
Eco-Comp: Towards Responsible
Computing in Materials Science

Anonymous Author(s)
Affiliation
Address
email

Abstract

Bridging the time and length scales and the use of large molecular dynamics (MD)1

simulations in material science is expected to surge in the next few years, par-2

tially due to the development of highly accurate machine learning inter-atomic3

potentials that enable the simulation of multi-million atomic systems. We also4

expect a high demand for material science simulations using multiple nodes within5

high-performance computing facilities (HPCs) due to their computational intensity.6

Through the analysis of catalysis simulation setups consisting of bulk metallic7

systems with adsorbed molecular species on the surface, we identified various8

factors that affect parallel computing efficiency. To foster sustainable and ethical9

computing practices, this study employs the Large-scale Atomic/Molecular Mas-10

sively Parallel Simulator (LAMMPS) to find the optimal allocation of computing11

resources based on the simulation input. We thus propose guidelines to promote12

responsible computing within HPC architecture: Eco-Comp is a user-friendly13

automated Python tool that allows material scientists to optimize the power con-14

sumption of their simulations using one command. This tutorial gives a broad15

overview of the Eco-Comp software and its potential use for the material science16

community through an interactive guide.17

1 Introduction18

High-Performance Computing, or HPC, has revolutionized the field of science, enabling researchers19

and scientists to perform simulations that were once impossible. Molecular dynamics (MD) simulation20

has become a key aspect of focus in material science, as HPC are utilized to simulate, for example,21

catalytic reactions, enzyme active site exploration, and mechanical properties on the atomic scale. The22

emergence of easy-to-use machine learning potentials (MLP), such as the Machine-Learned Spectral23

Neighbor Analysis Potential (ML-SNAP) is indicative of the growing accessibility and versatility of24

this tool in the scientific community. It allows scientists and engineers to understand key chemical25

reactions at the atomic level relevant to the development of green energy and environment solutions26

such as catalysts, batteries, and solar cell. Running MD simulations with millions of atoms and27

time-steps is extremely time-consuming and resource-demanding. Thus, implementing responsible28

high-performance computing requires users to pay more attention to allocating the optimal computing29

resources for parallel atomic simulations. The Large-scale Atomic/Molecular Massively Parallel30

Simulator (LAMMPS) is renowned for its extensible and substantial documentation, and has seen a31

surge in adoption owing to the incorporation of new packages and functionalities tailored to ML-driven32

simulations. While this expansion offers users exciting opportunities to explore complex biological33

and physical systems, it also underscores the importance of benchmarking and resource optimization.34

This work focuses on using LAMMPS with the aim of finding the optimal computing resource usage.35

We start by analyzing and profiling bulk metallic systems to understand the relationship between the36

number of nodes used in the calculation and the LAMMPS parallelization efficiency. The Kokkos37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



package and other kernel libraries are utilized to assess their impact on computational speed and38

efficiency.39

We find that surface reactions involving a metallic slab and a vacuum with reacting molecules (in this40

case, carbon monoxide) suffer significant degradation of the parallel efficiency upon increasing the41

number of nodes. Parallel efficiency drops by 30% if ten nodes are used on atomic systems of 20-6042

thousand atoms. Profiling analysis indicates wasteful looping within specific functions and an increase43

in delays of their execution time as a primary cause behind performance degradation. After a series44

of calculations related to parallel efficiency, we build a set of guidelines for responsible computing to45

be used in HPC environments. Performance analysis of these calculations have been used to develop46

an automated tool that can recognize, evaluate, and recommend choices on resource usage to a user47

based on the comparison, enabling them to save precious compute time and energy. This work aims48

to lower the carbon footprint of computational loads used in developing some technologies of our49

future and ensures that it will be built upon a foundation that prioritizes sustainability and the ethics50

of responsible computing.51

2 Software52

Eco-Comp is a software that finds the optimal allocation of computing resources through bench-53

marking statistics run in an automated manner. With great emphasis on ease of use, especially54

for new users who do not possess the technical prowess of the architecture of the software, the55

present-day best practice programming language of Python was chosen as our foundation. After a56

simple installation, the software takes inputs from the user regarding details of the supercomputer and57

the resources available. Using this information, a unique Python script is created for the user, which58

can be used to run their simulation data. It automatically makes submissions via a job scheduler hence59

benchmarking on the user’s specific production setup. This process, that lasts few seconds, provides60

an accurate metric related to parallel efficiency. In addition, based on the data extracted from the job61

submissions and the optimal configuration of computing resources, a ready-to-use customized job62

submission file (Slurm scheduler bash file) is created for the user tailored for their simulation needs.63

3 Methods64

Eco-Comp can extract the required information from simulation data, and run bench-marking based65

on the system complexity. This tool should then extract data from job submissions, suggest the66

optimal configuration of use to the user, and, more importantly, provide them with a ready-to-use67

customized job scheduler submission file based on their needs.68

We used LAMMPS to evaluate the impact of characteristics such as vacuum space in different atom69

systems, type & number of atoms present, the impact loaded packages such as Kokkos, ReaxFF, and70

the Machine Learning SNAP (ML-SNAP) potential. Parallel efficiency using strong-scaling speedup71

is calculated to understand performance degradation across various types of simulations, after which72

Google Performance Tools are used to analyze potential bottlenecks from the profiling data.73

