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Abstract

A vital and rapidly growing application, remote sensing offers vast yet sparsely
labeled, spatially aligned multimodal data; this makes self-supervised learning
algorithms invaluable. We present CROMA: a framework that combines contrastive
and reconstruction self-supervised objectives to learn rich unimodal and multi-
modal representations. Our method separately encodes masked-out multispectral
optical and synthetic aperture radar samples—aligned in space and time—and
performs cross-modal contrastive learning. Another encoder fuses these sen-
sors, producing joint multimodal encodings that are used to predict the masked
patches via a lightweight decoder. We show that these objectives are comple-
mentary when leveraged on spatially aligned multimodal data. We also introduce
X- and 2D-ALiBi, which spatially biases our cross- and self-attention matrices.
These strategies improve representations and allow our models to effectively ex-
trapolate to images up to 17.6× larger at test-time. CROMA outperforms the
current SoTA multispectral model, evaluated on: four classification benchmarks—
finetuning (avg.↑ 1.8%), linear (avg.↑ 2.4%) and nonlinear (avg.↑ 1.4%) probing,
kNN classification (avg.↑ 3.5%), and K-means clustering (avg.↑ 8.4%); and three
segmentation benchmarks (avg.↑ 6.4%). CROMA’s rich, optionally multimodal
representations can be widely leveraged across remote sensing applications.

1 Introduction

Deep learning has led to rapid advances in remote sensing, augmenting our ability to understand and
monitor our planet. The remote sensing community has developed many application-specific deep
learning models, specifically for satellite imagery: identifying heavily polluting brick kilns [1, 2] or
illegal airstrips [3]; monitoring deforestation [4, 5, 6, 7] or crops [8, 9, 10]; detecting floods [11, 12]
or wildfires [13, 14, 15]; even estimating household income [16, 17] or poverty [18, 19, 20]. Deep
learning-based remote sensing is playing a growing role in tackling our climate crisis [21, 22, 23].
Recently, researchers leveraged self-supervised learning to pretrain remote sensing models that can
be employed on these tasks, and more [24, 25, 26, 27]. Self-supervised methods are invaluable for
remote sensing, as there are petabytes of publicly available raw data from which to learn general
representations, while only limited annotated data exists for downstream applications.

Self-supervised representations are often learned via contrastive approaches [28, 29, 30] or recon-
struction approaches [31, 32, 33]. Contrastive approaches encourage the representations of positive
pairs of samples—built by producing another view of a sample, for instance, from another sensor [34]
or time [35], or by augmentations [30]—to be similar, and the representations of negative pairs to be
dissimilar; this process can learn descriptive, object-focused representations. Models trained with a
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contrastive objective learn to discard information not shared between views [36, 37], regardless of
the information’s usefulness on downstream tasks; this makes the representations they learn sensitive
to how positive pairs are built [30, 38, 39, 40]. Conversely, models trained with reconstruction or
autoencoding objectives—for instance, predicting hidden pixels [31, 41]—learn to capture as much
information as possible [42, 43, 44]. Reconstruction approaches do not rely on multiple views and
scale incredibly well [31, 45, 46], but they learn representations that require significant finetuning to
be useful on downstream tasks [43, 45]. Park et al. [47] show vision transformers (ViTs [48]) trained
with contrastive learning focus more on shapes and low-frequency information than ViTs trained with
reconstruction approaches, which focus more on textures and high-frequency information. They show
that combining both objectives may achieve a sweet spot that learns better representations than either
objective alone. Several other frameworks have been developed that leverage both objectives to learn
SoTA representations [49, 50, 51, 52]; however, none are designed for spatially aligned multimodal
data.

Researchers developing foundation models for remote sensing have yet to take advantage of the
multimodal data ubiquitous to remote sensing. For instance, the Sentinel missions—imaging the
Earth’s landmass multiple times per month since 2015—consist of multispectral optical imagery
acquired by Sentinel-2 and Synthetic Aperture Radar (SAR) data acquired by Sentinel-1. By
exploiting differences in how electromagnetic radiation interacts with Earth surface materials and
measuring the radiation at many wavelengths (ranging from 440 to 2,200 nm), Sentinel-2 multispectral
optical imagery can be used to characterize the material composition of objects [53]. By actively
transmitting and receiving longer wavelength (5.5 cm) electromagnetic pulses, Sentinel-1 SAR can
be used to characterize the geometry, roughness, and electrical properties of objects [54]. These
modalities have proven complementary across remote sensing applications [55, 56, 57]. Importantly
for our work, they are spatially aligned, allowing multiple views of the same feature on the ground.
Moreover, because data from the Sentinel missions are freely available, they have become the most
widely used source of satellite imagery in research; thus, models with useful representations of
Sentinel-1 & 2 imagery can be immediately leveraged in scientific research, improving our ability to
understand our planet.

These observations motivate Contrastive Radar-Optical Masked Autoencoders (CROMA): a frame-
work for learning rich representations of multimodal, spatially aligned, 2D data; which we leverage
to pretrain ViT models on Sentinel-1 & 2 data, providing the most valuable foundation models for
Earth Observation, to date. We highlight three contributions: 1 CROMA significantly outperforms
the current SoTA multispectral model, SatMAE [26], under an extensive evaluation. 2 CROMA
learns representations that are optionally multimodal (i.e., they can be effectively leveraged when
either or both modalities are available) and extrapolate to larger images at test-time (i.e., they can
be effectively leveraged on images larger than those on which the model was trained). 3 CROMA’s
effectiveness is driven by two innovations: our complementary pretraining objectives and our novel
relative position encoding (RPE) strategies that contribute to the quality of learned representations.

2 Method

In this section, “optical” refers to 12-channel multispectral optical imagery acquired by Sentinel-2,
and “radar” refers to 2-channel SAR backscatter data acquired by Sentinel-1.

Architecture Background. Most work combining contrastive and reconstruction objectives learning
joint multimodal representations is in the image-text domain [51, 58, 59, 60, 61, 62, 63, 64, 65];
heavily inspiring our architecture, Contrastive Captioning (CoCa [49]) learns SoTA image-text
representations that are optionally multimodal. The CoCa framework consists of two unimodal
encoders—one for images, one for text—and a multimodal decoder that receives text encodings
at the bottom of the network and cross-attends to image encodings. CoCa is trained with two
objectives: an image↔text contrastive objective between unimodal encoders and an image-captioning
objective at the output of the multimodal decoder. Our framework significantly adapts CoCa to
aligned multimodal 2D data by masking both modalities, introducing a multimodal encoder, a
lightweight decoder (only used during pretraining, inspired by masked autoencoders [31]), and novel
cross-attention and self-attention positional biases.

Model Architecture. CROMA consists of three encoders (Fig. 1). 1 A unimodal radar ViT fR

that encodes radar inputs IR ∈ R2×H×W into L patch encodings ER ∈ RL×D, i.e., ER = fR(IR).
2 A unimodal optical ViT fO that encodes optical inputs IO ∈ R12×H×W into L patch encodings
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Figure 1: (Left) Our CROMA framework jointly leverages radar↔optical contrastive learning and
masked autoencoding to learn rich, self-supervised representations. (Right) Leverage representations
on: unimodal or multimodal data, larger images at test-time, and diverse tasks and methods.

EO ∈ RL×D, i.e., EO = fO(IO). 3 A multimodal radar-optical transformer fRO that encodes L radar-
optical patches, ERO ∈ RL×D, i.e., ERO = fRO(ER, EO). For each set of unimodal encodings, we
build full-image representations R ∈ RD by processing the mean pooled patch encodings through a
feedforward network (FFN), i.e., RR = FFNR(MeanPool(ER)) and RO = FFNO(MeanPool(EO)).
Our patch size is 8 × 8 pixels for both modalities, and our default image size is 120 × 120 pixels. Our
radar encoder has N/2 transformer layers, and our optical encoder has N transformer layers (N
is 12 for ViT-B and 24 for ViT-L backbones). All unimodal encoder layers are composed of self-
attention and FFN sublayers. Our multimodal N/2-layer encoder—composed of self-attention, cross-
attention, and FFN sublayers—encodes both modalities into a single sequence of L patch encodings;
this encoder receives radar patch encodings at the bottom of the network and learns multimodal
representations by cross-attending to optical patch encodings. Multimodal representations can be
built via pooling multimodal patch encodings, i.e., RRO = MeanPool(ERO). Our ViT backbones
do not use sinusoidal position embeddings; instead, we bias the self-attention and cross-attention
matrices with the distances between patches.

