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Abstract

In modern large language models (LLMs),001
LLM alignment is of crucial importance and002
is typically achieved through methods such003
as reinforcement learning from human feed-004
back (RLHF) and direct preference optimiza-005
tion (DPO). However, in most existing methods006
for LLM alignment, all tokens in the response007
are optimized using a sparse, response-level008
reward or preference annotation. The igno-009
rance of token-level rewards may erroneously010
punish high-quality tokens or encourage low-011
quality tokens, resulting in suboptimal perfor-012
mance and slow convergence speed. To address013
this issue, we propose AlignDistil, a RLHF-014
equivalent distillation method for token-level015
reward optimization. Specifically, we introduce016
the reward learned by DPO into the RLHF ob-017
jective and theoretically prove the equivalence018
between this objective and a token-level distilla-019
tion process, where the teacher distribution lin-020
early combines the logits from the DPO model021
and a reference model. On this basis, we fur-022
ther bridge the accuracy gap between the re-023
ward from the DPO model and the pure reward024
model, by building a contrastive DPO reward025
with a normal and a reverse DPO model. More-026
over, to avoid under- and over-optimization on027
different tokens, we design a token adaptive028
logit extrapolation mechanism to construct an029
appropriate teacher distribution for each token.030
Experimental results demonstrate the superi-031
ority of our AlignDistil over existing methods032
and showcase fast convergence due to its token-033
level distributional reward optimization.034

1 Introduction035

Current large language models (LLMs) have036

demonstrated remarkable capabilities in produc-037

ing human-desired outputs under different circum-038

stances (Bai et al., 2022; Ouyang et al., 2022;039

Llama Team, 2024). This is largely achieved by a040

key procedure in the post-training of LLMs, i.e.,041

Figure 1: An overview of our AlignDistil. At token
position t, the distribution from the current policy πθ(t)
is guided by a teacher distribution π∗(t), which is con-
structed from an adaptive extrapolation between logit
distributions from a DPO model and a reverse DPO
model with a weight αt.

LLM alignment with human preference. Existing 042

solutions for LLM alignment mainly includes rein- 043

forcement learning from human feedback (RLHF) 044

(Christiano et al., 2017; Stiennon et al., 2020; Bai 045

et al., 2022; Ouyang et al., 2022) and direct pref- 046

erence learning algorithms (Rafailov et al., 2024b; 047

Azar et al., 2024; Ethayarajh et al., 2024). Therein, 048

RLHF is a two-stage method that first 1) trains 049

a response-level reward model based on human 050

preference labels, and then 2) optimizes the policy 051

model with RL algorithms under this reward model 052

while preventing deviation from the initial model. 053

Alternatively, direct preference learning algorithms, 054

e.g., direct preference optimization (DPO, Rafailov 055

et al. 2024b), simplify RLHF via parameterizing 056

the reward with the policy model and directly train- 057

ing it on the preference data. 058

Despite their prevalence, most existing meth- 059

ods for LLM alignment optimize tokens with a 060

sparse, response-level reward or preference anno- 061

tation. However, this response-level feedback is 062

coarse-grained and lacks reflection on the indi- 063

vidual contribution of each token in the response 064
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(Yoon et al., 2024; Li et al., 2024c; Xia et al., 2024;065

