiring
computation, symbolic manipulation, logic, optimization,
spatial reasoning, and constrained planning, coding-based
symbolic computing is often more effective than text-based
approaches. However, Chen et al. (2025) found that steering
LLM code/text generation poses significant challenges, even
in tasks with apparent symbolic characteristics. The main
bottlenecks are: 1) Deciding whether code or text is sim-
pler depends on task type, task complexity, and the LLM’s
capabilities, which is hard to judge (see Appendix Sec. A).
2) LLM-generated code often appears as text-like scripts
that merely hard-code answers rather than enabling efficient
symbolic computation, echoing the phenomenon described
in Yang et al. (2024) (see Appendix Sec. B).

SymBench Chen et al. (2025) and Gui et al. (2024) col-
lected 14 and 31 tasks with symbolic factors from vari-
ous benchmarks such as Suzgun et al. (2022); Chen et al.
(2024d); Yao et al. (2024); Cobbe et al. (2021); Hendrycks
et al. (2021), but their question-generation code and com-
plete datasets remain private. We redevelop the generation
code to automatically synthesize questions with adjustable
complexity. Our resulting set of 37 tasks covers reasoning,
planning, and execution, testing competencies in mathemat-
ics, spatial reasoning, logic, order reasoning, optimization,
and search. Details and categorization are provided in Ap-
pendix Sec. C and Table 5.

3. CodeSteer Framework
Fig 1 illustrates how CodeSteer guides the LLM’s code/text
generation. At each turn, CodeSteer reviews the TaskLLM’s
current answer and the guidance/answer history, then de-
cides whether to offer new guidance or finalize the response.
It performs three key functions:
1) Initial Method Selection In the first turn, it chooses
whether to solve the task with code or text (e.g., use textual
reasoning for small-number multiplication, and code for
large-number multiplication in the task Number Multiply).
2) Dynamic Adaptation In subsequent turns, it refines
guidance or switches methods if issues arise (e.g., encourag-
ing more sophisticated symbolic approaches in Game 24, or
switching to textual reasoning after multiple incorrect code
attempts in BoxLift).

3) Answer Finalization When Ready

The main components of CodeSteer are as follows:
CodeSteerLLM is the primary model fine-tuned and used
to guide TaskLLM in code/text generation. The input
prompt formats for the first and subsequent turns are pre-
sented in Appendix Sec. D. To facilitate answer evalua-
tion, CodeSteerLLM is equipped with two checkers—Self-
answer and Symbolic—whose design is inspired by the
inherent features of symbolic tasks.
Self-answer Checker re-queries TaskLLM to generate and
execute code for verifying its current answer, then returns
the evaluation results and explanations to CodeSteerLLM.
Since many symbolic tasks benefit from code-based veri-
fication, this approach often provides a more reliable per-
spective. The prompt format for the Self-answer Checker is
provided in Appendix Sec. E.
Symbolic Checker is a rule-based script to analyze the
generated code for iteration, search, numeric handling, per-
mutations, and combinations, then returns a complexity
summary and score. This helps CodeSteerLLM determine
whether the code is sufficiently sophisticated for the task at
hand. Since TaskLLM often produces text-like code prone
to errors, the Symbolic Checker’s complexity assessment
aids, but does not solely dictate, CodeSteerLLM’s decisions.
Further details on the checking code and prompt are in Ap-
pendix Sec. F.
Beyond enhancing CodeSteerLLM’s performance, the Self-
answer and Symbolic Checkers also streamline dataset syn-
thesis for SFT and DPO fine-tuning, as discussed in the
following sections.

4. Fine-tuning the CodeSteerLLM
Among the three modules of CodeSteer, the CodeSteer-
LLM needs to be fine-tuned to perform the complicated
task of steering. The fine-tuning is performed on a subset
of SymBench. Specifically, we randomly select 28 of the
37 SymBench tasks, using a distinct set of samples with-
out overlap with the test samples. This setup allows us to
evaluate CodeSteer on 28 seen tasks (with different test sam-
ples) and on the remaining 9 unseen tasks. The fine-tuning
consists of two steps. We first fine-tune the Llama-3.1-8B
model with SFT, then further optimize it using DPO. Both
processes are fine-tuned with full parameter on 4*H100
GPUs for 4-10 epochs. The detailed parameter and hard-
ware settings for fine-tuning and inference processes are
discussed in Appendix Sec. H. We synthesize 12k multi-turn
guidance/generation trajectories for SFT and 5.5k guidance
comparison pairs for DPO. The specific data number for
each task is in Appendix Sec. G.
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4.1. Multi-turn SFT

To generate supervision data for SFT, we prompt the GPT-4o
to serve as both the guiding LLM (i.e., the CodeSteerLLM)
and the TaskLLM to generate multiple guidance/generate
trajectories. We then filter the trajectories keeping only
those that produce correct answers. To improve success
rates, CodeSteerLLM’s prompt is more detailed and in-
cludes pre-set knowledge or hints. To increase dataset diver-
sity and enable dynamic adaptation of guided thoughts, this
prompt also has different versions. For example, we may
let GPT-4o choose all guidance styles, or enforce transitions
from code to text or text to code. We set the maximum
guidance turns to be 5 and return the final answer once that
limit is reached.

Multi-turn Gradient Cancellation Issue In multi-turn
trajectories, the SFT process incorporates gradients from
each turn. This can lead to gradient cancellation in the early
turns. For example, in one task, both [code, return answer]
and [text, code, return answer] produce correct results, so
if both trajectories are used for fine-tuning, the SFT cannot
learn that code is the better first step.
Data Augmentation To mitigate this issue, we leverage
the fact that the final two turns of guidance are most influen-
tial, as the TaskLLM produces new answers each turn while
earlier turns primarily provide background. Consequently,
we augment the SFT dataset by doubling the weights of the
final two turns.

4.2. Multi-turn DPO

Figure 2: Schematic of multi-turn DPO data sampling: blue
squares represent intermediate (non-final) turns, and brown
ovals mark finalizing turns. Guidance responses from the
same parent node in CodeSteerLLM are compared to gener-
ate the DPO data.

Because many correct trajectories in the SFT dataset are
still suboptimal, we need to further fine-tune the CodeSteer-
LLM on pairs of trajectories labeled with preferences. Here
we use rule-based scores to assign preferences. Figure 2

illustrates our framework for sampling DPO guidance pairs
in a multi-turn setting. The main challenge is sampling and
selecting guidance pairs that exhibit clear performance dif-
ferences across various turns while minimizing the number
of samples to conserve resources. We use a tree structure
where each node represents a guidance, with a branching
factor of 2 or 3. To compare guidance pairs from the same
parent node, we calculate their Performance Scores using
the following equation:

Scorei =


15− i ending turn/correct,
−i ending turn/incorrect,

1
|C(i)|

∑
j∈C(i) Scorej otherwise.