To calculate the strong scaling speedup on N nodes:74

Strong Scaling Speedup on N nodes =
Time on 1 node

T ime on N nodes

To calculate the parallel efficiency with N nodes as a percentage:75

Parallel Efficiency with N nodes (%) =
(Strong Scaling Speedup on N nodes)× 100

Number of nodes

This provided various metrics that were used to understand how these subtle changes affected runs76

and their parallel efficiency. Tests showed us that utilizing the Kokkos package improved efficiency77

and speed by almost two-fold. When a vacuum was present in the atomic system, there was an78

increase of 30% computational speed when using the ReaxFF potential, whereas there was a greater79

45% increase when using the Machine Learning Snap Potential. Through Google Performance80

Tools, we established 66% as a threshold after profiling analysis; any efficiency below this value is81

unsustainable and wastes resources and power.82

2



Figure 1: Bottleneck analysis on Google Performance Tools - visual call-graph output of a run at
sub-par parallel efficiency

Figure 2: Impact of parallel efficiency on simulation runs using ReaxFF and ML-SNAP

4 Workflow of Software83

Figure 3: Implementation of Eco-Comp on HPCs

Typically, the functionality of Eco-Comp is split into three simple and intuitive steps: (1) installation84

of the Eco-Comp software, (2) running the Eco-Comp software and the analysis of the results. The85

following paragraphs will delve into each of the three steps in detail.86

1. Installation All the user is required to fork from GitHub then install the program and execute it.87

The user will be prompted for various information required for future calculation purposes, such as88

3



the type of supercomputer in use, nodes and cores available, maximum wall-time, and the directory89

of the LAMMPS executable. Based on this information, a run.py script is automatically generated,90

which can be added to the bash script of the user.91

2. Execution The user can then run the Python script within the directory within which their92

simulation data exists. This will prompt the user for the input file and data file names, then it calculates93

the system’s complexity and categorizes it based on the aforementioned parameters. Depending on94

the complexity, the script automatically submits 4 runs to the job scheduler system using different95

number of cores, and collects CPU time once simulations are completed. The simulation is run96

for 100 MD steps such that the entire process finishes in a matter of seconds. Once simulated, the97

program reads the data from the output file, and calculates and prints the optimal configuration for98

the user to use. A plot is generated by Eco-Comp, visualizing the benchmarking times, and this data99

is also saved in a .JSON file for the user’s future reference.100

5 Conclusions101

In conclusion, we have successfully built Eco-Comp, a user-friendly Python tool that optimizes102

the computing power of simulations for material scientists. By using just one command, one103

could considerably reduce the HPC carbon footprint within the material science community. This104

approach in the automatic bench-marking of software and their respective simulations is not limited to105

LAMMPS, and further efforts can be focused on other popular packages within the materials science106

community, such as the Vienna Ab initio Simulation Package (VASP). In the future, an expansion to107

the such as Graphical Processing Units (GPU) or hybrid CPU/GPU systems would be of interest.108

6 Acknowledgment109

This work is supported by the Qatar National Research Fund (QNRF) through the National Priorities110

Research Program (NPRP) under project number NPRP12S-0209-190063. The advanced computing111

facilities of Hamad Bin Khalifa University (“Hazeem Supercomputer”) and “Raad2” in Texas A&M112

University at Qatar are used for all calculations.113

References114

[1] Armstrong, Brian & Kim, Seon & Eigenmann, Kim. (2000). Quantifying Differences between OpenMP115

and MPI Using a Large-Scale Application Suite. “Bondchk Failed with Reax/c.” Materials Science Community116

Discourse, 7 Sept. 2016.117

[2] Eichstädt, J. & Green, M. & Turner, M. & Peiró, J., & Moxey, D. (2018, April 5). Accelerating high-order118

mesh optimisation with an architecture-independent programming model. Computer Physics Communications.119

[3] Google. “Google/Pprof.” GitHub, https://github.com/google/pprof.120

[4] He, Helen. “Performance Engineering of Reactive Molecular Dynamics Simulations.” MIT Libraries,121

Massachusetts Institute of Technology, https://dspace.mit.edu/bitstream/handle/1721.1/139047/He-hmhe-meng-122

eecs-2021-thesis.pdf?sequence=1123

[5] K. Cha, "Performance Evaluation of LAMMPS on Multi-core Systems," 2013 IEEE 10th International124

Conference on High Performance Computing and Communications & 2013 IEEE International Conference on125

Embedded and Ubiquitous Computing, 2013, pp. 812-819, doi: 10.1109/HPCC.and.EUC.2013.117.126

[6] LAMMPS Documentation. LAMMPS Documentation (23 Jun 2022 version) - LAMMPS documentation.127

(n.d.). https://docs.lammps.org/Manual.html128

[7] LAMMPS molecular dynamics simulator. LAMMPS Molecular Dynamics Simulator. (n.d.).129

[8] “Main GPerfTools Repository.” GitHub, https://github.com/gperftools/gperftools.130

[9] “Parallel Performance.” Parallel Performance - Parallel Computing for Beginners,131

https://www.learnpdc.org/PDCBeginners/introduction/3.performance.html . [10] “Performance Scal-132

ing.” Archer - Writing Scalable Parallel Applications with MPI.133

[11] Yan, Beichuan & Regueiro, Richard. (2018). Comparison between pure MPI and hybrid MPI-OpenMP134

parallelism for Discrete Element Method (DEM) of ellipsoidal and poly-ellipsoidal particles. Computational135

Particle Mechanics. 6. 10.1007/s40571-018-0213-8.136

4

h
h
h
h

	Introduction
	Software
	Methods
	Workflow of Software
	Conclusions
	Acknowledgment