ALiBi Background. ALiBi [66] is a simple and intuitive RPE method for transformers that biases
the self-attention matrix based on the distance between tokens in a 1D sequence. Each self-attention
head receives positional biases with different strengths, called slopes m. With 16 attention heads, the
geometric sequence defines these scalar slopes starting at 1√
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subtracted from the attention matrix before the softmax is calculated. Specifically, the pre-softmax
attention matrix A ∈ Rh×L×L (h is the number of heads, L is the sequence length) is populated with
attention scores ahij for the ith query qhi ∈ Rd and jth key khj ∈ Rd (d is the head dimension):
ahij =
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Crucially, ALiBi does not add position embeddings at the bottom of the network; instead, the relative
positions between tokens are encoded in the attention matrix itself. To date, ALiBi is the only position
encoding method for transformers that has been demonstrated to extrapolate at test-time to sequences
far longer than those on which it was trained.
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Figure 2: 2D-ALiBi matrix for an
image with 9 patches (32 before flat-
tening); q is for query, k is for key,
and m is a fixed scalar that biases
attention heads at different rates.

2D-ALiBi and X-ALiBi. We extend ALiBi to 2D inputs by
biasing the self-attention matrix based on the Euclidean distance
between query-key pairs in a ViT—we call this 2D-ALiBi (Fig.
2). We also extend ALiBi to cross-attention by biasing the
cross-attention matrix based on the Euclidean distance between
cross-modal query-key pairs—we call this X-ALiBi. (In cross-
attention [67], queries are built from the previous layer, whereas
keys and values are built from optical encodings.) For both 2D
and X-ALiBi, we calculate our attention-head slopes with the
same geometric sequence as ALiBi. Since our two modalities

3



are aligned 2D sensor data, our 2D-ALiBi and X-ALiBi matrices are identical. The primary motivation
of 2D-ALiBi is to learn representations that can generalize across image sizes; this is particularly
useful in remote sensing and is likely useful in other domains. The primary motivation of X-ALiBi is
to improve sensor fusion by inserting positional information in the cross-attention sublayer of our
multimodal encoder, fRO. These position encoding techniques are rotation and translation invariant,
which are desirable properties for the overhead imagery in Earth Observation.

MAE Background. A masked autoencoder (MAE [31]) rearranges an image into a sequence of
non-overlapping patches, then randomly samples a large portion of patches to be held-out. The
“visible” patches, that are not held-out, are encoded by a ViT. This MAE-style masking is ingenious:
it leverages sparse computation while only requiring dense operations that run efficiently on modern
hardware. MAE introduces a lightweight decoder that receives visible patch encodings and hidden
mask embeddings, which are both added to 2D-sinusoidal position embeddings. The decoder outputs
predictions of the pixel values of the held-out patches. Both the encoder and decoder are pretrained
end-to-end to minimize the mean squared error between patch predictions and the originally held-out
patches. The pretrained encoder can then be leveraged on downstream applications.

Reconstruction Objective. We independently mask 75% of radar and optical patches and en-
code the unmasked patches with our three encoders, i.e., Eum

R = fR(IumR ), Eum
O = fO(IumO ),

and Eum
RO = fRO(Eum

R , Eum
O ); where um means unmasked. We introduce a lightweight 1-

layer transformer decoder fDEC that receives multimodal patch encodings and mask embed-
dings after adding 2D-sinusoidal position embeddings and predicts a target image, i.e., Î =
fDEC(CONCAT[Eum

RO ,Embmask] + Embpositions). We split the channels of Î to form predictions
for each sensor, ÎO and ÎR; the loss is only applied at the locations of the masked-out patches:

LMAE =
1

N

N∑
i


∑M

j

(
Î
ij

O −Norm(Iij)O

)2

M
+

∑M
j

(
Î
ij

R −Norm(Iij)R

)2

M


optical reconstruction radar reconstruction

where N is the batch size, M is the number of masked patches, and Norm sets the mean to 0 and
standard deviation to 1 for target patches (following MAE). Along with learning unimodal repre-
sentations, this objective spatially fuses our two sensors, i.e., it builds multimodal patch encodings
that represent information from both sensors in the patch, corresponding to an 80 m × 80 m square
on the ground (8 × 8 patches at 10 m resolution). Finally, 2D and X-ALiBi can be easily adapted to
MAE-style masking by removing the masked-out columns and rows from the bias matrix.

Contrastive Learning Background. Contrastive learning aims to classify the correct pairings of
samples derived from a batch. Logits are formed by measuring the similarity between the projected
representations of samples. As a result, the representations of positive pairs are pulled together, and
the representations of negative pairs are pushed apart. Very recently, FLIP [68] performs contrastive
learning with masked-out representations via MAE-style masking. This speeds up pretraining and
enables larger batches due to the reduced memory per sample. FLIP performs on par with CLIP [69]—
the foundational work that learns rich representations via image↔text contrastive learning—but can
be pretrained at half the cost.

Contrastive Objective. We perform radar↔optical contrastive learning across the unimodal repre-
sentations of our masked-out sensor data using the InfoNCE loss [28]. For an optical anchor image,
the positive sample is the geographically and temporally matched radar sample, and the negative
samples are all other radar samples from the batch; likewise, our radar representations are pulled
towards (positives) or pushed apart (negatives) from optical representations:

LCon = − 1

2N

 N∑
i

log
exp

(
zi⊤R ziO/σ

)∑N
j exp

(
zi⊤R zjO/σ

) +
N∑
i

log
exp

(
zi⊤O ziR/σ

)∑N
j exp

(
zi⊤O zjR/σ

)


radar-to-optical optical-to-radar

where zR and zO are ℓ2 normalized linear projections of radar and optical representations, respectively,
i.e., zR = Norm(LinearR(RR)) and zO = Norm(LinearO(RO)). σ is the softmax temperature, and
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N is the batch size. Crucially, we only encode a small portion of input patches, which form our
representations. This masking provides advantages: it enables larger batches, speeds up pretraining,
and enables our multimodal reconstruction objective with the same computational graph. This
radar↔optical contrastive objective encourages representations to be sensor-invariant, i.e., to capture
information shared between sensors.

Combined Pretraining Objective. We combine contrastive learning and masked sensor modeling
pretraining objectives: L = λConLCon +λMAELMAE. We set both task weights (i.e., λCon and λMAE)
to 1 and ablate them in Appendix §A.1.

3 Experiments

Pretraining. We pretrain CROMA models on the SSL4EO dataset [70]—a large geographically
and seasonally diverse unlabeled dataset. SSL4EO consists of 1 million paired Sentinel-1 GRD &
Sentinel-2 L2A samples of 264 × 264 pixels. Sentinel-1 channels consist of VV and VH backscatter.
Sentinel-2 channels consist of 12 surface reflectance multispectral bands (the cirrus band is removed).
We pretrain CROMA-B (ViT-B backbone) for 300 epochs and CROMA-L (ViT-L backbone) for
600 epochs. Crucially, a single pretraining run trains all three encoders (optical, radar, and joint
radar-optical) end-to-end; users can then finetune one or multiple encoders, depending on their
task and data availability. We perform all pretraining experiments on an NVIDIA DGX server (8×
A100–80 GB), including ablations. Please see Appendix §A.3 for more details.

Comparisons. We compare CROMA to all available multispectral optical foundation models,
which include two models pretrained by [71] using radar↔optical contrastive learning; two models
pretrained by [70] using the MAE [31] and DINO [72] frameworks; and two models pretrained by
[26] using their multispectral representation learning framework, SatMAE. We also compare CROMA
to a SoTA method for learning visual representations of natural images—image joint embedding
predictive architecture (I-JEPA, [73])—that we leverage to pretrain a ViT-B model on SSL4EO’s
optical imagery for 300 epochs. To enable a fair comparison between models, we evaluate all models
under identical conditions and hyper-parameter budgets (please see Appendix §A.4.2 for details).
This is necessary because the originally reported results of these models occurred under inconsistent
evaluation conditions—for instance, data splits or training data amounts. We use the latest publicly
available models for all evaluations and preprocess data according to official repositories. For radar
and radar-optical datasets, we compare CROMA to SatViT-V2 [74], a model pretrained using MAE
[31] on stacked Sentinel-1 & 2 imagery; and DeCUR, a model pretrained—concurrently with this
work—by [75] using their multimodal representation learning framework.