(1)
Here, Scorei represents the score for a node at turn i, where
i is the current turn number, and C(i) is the set of child
nodes of node i. If the current turn is the final one, Scorei
is set to 15 − i for correct answers and −i for incorrect
ones. This incentivizes CodeSteerLLM to achieve correct
answers in the fewest turns possible. For non-final turns,
Scorei is calculated as the average of its child nodes’ scores.
This ensures that each non-terminal turn’s score reflects the
average performance of its potential subsequent actions, i.e.,
the expectation.

DPO data is collected from guidance pairs within the same
parent node at each level that have a score difference
greater than 2. To prevent reward hacking (Skalse et al.,
2022)—where CodeSteerLLM might bypass exploration
and return incorrect answers quickly (e.g., preferring a score
of –2 over –5)—we include only pairs where at least one
guidance has a positive score. To obtain diverse guidance
answers, we set the inference temperature to 1.5 for the SFT
fine-tuned CodeSteerLLM and use three models fine-tuned
at different epochs (6, 8, and 10) to compare their guidance
responses for the same parent node.

5. Experiments
Experimental settings We use GPT-4o as the TaskLLM
to test 28 seen and 9 unseen tasks, each with 100 samples
of varying complexity. The samples for the 28 seen tasks
are different from those used to train CodeSteerLLM. Addi-
tionally, we evaluate other LLM types to assess CodeSteer’s
generalizability.

We compare CodeSteer to six training-free and three
training-based baselines, with methods 1, 3–6, and 9 origi-
nally proposed in Chen et al. (2025).
Training-free Baselines 1) No extra modifications but
only input the original question (Only Question); 2) Our
framework in Sec. 4.1 to synthesize SFT dataset, where GPT-
4o works as CodeSteerLLM with extra hints (Symbolic
Agent); 3) Prompting LLMs to answer with only text with
CoT (All Text + CoT); 4) Prompting LLMs to first analyze

4



CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance

Table 1: Experimental results on SymBench. Methods with the highest scores are highlighted blue.

Methods CoT LLMs Training-free Methods Training-based Methods
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Ave. Norm., Seen 83.8 79.3 77.9 59.3 77.0 56.7 71.6 73.2 66.7 65.8 79.7 73.3 88.1
Ave. Norm., Unseen 79.4 69.1 65.1 34.5 67.9 37.9 63.2 59.5 51.9 51.7 72.1 61.9 81.3
Ave. Norm., Total 82.7 76.8 74.8 53.3 74.8 52.1 69.6 69.9 63.1 62.4 77.9 70.5 86.4

Seen Tasks
Game 24 80 65 78 17 37 23 11 88 33 43 43 18 93
Path Plan 74 60 56 65 43 44 76 71 66 61 73 54 75
BoxLift 95 92 85 69 58 56 68 20 65 60 73 49 77
BoxNet 45 43 54 37 30 30 1 12 23 21 23 37 29
Blocksworld 100 100 77 43 60 52 32 50 50 48 44 42 52
Date Understanding 87 88 87 90 89 88 72 65 86 84 86 76 87
Web of Lies 100 100 98 96 99 86 91 78 77 80 98 94 98
Logical Deduction 100 98 97 89 93 91 83 82 94 90 94 82 92
Navigation 100 100 100 98 93 95 99 91 96 94 92 98 99
GSM-Hard 79 77 71 78 76 80 83 81 81 78 77 79 77
MATH Geometry 94 91 90 76 73 73 74 73 77 76 76 73 75
MATH Count&Probab. 96 97 95 89 88 87 88 91 86 88 84 89 93
Logical Equation 100 100 100 52 50 52 40 48 30 33 56 71 78
New Operator 44 39 25 42 39 45 39 47 56 38 48 48 40
Pooling 46 40 42 54 46 60 57 55 43 47 40 49 46
Light Puzzles 100 100 92 62 56 56 69 56 92 78 73 95 68
Mahjong 96 98 93 66 77 73 80 94 72 74 96 64 90
Statistical Counting 25 72 78 34 93 32 95 93 93 86 95 89 97
Matrix Transformation 87 100 98 94 96 76 97 97 96 92 97 90 98
Logical Puzzle 88 80 86 48 58 51 41 39 44 50 44 68 70
Cons. Linear Arrange. 74 62 81 82 71 84 60 79 72 71 77 72 86
Pattern Recognition 100 100 100 70 90 44 89 100 56 60 94 100 93
String Insertion 96 49 72 6 100 8 100 100 67 75 100 89 100
Letter Logic Diagram 50 54 28 2 30 0 12 21 8 9 31 8 45
String Deletion&Modifi. 60 37 34 4 90 0 64 37 51 65 85 49 93
String Synthesis 2 0 2 0 20 0 11 0 7 5 16 12 29
Reversi 46 29 28 8 36 15 49 60 20 23 45 23 52
Standard Sudoku 0 0 0 0 98 0 100 94 12 14 100 100 100

Unseen Tasks
Letters 61 52 49 12 91 11 100 93 84 87 89 89 96
Eight Queen 84 79 64 8 73 0 35 51 40 45 52 44 78
Number Multiply 43 46 28 11 87 8 100 100 68 65 100 75 95
Cryptanalysis 60 21 49 20 15 24 20 13 16 20 27 0 24
String Splitting 96 91 90 28 52 25 48 47 37 35 48 43 56
Combinatorial Calcul. 57 98 35 16 45 60 55 48 70 67 80 57 86
Synthesis Decompo. 57 96 53 52 53 72 71 35 44 38 69 72 66
2048 52 0 37 44 43 40 28 37 25 20 39 49 56
Permut. and Combina. 100 100 100 66 89 48 64 60 40 46 80 75 93
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the question with CoT and then output the code answer (All
Code + CoT); 5) Concatenating the input question with
AutoGen’s original system prompt in Appendix Section N
(AutoGen Conca.); 6) Implement a multi-agent framework
that first queries LLMs to answer the question with All Text
+ CoT and All Code + CoT methods, respectively. Then the
final solution is obtained by combining and summarizing
both versions of the answers by the same LLM but prompted
differently (Code + Text + Sum.1).
Training-based Baselines 7) Fine-tune Llama-3.1-8B as
a summarizer based on the Code + Text + Sum.1 method us-
ing SFT on correct summary data (Code + Text + Sum.2); 8)
We fine-tune Llama-3.1-8B as a one-step evaluator to choose
between text or code generation (Code/Text Choice); 9)
OpenAI GPT Code Interpreter with the original input ques-
tion (Code Interpreter). Method 7 and 8 are fine-tuned on
the same data number and task types as CodeSteer.
Comparison with CoT LLMs We also compare with the
current best models: OpenAI o1 and o1-preview (Jaech
et al., 2024) and DeepSeek R1 (Guo et al., 2025). These
models enhance reasoning and planning by using textual
search, reflection, and exploration during answer generation.
However, our analysis shows that these CoT LLMs have not
yet integrated code-based symbolic computing to further
improve their performance.