Yang et al., 2024c), which may erroneously punish066

tokens with high quality or encourage tokens with067

low quality. Consequently, those methods based on068

response-level feedback have been revealed with069

limitations on both performance and convergence070

speed (Chan et al., 2024; Zhong et al., 2024; Liu071

et al., 2024a).072

To address this issue, in this paper, we propose073

AlignDistil (as shown in Figure 1), a simple distil-074

lation method derived from the RLHF objective for075

token-level reward optimization. Specifically, our076

method starts from introducing the DPO reward077

(Rafailov et al., 2024b) into the original objective078

of RLHF. Based on the property of token-level079

decomposition of the DPO reward (Rafailov et al.,080

2024a), we prove a theoretical equivalence between081

the original sequence-level objective of RLHF and082

a token-level distillation objective. In this distil-083

lation objective, the current policy is guided by084

a teacher distribution that linearly combines the085

logit distribution output from the two LLMs in the086

DPO reward. Built on this theoretical finding, our087

AlignDistil further involves two targeted designs088

for token-level optimization. Firstly, given that089

rewards from DPO generally perform worse than090

those from pure reward models (Lin et al., 2024),091

we use a contrastive DPO reward for AlignDistil092

with a DPO model and a reverse DPO model (Liu093

et al., 2024a), which yields better generalization094

performance than the vanilla DPO reward. Fur-095

thermore, to mitigate imbalanced under- and over-096

optimization across different tokens, we design a097

token adaptive logit extrapolation mechanism to098

construct an appropriate teacher distribution for099

each token position. Overall, our AlignDistil uses a100

simple distillation objective to achieve token-level101

reward optimization. Additionally, its training can102

flexibly switch between on-policy and off-policy,103

trading off between effectiveness and efficiency.104

We evaluate the effectiveness of our method on105

three common benchmarks for LLM alignment, i.e.,106

AlpacaEval 2.0 (Dubois et al., 2024), MT-Bench107

(Zheng et al., 2023) and Arena-Hard (Li et al.,108

2024b). Experimental results demonstrate the supe-109

riority of our AlignDistil over existing methods and110

showcase the effectiveness of the targeted designs111

in the method. Moreover, AlignDistil exhibits a112

faster convergence speed compared to the variants113

with response-level and token-level scalar-type re-114

wards, highlighting the advantage of token-level115

distributional reward optimization.116

In a nutshell, the contributions of this paper are 117

as follows: 118

• We build a theoretical equivalence between 119

RLHF with DPO reward and a distillation pro- 120

cess, which offers a new perspective for per- 121

forming token-level reward optimization. 122

• On this basis, we design AlignDistil, a simple 123

distillation method with a contrastive DPO re- 124

ward and a token adaptive logit extrapolation. 125

• Experimental results showcase that AlignDis- 126

til significantly outperforms existing meth- 127

ods and achieves faster convergence due to 128

the token-level distributional reward optimiza- 129

tion. 130

2 Preliminary 131

2.1 Reinforcement Learning from Human 132

Feedback 133

Generally, RLHF contains two stages, i.e., reward 134

modeling and policy optimization. 135

Reward Modeling. Reward modeling generally 136

needs a human-labeled preference dataset with 137

N samples D = {(x, yw, yl)i}N , where x is the 138

prompt from the user, and yw/yl represents the 139

human-annotated preferred/dispreferred response. 140

Then, the human preference within the data is mod- 141

eled by a reward model using the Bradley-Terry 142

model (Bradley and Terry, 1952), which optimizes 143

the reward rϕ with the following loss function: 144

LRM(ϕ) = 145

− E
(x,yw,yl)∼D

[
log σ(rϕ(x, yw)− rϕ(x, yl))

]
. (1) 146

Policy Optimization. Afterward, the policy 147

model πθ (i.e., the LLM) is optimized with RL 148

algorithms like PPO to maximize its expected re- 149

ward while preventing πθ from being too far from 150

the reference model πref : 151

JRLHF(θ) = 152

max
θ

E
x∼D

y∼πθ(·|x)

[
rϕ(x, y)− β log

πθ(y|x)
πref(y|x)

]
, (2) 153

where β is a hyper-parameter to control the 154

Kullback-Leibler (KL) divergence (Kullback and 155

Leibler, 1951) from the reference model. 156
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2.2 Direct Preference Optimization and its157

Implicit Reward158

Although RLHF is proposed as the initial solution159

for LLM alignment, the process is somewhat com-160

plicated and expensive. To address this, Rafailov161

et al. (2024b) propose direct preference optimiza-162

tion (DPO) to directly train the LLM in the reward163

modeling stage. Specifically, they leverage the164

closed-form solution of the RLHF objective and165

parameterize the reward with a log ratio:166

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (3)167

where Z(x) is the partition function and indepen-168

dent to y. Then the training objective of DPO is169

derived by substituting Eq. (3) into Eq. (1):170

LDPO(θ) = −E(x,yw,yl)∼D

[
171

log σ
(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

(4)

172

Besides, Rafailov et al. (2024b) point out that Z(x)173

in Eq. (3) can be omitted without loss of generality:174

rdpo(x, y) = β log
πdpo(y|x)
πref(y|x)

, (5)175

and token-level reward (Rafailov et al., 2024a) can176

be further represented by177

rdpo(x, y<t, yt) = β log
πdpo(yt|y<t, x)

πref(yt|y<t, x)
. (6)178

These concise forms of reward further facilitate re-179

searches on self-rewarding (Chen et al., 2024a) and180

fine-grained optimization (Xia et al., 2024; Zhong181

et al., 2024; Yang et al., 2024c). Likewise, in this182

work, we also leverage the DPO reward and de-183

rive a RLHF-equivalent distillation objective for184

token-level reward optimization.185

3 Theoretical Analysis: From RLHF to186

Policy Distillation187

In this section, we provide a theoretical analysis188

for RLHF with DPO reward, building a connection189

between the objectives of RLHF and distillation.190

As presented in Sec. 2.2, DPO parameterizes the191

reward with the log ratio between two language192

models and trains it with the same objective of193

reward modeling. Thus, the first intuition of this194

work is to substitute the reward in Eq. (5) trained 195

by DPO into the original RLHF objective: 196

J̃RLHF(θ) = 197

max
θ

E
x∼D

y∼πθ(·|x)

[
rdpo(x, y)− β log

πθ(y|x)
πref(y|x)

]
(7) 198

= max
θ

199

E
x∼D

y∼πθ(·|x)

[
β0 log

πdpo(y|x)
πref(y|x)︸ ︷︷ ︸

DPO reward

−β log
πθ(y|x)
πref(y|x)︸ ︷︷ ︸

KL divergence

]
,

(8)

200

where β0 denotes the original coefficient in DPO 201

training and is a constant in this objective. 202

It can be found that both the DPO reward and 203

the KL divergence in Eq. (8) can be decomposed 204

into the sum of token-level results, which offers 205

the potential to reformulate this objective into a 206

token-level form. Through solving this, we build a 207

connection between RLHF with DPO reward and 208

a policy distillation process, as described in the 209

following theorem: 210

Theorem 1. Under the DPO reward, the RLHF 211

objective is equivalent to the following token-level 212

policy distillation objective: 213

max
θ

E
x∼D

y∼πθ(·|x)

[
rdpo(x, y)− β log

πθ(y|x)
πref(y|x)

]
(9) 214

= min
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

215

DKL(πθ(·|y<t, x)||π∗(·|y<t, x)), (10) 216

where DKL(·||·) is token-level KL divergence and 217

π∗(·|x, y<t) is the probability distribution output 218

by the softmax function on a synthetic logit distri- 219

bution z∗t : 220

z∗t =
β0
β
zdpot + (1− β0

β
)zreft , (11) 221

where zdpot and zreft denote logit distributions of 222

the DPO model and the reference model at t-th 223

token position. 224

The proof is provided in Appendix A. Theorem 225

1 indicates that with DPO reward, we can equiv- 226

alently convert the original sequence-level RLHF 227

objective into a token-level distillation objective, 228

thereby naturally achieving token-level reward op- 229

timization. 230
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4 AlignDistil231