3.1 Multispectral Optical Experiments

Classification Setup. We evaluate CROMA by finetuning, frozen linear and nonlinear probing, kNN
classifying, and K-means clustering pretrained representations across four Sentinel-2 classification
benchmarks. 1 The multi-label BigEarthNet dataset [76] (35,420 train samples and 118,065 vali-
dation samples); this is 10% of the complete BigEarthNet training set that is now used by default
[25, 26] to reduce the costs of finetuning and is better suited for a remote sensing benchmark [22].
2 The fMoW-Sentinel dataset [26] (71,287 train samples and 84,939 validation samples); this is also
10% of the complete training set. Following BigEarthNet’s use, we believe this smaller training set is
a more appropriate benchmark for model evaluation, but we show results on the complete training set
in Appendix §A.4.1. 3 The EuroSAT dataset [77] (16,200 train samples and 5,400 validation sam-
ples). 4 The Canadian Cropland dataset [78] (53,884 train samples and 23,088 validation samples);
this is a new benchmark inspired by EuroSAT but is more challenging, as the crop types (barley,
canola, corn, etc.) can be visually similar. For finetuning and linear probing, we add a linear layer
for these tasks atop the full-image representations, i.e., Linear(RO). For nonlinear probing, we use
an MLP with one hidden 2048-d layer, i.e., Linear(ReLU(Linear(RO))). Additionally, we perform
non-parametric kNN classification (k = 20) and K-means clustering for single-label benchmarks
to evaluate frozen representations. [79] shows that no single method of evaluating representations
is the best; they recommend including kNN and K-means alongside linear probing. Other studies
[80, 72, 81] show a rank mismatch between kNN and linear probing evaluations—indicating they
offer complementary estimates of representation quality. Please see Appendix §A.4.1 and A.4.2 for
implementation, data splits, and hyper-parameter details.
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Table 1: Classification results on four benchmarks, under finetuning (FT), and frozen linear
(LP) and nonlinear (MLP) probing. * denotes originally reported results; we obtain all other results
under identical conditions.

BigEarthNet (10%) fMoW-Sentinel (10%) EuroSAT Canadian Cropland
mAP Top 1 Acc. Top 1 Acc. Top 1 Acc.

Method Backbone FT MLP LP FT MLP LP FT MLP LP FT MLP LP

radar↔optical [71] ResNet50 77.65 78.79 77.44 32.03 6.46 6.01 96.31 86.35 78.81 57.44 58.09 55.55
radar↔optical [71] Swin-T 86.41 78.65 77.93 52.01 28.54 31.06 98.09 93.50 94.78 70.98 60.36 57.05

MAE [31, 70] ViT-S 86.15 81.70 75.94 51.79 31.70 27.69 98.78 94.46 91.80 74.02 59.07 48.38
DINO [72, 70] ViT-S 87.04 84.96 81.58 52.79 35.62 32.64 98.63 97.07 96.07 75.27 67.35 59.94

I-JEPA [73] ViT-B 85.92 84.27 80.80 53.54 35.76 32.35 99.20 96.60 95.63 75.13 66.69 60.17
SatMAE [26] ViT-B 85.94 83.48 79.36 57.20 37.28 35.17 99.20 97.28 96.61 73.58 66.02 60.40

CROMA ViT-B 87.58 86.29 85.04 54.47 39.67 38.42 99.22 97.89 97.59 76.17 67.62 63.39
SatMAE [26] ViT-L 86.18/

82.62*
84.01 80.29 58.19 38.18 36.76 99.35/

98.98*
97.67 97.65 74.06 67.03 61.75

CROMA ViT-L 88.29 86.46 85.01 59.02 40.07 39.17 99.46 98.04 98.02 78.07 67.94 64.02

Table 2: Non-parametric kNN classification and K-
means clustering results. * denotes 10% of the training
set.

fMoW-Sent.* EuroSAT Can. Crop.
Top 1 Acc. Top 1 Acc. Top 1 Acc.

Method Backbone kNN K-
means

kNN K-
means

kNN K-
means

radar↔optical [71] ResNet50 7.07 3.94 52.09 23.52 49.82 23.15
radar↔optical [71] Swin-T 19.46 7.93 85.07 56.91 48.22 21.57

MAE [31, 70] ViT-S 22.25 7.54 87.33 41.50 56.01 18.31
DINO [72, 70] ViT-S 28.89 8.23 94.20 45.83 60.70 20.22

I-JEPA [73] ViT-B 25.45 8.01 89.02 42.89 57.48 18.06
SatMAE [26] ViT-B 26.76 8.98 89.28 44.87 56.20 20.14

CROMA ViT-B 32.03 11.35 95.26 76.06 61.25 22.55
SatMAE [26] ViT-L 26.77 9.17 89.57 38.48 56.93 19.65

CROMA ViT-L 29.54 10.12 94.70 61.24 59.41 21.27

Classification Results. CROMA ranks
first, averaged across four Sentinel-2 (mul-
tispectral optical) benchmarks, under fine-
tuning, frozen linear and nonlinear probing,
kNN classification, and K-means cluster-
ing (Table 1, 2). The only case where a Sat-
MAE model outperforms a CROMA model
of the same backbone is finetuning on
the fMoW-Sentinel dataset. However, Sat-
MAE was pretrained on fMoW-Sentinel—
meaning there is no distribution shift be-
tween pretraining and finetuning. This
gives SatMAE an advantage on the fMoW-
Sentinel benchmark since downstream per-
formance is impacted by the similarity be-
tween upstream and downstream data [82, 83, 84]. Despite this observation, CROMA-B outperforms
SatMAE-B on fMoW-Sentinel under linear probing (↑ 3.3%), nonlinear probing (↑ 2.4%), kNN
(↑ 5.3%), and K-means (↑ 2.4%). Additionally, CROMA models are more than 4× faster during fine-
tuning and inference than their SatMAE counterparts (please see Appendix §A.4.2 for a comparison).
On all evaluations, CROMA outperforms a ViT-B model pretrained using the I-JEPA framework on
the SSL4EO dataset—I-JEPA is the current SoTA framework for learning self-supervised represen-
tations of ImageNet [73]. We also plot UMAP [85] embeddings (Fig. 3); CROMA shows a strong
separation of EuroSAT classes.

CROMA (ViT-B): 76.0% SatMAE (ViT-B): 44.9% DINO (ViT-S): 45.8% radar↔optical (Swin-T): 56.9%

Permanent Crop Residential Industrial Highway Pasture
Sea & Lake Forest River Annual Crop Herbaceous Vegetation

Figure 3: UMAP embeddings and K-means clustering accuracies of CROMA (ViT-B), SatMAE
(ViT-B) [26], DINO (ViT-S) [70], and radar↔optical (Swin-T) [71] models on EuroSAT [77].
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Sparse Probing. Inspired by the sparse probing of language
models [86], we sparsely probe the 768-dimensional (ViT-B
backbone) image representations by restricting the linear probe
to k dimensions. For each class, we rank all dimensions and
then train a linear probe on the top k to perform binary classifi-
cation (this setup follows [86], please see Appendix §A.4.2 for
more details). This experiment helps us understand the infor-
mation contained in the learned representations. For example,
in Fig. 4 (B), there is a large drop in F1 score when decreas-
ing k—indicating that BigEarthNet’s “beaches, dunes, sands”
class is not well represented by individual dimensions. Rather,
this class is represented by a composition of many features
that are correlated with beaches. Conversely, BigEarthNet’s
“agriculture with natural vegetation” class maps well to a single
dimension of CROMA’s representations, achieving an F1 score
of 49% when k = 1 (Fig. 4 (A)). In Appendix §A.6, we show
sparse probing results for all classification tasks and for all classes.

Segmentation Setup. We evaluate all ViT-based models on three Sentinel-2 segmentation bench-
marks. 1 The DFC2020 dataset [87] (46,152 train samples and 8,874 validation samples). 2 A
subset of the Dynamic World dataset [88] that was annotated by experts; hence we call it DW-Expert
(20,422 train samples and 51,022 validation samples). DW-Expert is a new, high-quality benchmark
that was annotated with the help of high-resolution satellite and street-level imagery. 3 The MARIDA
dataset [89] (1,682 train samples and 1,615 validation samples), which is a small, sparsely labeled
dataset of marine debris. For all tasks, we linear probe frozen patch encodings, i.e., Linear(EO). We
crop images of 96 × 96 from the original images (256 × 256 for DFC2020, 510 × 510 for DW-Expert,
and 256 × 256 for MARIDA). We train and evaluate all models on these 96 × 96 images, which is the
default image size for SatMAE, enabling a fair comparison with the SoTA.

Table 3: Semantic segmentation (mIoU) re-
sults on three Sentinel-2 benchmarks.

Method Backbone DFC2020 DW-Expert MARIDA

MAE ViT-S 35.63 46.63 48.06
DINO ViT-S 32.34 48.34 49.38
I-JEPA ViT-B 36.72 50.82 53.85

SatMAE ViT-B 45.53 51.03 58.17
CROMA ViT-B 46.67 58.55 65.56
SatMAE ViT-L 44.13 51.50 57.12
CROMA ViT-L 49.78 58.71 63.32

Segmentation Results. CROMA outperforms Sat-
MAE by averages of 5.4% and 6.4% for ViT-B and
ViT-L backbones, respectively (Table 3). These re-
sults demonstrate that CROMA effectively learns fine-
grained patch-level features useful for dense predic-
tion tasks like semantic segmentation.