Evaluations Answers are evaluated using predefined
rules, with GPT-4o assisting in adjusting formats as needed.
Beyond the Code Interpreter method, some approaches have
the LLM output code as the final answer. We extract and
execute this code using predefined algorithms to obtain the
final result or facilitate further reasoning. To prevent infinite
loops, code execution is limited to 30 seconds. If this limit
is exceeded, the task is marked as failed or returns errors
for subsequent turns. We utilize success rate as the metric
for each task. To compare each method, we calculate the
Average Normalized Score over all the tested tasks by the
following equation:

AveNormj =
1

N

N∑
i=1

sij
max(si)

(2)

where AveNormj is the Average Normalized Score for
method j, sij is the score of method j for task i, max(si)
is the maximum score for task i, N is the total number of
tasks. This equation normalizes each score relative to the
maximum score in the respective task, and then averages
the normalized scores over all tasks. We use the normalized
metric to better compare the relative performance among
methods and prevent any single task from disproportionately
influencing the overall evaluation. As shown in Appendix
Sec I, to ensure the robustness of our conclusions against
changes in the evaluation metric, we recalculate the average
score without normalization. From the result in Appendix
Table 7, we can observe that for both seen and unseen tasks,

our method can still outperform all main baselines obviously,
even more on unseen tasks.

Apart from the task performance, in later sections we also
discuss the costs of token lengths and runtime for each
method.

5.1. Overall Better Performance

Figure 3: Normalized score distribution of CodeSteer+GPT-
4o and o1 in 37 SymBench tasks.

Table 1 presents the full results of all methods on SymBench,
including individual task scores and the Average Normal-
ized Score. The key findings are:
1) CodeSteer maintains similar relative performance on
seen and unseen tasks, indicating no overfitting.
2) Augmenting GPT-4o with CodeSteer significantly
boosts its performance, raising the Ave. Norm. Total Score
from 53.3 to 86.4—outperforming all 9 baselines (best base-
line: Code/Text Choice at 77.9).
3) GPT-4o + CodeSteer surpasses o1 (82.7), R1 (76.8),
and o1-preview (74.8), highlighting the importance of in-
tegrating symbolic computing into LLMs. Figure 3 com-
pares the score distribution of GPT-4o + CodeSteer and o1,
showing that CodeSteer reduces instances of extremely low
scores (near 0), demonstrating its robustness to varied tasks.
4) Compared to other training-based methods (Code +
Text + Sum.2 and Code/Text Choice) with the same data
number and tasks, CodeSteer’s better performance validates
the framework’s effectiveness (further discussed in Sec. 6).

5.2. Scalability and Generalizability

To assess the impact of symbolic computing, Fig. 4 tracks
the performance of five methods across four tasks of increas-
ing complexity. As critical task-specific properties escalate,
o1, o1-preview, and GPT-4o fail in highly complex cases,
while symbolic-augmented methods (CodeSteer, Code In-
terpreter) sustain performance. Notably, CodeSteer proves
more robust across tasks than Code Interpreter.

In our study, CodeSteerLLM is fine-tuned on synthesized
datasets where TaskLLM is always GPT-4o. To assess its
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Table 2: Experimental results of Claude-3-5-sonnet-20241022, Mistral-Large, and GPT-3.5 with or without augmented
CodeSteer. Methods with the higher scores of the same model are highlighted blue.

Methods Claude Claude + CodeSteer Mistral Mistral + CodeSteer GPT-3.5 GPT-3.5 + CodeSteer
Combinatorial Calcu. 48 66 25 34 12 29
Eight Queen 4 87 60 41 0 16
Reversi 0 45 0 33 0 32
Cons. Linear Arran. 73 90 47 48 25 9
Standard Sudoku 0 100 0 100 0 95
Ave. Norm. Score 29.1 92.0 31.0 59.8 8.6 42.3

Figure 4: Method performance across four representative
tasks as task complexity increases from left to right on the
x-axis controlled by value scales. C.S. and Inter. represent
CodeSteer and Interpreter.

transferability and generalizability, we test it with three pop-
ular models: Claude-3-5-Sonnet, Mistral-Large, and GPT-
3.5-Turbo. We evaluate them on five representative tasks
based on GPT-4o’s results in Table 1: two where text out-
performs code and three where code is superior. CodeSteer
has shown apparent effects when guiding GPT-4o on these
tasks. The results in Table 2 confirm that CodeSteer gener-
alizes well across other LLMs types. This is expected, as its
core mechanisms—code/text guidance and dynamic adapta-
tion—are essential to all general-purpose LLMs. Notably,
we observe that CodeSteer is particularly effective when
applied to stronger LLMs, such as Claude. This is likely be-
cause more powerful models possess superior self-reflection
capabilities and can generate complex code with greater pre-
cision. Thus, they benefit more from CodeSteer’s additional
structured guidance, unlocking their full potential.

Figure 5: Score vs. token and runtime costs for each method,
highlighting CodeSteer, R1, o1, and o1-preview in red. We
display CodeSteer results separately for inferences using
single or four H100 GPUs. Specific values are in Table 8.

5.3. Cost of Tokens and Runtime

Figure 5 shows Score versus Token Length (including input
and output tokens) and Score versus Runtime (covering
both LLM inference and code execution) for all methods.
Complete data is provided in Appendix Table 8. Token
counts include only those used by TaskLLM, excluding
small and open-source models fine-tuned on Llama-3.1-8B.
For the o1 and o1-preview models, only runtime is plotted
since their thinking chains are unavailable. While achieving
superior performance, CodeSteer uses more tokens than
baseline methods due to its multi-turn generations. Most of
these tokens are consumed by multiple interaction turns that
ultimately fail. CoT LLM R1 consumes more tokens than
CodeSteer due to the inefficient textual iteration.

In terms of runtime, CodeSteer is faster than o1 and R1
while delivering better performance. Additionally, since
most of CodeSteer’s runtime comes from the inference of
the 8B CodeSteerLLM on our workstation, hardware and
system optimizations can significantly reduce it. For exam-
ple, running CodeSteerLLM on four H100 GPUs instead
of one decreases the average runtime from 63.8 to 45.4
seconds. CoT LLMs consume excessive runtime and to-
kens due to their extensive and often redundant reasoning
chains. Textual iteration is inherently inefficient for search.
Appendix Sec. L shows examples of text answers of R1
and GPT-4o, in which both models attempt to find the cor-
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rect equation for the Game 24 task by listing all possible
combinations, leading to uncontrolled iterations and end-
less generation. This highlights the importance of symbolic
computing through code generation.

5.4. o1 + CodeSteer

Here we test whether CodeSteer can improve the perfor-
mance of reasoning models like o1. As shown in Table 3, the
performance of o1 will improve notably when augmented
with CodeSteer on 5 randomly chosen unseen tasks, further
verifying the effectiveness of CodeSteer.