In this section, we will introduce our AlignDistil232

motivated by the above theoretical analysis. Built233

on the theory, AlignDistil additionally introduces234

two intuitive designs, i.e., contrastive DPO reward235

(§4.1) and token adaptive logit extrapolation (§4.2).236

Lastly, we will conclude the objectives of AlignDis-237

til for both on-policy and off-policy training (§4.3).238

4.1 Contrastive DPO Reward239

Although the DPO reward can theoretically rep-240

resent any reward under the Bradley-Terry model241

(Rafailov et al., 2024b), it has been pointed out242

to be less accurate than a pure reward model in243

practice (Lin et al., 2024). We also observe this244

phenomenon in our experiments (see Table 2) and245

conjecture that this imperfect reward estimation246

will impact the final alignment performance. Thus,247

in AlignDistil, we parameterize the DPO reward by248

a pair of contrastive DPO models (Liu et al., 2024a),249

i.e., a normal DPO model and a reverse DPO model250

(trained by switch chosen-rejected pairs in training251

data). Intuitively, a reverse DPO model is more252

appropriate for the DPO reward as it captures neg-253

ative features in low-quality data and makes the254

reward more discriminative. Formally, this con-255

trastive DPO reward can be represented as:256

rctr(x, y) = β0 log
πdpo(y|x)
π−
dpo(y|x)

, (12)257

where π−
dpo represents the reverse DPO model.258

Note that the contrastive DPO reward introduces259

a new model π−
dpo to the objective and increases260

the training cost. To solve this, we switch the refer-261

ence model in the RLHF objective from the initial262

model to the DPO model πdpo. This not only saves263

the required models in training, but also moves the264

reference model forward for better alignment. Af-265

terward, the objective of RLHF in Eq. (9) becomes:266

max
θ

E
x∼D

y∼πθ(·|x)

[
β0 log

πdpo(y|x)
π−
dpo(y|x)

− β log
πθ(y|x)
πdpo(y|x)

]
.

(13)

267

Correspondingly, the synthetic logit distribution in268

Eq. (22) also changes to269

z∗t = (1 +
β0
β
)zdpot − β0

β
zdpo

−

t (14)270

= zdpot︸︷︷︸
DPO distribution

+
β0
β
(zdpot − zdpo

−

t )︸ ︷︷ ︸
reward distribution

. (15)271

The detailed derivation can be referred to in Ap- 272

pendix B. Given that β0 > 0 and β > 0, this equa- 273

tion strictly describes an extrapolation between 274

logit distributions of the DPO model and the re- 275

verse DPO model. The extrapolation is crucial 276

for pushing the current policy to surpass the DPO 277

model, since it constructs a stronger aligned distri- 278

bution by removing some “negative” information 279

from the reverse DPO model and has been proven 280

effective in (Liu et al., 2024b). 281

4.2 Token Adaptive Logit Extrapolation 282

Although logit extrapolation theoretically provides 283

a stronger distribution, we find that it is tricky to 284

select an appropriate β in practice. Specifically, a 285

large β yields a small β0

β and may result in under- 286

optimization, while a small β produces a drastic 287

distribution and tends to over-optimize the current 288

policy. Considering that tokens in the sequence 289

have different tendencies, we design a token-level 290

adaptive weight to adjust β0

β for each token posi- 291

tion. Specifically, we use the total variation dis- 292

tance (TVD)1 (Levin and Peres, 2017) between the 293

DPO distribution and the reverse DPO distribution 294

to calculate a coefficient αt for position t: 295

αt = DTVD(t) ∗ r + ϵ ∈ [ϵ, r + ϵ], (16) 296

where DTVD(t) := 1
2

∑
yt∈V |πdpo(yt|y<t, x) − 297

π−
dpo(yt|y<t, x)|, V is the vocabulary, r is a hyper- 298

parameter to control the upper-bound of the coef- 299

ficient, and ϵ = 0.001 is a small value to avoid 300

αt = 0. The intuition is that when DPO distribu- 301

tion is far from the reverse one, this position may 302

have a key impact on the final reward and thus 303

should learn from a stronger teacher distribution. 304

Accordingly, we modify Eq. (15) as follows: 305

z∗t = zdpot + αt(z
dpo
t − zdpo

−

t ). (17) 306

Note that we replace the constant β0

β with an adap- 307

tive weight αt, and thus the static β in Eq. (10) 308

also becomes adaptive as βt = β0

αt
. 309

4.3 Overall Objectives 310

The theoretical objective of AlignDistil follows 311

Eq. (10) with a synthetic teacher distribution π∗ 312

calculated from Eq. (17). It defines AlignDistil 313

as an on-policy algorithm. Practically, the loss for 314

on-policy training of AlignDistil relies on Monte- 315

Carlo sampling to estimate the expectation in Eq. 316

1We choose TVD since it is symmetric and computation-
ally efficient with a limited range in [0, 1].
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(10) and calculate the token-level distillation loss:317