3.2 Radar and Radar-Optical Experiments

Table 4: Multimodal (Sentinel-
1 & 2) linear probing results
on classification and segmen-
tation benchmarks.

BigEarthNet DFC2020
Model mAP mIoU

SatViT-V2 [74] 79.80 46.20
CROMA-B 86.24 51.58
CROMA-L 86.20 53.24

Multimodal Setup. BigEarthNet and DFC2020 also contain spa-
tially and temporally aligned Sentinel-1 samples alongside Sentinel-
2. This allows us to evaluate our multimodal representations and
directly compare them with optical-only representations on the
same benchmark. We linear probe frozen image representations for
BigEarthNet, i.e., Linear(CONCAT(RR,RO,RRO)), and patch en-
codings for DFC2020, i.e., Linear(CONCAT(ER, EO, ERO)). Con-
current with this work, DeCUR [75] learns radar and radar-optical
representations via their novel multimodal framework. They fit a
linear probe on top of DeCUR’s representations on 1% of the BigEarthNet training set and report
results on the BigEarthNet validation set; we follow this experimental procedure with our CROMA-B
model for a direct comparison.

Table 5: Linear prob-
ing radar and radar-
optical representations.

BigEarthNet (1%)
mAP

Method Radar Radar-Opt.

DeCUR 73.7 79.4
CROMA 75.7 81.8

Multimodal Results. CROMA significantly outperforms the joint multi-
modal representations learned by SatViT-V2 [74] (Table 4). Our joint multi-
modal representations outperform our optical-only representations by 1.2%
on BigEarthNet (both CROMA-B and CROMA-L) and by 4.9% (CROMA-
B) and 3.5% (CROMA-L) on DFC2020 (Table 1, 3, 4)—justifying our
multimodal approach. CROMA’s radar-only and radar-optical represen-
tations also outperform the concurrent DeCUR under a linear probing
experiment (Table 5).
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Table 6: Linear probing ablation results on radar-only (“R”), optical-only (“O”), and joint radar-
optical (“RO”) inputs. We consider both performance and cost to select our design. All rows below
“all default” report the performance differences between ablated cases and the default.

Case (default) Ablation
batch
size

cost
Classification (mAP) Segmentation (mIoU)

R O RO R O RO Avg

all default 7.2k 1.0× 78.2 84.5 84.8 40.8 56.0 56.5 66.8

1 objectives
(both)

MAE-only 7.2k 1.0× −10.4 −6.0 −5.6 −9.2 −8.4 −5.1 −7.5
contrast-only 14k 0.6× −3.2 −3.0 — −2.9 −3.7 — —

2 position encoding
(2D-ALiBi + X-ALiBi)

2D-ALiBi 7.2k 1.0× −0.2 −0.2 −0.3 0.1 0.0 −0.9 −0.2
PEG [90] 6.9k 1.0× −0.3 0.0 −0.1 −0.6 −1.0 −1.9 −0.7

2D-sinusoidal 7.2k 1.0× −3.8 −2.9 −1.3 −2.2 −0.1 −0.2 −1.7

3 masking
(independent 75%)

shared 25% 2.4k 3.0× −0.5 −1.0 −1.1 1.1 0.5 −0.2 −0.2
shared 50% 3.7k 1.8× −0.3 −0.7 −0.7 1.0 0.6 0.1 0.0
shared 75% 7.2k 1.0× −0.8 −0.5 −0.3 0.0 0.1 0.0 −0.2

independent 50% 3.7k 1.8× −0.2 −0.5 −0.5 0.9 0.7 0.3 0.1

4 MAE target
(radar & optical)

radar-only 7.2k 1.0× −0.1 −0.2 −0.6 0.3 −0.2 −1.4 −0.5
optical-only 7.2k 1.0× −0.1 −0.2 −0.2 −0.1 −0.1 −0.6 −0.2

5 MAE decoder (depth=1, dim=512) depth=6, dim=768 4.3k 1.7× 0.1 −0.1 0.1 0.4 0.2 0.2 0.1

6 scale
(ViT-B, epochs=100)

ViT-B, epochs=300 7.2k 3.0× 1.6 0.5 0.4 1.7 1.3 0.5 1.0
ViT-L, epochs=600 3k 15× 2.5 0.4 0.5 2.8 0.9 0.1 1.2

4 Ablation Analysis

4.1 CROMA Design

Ablation Setup. We ablate the CROMA design by pretraining CROMA-B models for 100 epochs
unless stated otherwise. For each ablation, we set the maximum batch size that can fit into 640 GB
of VRAM (with bfloat16 precision); adjusting the batch size results in better comparisons between
approaches. For classification on BigEarthNet, we linear probe frozen unimodal and multimodal
representations, i.e., Linear(RR), Linear(RO), Linear(RRO). For segmentation on DW-Expert-120,
we linear probe frozen patch encodings, i.e., Linear(ER), Linear(EO), Linear(ERO). For BigEarthNet,
we train on the same 10% split as §3.1, but report results on the combined validation and test sets
(236,130 samples). For DW-Expert-120, we select 120 × 120 images (CROMA’s default image
size) from Dynamic World’s [88] original Sentinel-2 images and match them, in space and time,
with Sentinel-1 images—forming a high-quality multimodal segmentation dataset. DW-Expert-120
consists of 10,200 train and 45,367 validation samples.

Ablation Results. 1 Removing either self-supervised objective significantly degrades accuracy on
both classification and segmentation tasks. This justifies a fundamental design choice, i.e., combining
contrastive and reconstruction approaches for aligned multimodal data. 2 Although our primary
motivation for 2D-ALiBi is to enable input size extrapolation (see §4.2), we find it also improves linear
probing accuracy over a SoTA RPE method for ViTs, even when no extrapolation occurs. Averaged
across six evaluations, 2D-ALiBi without X-ALiBi outperforms a Position Encoding Generator (PEG,
[90]) by 0.5% and 2D-sinusoidal embeddings by 1.5%. (We adapt PEG to MAE-style masking
by zero-filling the masked-out patches during pretraining, inspired by [91]). Leveraging X-ALiBi
with 2D-ALiBi further improves average performance by 0.2% (Table 6)—particularly improving
multimodal performance, which is our motivation for X-ALiBi. We believe there are two reasons for
2D-ALiBi’s superior performance—evidence for both is provided in Appendix §A.2. First, 2D-ALiBi
learns rotation-invariant representations despite not being trained with rotation-invariant objectives;
this is a desirable property of satellite imagery that likely improves classification performance.
Second, 2D-ALiBi prevents patch-wise representational collapse (i.e., the representations of patches
within an image become similar, losing local information) often observed with contrastive objectives
[47]; preserving patch-wise diversity likely improves segmentation performance. 3 Lower mask
ratios hurt classification and help segmentation but increase costs. For both 50% and 75% mask ratios,
independently masking our modalities (i.e., optical and radar samples are masked differently) slightly
outperforms shared masking. Although 50% independent masking outperforms 75% masking by
0.1%, we select the higher mask ratio because it offers a 1.8× speedup. 4 A multimodal target (14
channels) outperforms an optical-only target (12 channels) by 0.2%, which outperforms a radar-only
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target (2 channels) by 0.3% (Table 6); this implies that reconstructing more information leads to more
general representations. A multimodal target is especially important for learning rich multimodal
representations. 5 A larger decoder improves segmentation but costs 1.7× more. MAE showed
that a deep decoder improves linear probing accuracy [31], but CROMA is very robust to decoder
size. Therefore, we select the most efficient, i.e., a 1-layer, 512-d decoder. 6 We design CROMA by
pretraining ViT-B models for 100 epochs and consider linear probing performance and cost. Thus,
our design may not be optimal when scaling up. Nevertheless, scaling to more epochs and a larger
model improves representations, especially radar-only representations.

In Appendix §A.1 we also experiment with—all showing minimal or negative impacts—task weights,
more decoder sizes, VICReg [92], mean squared error loss between cross-modal patch encodings
(inspired by [93]), InfoNCE loss between cross-modal patch encodings (inspired by [94]), hard-
negative mixing [95], and lower-masked tuning at the end of pretraining [68].