5.5. Comparison with Heuristic-based Methods

To better evaluate CodeSteer and provide deeper compar-
isons, we include three prompt-based baselines. Few-Shot:
Uses five example-based prompts to guide the TaskLLM
in mimicking the ‘code/text’ switching reasoning pro-
cess. Code-First-Rule: A rule-based approach where the
TaskLLM is prompted to use code for the first three rounds
(with increasing complexity) and then switch to text-based
reasoning. Code-First-Agent: Employs GPT-4o as the
CodeSteerLLM to guide the TaskLLM using the same code-
first-then-text strategy as in Code-First-Rule. As shown
in Appendix Table 9, the three prompt-based methods per-
form significantly worse than CodeSteer, underscoring the
effectiveness of training with our synthesized data. Upon
analyzing failure cases, we identify two main reasons:

1) CodeSteerLLM’s guidance often includes problem-
specific coding knowledge (e.g., suggesting A* or DFS)
and how to formalize the problem, which purely prompt-
based methods struggle to capture.

2) Switching between code and text can be advantageous,
as later code generations can build on insights from prior tex-
tual reasoning. For instance, in Path Plan, a text-generated
trajectory may be partially correct; subsequent code can
refine it directly, reducing the search space.

6. Ablation Studies
The CodeSteer framework comprises SFT and DPO dataset
synthesis, CodeSteerLLM fine-tuning, a symbolic checker,
and a self-answer checker. Here we do the ablation studies
on these components and their related modifications. The
added experimental results are shown in Table 4 with the
whole result table of 37 SymBench tasks in Append Sec. M.

DPO Effects In Table 4, 1.CodeSteer outperforms 2.WO
DPO, showing the effectiveness of the DPO process.

SFT Data Augmentation As discussed in Sec. 4.1, we
do the data augmentation of the last two turns in each trajec-
tory to prevent multi-turn gradient cancellation. In Table 4,
2.WO DPO achieves higher score than 3.WO DPO WO

Data Augment., which means this extra attention on the last
two turns does enhance the SFT process.

Symbolic and Self-answer Checkers We evaluate the
effects of the Symbolic and Self-answer Checker in two
parts: 1) Dataset Synthesis Efficiency: Comparing Group
6 with Groups 7 and 8 in Table 4 shows that integrating these
two checkers increases the Symbolic Agent’s success rates,
thereby enhancing the efficiency of the dataset synthesis
process. 2) CodeSteer Performance: Comparing Group
1 with Groups 4 and 5 demonstrates that augmenting with
these two checkers improves CodeSteer’s final performance.

Multi-turn Guidance CodeSteer uses a multi-turn inter-
action strategy with TaskLLM. In contrast, the Code/Text
Choice method in Table 1 relies on single-step guidance and
performs worse than CodeSteer. This demonstrates that the
multi-turn design enhances guidance effectiveness, align-
ing with the common intuition that the best methods for
many tasks emerge from iterative “executing and exploring”
processes accompanied with dynamic adaptation.

Guide Not Summarizer CodeSteer primarily serves as
the guidance generator for TaskLLM rather than directly
generating answers, summarizing, or selecting among multi-
ple answers. This design choice accounts for the limitations
of the open-source LLM we use compared to the more capa-
ble closed-source LLM that supports TaskLLM. By focusing
on guidance, CodeSteer reduces task complexity and data
space requirements. The Code + Text + Sum.2 approach in
Table 1 attempts to fine-tune an answer summarizer using
the same data volume but fails, highlighting that summariza-
tion imposes a significant burden on Llama-3.1-8B due to
the unique characteristics of each task.

7. Related Work
Code Generation and Symbolic Computing in LLM
Tasks LLMs are widely used for general agent tasks, such
as interacting with softwares and websites (Zhou et al.,
2023c; Hao et al., 2024a;b; Xu et al., 2024), planning robot
actions (Chen et al., 2024d; Ahn et al., 2022), and inferring
with logic (Suzgun et al., 2022). Literally, many test tasks
in previous works can be solved with direct coding (Suzgun
& Kalai, 2024; Gao et al., 2023). Some recent works also
further extend the applications of coding into tasks involv-
ing commonsense reasoning and semantic analysis (Li et al.,
2023; Weir et al., 2024). Most of previous works mainly uti-
lize text (Yao et al., 2024; Ahn et al., 2022; Lin et al., 2023)
or code (Liang et al., 2022; Bairi et al., 2024; Zhou et al.,
2023a) as the only output modality. Chen et al. (2025) high-
lights the importance of smartly switching between code
and text generation in LLMs but notes current methods have
clear drawbacks.
LLM Self-reflection and CoT Models LLM-generated
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Table 3: Per-task success rate (%) for the text-only baseline (o1) versus o1 augmented with CodeSteer. For each task, the
higher score is highlighted in blue.

Task success rate % Cryptanalysis Synthesis Decomposition 2048 Eight Queens Combinatorial Calculation

o1 60 57 52 84 57
o1 + CodeSteer 73 94 72 97 95

Table 4: Ablation studies on CodeSteer. WO DPO: CodeSteer with SFT but without DPO fine-tuning. WO DPO WO Data
Augment: Same as WO DPO, but without data augmentation in the last two turns. Agent represents the Symbolic Agent.

Methods 1.Code 2.WO 3.WO DPO 4.WO 5.WO 6. 7.Agent WO 8.Agent WO
Steer DPO WO Data Symbolic Self-answer Agent Symbolic Self-answer

Task success rate % Augment. Checker Checker Checker Checker

Ave. Norm., Seen 88.1 80.0 79.7 80.1 78.5 77.0 71.9 70.1
Ave. Norm., Unseen 81.3 76.2 70.9 68.6 64.2 67.9 62.0 57.4
Ave. Norm., Total 86.4 79.1 77.6 77.3 75.0 74.8 69.5 67.0

feedback via self-evaluation can improve performance on
a variety of tasks (Yang et al., 2022; Welleck et al., 2022;
Madaan et al., 2023). The OpenAI o1 (Jaech et al., 2024)
and DeepSeek R1 (Guo et al., 2025) models demonstrate
the potential of agentic LLMs that use Chain-of-Thought
(CoT) text generation to explore and self-reflect, enhancing
reasoning and planning. However, they lack symbolic com-
puting and code generation capabilities, leading to weaker
performance on complex symbolic tasks and consuming
substantial tokens and time (Chen et al., 2024a; Ai et al.,
2025).
LLM Fine-tuning with Multi-step SFT and DPO
SFT (Chen et al., 2024e) and DPO (Rafailov et al., 2024)
are extensively implemented for LLM fine-tuning. To en-
hance LLM’s capability in multi-step agent tasks, these
methods are further modified with multi-step goals and re-
wards (Zhou et al., 2024b; Zhai et al., 2024; Zhang et al.,
2024). LLM self-generated data have become increas-
ingly important for model improvement when combined
with search algorithms and rejection sampling (Zhou et al.,
2023b; Guan et al., 2025).