Lon
AD = (18)318

1

|B|
∑
x∈B

βt
|ŷ|

|ŷ|∑
t=1

DKL(πθ(·|ŷ<t, x)||π∗(·|ŷ<t, x)),319

where B represents the mini-batch of prompts sam-320

pled from the prompt dataset {(x)i}N and ŷ is321

sampled from πθ(·|x). As this loss function is ac-322

tually a supervised distillation loss, we can also323

construct an off-policy version using a prompt-324

response dataset {(x, y)i}N :325

Loff
AD = (19)326

1

|B|
∑

(x,y)∈B

βt
|y|

|y|∑
t=1

DKL(πθ(·|y<t, x)||π∗(·|y<t, x)).327

5 Experiments328

In this section, we present the experimental setups329

and showcase the evaluation results of our method.330

5.1 Experimental Setup331

Models. In our experiments, we use two instruct332

models, i.e., Qwen2-1.5B-Instruct (Yang et al.,333

2024a) and Qwen2.5-1.5B-Instruct (Yang et al.,334

2024b) as the initial models for further alignment.335

Datasets and Training. Following most previous336

work (Meng et al., 2024), we use UltraFeedback337

(Cui et al., 2023) as the training dataset, which338

contains about 63K prompts and corresponding339

response pairs with preference annotation. Specifi-340

cally, for DPO and reward modeling, we use both341

the prompts and the response pairs for training,342

while for other on-policy methods including ours,343

we only use the prompts for training. For off-policy344

AlignDistil, we use the prompts and the preferred345

response in UltraFeedback. For all experiments,346

we train the initial model for 1 epoch, with a batch347

size of 128, a learning rate of 1e-6, and a warmup348

ratio of 0.1. All our experiments are conducted on349

8 × A100-40G GPUs. More training details are350

provided in Appendix C.351

Evaluation. Following the common practice352

(Meng et al., 2024; Kim et al., 2024), we choose the353

following three benchmarks to evaluate the align-354

ment performance of all the models:355

• AlpacaEval 2.0 (Dubois et al., 2024) consists356

of 805 instructions with the responses of GPT-357

4 as the baseline. The evaluated responses358

are compared with the baseline by an LLM 359

evaluator. We report the win rate (WR) and 360

the length-controlled win rate (LC WR) for 361

each model, where the LC WR is designed to 362

eliminate the length bias in LLM-as-Judge. 363

• MT-Bench (Zheng et al., 2023) contains 80 364

multi-turn questions and assesses the quality 365

of responses with scores between [1, 10] by 366

an LLM evaluator. We report the scores in 367

the 1st turn (1st Turn) and the 2nd turn (2nd 368

Turn) and the final averaged scores (Avg.). 369

• Arena-Hard (Li et al., 2024b) incorporates 370

500 technical problem-solving queries with 371

the responses of GPT-4 as the baseline. We 372

report the win rate (WR) and the style- 373

controlled win rate (SC WR) to mitigate the 374

style bias in LLM evaluation. 375

We choose Qwen2.5-72b-Instruct as the auto- 376

matic evaluator since we find that it achieves com- 377

parable judgment performance with GPT-4 with a 378

much lower price (see Table 4). 379

5.2 Baseline Methods 380

We compare our method to the following methods: 381

DPO. DPO (Rafailov et al., 2024b) is the most 382

common direct preference learning method. The 383

model trained by DPO is used both as a baseline 384

and to calculate rewards for our method. 385

KTO. KTO (Ethayarajh et al., 2024) is a direct 386

preference learning method like DPO but optimizes 387

on the non-paired preference data. 388

TDPO. Zeng et al. (2024) propose token-level 389

DPO (TDPO) by equipping DPO reward with 390

token-level forward KL constraint. This method 391

contains two versions, i.e., TDPO1 and TDPO2. 392

SimPO. SimPO (Meng et al., 2024) is also a di- 393

rect preference learning method and further simpli- 394

fies DPO by removing the reference model. 395

PPO. PPO (Schulman et al., 2017) is selected 396

as the default RL algorithm for RLHF, which op- 397

timizes the advantages of the policy estimated by 398

generalized advantage estimator (GAE). 399

RTO. Zhong et al. (2024) propose reinforced to- 400

ken optimization (RTO) by substituting token-level 401

DPO reward from Eq. (6) into PPO. 402

The implementation details for these baselines 403

are provided in Appendix C. 404
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Methods AlpacaEval 2.0 MT-Bench Arena-Hard

LC WR (%) WR (%) 1st Turn 2nd Turn Avg. WR (%) SC WR (%)

Qwen2-1.5B-Instruct

Initial Model 3.10 1.99 6.11 5.15 5.63 1.8 2.8
DPO (Rafailov et al., 2024b) 6.42 5.03 6.19 5.59 5.89 3.0 3.6
DPOβ=0.01 (Rafailov et al., 2024b) 10.72 11.61 6.70 6.06 6.38 7.0 6.8
KTO (Ethayarajh et al., 2024) 7.16 6.34 6.54 5.55 6.05 3.4 4.2
SimPO (Meng et al., 2024) 8.19 9.63 5.94 5.71 5.83 6.9 4.2
TDPO1 (Zeng et al., 2024) 6.58 4.60 6.53 5.64 6.08 3.2 3.9
TDPO2 (Zeng et al., 2024) 3.59 2.42 6.25 5.06 5.66 1.3 1.9
PPO (Schulman et al., 2017) 4.86 4.41 6.76 5.51 6.13 2.7 3.0
RTO (Zhong et al., 2024) 8.92 9.32 6.46 6.06 6.26 6.7 5.9

Off-Policy AlignDistil (ours) 11.79 14.29 6.83 5.68 6.25 10.5 6.0
On-Policy AlignDistil (ours) 12.93 15.65 6.89 6.13 6.45 11.0 6.7

Qwen2.5-1.5B-Instruct

Initial Model 12.57 8.94 7.15 6.05 6.60 16.8 12.7
DPO (Rafailov et al., 2024b) 14.35 10.74 7.39 6.58 6.98 17.1 14.8
DPOβ=0.01 (Rafailov et al., 2024b) 14.09 14.29 7.36 6.54 6.95 16.2 15.5
KTO (Ethayarajh et al., 2024) 14.07 10.00 7.41 6.59 7.00 15.0 12.3
SimPO (Meng et al., 2024) 11.61 9.81 7.43 6.96 7.20 4.0 4.0
TDPO1 (Zeng et al., 2024) 13.19 9.94 7.45 6.66 7.06 16.5 14.1
TDPO2 (Zeng et al., 2024) 13.64 9.07 7.57 6.48 7.02 15.8 13.0
PPO (Schulman et al., 2017) 18.06 12.67 7.60 6.81 7.21 15.9 13.7
RTO (Zhong et al., 2024) 16.54 15.53 7.37 6.51 6.94 18.2 16.6

Off-Policy AlignDistil (ours) 21.16 24.29 7.62 6.53 7.07 24.1 21.8
On-Policy AlignDistil (ours) 19.45 22.11 7.65 6.98 7.31 24.0 23.0

Table 1: Evaluation results of baselines and our AlignDistil on three benchmarks. The best results are bolded.
“DPOβ=0.01” represents DPO training with β = 0.01.