4.2 Extrapolating Representations to Larger Images

Extrapolation Setup. For three CROMA-B models (2D-sinusoidal, PEG [90], and 2D-ALiBi)
pretrained for 100 epochs, we finetune all parameters (along with a linear head) on Sentinel-2 images
from DW-Expert-120 (120 × 120 pixels). Then, we directly evaluate the models on images of varying
sizes to test their ability to extrapolate at test-time. We create validation sets with different image
sizes by cropping from the original 510 × 510 images in Dynamic World [88]. Regardless of image
size, we retain the 10 m per pixel spatial resolution on which the models were trained—extrapolating
to smaller or larger geographic areas at test-time. For 2D-sinusoidal embeddings, we also evaluate an
embedding interpolation algorithm often used when applying ViTs on larger images [31, 26, 48, 96].

Table 7: Segmentation results (mIoU) of models trained
on 120 × 120 resolution and evaluated on various reso-
lutions.

48 96 120 224 384 448 504

2D-Sinusoidal 54.4 58.5 59.2 38.2 24.9 21.8 19.5
2D-Sinusoidal w/ interp. 50.7 58.6 59.2 58.3 56.2 55.5 54.9

PEG [90] 55.1 58.0 58.3 58.5 57.7 57.4 57.1
2D-ALiBi 56.3 59.0 59.3 59.5 59.1 59.0 58.8

Train Res.

Test Res.Method

Extrapolation Results. 2D-ALiBi outper-
forms PEG by 1.7% on 504 × 504 pixel
images (Table 7). Amazingly, we only see
a 0.7% drop in mIoU when testing on ar-
eas 17.64× larger than those on which our
model was trained—effectively generaliz-
ing from 225 to 3,969 patches per image.
We achieve this by extending ALiBi [66]
to 2D inputs by penalizing attention scores
based on the Euclidean distance between
query-key pairs. We may achieve even better results by encoding directions in a subset of attention
heads or learning scalars [97]; we leave these investigations to future work. We believe X- and
2D-ALiBi have tremendous potential beyond our CROMA framework, for instance, by extending
these methods to additional modalities, viewing angles, or 3D data.

5 Related Work

Remote Sensing Representations. Deep learning for remote sensing has been an active research
area for many years. Researchers have leveraged self-supervised learning frameworks in the last few
years to learn representations of remote sensing data that can be widely leveraged across societally
important downstream tasks. In designing contrastive pretext tasks, remote sensing researchers built
positive pairs by leveraging spatial [98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108], temporal
[24, 25, 109], spectral [110], or cross-modal [111, 112, 113, 114, 115, 116] information. In designing
reconstructive pretext tasks, researchers held-out spectral bands [117], pixels [118, 119, 120, 121], and
resolutions [27]. However, these studies—including the concurrent Scale-MAE [27] and influential
studies tile2vec [108], GASSL [24], and SeCo [25]—were either performed at smaller scales or
only included wavelengths from the visible (red, green, and blue) spectrum; this limits their utility
on downstream applications since wavelengths from the non-visible spectrum contain information
critical to many remote sensing tasks [53, 122, 123, 124]. For example, the ability to measure
the reflectance of objects in the near-infrared portion of the wavelength is extremely valuable in
applications related to vegetation identification [125], health and productivity [126], as well as
identifying water bodies [127], soil moisture [128], and vegetation water content [129].

Relative Position Encoding for ViTs. SoTA transformers in natural language processing use RPE
[130, 131, 132], but fixed 2D-sinusoidal embeddings still predominate ViTs. The improved inductive
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bias of RPE over absolute position encoding can offer improved performance and, sometimes, the
ability to extrapolate to larger images at test-time, i.e., directly applying a model trained on one image
size to another without further training. This extrapolation ability would add considerable value to
remote sensing foundation models since image sizes vary widely—images are often cropped from
large scenes down to smaller sizes chosen idiosyncratically. Positional Encoding Generator (PEG,
[90]) is a SoTA RPE method that uses a convolution between ViT layers; PEG was demonstrated to
significantly outperform other RPE methods when tested on larger images. iRPE [133] is another,
more complex, RPE method for ViTs; however, it demonstrates no extrapolation ability. We found no
prior work that leverages RPE in cross-attention.

6 Conclusion

We propose a novel framework for learning unimodal and multimodal representations for Earth
Observation by jointly leveraging contrastive and reconstruction self-supervised objectives. We
extend a SoTA position encoding method for 1D sequences to 2D inputs and cross-attention; to
the best of our knowledge, this is the first time explicit position encoding has been leveraged in
cross-attention. These strategies allow our models to extrapolate to larger images at test-time and
improve performance on both unimodal and multimodal data. We extensively evaluate our pretrained
models on diverse tasks and methods, outperforming the previous SoTA. Although our method is
designed for multimodal satellite imagery, it can be leveraged on other applications that offer spatially
aligned multimodal data, for instance, medical imaging or autonomous vehicles.

The main limitation of our work is our focus on static-in-time Sentinel-1 & 2 data; in the future,
we will explore other sensors that offer higher spatial or spectral resolutions and time-series data.
Despite this limitation, Sentinel-1 & 2 are the most widely used sources for satellite imagery in
research—making our models an incredible resource for the remote sensing community and users of
remote sensing-derived products, for instance, geographers, economists, or environmental scientists.
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A Appendix

Code and pretrained models: https://github.com/antofuller/CROMA

A.1 Other Pretraining Experiments

In this section, we experiment with additional CROMA settings. We use the same experimental
conditions as §4.1 of our paper; i.e., we linear probe representations on BigEarthNet [76] (reporting
mAP on the combined validation and test sets) and patch encodings on DW-Expert-120 [88] (reporting
mIoU on the validation set). We use the linear probing hyper-parameters listed in §A.4.2 of this
Appendix.

Table 8: Linear probing results on radar-only (“R”), optical-only (“O”), and joint radar-optical
(“RO”) inputs. Across all experiments, we use 2D-ALiBi with X-ALiBi, 75% shared masking, ViT-B
backbones, and 100 pretraining epochs.

Cross-Modal Cross-Modal Decoder Obj. Weights HN Mixing Classification (mAP) Segmentation (mIoU)

Image Obj. Patch Obj. Depth, Dim λCon, λMAE (1024, 0, n) Cost R O RO R O RO

InfoNCE MSE 1, 512 1, 1 ✗ 1× 77.4 83.9 84.3 40.5 56.0 56.7
InfoNCE MSE 1, 768 1, 1 ✗ 1× 77.4 83.9 84.3 40.7 56.1 56.6
InfoNCE MSE 3, 512 1, 1 ✗ 1.2× 77.5 83.9 84.4 40.5 56.3 57.1
InfoNCE MSE 3, 768 1, 1 ✗ 1.3× 77.5 83.9 84.4 40.7 56.2 56.6
InfoNCE MSE 6, 512 1, 1 ✗ 1.4× 77.5 83.9 84.4 40.3 56.0 56.7
InfoNCE MSE 6, 768 1, 1 ✗ 1.6× 77.6 83.8 84.5 40.6 56.2 56.7
InfoNCE ✗ 1, 512 1, 1 ✗ 1× 77.4 84.0 84.5 40.8 56.1 56.4
InfoNCE ✗ 1, 768 1, 1 ✗ 1× 77.5 84.2 84.5 40.8 56.1 56.2
InfoNCE ✗ 3, 512 1, 1 ✗ 1.2× 77.6 84.1 84.5 40.8 56.2 56.7
InfoNCE ✗ 3, 768 1, 1 ✗ 1.3× 77.0 83.9 84.5 40.6 56.1 56.5
InfoNCE ✗ 6, 512 1, 1 ✗ 1.4× 77.3 84.1 84.5 40.8 56.1 56.5
InfoNCE ✗ 6, 768 1, 1 ✗ 1.6× 77.5 84.1 84.6 40.6 56.5 56.8
InfoNCE InfoNCE 3, 512 1, 1 ✗ 2.2× 72.8 80.9 82.4 39.0 55.1 55.2
InfoNCE ✗ 1, 512 1, 2 ✗ 1× 77.5 84.3 84.2 40.7 55.9 56.2
InfoNCE ✗ 1, 512 1, 4 ✗ 1× 77.5 84.3 84.1 40.6 55.4 56.0
InfoNCE ✗ 1, 512 2, 1 ✗ 1× 77.5 84.1 84.5 40.4 55.9 56.3
InfoNCE ✗ 1, 512 4, 1 ✗ 1× 77.6 83.9 84.5 40.7 55.8 56.8
InfoNCE ✗ 1, 512 1, 1 128 1× 73.6 81.6 83.0 38.0 53.2 55.0
InfoNCE ✗ 1, 512 1, 1 256 1× 73.0 81.0 82.8 37.8 52.9 54.7
InfoNCE ✗ 1, 512 1, 1 512 1× 72.5 80.2 82.4 37.6 52.6 54.4
VICReg MSE 1, 768 1, 1 ✗ 1.1× 70.7 78.7 83.3 40.0 55.5 55.1

Self-supervised Objectives. Inspired by the local objective of VICRegL [93], we experiment with a
mean squared error (MSE) objective between cross-modal patch encodings, i.e., Llocal=MSE(ER, EO).
This attracts patch encodings if they match locations, i.e., if they represent the same 80 m × 80 m
square on the ground. We find this does not improve representations. Next, we experiment with
the VICReg [92] objective (calculating VICReg statistics based on a batch size of 800) between
cross-modal image representations, i.e., RR and RO; we find it underperforms InfoNCE [28]. Finally,
we experiment with the InfoNCE objective between cross-modal patch encodings; positive pairs
are encodings that match locations across modalities, and negative pairs are all other encodings
from the matched sample and encodings from all other samples in the batch. This does not improve
representations and slows pretraining by 2.2× (Table 8).