8. Discussion
Our work underlines the significance of augmenting LLM
reasoning and planning capabilities with symbolic comput-
ing and shows great potentials of steering large models for
smarter code/text generation with specialized small models.
We introduce novel modifications to dataset synthesis and
fine-tuning (SFT/DPO) to support a multi-turn guidance
framework, which has proven effective. Unlike CoT LLMs
like OpenAI o1 and DeepSeek R1, which rely solely on tex-
tual reasoning for exploration, symbolic computing offers
greater efficiency, robustness, and scalability. Since coding
is a core LLM capability, generating symbolic tools via code

writing preserves generalization across tasks.

Limitations We note that CodeSteer encounters failures
under the following conditions, insisting the further research
to overcome these bottlenecks.

1) Insufficient Capability of TaskLLM: In some cases,
the capabilities of the TaskLLM—whether through coding
or textual reasoning—are not sufficient to solve the given
problem.

2) Suboptimal Code Generation: The generated code may
not use the most efficient method, which can lead to time-
outs. For example, as shown in Fig. 4c, CodeSteer’s success
rate decreases when the target values increase, due to the
exponential growth in search complexity.

3) Lack of Robustness to Task Complexity: CodeSteer is
not yet robust enough across tasks with varying complex-
ity. As shown in Fig. 4a, performance drops in medium-
complexity samples. In these cases, CodeSteer sometimes
selects textual reasoning over coding and ends up producing
incorrect answers.
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double-edged sword; the same techniques used to generate
samples from a harmless distribution of text could, with a
single sign change, be repurposed for generating samples
from a harmful distribution of text. Our method improves
language model capability by integrating symbolic comput-
ing, which may also be misused for harmful purposes.

Overall, we believe the potential positive social benefits of
our work in evaluation and steering language model output
towards desired target distributions outweigh the potential
negatives stemming primarily from misuse.
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A. Impacts of task types, task complexities, and LLM capabilities on code/text choices
The phenomenon and challenges of steering LLM code/text generation are first proposed by Chen et al. (2025). Here we
discuss these phenomenon in details for the motivation of our work. Fig 6 presents two typical examples of the recently
popular topics of ’9.11’ and ’9.9’ numerical comparison and ’r’ letter count in ’strawberry’, that the ChatGPT of GPT-4o
makes mistakes by direct textual reasoning but easily solves the problem after prompted to use code. Meanwhile, Fig 7
displays the example that GPT-4o makes mistakes to solve the question by code generation but partially solve the question
by textual reasoning. The above two examples show that whether code or text is simpler highly depends on the task types
and LLM own capabilities and characteristics.

The OpenAI GPT-4o Code Interpreter is trained to steer LLM code/text generation. However, the study of Chen et al. (2025)
finds many limitations of this method. In Fig 8, they observe an intriguing property of GPT Code Interpreter: its decision
to use code depends on the complexity of the task, as shown in Fig 8. GPT-4o Code Interpreter chooses to handle simple
Number Multiplying questions with text and complex questions with code, resulting in correct answers. However, it fails in
medium-difficulty questions since it tends to be overconfident and chooses to answer the question via textual reasoning,
which sometimes is wrong. Hence, whether to implement symbolic computing depends on task complexities even for the
same type of the task.

Figure 6: The cases that GPT-4o makes simple mistakes by direct textual reasoning but can reliably solve the problem with
prompted to use code.
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Figure 7: Representative answers of BoxLift task. The left figure is the partially correct answer of GPT-4o with All Text +
CoT method. The right figure is the wrong code answer from All Code + CoT method. The text and code parts are colored
in blue and green, respectively. The All Code + CoT method generates the wrong code that runs into an infinite loop.

Figure 8: GPT-4o Code Interpreter tends to handle simple Number Multiplying tasks with text and complex tasks with code.
However, it often fails with medium-difficulty questions, where it is overconfident and chooses not to use code when needed.
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B. Varied code versions of the same LLM

Figure 9: Representative code answers of Game 24 task. The left figure is the correct code of GPT-4o with extra AutoGen
prompt in Appendix Sec. N for guiding code/text choices. The right figure is the wrong code after prompting GPT-4o to
answer with code ‘Think of an algorithm to solve the task and implement it in python’. The text and code parts are colored
in blue and green, respectively. In both cases, GPT-4o is prompted to solve this task with code. The only difference is the
guiding prompts. However, GPT-4o answers with different types of codes, with or without efficient symbolic computing.
This phenomenon shows that LLM code generation is unstable under varied prompts, tasks, and LLM types.
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C. Description of SymBench tasks
Here we describe the 37 testing tasks. They require strong symbolic, mathematical, logical, geometrical, scientific, and
commonsense reasoning capabilities. The first 14 tasks originate from Chen et al. (2025), while the last 23 are from Gui
et al. (2024). Note that both these two previous works do not release the full question datasets and codes for these 37 tasks.
The released question dataset in Gui et al. (2024) only contains 8 or 16 questions for each task. Hence, we develop codes to
automatically synthesize the questions for each task with tunable complexities. Both our developed codes and question
datasets are released.

Number Multiplying This task involves querying LLMs to compute the product among integers. It represents a classic
problem that LLMs are not able to solve through pure textual reasoning.

Game 24 This task involves querying LLMs to use a given set of integers to generate an equation that evaluates to 24.
This task is tested in previous work Tree-of-Thought (Yao et al., 2024).

Path Plan This task involves querying LLMs to plan the robot trajectory waypoints based on human task instructions and
environments. This task originates from AutoTAMP (Chen et al., 2024b).

Letters This task involves querying LLMs to count the total number of specific letters in a long word and specify their
positions. An example question can be ’How many r’s in the word strawberry and what are their positions?’. This task has
recently gained significant attention because current LLMs struggle to perform it effectively and accurately.

BoxLift This task involves coordinating robots of various types to lift boxes of different sizes and weights. Each robot has
a specific lifting capacity and can collaborate with others to lift a single box. A box can only be lifted if the combined lifting
capacity of the robots exceeds the box’s weight. The objective is to lift all the boxes in the minimum number of time steps.
This task originates from Scalable-Robots (Chen et al., 2024d).

BoxNet This task involves coordinating robot arms to move colored boxes (squares) into corresponding colored goal
locations (circles) in the fewest time steps. Each robot arm is assigned and restricted to a cell indicated by the dotted lines.
The arms have two possible actions: (1) move a box within their cell to a neighboring cell, or (2) move a box within their
cell to a goal location within the same cell. The objective is to ensure all boxes are placed in their matching goal locations
efficiently. This task originates from Scalable-Robots (Chen et al., 2024d).

Blocksworld In Blocksworld, the objective is to stack a set of blocks (brown) according to a specific order. The robot can
perform four actions: (1) pick up a block, (2) unstack a block from the top of another block, (3) put down a block, (4) stack
a block on top of another block. A robot can only pick up, unstack, or stack a block if it is clear, that is, the block has no
other blocks on top and is not currently being held. This task originates from PlanBench (Valmeekam et al., 2024).