5.3 Main Results405

The evaluation results on three benchmarks are406

listed in Table 1. We can draw several conclusions407

from the results: 1) Overall, both on-policy and408

off-policy AlignDistil significantly outperform409

baseline methods. Although the teacher distri-410

butions in our AlignDistil are constructed from411

DPO models, the performance of AlignDistil sur-412

passes DPO by a notable margin (e.g., over 6 %413

improvement for length-controlled win rates on414

AlpacaEval 2.0). since Liu et al. (2024b) reveal415

that logit extrapolation in inference is similar to416

rescale β in DPO training, we also implement an-417

other DPO with β = 0.01 (noted as DPOβ=0.01).418

We observe that rescaling β does not always lead419

to improvement (e.g., the results on Qwen2.5-1.5B-420

Instruct), which indicates that a simple logit extrap-421

olation may not stably improve the performance422

and the design of the contrastive DPO reward and423

token adaptive logit extrapolation are necessary. 2)424

AlignDistil yields better token-level LLM align-425

ment. TDPO1/2 introduces token-level KL con-426

straint for DPO, while this constraint may limit 427

the performance on small models. Besides, RTO 428

introduces token-level DPO rewards into PPO and 429

exhibits strong performance, especially surpassing 430

PPO significantly on Qwen2-1.5B-Instruct. This 431

superiority highlights the benefits of token-level 432

rewards in LLM alignment. Nevertheless, our 433

AlignDistil performs even better than RTO on both 434

models since we further leverage the whole reward 435

distribution instead of the scalar reward on the 436

predicted token for optimization. 3) Off-policy 437

AlignDistil performs competitively to the on- 438

policy version. Different from most methods for 439

LLM alignment, our AlignDistil can work under 440

both on-policy training and off-policy training. On 441

Qwen2-1.5B-Instruct, on-policy AlignDistil per- 442

forms better, while off-policy AlignDistil performs 443

comparably with the on-policy one on Qwen2.5- 444

1.5B-Instruct. We conjecture that for the DPO 445

reward, the data for off-policy AlignDistil is in- 446

distribution, while the data for on-policy AlignDis- 447

til is generated by the current policy model and is 448
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Reward Train
Acc. (%)

Test
Acc. (%)

AE2
LC. (%)

Reward Model 70.41 71.19 -
DPO Reward 72.85 69.53 16.51
Contrastive DPO Reward 74.71 71.29 19.45

Table 2: Reward accuracy of different types of rewards
on 1000 samples from the training set and test set of
UltraFeedback and the corresponding length-controlled
win rate on AlpacaEval 2.0. All models are based on
Qwen2.5-1.5B-Instruct.

out-of-distribution. These promising results sug-449

gest the off-policy AlignDistil as an efficient and450

effective method for LLM alignment.451

6 Analysis452

In this section, we first conduct the ablation453

study by separately analyzing the two designs in454

AlignDistil, i.e., the contrastive DPO reward (§6.1)455

and the token adaptive logit extrapolation (§6.2).456

Then we showcase the advantage of our AlignDistil457

on the convergence speed (§6.3).458

6.1 DPO Reward: Contrastive vs. Vanilla459

Lin et al. (2024) reveal that DPO reward often460

shows inferior generalization performance than461

a pure reward model. We also verify this phe-462

nomenon in Table 2. Specifically, we calculate463

the response-level accuracy of different types of464

rewards on the training set and the test set of Ul-465

traFeedback. Table 2 shows a performance gap466

between the DPO reward and the reward model.467

By contrast, the contrastive DPO reward not only468

shows better accuracy than the vanilla DPO re-469

ward on training data, but also generalizes better470

on test data, even surpassing the reward model.471

Correspondingly, our on-policy AlignDistil with472

the contrastive DPO reward outperforms the one473

with the vanilla DPO reward on AlpacaEval 2.0.474

This performance gain can be attributed to the re-475

verse DPO model, which captures subtle features in476

low-quality responses. Therefore, the contrastive477

DPO reward plays a key role in our AlignDistil.478

6.2 Effect of Adaptive Logit Extrapolation479

In our AlignDistil, we design a token adaptive logit480

extrapolation before constructing the teacher distri-481

bution. The motivation is that a constant extrapola-482

tion weight β0

β for all tokens tends to over-optimize483

or under-optimize on some tokens. Therefore, we484

explore whether this motivation holds. Specifically,485

β0

β Type DKL(πθ||πdpo) ↓ Avg. Length ↓ AE2
LC. (%) ↑

1.0 constant 10.16 2332 18.40
1.2 constant 13.95 2481 18.33
1.5 constant 20.71 2973 19.49
1.8 constant 28.55 3644 21.87
2.0 constant 34.52 4434 25.17

αt token adaptive 22.95 2424 21.16

Table 3: Comparisons between constant extrapolation
weight and token adaptive extrapolation weight. The
training is off-policy to mitigate the impact of data.