Objective Weights. We find that weighting the contrastive loss term or MAE [31] loss term does not
uniformly improve representations; hence, we select equal weights.

Hard Negatives. We find that hard-negative mixing [95] (N=1024, s=0, s′=n, β=0.5, with n of 128,
256, or 512) degrades performance when used in our framework.

Decoder Sizes. At least in these experiments, CROMA is not sensitive to the decoder size; a
tiny decoder with a 1-layer, 512-d transformer performs similarly to a much larger 6-layer, 768-d
transformer.
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Table 9: Linear probing results with shared
75% masking, ViT-B, 100 epochs.

Classification Segmentation
Method mAP mIoU

R O RO R O RO

PEG [90] 67.9 75.9 79.0 32.6 49.8 51.0
2D-Sin. 69.4 75.6 79.8 29.0 44.1 50.7

Position Encoding with Shared Masking. We find
that using 2D-sinusoidal embeddings or PEG [90]
with shared masking performs poorly. These two
methods of position encoding store positional infor-
mation in the internal representations, which can
help solve the contrastive objective if both modal-
ities share masks; 2D-ALiBi instead stores positional
information in the attention matrix, which may pre-
vent this from occurring. In our paper (Table 6), we show that 2D-sinusoidal or PEG can perform
well in our framework if modalities are masked independently, although 2D-ALiBi still outperforms
these approaches.

Table 10: Lower masked tuning for 5 epochs
after pretraining CROMA-L.

Classification Segmentation
Mask Ratio mAP mIoU

R O RO R O RO

10% 80.8 84.7 84.7 43.8 56.8 56.6
25% 80.8 84.7 84.8 43.9 56.8 56.6
50% 80.8 84.8 85.0 43.9 56.8 56.6

Lower Masked Tuning. FLIP [68] performs con-
trastive learning using the representations of masked-
out samples; after this masked pretraining, it lever-
ages unmasked tuning to increase accuracy by 1.3%
on zero-shot ImageNet-1K. Unmasked tuning contin-
ues FLIP pretraining by performing contrastive learn-
ing using the representations of unmasked samples to
reduce the distribution gap between pretraining and
inference [68]. We cannot perform fully unmasked
tuning because we must mask patches for our reconstruction objective. However, we can lower
our mask ratio and perform lower masked tuning. Following FLIP, initializing parameters with our
pretrained CROMA-L model, we train for 5 additional epochs using a base learning rate of 8e-8,
warmup over the first epoch, and cooldown for 4 epochs using a cosine decay schedule. We explore
mask ratios {10%, 25%, 50%} and find that lower masked tuning does not improve linear probing
accuracy for CROMA (Table 10).

A.2 Two Reasons for 2D-ALiBi’s Performance

Our primary reason for introducing 2D-ALiBi is to enable the test-time extrapolation demonstrated
in §4.2. But even when no extrapolation occurs—training and testing on the same image size—2D-
ALiBi outperforms both the most commonly used position encoding method (2D-sinusoidal) and a
SoTA relative position encoding method (PEG [90]). We believe 2D-ALiBi outperforms these two
methods for two reasons.

Table 11: Cosine similarity between the representations of images and the representations of trans-
formed versions of the same images. Higher similarity means the representations are less influenced
by the image transformation.

Transformation (cosine similarity)

Method H-Flip V-Flip rotate(90°) rotate(180°) rotate(270°)

2D-ALiBi + X-ALiBi 0.992 0.992 0.992 0.992 0.992
2D-ALiBi 0.992 0.992 0.992 0.992 0.992
PEG [90] 0.992 0.992 0.988 0.992 0.988

2D-sinusoidal 0.641 0.629 0.523 0.559 0.523

1 2D-ALiBi learns image representations invariant to rotating and flipping. Learning represen-
tations that are invariant to certain transformations is often desirable. In CROMA, the contrastive
objective between optical and radar data encourages sensor-invariant representations. Invariances
to flipping and rotating are desirable properties of the representations of satellite imagery. How-
ever, CROMA’s pretraining objectives do not explicitly encourage these invariances. To investigate
if CROMA’s optical representations (i.e., RO) are invariant to flipping and rotating, we produce
representations of 5,000 optical images from DW-Expert-120 for four position encoding strategies—
2D-ALiBi, 2D-ALiBi with X-ALiBi, PEG, and 2D-sinusoidal. Then, for each model, we produce
representations of the same samples but transformed. We measure the cosine similarity between the
original and transformed images’ representations. When used in our CROMA framework, 2D-ALiBi
learns representations invariant to flipping and rotating (average cosine similarity of 0.992, Table
11). Notably, 2D-sinusoidal learns representations that are not invariant to flipping and rotating
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(average cosine similarity of 0.575, Table 11); we believe this contributes to the poor performance of
2D-sinusoidal embeddings on image classification. PEG performs similarly to 2D-ALiBi on image
classification and also learns representations invariant to flipping and rotating.

Table 12: (Middle column) Cosine similarity between patch encodings at different locations within
an image, averaged across 5,000 images. (Right column) Cross entropy loss of an MLP probe trained
to predict patch locations given patch encodings.

Method Patch Encoding Similarity Patch Encoding Position Probing
(cosine similarity) (cross entropy loss)

2D-ALiBi + X-ALiBi 0.546 4.43
2D-ALiBi 0.582 4.41
PEG [90] 0.701 4.13

2D-sinusoidal 0.493 0.00

2 2D-ALiBi learns patch representations that retain local information. [47] show that models
trained with contrastive objectives can lose significant local information at deeper ViT layers that
harm performance on dense prediction tasks. They show that the cosine similarity between the
representations of patches at different locations within an image becomes high, indicating a patch-
wise representational collapse. At every ViT layer, 2D-ALiBi injects a local bias in each attention
head, for each patch location. To investigate if 2D-ALiBi can successfully prevent this collapse
from occurring, we measure the cosine similarity between different patch encodings of the same
sample and take the average across 5,000 optical images. We find that 2D-ALiBi learns to represent
patches with greater spatial diversity than PEG, and X-ALiBi further improves diversity (Table 12).
Interestingly, 2D-sinusoidal learns the most diverse patch representations. We also train MLP probes
on patch encodings to classify the patch location; this measures the amount of positional information
represented in patch encodings. We find that the patch encodings of models that use 2D-sinusoidal
embeddings fully specify the location of the patch within the image (Table 12); this is an undesirable
property of patch encodings, which should represent the content of the patch, rather than its location.

A.3 Pretraining Details

A.3.1 Data

We use the SSL4EO dataset [70], which consists of Sentinel-1 & 2 imagery acquired at 250K locations
around the world; each location (a 2.64 km × 2.64 km square) is imaged four times, spread out over a
year. We use these 1 million samples of 264 × 264 pixels for pretraining. Please see the SSL4EO
paper [70] for more details.

A.3.2 Implementation

We use an NVIDIA DGX server (8×A100-80GB), the maximum batch size that can fit into 640 GB
of VRAM (7,200 for our default ViT-B), bfloat16 precision, a base learning rate of 4e-6, warmup for
5% of the total epochs, and cooldown via a cosine decay schedule. We use the same normalization
procedure as SatMAE [26]. For data augmentation, we randomly crop 60-180 pixel squares from
the original 264 × 264 pixels and resize the crops to 120 × 120 pixels (our default image size). We
also perform vertical and horizontal flipping, 90-degree rotations, and mixup=0.3. Crucially, we
apply these transformations identically to both modalities; if we applied them to each modality
independently, our spatial alignment would break. We use the AdamW optimizer with β1=0.9 and
β2=0.999, and a weight decay of 0.01.