Date Understanding Given a small set of sentences referring a specific date, the task involves querying LLMs to
answer a provided question based on the information in these sentences (e.g., ‘The concert was scheduled for 06/01/1943,
but was delayed by one day to today. What was the date yesterday in MM/DD/YYYY?’). This task originates from
BIG-Bench-Hard (Suzgun et al., 2022).

Web of Lies This task involves querying LLMs to determine the truth value of a random Boolean function presented as a
natural-language word problem. This task originates from BIG-Bench-Hard (Suzgun et al., 2022).

Logical Deduction This task involves querying LLMs to deduce the order of a sequence of objects using clues and
information about their spacial relationships and placements. This task originates from BIG-Bench-Hard (Suzgun et al.,
2022).

Navigate This task involves querying LLMs to determine whether the agent would return to its initial starting point after
following a series of navigation steps. This task originates from BIG-Bench-Hard (Suzgun et al., 2022).

GSM-Hard (Gao et al., 2023) This is the more challenging version of GSM8K (Cobbe et al., 2021) math reasoning
dataset, where the numbers in the original questions of GSM8K are replaced with larger, less common values.

MATH-Geometry This is the math reasoning dataset from MATH dataset (Hendrycks et al., 2021), with specific focus on
geometry questions.

MATH-Count&Probability This is the math reasoning dataset from MATH dataset (Hendrycks et al., 2021), with specific
focus on counting and probability questions.
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The following 23 tasks originate from LogicGame (Gui et al., 2024).

Logical Equation The task is to assign a specific numeric value to each letter from a given set, using a predefined range
of numbers and a set of inequalities. Each letter corresponds to a unique number, and the relationships between the letters
are defined by mathematical equations or constraints.

New Operator This task introduces custom mathematical operations involving two numbers, defined with unique formulas.
The goal is to use the given definitions of these operations to compute the result of a specific expression.

Pooling This task involves applying a pooling operation on a numerical N ×N grid. The pooling operation uses an n× n
sliding window (n < N ) that moves across the grid from left to right and top to bottom. The results from each window are
then arranged based on their positions to create a new output matrix.

Light Puzzles In this task, you are given an n× n grid representing a network of lights, where a lit light is represented by
”1” and an unlit light by ”0”. Several buttons control the state of these lights by turning them on or off in certain positions.
The state of each light can be affected by multiple buttons. The task is to follow a series of button presses and determine the
final state of the grid.

Mahjong Given an initial set of letter cards, in each turn, a new card is added and one card is removed. Some effects may
happen when specific combinations of the cards appear after introducing the new card. A result is determined based on these
specific conditions. The goal is to determine a result based on a series of turns

Statistical Counting Calculate the total score of a string by scanning it from left to right, where consecutive identical
letters earn points (for example, two or more consecutive A’s add 1 point, B’s add 2 points, etc.). The task is to start with a
score of 0 and return the final summing value.

Matrix Transformation Rotate a given matrix of characters based on given instruction (e.g., 90 degrees clockwise),
preserving each character’s position relative to others in the transformed output. The input matrix can be of any size and
contain any character.

Logical Puzzle The task involves querying LLMs to select a specified number of different values from a grid of numbers,
ensuring that certain mathematical constraints (sum or product) are satisfied for selected numbers for each row and column.

Constrained Linear Arrangement In a two-player card game, the task is to deduce your opponent’s moves based on the
game’s rules, your played cards, and the announced results of each turn. Each card can only be used once, and the game
follows specific interaction rules between different card types, where certain cards can defeat, be defeated by, or draw with
others according to predefined relationships.

Pattern Recognition The task involves querying LLMs to find all squares in a character matrix where each square consists
of identical characters and has a side length of at least 3.

String Insertion The task is to transform a string by scanning it from left to right and inserting specific characters after
certain character patterns (e.g., each pattern WXYZ requires inserting W immediately after it occurs). All operations are
performed simultaneously on the original string.

Letter Logic Diagram The task is to complete an incomplete grid by selecting from a list of letters, where each row and
column must contain each letter exactly once, and all cells on the minor diagonal (top-right to bottom-left) must contain the
same letter. Some cells are already filled in as constraints.

String Deletion and Modification The task is to transform a string by repeatedly applying a set of ordered string
manipulation rules until no more changes are possible, where each rule modifies the string based on specific patterns or
conditions present in the current string state. For example, a modification rule can be “If the string ends with ‘ba’, replace it
with ‘ab’.”

String Synthesis Given an initial set of blocks and a set of synthesis rules that combine different types of blocks, the task
is to determine the final block(s) after repeatedly applying these rules in order until no more combinations are possible.

Reversi In this game similar to Reversi, players take turns placing pieces on an n× n grid. After placing a piece, any of
the opponent’s pieces located between two of the player’s pieces (in the same row, column, or diagonal) will be flipped. The
task is to determine the state of the board after rounds, starting from a given configuration.

Standard Sudoku Given a partially filled Sudoku grid, the task is to fill the remaining empty cells with numbers between
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1 and 9, ensuring that no number repeats in the same row, column, or 3× 3 subgrid.

Eight Queen Given a grid with some queens already placed, the task is to place the remaining queens such that no two
queens share the same row, column, or diagonal, while avoiding positions with obstacles in the grid.

Cryptanalysis In this task, you are provided with a combination lock consisting of numbers and letters, where neither the
numbers nor the letters repeat. Using a series of guesses and feedback, the goal is to deduce the correct password based on
the given conditions.

String Splitting A dismantling engineer has old machines and can obtain machine parts through a set of predefined
methods. By continuously cycling through these methods in a specific order, the engineer dismantles machines or combines
parts to create new components, and the task is to determine the total number of parts and remaining machines after all
possible cycles.

Combinatoral Calculation Given a set of integers, the goal is to use arithmetic operations (addition, subtraction,
multiplication, division) and parentheses to arrange the numbers in such a way that the final result matches a specified target
value. Each number must be used exactly once, and the order of the numbers cannot be changed.

Synthesis Decomposition A farmer grows various crops and can exchange them for agricultural products. Using a set of
methods, he can trade specific combinations of crops for products, following a cyclic pattern until no further exchanges are
possible. The goal is to determine the synthesis result for each round.

2048 Similarly to the 2048 game, in a grid, numbers representing powers of 2 can move in any direction, combining when
they encounter a matching number to form the next power of 2. Given a starting position and a sequence of movements, the
goal is to determine the resulting grid after executing the moves.

Permutation and Combination Given a set of objects with specific positioning constraints, the task is to determine the
correct arrangement of the objects on a shelf. Each object must be placed in a position according to the rules provided,
ensuring that the conditions on adjacency, order, and specific positions are met. For example, a rule about adjacency could
be ‘Book A must be adjacent to book I’.
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Table 5: The evaluated capabilities of all tasks, classified as Execution, Planning, and Reasoning tasks.