Figure 2: Convergence curves of token averaged reward
from optimization on the sentence-level, token-level
scalar-type, and token-level distributional reward.

we set the extrapolation weight β0

β to a constant 486

and test the performance and the KL divergence 487

from the DPO model πdpo as well as the average re- 488

sponse length under different constants. As shown 489

in Table 3, when the constant is small (e.g., 1.0 490

and 1.2), the teacher distribution is similar to the 491

distribution of the DPO model πdpo, reflecting by 492

a small KL divergence. However, the mild ex- 493

trapolation also limits the strength of the teacher 494

distribution and leads to under-optimization of the 495

current policy. By contrast, although a large ex- 496

trapolation weight (e.g., 1.8 and 2.0) indeed yields 497

better performance on AlpacaEval, the current pol- 498

icy is over-optimized, showcasing too much devia- 499

tion from the DPO model and extremely increasing 500

the response length. Compared to these constant 501

values, our token adaptive extrapolation weight 502

considers the individual characteristics of differ- 503

ent tokens and assigns an appropriate weight for 504

each position, thus achieving a balance between 505

performance and deviation. 506

6.3 Convergence Speed 507

As noted in previous literature (Chan et al., 2024; 508

Zhong et al., 2024), token-level reward optimiza- 509
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tion generally yields a faster convergence speed510

than sentence-level reward optimization. We also511

test the convergence speed of our AlignDistil.512

Specifically, we train the on-policy AlignDistil513

with a static β on a subset (10k prompts) of Ul-514

traFeedback. For comparison, we implement a515

sentence-level optimization method that optimizes516

the overall reward on the whole response as a bandit517

problem2 and a REINFORCE-based method that518

optimizes on token-level scalar-type DPO rewards.519

The coefficient β is set to 0.08 for all methods3.520

The convergence curves on token averaged reward4521

corresponding to the training steps are plotted in522

Figure 2. It is shown that sentence-level reward op-523

timization yields the poorest convergence, signifi-524

cantly lagging behind token-level rewards, which is525

consistent with the conclusion in (Chan et al., 2024;526

Zhong et al., 2024) Moreover, although token-level527

scalar reward boosts the convergence speed, our528

AlignDistil still has a more than 2× faster conver-529

gence speed. The reason is that the optimization of530

AlignDistil leverages the whole reward distribution531

instead of a single scalar reward, allowing exact532

calculation of the reward expectation at each to-533

ken position. This comparison sufficiently demon-534

strates the benefits of our AlignDistil on token-level535

reward optimization.536

7 Related Work537

Fine-Grained LLM Alignment. Existing meth-538

ods for LLM alignment are criticized for optimiz-539

ing sparse, coarse-grained rewards. To address this,540

(Lightman et al., 2023) propose the process reward541

model (PRM) trained with step-level human anno-542

tations for complicated LLM reasoning. On this ba-543

sis, several methods are proposed to automatically544

collect step-level rewards without human annota-545

tion (Wang et al., 2024; Luo et al., 2024; Yuan et al.,546

2024). Besides, Cao et al. (2024) extract span-level547

rewards from LLM critiques to enhance the PPO548

algorithm. Furthermore, there are solutions for549

token-level reward signals via edit distance (Guo550

et al.; Chen et al., 2024b), attention scores in the re-551

ward model (Chan et al., 2024), and reward model552

outputs on intermediate tokens (Li et al., 2024a).553

Additionally, Rafailov et al. (2024a) reveal that554

DPO also automatically learns token-level reward.555

2The final reward involves the same contrastive DPO re-
ward and KL constraint as AlignDistil.

3Implementation details are provided in Appendix E.
4The token averaged reward is used to mitigate the length

bias in DPO reward.

Afterward, this token-level DPO reward is applied 556

to existing alignment methods like DPO (Liu et al., 557

2024a; Yang et al., 2024c) and PPO (Zhong et al., 558

2024) or new algorithms (Xia et al., 2024). Follow- 559

ing this line, we also leverage the DPO reward in 560

our method, while the difference is that we further 561

exploit the distributional information in this reward 562

for more sufficient optimization. 563

Knowledge Distillation for LLMs. Knowledge 564

distillation (KD, Hinton, 2015) is proposed as an es- 565

sential technique for compressing neural networks. 566

With the emergence and development of LLMs, 567

KD has attracted more attention to reduce the nu- 568

merous parameters in LLMs. In this context, KD 569

methods are divided into white-box KD (Hinton, 570

2015) and black-box KD (Kim and Rush, 2016), 571

depending on whether the weight of the teacher 572

model can be obtained. For white-box KD, ap- 573

proaches typically bridge probability distributions 574

(Agarwal et al., 2024; Gu et al., 2024; Ko et al., 575

2024; Zhang et al., 2024) or intermediate features 576

(Wang et al., 2020) between the teacher model and 577

the student model. Intuitively, this process trans- 578

fers sufficient information from the teacher model, 579

thus often used for pre-training small yet powerful 580

LLMs (Team et al., 2024; Meta, 2024). In contrast, 581

black-box KD is actually more widely used for 582

LLMs as it only requires collecting outputs from 583

the teacher model and supervised fine-tuning the 584

student model (Taori et al., 2023; Chiang et al., 585

2023; Tunstall et al., 2023). Different from these 586

methods, our AlignDistil is derived from RLHF 587

and aims for token-level reward optimization. 588

8 Conclusion 589

In this paper, we aim at the fine-grained LLM align- 590

ment problem and propose AlignDistil as the so- 591

lution. Specifically, we introduce the DPO reward 592

into the objective of RLHF and theoretically build 593

an equivalence between RLHF and token-level pol- 594

icy distillation. On this basis, we design two com- 595

ponents in our AlignDistil, i.e., the contrastive DPO 596

reward and token adaptive logit extrapolation, for 597

better performance and stable optimization. Ex- 598

perimental results on prevalent alignment bench- 599

marks sufficiently demonstrate the superiority of 600

our AlignDistil compared to existing methods for 601

LLM alignment. Moreover, we showcase that the 602

token-level distributional reward optimization in 603

AlignDistil offers a faster convergence speed than 604

sentence-level and token-level scalar-type rewards. 605

8



Limitations606

Due to the resource limitation, the evaluation of607

our AlignDistil is limited within small language608

models (~1.5B). The evaluation on larger models609

is still under-explored and we leave this in future610

work.611
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A Proof of Theorem 1883