A.4 Evaluation Details

The evaluation of foundation models for Earth Observation is less mature than in other fields. We
do our best to re-use the experimental conditions of the SoTA, i.e., SatMAE [26], and improve
upon them where possible. One such condition is to report results from a held-out validation set;
precisely, the best validation performance measured after each finetuning epoch is reported. No
test sets are used. To enable fair comparisons with prior work, we copy this approach. In trying to
improve the evaluation of foundation models for Earth Observation, we detail our approach in this
Appendix, share code and preprocessed datasets, re-evaluate all near-SoTA models under identical
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conditions, and evaluate models in more ways than prior work (i.e., linear and nonlinear probing,
kNN classification, and K-means clustering).

We initialize parameters from publicly shared pretrained weights, evaluating all models ourselves
under identical conditions. Although this process is laborious, we believe it significantly improves
the value of our paper; several prior studies have often evaluated their models in different ways, using
different data splits that cannot be directly compared. When downloading pretrained weights, we use
the latest weights that are publicly available. For instance, SatMAE [26] released improved versions
of their multispectral ViT-B and ViT-L models, pretrained for 200 epochs, after their manuscript
was accepted for publication (edited on arxiv on January 15th, 2023). We exclusively evaluate these
improved models throughout our paper, ensuring we compare CROMA to the best models available.
For multispectral benchmarks with 13 channels (with cirrus included), we simply drop the cirrus
band for models pretrained without it.

A.4.1 Data

BigEarthNet. [76] We use the same splits for training (10% of the complete training set) and
evaluating (the entire validation set) as SatMAE [26] and SeCo [25]. However, we use the combined
validation and test sets (236,130 samples) in our ablation studies to increase the reliability of our
findings with minimal added cost. Images are 120 × 120 pixels.

fMoW-Sentinel. [26] Inspired by how the BigEarthNet benchmark is used (i.e., training on 10% of
the complete training set of 354,200 samples), we create a 10% split of the complete fMoW-Sentinel
training set of 712,874 samples. We share the IDs of the 10% of fMoW-Sentinel training samples that
we randomly selected. We believe this smaller training set should be used in future work to reduce
the costs of hyper-parameter searches—a single finetuning run of SatMAE on the complete training
set requires 192 hours on a V100 GPU [26]. Following SatMAE, we use the full validation set for
evaluation. Images vary in size; the mean height is 45 pixels, and the mean width is 60 pixels.

Table 13: fMoW-Sentinel results (top 1 ac-
curacy) using the complete training set. *
denotes results reported in SatMAE (updated
on arxiv on January 15th, 2023).

Method Backbone Finetuning Linear Probing

SatMAE ViT-B 62.65* 37.40
CROMA ViT-B 61.00 40.94
SatMAE ViT-L 63.84* 39.19
CROMA ViT-L 63.59 41.96

In our paper, we benchmark this new split. However,
we report results obtained by our CROMA models on
the complete training set in Table 13. Due to the costs
of finetuning on the complete training set (712,874
samples), we decide to allocate our resources else-
where and not perform any hyper-parameter tuning.
Instead, we select hyper-parameters we believe to be
reasonable and finetune CROMA-B and CROMA-L
once. For finetuning, we use a base learning rate of
1e-5 and all other hyper-parameters from §A.4.2.

EuroSAT. [77] We use the same training and validation sets as SatMAE. Images are 64 × 64 pixels.

Canadian Cropland. [78] We are the first to benchmark this dataset of Canadian agricultural
croplands, consisting of 10 classes (barley, canola, corn, mixedwood, oats, orchard, pasture, potato,
soybean, and spring wheat). We select this dataset because it is a large dataset that evaluates different
capabilities from the other benchmarks that typically consider croplands as a single class. Following
EuroSAT [77], the authors selected an image size of 64 × 64 pixels [78]; therefore, models evaluated
on EuroSAT can be evaluated on Canadian Cropland with minimal modifications. We use the training
set and combine their validation and test sets to form a single held-out set for evaluation. We
share these complete training and validation sets. The performance (Table 1) and representation
visualizations (Fig. 6 and 7 in this Appendix) indicate that the 10 classes present in this dataset are
challenging to separate.

DFC2020. [87] This dataset is used for evaluation in diverse ways—both the choice of data split and
image size. The original dataset comprises 6,114 samples of 256 × 256 pixels. These samples are
typically split into two: a so-called “validation set” of 986 samples and a so-called “test set” of 5,128
samples. Some studies use the “validation set” for training and the “test set” for validation; others use
the “test set” for training and the “validation set” for validation. Some studies use the full 256 × 256
pixels as inputs to their models, while others use smaller inputs. We select the split of 5,128 samples
for training, which we divide into 46,152 images of 96 × 96 pixels—leaving us with the split of 986
samples for validation, which we divide into 8,874 images of 96 × 96 pixels. We select this final
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resolution because it is the default image size of SatMAE, enabling a fair comparison to the SoTA.
We share these complete training and validation sets.

DW-Expert. [88] The data collected by Dynamic World [88] is a new high-quality dataset annotated
by experts with the help of auxiliary information. Thus, it should be used in the future when
benchmarking models. Our work uses the expertly annotated data from Dynamic World, which we
split into 20,422 train samples and 51,022 validation samples. All images are 96 × 96 pixels to enable
a fair comparison with SatMAE. We share these complete training and validation sets. We also create
a version of this dataset that consists of 120 × 120 pixel images (i.e., DW-Expert-120) that we only
use for ablations because it is the default image size of CROMA.

MARIDA. [89] We use the training set and combine the validation and test sets to form a single held-
out set for evaluation. Following our approach for DFC2020 and DW-Expert, we divide the original
images into images of 96 × 96 pixels. Because it is a sparsely labeled dataset (i.e., only a fraction
of pixels per image are labeled), we include images with at least one labeled pixel. We select this
dataset because it evaluates different capabilities from the other semantic segmentation benchmarks.
It consists of the following classes: marine debris, dense Sargassum, sparse Sargassum, natural
organic material, ship, clouds, marine water, sediment-laden water, foam, turbid water, shallow water,
waves, cloud shadows, wakes, and mixed water. We share these complete training and validation sets.

A.4.2 Implementation

Finetuning. We select reasonable hyper-parameters that we use for all models and datasets unless
otherwise stated and sweep across learning rates. This learning rate sweep is essential to creating
fair evaluation conditions across models since each model is given the same search budget (in terms
of finetuning runs, not compute hours), and different models have different optimal learning rates.
Models pretrained with reconstruction approaches tend to require higher base learning rates during
finetuning than models pretrained with contrastive learning. For instance, MAE [31] lists a base
learning rate of 1e-3, FLIP [68] lists a base learning rate of 5e-5, CoCa [49] lists base learning rates
from 1e-5 to 5e-4, depending on the downstream dataset.

No single learning rate would enable a fair comparison across all models and datasets. Therefore, we
sweep learning rates across an extensive range {3e-5, 5e-5, 8e-5, 1e-4, 3e-4, 5e-4, 8e-4, 1e-3} and
report the best single evaluation result obtained for each dataset; this sweep is performed for CROMA
models and all other models. We convert these base learning rates to actual learning rates via the
widely used linear scaling rule: lr = base_lr × batch_size/256. We use the largest batch size
that can fit on an A100-40GB GPU (using bfloat16 precision), the AdamW optimizer with β1=0.9,
β2=0.999, and a weight decay of 0.01. We warmup for 5 epochs and cooldown for 30 epochs using
a cosine decay schedule (other than EuroSAT, which we cooldown for 150 epochs); this follows
SatMAE [26]. For classification tasks, we use mixup=0.8, cutmix=1.0, switch probability=0.5, label
smoothing=0.1, vertical and horizontal flipping, and 90-degree rotations. We enlarge images to the
default image size of the model we are finetuning (i.e., the image size on which the model was
pretrained), with one exception. The default image size of SatMAE is 96 × 96; however, BigEarthNet
images are 120 × 120 [76], requiring that we either crop BigEarthNet samples (losing information) or
adapt SatMAE to larger images. We achieve better performance by adapting SatMAE to 120 × 120
images via the widely used position embedding interpolation algorithm than cropping BigEarthNet
samples down to 96 × 96. This allowed us to achieve an mAP of 86.18 for SatMAE, a significant
improvement over the 82.62 reported in the SatMAE paper. All other datasets use images of 96 × 96,
or smaller—thus, there is no reason to use this technique for other datasets.

Linear and Nonlinear Probing. We encode each image without data augmentation then train linear
and nonlinear probes on the frozen representations. Since each model only encodes each image
once, we can sweep through a large range of learning rates ({1, 2, 3, 4, 5, 6, 7, 8, 9}e{-4, -3, -2})
very quickly. Unlike finetuning, we do not evaluate probes after every epoch; instead, we evaluate
trained probes after all epochs are complete. We use a batch size of 1024, bfloat16 precision, the
AdamW optimizer with β1=0.9, β2=0.999, and a weight decay of 0.01. We warmup for 5 epochs
and cooldown for 100 epochs using a cosine decay schedule.