Categories Tasks Mathematics Spatial Logical Order Optimization Search
Reasoning Reasoning Reasoning

Number Multiplying ✓ ✗ ✗ ✗ ✗ ✗
New operator ✓ ✗ ✗ ✗ ✗ ✗
Pooling ✓ ✓ ✗ ✗ ✗ ✗
Light Puzzles ✗ ✓ ✗ ✗ ✗ ✗
Mahjong ✗ ✗ ✗ ✓ ✗ ✗
Statistical Counting ✓ ✗ ✗ ✓ ✗ ✗
Matrix Transform. ✗ ✓ ✗ ✗ ✗ ✗

Execution Pattern Recognition ✗ ✓ ✗ ✗ ✗ ✓
String Insertion ✗ ✗ ✓ ✓ ✗ ✓
String Deletion &Modi. ✗ ✗ ✓ ✓ ✗ ✓
String Synthesis ✗ ✗ ✓ ✓ ✗ ✓
Reversi ✗ ✓ ✗ ✗ ✗ ✗
String Splitting ✗ ✗ ✓ ✓ ✗ ✓
Synthesis Decomposition ✗ ✗ ✓ ✓ ✗ ✓
2048 ✓ ✓ ✓ ✗ ✗ ✗

Game 24 ✓ ✗ ✗ ✓ ✓ ✗
Path Plan ✗ ✓ ✗ ✓ ✗ ✓
Letters ✗ ✓ ✗ ✗ ✗ ✓
BoxLift ✗ ✗ ✓ ✗ ✓ ✗
BoxNet ✗ ✗ ✓ ✗ ✓ ✗
Blocksworld ✗ ✓ ✓ ✗ ✓ ✗
Logical Equation ✓ ✗ ✓ ✗ ✗ ✓

Planning Logic Puzzle ✓ ✓ ✗ ✗ ✗ ✓
Const. Linear Arrange. ✗ ✗ ✓ ✗ ✗ ✗
Letter Logic Diagram ✗ ✓ ✓ ✗ ✗ ✗
Standard Sudoku ✓ ✓ ✗ ✗ ✗ ✓
Eight Queen ✗ ✓ ✗ ✗ ✗ ✗
Cryptanalysis ✗ ✗ ✓ ✗ ✗ ✗
Combinatorial Calculation ✓ ✗ ✗ ✗ ✓ ✗
Permutation and Combina. ✗ ✓ ✓ ✓ ✗ ✗

Date Understanding ✗ ✗ ✓ ✗ ✗ ✗
Web of Lies ✗ ✗ ✓ ✗ ✗ ✗
Logical Deduction ✗ ✗ ✓ ✗ ✗ ✗

Reasoning Navigate ✗ ✓ ✗ ✓ ✗ ✗
GSM-Hard ✓ ✗ ✓ ✗ ✗ ✗
MATH-Geometry ✓ ✓ ✗ ✗ ✗ ✗
MATH-Count&Probability ✓ ✗ ✓ ✗ ✗ ✓
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D. Prompt for CodeSteerLLM
The input prompts of CodeSteerLLM follow a multi-turn dialogue, i.e., previous turns of prompts and responses will be
included as history prompts for following generation of response guidance. Since we set the maximum turns of guidance to
be 5 for each task, the total addition of prompt and output lengths of CodeSteerLLM does not surpass maximum context
window 8k. The formats for the first turn of prompt and following turns of prompts are as follows. Note that ‘The summary
of generated code complexity is: {code complexity summary}’ is not included if the generated answer by TaskLLM does
not have code.

Turn 1 prompt to CodeSteerLLM
You are guiding another TaskLLM to solve a task. You will be presented with a task that can potentially be solved
using either pure textual reasoning or coding. Your goal is to determine which method will be most effective for
solving the task. Follow these steps:
**Respond** with the chosen approach but not the solution. You can choose between the following options:
- If you choose coding, explain the reasons and respond the final returned guidance with the format <<<guidance
prompt content>>> in the end of your response.
- If you choose textual reasoning, explain the reasons and respond the final returned guidance with the format
<<<guidance prompt content>>> in the end of your response.
Now, here is the task:

Following Turns of prompts to CodeSteerLLM
The response from TaskLLM is: {response}
The feedback from the checking agent is: {check result}
The summary of generated code complexity is: {code complexity summary}
The final returned guidance prompt should be of the format <<<guidance prompt content>>>.

E. Prompt for Self-answer Checker

Prompt for Self-answer Checker
Given the following question and the answer from other LLMs, write a python code block to check the correctness
of the answer. Try to generate the code to check the correctness of the answer. Try your best to check whether the
answer satisfy all the constraints of the given question. If the answer is correct, return the text ”Correct”. If the
answer is incorrect, return the reason why the answer is wrong, like what condition or constraint is not satisfied.
Question: {question}
Answer: {answer}
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F. Code for Symbolic Checker
The following code checks the factors of iteration, search, numeric, permutations, and combinations in the answered code by
TaskLLM and returns the summary of code complexity and the complexity score. We directly return the summary of code
complexity as ‘code complexity summary’ to CodeSteerLLM for further guidance. If the complexity score less than 2.0,
the returned ‘code complexity summary’ concatenates with ‘The generated code may not be complex enough to carry out
symbolic computing for solving the task.’

Figure 10: Code for checking the symbolic factors of the generated code by TaskLLM.
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G. Synthesized dataset number of each task for SFT and DPO

Table 6: Synthesized dataset number of each task for SFT and DPO fine-tuning processes.

Dataset number SFT success trajectory number DPO pair number

Game 24 792 320
Path Plan 442 215
BoxLift 345 163
BoxNet 330 186
Blocksworld 406 248
Date Understanding 497 238
Web of Lies 492 204
Logical Deduction 489 241
Navigation 503 170
GSM-Hard 332 125
MATH Geometry 342 115
MATH Count&Prob. 346 127
Logical Equation 396 213
New Operator 394 189
Pooling 404 187
Light Puzzles 406 259
Mahjong 421 230
Statistical Counting 402 223
Matrix Transform. 391 214
Logical Puzzle 454 148
Constrained Linear Arrangement 432 155
Pattern Recognition 414 135
String Insertion 409 128
Letter Logic Diagram 500 226
String deletion&Modification 504 230
String Synthesis 397 185
Reversi 403 194
Standard Sudoku 400 212

Total 12043 5480

H. Parameter and hardware settings of SFT/DPO fine-tuning and inference processes
We utilize four H100 80GB GPUs for full-parameter fine-tuning of the Llama-3.1-8B models. The model is trained for 10
epochs in the SFT stage and 6 epochs in the DPO stage. The learning rate is set to 1× 10−5 for SFT and 5× 10−6 for DPO.
We use a batch size of 4 for training. In DPO, the loss function follows the standard sigmoid loss (Rafailov et al., 2024),
with the hyperparameter β set to 0.1.

In most cases, we perform the inference of CodeSteerLLM using a single H100 80GB GPU. However, to analyze the impact
of hardware configurations on CodeSteer runtime, as shown in Fig. 5, we also conduct inference using four H100 GPUs for
comparison.