Here we recall Theorem 1:884

Theorem. Under the DPO reward, the RLHF objective is equivalent to the following token-level policy885

distillation objective:886

max
θ

E
x∼D

y∼πθ(·|x)

[
rdpo(x, y)− β log

πθ(y|x)
πref(y|x)

]
(20)887

= min
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

DKL(πθ(·|x, y<t)||π∗(·|x, y<t)), (21)888

where DKL(·||·) is token-level KL divergence and π∗(·|x, y<t) is the probability distribution output by the889

softmax function on a synthetic logit distribution z∗t :890

z∗t =
β0
β
zdpot + (1− β0

β
)zreft , (22)891

where zdpot and zreft denote logit distributions of the DPO model and the reference model at t-th token892

position.893

Proof. First, we need to decompose the objective of RLHF into token level. Inspired by Wen et al. (2023),894

we derive the decomposition process from the objective in Eq. (8):895

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

[
β0 log

πdpo(y|x)
πref(y|x)

− β log
πθ(y|x)
πref(y|x)

]
896

= max
θ

E
x∼D

y1:T∼πθ(·|x)

[
β0

T∑
t=1

log
πdpo(yt|y<t, x)

πref(yt|y<t, x)
− β

T∑
t=1

log
πθ(yt|y<t, x)

πref(yt|y<t, x)

]
(23)897

= max
θ

E
x∼D

y1:T∼πθ(·|x)

T∑
t=1

[
β0 log

πdpo(yt|y<t, x)

πref(yt|y<t, x)
− β log

πθ(yt|y<t, x)

πref(yt|y<t, x)

]
(24)898

= max
θ

E
x∼D

y1:T∼πθ(·|x)

T−1∑
t=1

[
β0 log

πdpo(yt|y<t, x)

πref(yt|y<t, x)
− β log

πθ(yt|y<t, x)

πref(yt|y<t, x)

]
(25)899

+ E
x∼D

y1:T∼πθ(·|x)

[
β0 log

πdpo(yT |y<T , x)

πref(yT |y<T , x)
− β log

πθ(yT |y<T , x)

πref(yT |y<T , x)

]
(26)900

= max
θ

E
x∼D

y1:T−1∼πθ(·|x)

T−1∑
t=1

[
β0 log

πdpo(yt|y<t, x)

πref(yt|y<t, x)
− β log

πθ(yt|y<t, x)

πref(yt|y<t, x)

]
(27)901

+ E
x∼D

y1:T−1∼πθ(·|x)

∑
yt∈V

πθ(yt|y<T , x)
[
β0 log

πdpo(yt|y<T , x)

πref(yt|y<T , x)
− β log

πθ(yt|y<T , x)

πref(yt|y<T , x)

]
(28)902

Eq. (28) is derived by decomposing the expectation in Eq. (26) at the last step and exactly calculating it.903

Likewise, we can recursively decompose the expectation from step T − 1 to step 1 and obtain the final904

token-level representation:905

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
β0 log

πdpo(yt|y<t, x)

πref(yt|y<t, x)
−β log

πθ(yt|y<t, x)

πref(yt|y<t, x)

]
(29)906
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Then, we reorganize the log ratio in Eq. (40): 907

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
β0 log

πdpo(yt|y<t, x)

πref(yt|y<t, x)
− β log

πθ(yt|y<t, x)

πref(yt|y<t, x)

]
908

= max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[β0
β

log πdpo(yt|y<t, x) 909

+ (1− β0
β
) log πref(yt|y<t, x)− log πθ(yt|y<t, x)

]
(30) 910

Here we introduce an equivalence between log probabilities and logits, i.e., when 911

p(i) =
ezi∑|V|
j=1 e

zj
, (31) 912

we have 913

log p(i) = zi − log

|V|∑
j=1

ezj . (32) 914

Then, we substitute Eq. (32) into Eq. (30): 915

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[β0
β

log πdpo(yt|y<t, x) 916

+ (1− β0
β
) log πref(yt|y<t, x)− log πθ(yt|y<t, x)

]
(33) 917

= max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[β0
β
zdpot + (1− β0

β
)zreft + Z − log πθ(yt|y<t, x)

]
(34)

918

= max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
z∗t − log πθ(yt|y<t, x)

]
, (35) 919

where z∗ = β0

β zdpot + (1 − β0

β )zreft , and Z is a constant representing the logsumexp term in Eq. (32). 920

Thus, it has no influence on the expectation and can be omitted in the later calculation. Then we leverage 921

the equivalence again and convert the logits back to log probabilities: 922

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
z∗t − log πθ(yt|y<t, x)

]
923

= max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
log π∗(yt|y<t, x)− log πθ(yt|y<t, x)

]
(36) 924

= max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x) log
π∗(yt|y<t, x)

πθ(yt|y<t, x)
(37) 925

= min
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

DKL(πθ(yt|x, y<t)||π∗(yt|x, y<t)). (38) 926

Thus, the theorem is proved. 927
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B Derivations for Changed Logit Distribution928

As shown in Eq. (13), we rewrite the objective of RLHF under the contrastive DPO reward as follows:929

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

[
β0 log

πdpo(y|x)
π−
dpo(y|x)

− β log
πθ(y|x)
πdpo(y|x)

]
. (39)930

Correspondingly, the token-level objective becomes931

J̃RLHF(θ) = max
θ

E
x∼D

y∼πθ(·|x)

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
β0 log

πdpo(yt|y<t, x)

π−
dpo(yt|y<t, x)

− β log
πθ(yt|y<t, x)

πdpo(yt|y<t, x)

]
(40)

932

= max
θ

E
x∼D

y∼πθ(·|x)

β

|y|∑
t=1

∑
yt∈V

πθ(yt|y<t, x)
[
(1 +

β0
β
) log πdpo(yt|y<t, x)933

− β0
β

log π−
dpo(yt|y<t, x)− log πθ(yt|y<t, x)