Non-parametric kNN and K-means. For kNN, we use the implementation from [27]. This consists
of encoding all training and validation samples and then using the representations of validation
samples as queries and training samples as keys to fetch training labels. These fetched training
labels are used to classify validation samples. We use k=20, other values for k (i.e., 10, 50) ranked
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Table 14: CROMA vs SatMAE training and inference throughput on an A100-40GB GPU.

Model Backbone Image Size Train Imgs/s Inference Imgs/s

SatMAE ViT-B 96×96 249.3 692.5
CROMA ViT-B 96×96 1,079.3 2,957.7
CROMA ViT-B 120×120 555.0 1,532.1
SatMAE ViT-L 96×96 84.2 263.2
CROMA ViT-L 96×96 389.1 1,168.2
CROMA ViT-L 120×120 209.6 640.3

models in the same order as k=20. For K-means, we use the implementation from [79]. This consists
of encoding all training and validation samples, then clustering training samples with K-means
(K-means++ [134] initialization run 10 times). Then, we assign validation samples to clusters and
assign clusters to classes via the Hungarian matching algorithm [135].

Sparse Probing. For each model and dataset, we rank the dimensions of representations R using the
mean difference between classes—[86] shows that the mean difference performs on-par with more
complex ranking methods and is simple to implement. Specifically, this is our procedure to sparsely
probe the representations of CROMA for BigEarthNet’s “beaches, dunes, sands” class: (i) compute
the average representation, RBeaches

CROMA ∈ R768, of all samples in the BigEarthNet training set that
contain the class “beaches, dunes, sands”; (ii) compute the average representation, RNoBeaches

CROMA ∈ R768,
of all samples in BigEarthNet that do not contain the class “beaches, dunes, sands”; (iii) compute
the difference between these averaged representations, Rdiff ∈ R768; (iv) rank all 768 dimensions in
Rdiff by the absolute value, i.e., the dimension with the greatest absolute difference between classes is
ranked first; (v) train a separate linear probe to perform binary classification on the top k dimensions,
we sweep many values of k between 1 and 768; (vi) using these trained probes, evaluate them on the
BigEarthNet validation set. Again, this procedure is performed for all three ViT-B models (CROMA,
SatMAE, and I-JEPA), all classification datasets (BigEarthNet, fMoW-Sentinel, Canadian Cropland,
and EuroSAT), and all classes—these plots are displayed at the end of this Appendix §A.6. We also
sparsely probe radar-only, RR, and radar-optical, RRO, representations for BigEarthNet, since we
have access to Sentinel-1 samples.

SatMAE Specifics. SatMAE [26] divides spectral bands into three groups and outputs patch encod-
ings for every group; thus, SatMAE outputs three patch encodings per patch location. To be as fair as
possible to SatMAE, we explore four ways of merging these co-located patch encodings to perform
segmentation: unnormalized spatial concatenation, normalized spatial concatenation, unnormalized
spatial pooling, and normalized spatial pooling. We find unnormalized spatial concatenation (i.e.,
concatenating the patch encodings of co-located patches before the LayerNorm) performed best.
Thus, we use the unnormalized spatially concatenated patch encodings for all segmentation datasets.
Conversely, CROMA does not divide spectral bands into groups—resulting in 3× shorter sequence
lengths. The computation required to process a sequence of tokens with a transformer increases
with increasing sequence lengths. This makes CROMA much more computationally efficient than
SatMAE for a given ViT backbone and image size (Table 14). We also pretrain a SatMAE-B model
for 300 epochs on the SSL4EO dataset. However, this model performs poorly, so we do not report
these results; this experiment indicates that SatMAE’s hyper-parameters may not transfer well to
different pretraining datasets.

A.5 Societal Impact

Since we pretrain our models on the SSL4EO dataset [70], our models may be biased towards the
distribution from which SSL4EO data were sampled. Although SSL4EO samples are geographically
diverse (please see Fig. 2 from the SSL4EO paper [70]), locations are sampled from areas surrounding
human settlements. As a result, large geographic areas that are sparsely populated—for instance, the
Amazon rainforest, the Sahara desert, and the Australian outback—are underrepresented. This could
negatively impact the quality of representations in these locations and any decisions made on their
basis.

Another distribution shift—this time, between finetuning and inference—is our primary concern. For
example, finetuning a model on the imagery of one geography and then making predictions on the
imagery of another geography creates a distribution shift. As a result, biases from the finetuning
geography may be realized in the predictions made by the finetuned model. This is particularly
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problematic when these predictions are used in decision-making, for instance, allocating poverty
assistance. However, it is well-demonstrated that pretrained models are more robust to distribution
shifts than models trained from scratch. Additionally, as we develop better foundation models for
Earth Observation, we reduce the need for annotated data; this may allow practitioners to be more
selective of the data they wish to leverage during finetuning.

We do not expect our pretrained models to be particularly valuable for military applications, as
militaries likely have access to higher resolutions (spatially, spectrally, and temporally) than Sentinel-
1 & 2 provide. However, our framework may be leveraged to pretrain models on higher-resolution
imagery, which could be useful for military applications, although this is a risk of all novel learning
algorithms.

A.5.1 Compute

We approximate the computational resources we use for pretraining and finetuning (frozen represen-
tation evaluations are negligible in comparison). For pretraining, estimates are in A100-80GB GPU
hours; for finetuning, estimates are in A100-40GB GPU hours. Please see Table 15.

Table 15: Estimated GPU hours used for developing and validating CROMA.

Method Backbone Task GPU Hours

radar↔optical [71] ResNet50 Classification Finetuning 10
radar↔optical [71] Swin-T Classification Finetuning 25

MAE [31, 70] ViT-S Classification Finetuning 20
DINO [72, 70] ViT-S Classification Finetuning 20
SatMAE [26] ViT-B Classification Finetuning 75

CROMA ViT-B Classification Finetuning 35
SatMAE [26] ViT-L Classification Finetuning 215

CROMA ViT-L Classification Finetuning 90
CROMA ViT-B Pretraining 300 epochs 80
CROMA ViT-L Pretraining 600 epochs 380
CROMA ViT-B Pretraining Ablations 1,100

A.6 Visualizations

We visualize representations and patch encodings using UMAP and t-SNE. For both segmentation
datasets (DFC2020 [87] and DW-Expert [88]), we visualize patch encodings of 50,000 randomly
sampled patches and use the most dominant class in a patch as its label. We also plot sparse probing
results for binary classifiers trained on the top k representation dimensions.

CROMA (ViT-B) SatMAE (ViT-B) DINO (ViT-S) radar↔optical (Swin-T)

Permanent Crop Residential Industrial Highway Pasture
Sea & Lake Forest River Annual Crop Herbaceous Vegetation

Figure 5: t-SNE plots of EuroSAT [77] representations.
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CROMA (ViT-B) SatMAE (ViT-B) DINO (ViT-S) radar↔optical (Swin-T)

Barley Canola Corn Mixedwood Oat
Orchard Pasture Potato Soybean Spring Wheat

Figure 6: UMAP plots of Canadian Cropland [78] representations.

CROMA (ViT-B) SatMAE (ViT-B) DINO (ViT-S) radar↔optical (Swin-T)

Barley Canola Corn Mixedwood Oat
Orchard Pasture Potato Soybean Spring Wheat

Figure 7: t-SNE plots of Canadian Cropland [78] representations.

CROMA-B (UMAP) CROMA-B (t-SNE) SatMAE-B (UMAP) SatMAE-B (t-SNE)

Water Trees Grass Flooded vegetation Crops
Shrub & Scrub Built-up Barren Snow & Ice

Figure 8: UMAP and t-SNE plots of DW-Expert [88] patch encodings.

CROMA-B (UMAP) CROMA-B (t-SNE) SatMAE-B (UMAP) SatMAE-B (t-SNE)

Forest Shrubland Grassland Wetlands Croplands
Built-up Barren Water

Figure 9: UMAP and t-SNE plots on DFC2020 [87] patch encodings.
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Figure 10: Sparse Probing all classes in BigEarthNet
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Figure 11: Sparse Probing all classes in Canadian Cropland
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Figure 12: Sparse Probing all classes in EuroSAT
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Figure 13: Sparse Probing all classes in fMoW-Sentinel (part i)
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Figure 14: Sparse Probing all classes in fMoW-Sentinel (part ii)
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Figure 15: Sparse Probing all classes in fMoW-Sentinel (part iii)
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Figure 16: Sparse Probing all classes in fMoW-Sentinel (part iv)
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