For the generation of guidance answers in the DPO dataset creation, we utilize three different SFT fine-tuned Llama-3.1-8B
models, trained for 6, 8, and 10 epochs, respectively. For each question and stage, we query all three models and compare
their generated guidance answers.
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I. Score comparison of different methods without normalization across tasks

Table 7: Average (non-normalized) score (%) for each method. The best score in every row is highlighted in blue.

Avg. Score o1 DeepSeekR1 Symbolic Agent Code/Text Choice Code Interpreter GPT-4o + Codesteer

Seen 73.7 70.4 67.5 70.0 64.9 76.1
Unseen 67.8 64.8 60.9 64.9 56.0 72.2
Total 72.3 69.0 65.9 68.8 62.8 75.2

J. Score-cost table for each method

Table 8: Score-cost table for each method.

Average Norm. Average score (↑) Average token length (↓) Average runtime (s) (↓)

Baseline Methods
Only Question 53.3 566.1 8.2
Symbolic Agent 74.8 1192.5 27.3
All Text + CoT 52.1 1110.7 15.3
All Code + CoT 69.6 949.8 8.9
AutoGen Conca. 69.9 1295.9 10.6
Code + Text + Sum. 1 63.1 3931.6 24.2
Code + Text + Sum. 2 62.4 2808.6 32.4
Code/Text Choice 77.9 587.4 20.1
Code Interpreter 70.5 1175.9 23.8

CoT LLMs
DeepSeek R1 76.8 6396.6 68.6
o1 82.7 N/A 70.5
o1-preview 74.8 N/A 37.7

Proposed Methods
CodeSteer, 1*H100 86.4 4693.3 63.8
CodeSteer, 4*H100 86.4 4693.3 45.4

K. Comparison with heuristic-based methods

Table 9: Task success rate for CodeSteer versus three heuristic-based methods. The highest score for each task is shown in
blue.

Task Success Rate % CodeSteer Few-Shot Code-First-Rule Code-First-Agent

Game 24 93 28 68 76
Path Plan 75 54 59 57
Eight Queen 78 47 62 73
Combinatorial Calculation 86 58 47 59
2048 56 49 40 48
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L. Example text answer of DeepSeek R1 and GPT-4o in Game 24

Figure 11: Example text answer of R1 in the task Game 24. R1 searches possible answers with the continuous back-and-forth
textual reasoning process. This search process still fails in the end.
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Figure 12: Example text answer of GPT-4o in the task Game 24. GPT-4o continues the textual reasoning process until
reaching the maximum token generation length but never returns the answer.
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M. Full experimental results of ablation studies

Table 10: Full experimental results of ablation studies on the components in CodeSteer framework.

Methods 1.Code 2.WO 3.WO DPO 4.WO 5.WO 6. 7.Agent WO 8.Agent WO
Steer DPO WO Data Symbolic Self-answer Agent Symbolic Self-answer

Task success rate % Augment. Checker Checker Checker Checker

Ave. Norm., Seen 88.1 80.0 79.7 80.1 78.5 77.0 71.9 70.1
Ave. Norm., Unseen 81.3 76.2 70.9 68.6 64.2 67.9 62.0 57.4
Ave. Norm., Total 86.4 79.1 77.6 77.3 75.0 74.8 69.5 67.0

Game 24 93 93 46 62 57 37 41 28
Path Plan 75 76 74 72 74 43 41 29
BoxLift 77 65 76 66 72 58 47 39
BoxNet 29 21 31 13 17 30 24 15
Blocksworld 52 50 50 54 51 60 45 41
Date Understanding 87 83 86 80 83 89 84 92
Web of Lies 98 94 92 95 92 99 95 97
Logical Deduction 92 92 95 91 89 93 91 87
Navigation 99 90 95 85 80 93 94 88
GSM-Hard 77 74 72 79 74 76 73 70
MATH Geometry 75 74 70 71 69 73 68 70
MATH Count&Prob. 93 92 86 84 81 88 85 82
Logical Equation 78 58 56 61 56 50 52 56
New Operator 40 38 40 24 52 39 28 20
Pooling 46 43 51 47 45 46 44 52
Light Puzzles 68 71 52 51 52 56 56 60
Mahjong 90 88 88 92 95 77 85 79
Statistical Counting 97 98 92 95 84 93 90 96
Matrix Transform. 98 100 97 96 95 96 92 96
Logical Puzzle 70 58 56 52 44 58 53 54
Const. Linear Arrange. 86 66 65 76 81 71 64 52
Pattern Recognition 93 96 95 95 93 90 92 100
String Insertion 100 100 100 100 100 100 100 100
Letter Logic Diagram 45 20 35 35 35 30 25 23
String deletion&Modi. 93 88 92 90 88 90 86 76
String Synthesis 29 12 21 30 26 20 12 14
Reversi 52 49 39 52 24 36 28 36
Standard Sudoku 100 100 95 100 100 98 100 100

Letters 96 85 88 87 84 91 79 75
Eight Queen 78 74 72 72 52 73 64 52
Number Multiply 95 90 92 94 95 87 80 74
Cryptanalysis 24 22 15 4 12 15 12 7
String Splitting 56 56 31 43 41 52 42 40
Combinatorial Calculation 86 76 88 65 76 45 60 56
Synthesis Decomposition 66 62 64 44 60 53 56 44
2048 56 56 44 53 44 43 32 40
Permutation and Combina. 93 86 80 92 56 89 82 78
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N. System prompt of AutoGen

System prompt of AutoGen (Wu et al., 2023)
You are a helpful AI assistant. Solve tasks using your coding and language skills. In the following cases, suggest
python code (in a python coding block) or shell script (in a sh coding block) for the user to execute. 1. When you
need to collect info, use the code to output the info you need, for example, browse or search the web, download/read
a file, print the content of a webpage or a file, get the current date/time, check the operating system. After sufficient
info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself. 2.
When you need to perform some task with code, use the code to perform the task and output the result. Finish the
task smartly. Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear
which step uses code, and which step uses your language skill. When using code, you must indicate the script type in
the code block. The user cannot provide any other feedback or perform any other action beyond executing the code
you suggest. The user can’t modify your code. So do not suggest incomplete code which requires users to modify.
Don’t use a code block if it’s not intended to be executed by the user. If you want the user to save the code in a
file before executing it, put # filename: filename inside the code block as the first line. Don’t include multiple code
blocks in one response. Do not ask users to copy and paste the result. Instead, use ’print’ function for the output
when relevant. Check the execution result returned by the user. If the result indicates there is an error, fix the error
and output the code again. Suggest the full code instead of partial code or code changes. If the error can’t be fixed or
if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption,
collect additional info you need, and think of a different approach to try. When you find an answer, verify the answer
carefully. Include verifiable evidence in your response if possible. Reply ”TERMINATE” in the end when everything
is done.
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