]
. (41)934

The following derivation is similar to the one after Eq. (30) and thus omitted.935

C Implementation Details936

In this section, we provide the implementation details of baseline methods and our AlignDistil. All our937

implementation is based on the open-source toolkit OpenRLHF5. Below we list the individual settings for938

each method in our experiments:939

• DPO (default setting): we set β = 0.1 and optimize the model on UltraFeedback;940

• DPOβ=0.01: the only difference compared to DPO (default setting) is β = 0.01;941

• KTO: we set β = 0.1 and use the unpaired version of UltraFeedback for training;942

• TDPO1: similar to DPO in the default setting, we set β = 0.1;943

• TDPO2: TDPO2 introduces a new hyper-parameter α to control the intensity of KL term and we944

find that α = 0.1 works best in our experiments;945

• SimPO: SimPO involves two hyper-parameters, i.e., β and a ratio γ
β , which are needed fine-grained946

tuning to achieve ideal performance. Specifically, for both models, we set β = 10 and γ
β = 0.5 after947

extensive tuning.948

• PPO: Before PPO, we first train a reward model on UltraFeedback based on Qwen2.5-1.5B-Instruct.949

We use the same reward model for both initial models since we find the reward model based on950

Qwen2-1.5B-Instruct leads to unstable PPO optimization. Afterward, we mainly follow the suggested951

settings in OpenRLHF for PPO training, e.g., setting the critic learning rate to 9e-6, rollout batch952

size to 1024, and the KL coefficient to 0.01.953

• RTO: The procedure of RTO is similar to PPO, except for the token-level DPO reward954

β log
πdpo(yt|y<t,x)
πref(yt|y<t,x)

. We use the DPO model in the default setting with β = 0.1 to calculate the955

DPO reward. Besides, RTO set β2 as the KL coefficient in PPO. In our experiment, we find RTO is956

sensitive to β2 and tends to produce overly long responses. Thus, we set β2 = 0.05 as an appropriate957

value for stable training. After our experiments, the authors of RTO update their methods to fix this958

issue in the latest (v3) version of the paper (Zhong et al., 2024). Despite better performance, this959

update is a concurrent work with ours and our implementation of RTO is still based on the v2 version960

of the paper.961

5https://github.com/OpenRLHF/OpenRLHF
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• On-Policy AlignDistil: The on-policy AlignDistil uses the DPO model in the default setting as 962

well as a reverse DPO model trained by switching the chosen/rejected responses in DPO training. 963

For on-policy AlignDistil, we only use the prompts in Ultrafeedback and sample responses from 964

the current policy. The hyper-parameter r for token adaptive logit extrapolation is set to 20 for 965

Qwen2-1.5B-Instruct and 15 for Qwen2.5-1.5B-Instruct. 966

• Off-Policy AlignDistil: For off-policy AlignDistil, we use both the prompts and the chosen responses 967

in Ultrafeedback for training. The hyper-parameter r is set to 10 for Qwen2-1.5B-Instruct and 15 for 968

Qwen2.5-1.5B-Instruct. 969

D Performance for Qwen2.5-72B-Instruct as Judge 970

Qwen2.5-72B-Instruct has been demonstrated as a strong open-source model with comparable perfor- 971

mance against the state-of-the-art LLMs. Following the tools for evaluating LLM-as-Judge provided in 972

the repository6 of (Dubois et al., 2024), we test the evaluation performance for Qwen2.5-72B-Instruct and 973

list the performance in Table 4.

Evaluators Human Agreement Price [$/1000 examples] Spearman corr. Pearson corr.

alpaca_eval_gpt4 69.17 13.60 0.97 0.93
alpaca_eval_gpt4_turbo_fn 68.09 5.53 0.93 0.82
Qwen2.5-72B-Instruct 67.63 0 0.92 0.86
weighted_alpaca_eval_gpt4_turbo 65.73 4.32 0.78 0.77
humans 65.66 300 1.00 1.00

Table 4: Comparisons of Qwen2.5-72B-Instruct and some top evaluators on the AlpacaEval leaderboard in terms of
performance and cost. We select several key columns from the leaderboard.

974
As shown in Table 4, Qwen2.5-72B-Instruct achieves comparable human agreement with 975

alpaca_eval_gpt4_turbo_fn and alpaca_eval_gpt4 with a much lower price since we can de- 976

ploy the model with vLLM locally. Moreover, compared to the official recommended evaluator 977

weighted_alpaca_eval_gpt4_turbo, Qwen2.5-72B-Instruct performs significantly better on both per- 978

formance and cost. Thus, we choose Qwen2.5-72B-Instruct as the evaluator for the three benchmarks. 979

E Implementation Details for Convergence Speed Comparison 980

To evaluate the convergence speed of our AlignDistil, we use two methods that optimize sentence-level 981

(response-level) rewards and token-level scalar-type rewards, respectively. For sentence-level optimization, 982

we use the contrastive DPO reward on the whole sequence and calculate the gradient of the policy model 983

as follows: 984

∇θJ (θ) =
1

|y|

[ |y|∑
t=1

rctr(x, y)∇θ log πθ(yt|y<t, x)− β∇θ log
πθ(y|x)
πdpo(y|x)

]
. (42) 985

For token-level optimization with scalar-type rewards, we optimize token-level contrastive reward with a 986

REINFORCE algorithm: 987

∇θJ (θ) =
1

|y|

|y|∑
t=1

[
Gt∇θ log πθ(yt|y<t, x)− β∇θDKL(πθ(·|y<t, x)||πdpo(·|y<t, x))

]
, (43) 988

where Gt =
∑|y|

i=t rctr(x, y<i, yi) is the return at position t. 989

6https://github.com/tatsu-lab/alpaca_eval
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