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Abstract001

Large language models (LLMs) have shed light002
on potential inter-discipline applications to fos-003
ter scientific discoveries of a specific domain004
by using artificial intelligence (AI for science,005
AI4S). In this study, we introduce A Data-006
centric Recipe for advancing the application007
of Large Language Models (LLMs) in the008
realm of geoscience. Leveraging the versatil-009
ity of LLMs and their potential for interdisci-010
plinary applications, particularly in Artificial011
Intelligence for Science (AI4S), we propose012
a methodology to tailor an open-source LLM013
to the geoscience domain, with potential for014
broader interdisciplinary use. This involves015
further pre-training the model with a compre-016
hensive geoscience text corpus and fine-tuning017
it using a custom instruction tuning dataset.018
Our efforts culminate in multiple size of LLM019
specialized for geoscience tasks. Through rig-020
orous evaluation on geoscience examinations021
and open-domain questions, our model exhibits022
state-of-the-art performance across a diverse023
array of Natural Language Processing tasks024
within the geoscience domain.025

1 Introduction026

The advent of Large Language Models (LLMs)027

marks a seminal point in the evolution of natu-028

ral language processing (NLP), heralding an era029

where the amalgamation of artificial intelligence030

(AI) with diverse scientific domains promises to031

redefine the frontiers of research and application.032

LLMs, through their unparalleled proficiency in a033

vast array of tasks such as reading comprehension,034

open-ended question answering, and code genera-035

tion, have showcased the profound impact of har-036

nessing extensive datasets to drive innovation and037

problem-solving in areas previously constrained by038

traditional methodologies. This synergy between039

AI and science, particularly under the umbrella of040

AI for Science (AI4S), is poised to catalyze signifi-041

cant advancements and discoveries.042

Figure 1: Goods helped GEOGALACTICA construction.

In the landscape of AI4S, the incorporation of 043

NLP within geoscience emerges as a compelling 044

exploration, bridging computational intelligence 045

with the intricate study of Earth’s phenomena. Geo- 046

science, encompassing disciplines like geophysics, 047

meteorology, and environmental science, tradition- 048

ally leans on empirical and theoretical methods to 049

decipher Earth’s complex systems. Nonetheless, 050

the exponential growth of data within this field 051

necessitates a paradigm shift towards integrating 052

AI and computer science techniques, promising to 053

accelerate research breakthroughs and effectively 054

tackle global challenges such as climate change 055

and natural disaster resilience. 056

In the field of geoscience, domain-specific geo- 057

scientific knowledge is usually presented in various 058

forms of text data, such as scientific literature, text- 059

books, patents, industry standards, etc., which tra- 060

ditionally require the utilization of knowledge sys- 061

tems (Wang et al., 2022), knowledge graphs(Deng 062

et al., 2021), or semantic models (Ramachandran 063

et al., 2022) to extract a structured form of these 064

knowledge. More broadly, applying NLP tech- 065

niques for geoscience use cases has been widely 066

accepted (Zhang and Xu, 2023), ranging from less 067

complex tasks such as document classification (Qiu 068

et al., 2019), topic modeling (Lawley et al., 2023), 069

and entity recognition(Qiu et al., 2020, 2018), to 070
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more complex tasks such as knowledge graph con-071

struction (Wang et al., 2018), question answer-072

ing (Deng et al., 2023a) and summarization (Ma073

et al., 2022).074

While general domain LLMs like Galactica (Tay-075

lor et al., 2022), LLaMA (Touvron et al., 2023),076

and GLM (Zeng et al., 2022) have achieved impres-077

sive performance across various NLP tasks, they078

lack the domain-specific knowledge required for079

geoscience applications. These models have been080

trained on general datasets that lack authoritative081

geoscience-related data, limiting their adequacy in082

addressing the unique challenges posed by the geo-083

science domain. Although some recent attempts084

to adapt the LLaMA-7B model for geoscience us-085

ing geoscience-specific data, such as the K2 (Deng086

et al., 2023b) model, has shown promising results,087

this primitive attempt is constrained by its model088

size and data scale, which consequently may not089

fully capture the complexity of geoscientific termi-090

nology and concepts. However, training a larger091

LLM comes with new technical challenges, since092

many aspects of the process become fundamen-093

tally different as the model scales up. For example,094

the stability of training will become more vulner-095

able, and the training data needs to be scaled up096

accordingly, resulting in a more systematic way of097

managing different data sources, etc.098

Addressing these challenges necessitates the de-099

velopment of a geoscience-specific LLM, lever-100

aging a comprehensive and meticulously curated101

dataset to transcend the constraints of current mod-102

els. This initiative aims to not only tailor a model103

for the geoscience domain but also refine the104

dataset and training pipeline to enhance model per-105

formance and applicability.106

In this paper, we introduce a robust framework107

for assembling a vast geoscience dataset. This en-108

deavor has led to the creation of GeoSignal-v2, a109

comprehensive dataset facilitating supervised fine-110

tuning, alongside the development of tools for the111

efficient processing of diverse data forms into a112

coherent training corpus.113

The culmination of these efforts is the GE-114

OGALACTICA (Lin et al., 2023), a LLM with 30115

billion parameters, fine-tuned for geoscience appli-116

cations. This model stands as a testament to the117

potential of tailored LLMs in revolutionizing geo-118

scientific research, outperforming general-domain119

models in both benchmark tests and human evalua-120

tions across a variety of geoscience-related tasks.121

In addition to establishing a roadmap for encod-122

ing geoscience knowledge, the main contribution 123

of the paper can be listed as follows: 124

1. A Domain-specific LLM: Our construction 125

of GEOGALACTICA represents a geoscience 126

LLM that focuses on interacting with hu- 127

mans and generating contents on highly pro- 128

fessional academic topics. And showing lower 129

hallucination compared to original Galactica. 130

2. A Toolchain for Data Cleaning: A high- 131

quality training dataset is crucial for success- 132

fully training large language models. There- 133

fore, our contribution to the community in- 134

cludes developing an efficient academic data 135

preprocessing toolchain to construct a clean 136

training corpus from PDF documents 1. 137

3. A recipe for training domain-specific LLM: 138

This work provides a comprehensive recipe 139

for training and inferencing domain-specific 140

Large Language Models (LLMs), using geo- 141

science cases as the example, showcasing a 142

step-by-step approach tailored to encode deep 143

geoscience knowledge efficiently. 144

4. Full model parameters and benchmarks: 145

Our work has made all model parameters open 146

source, including both the original and the 8- 147

bit quantized models, along with new bench- 148

mark data in the geoscience domain. This al- 149

lows the open community to observe and iter- 150

ate on the model’s capabilities in geoscience. 151

2 Related works 152

With the advent of large-scale language models, nu- 153

merous disciplines, including geoscience, have wit- 154

nessed the evolution of domain-specific pre-trained 155

models, trained on specialized corpora (Beltagy 156

et al., 2019; Gu et al., 2021; Wu et al., 2023; Taylor 157

et al., 2022; Luo et al., 2022; Bi et al., 2023). These 158

models undergo large-scale pre-training on domain- 159

specific texts, resulting in foundational models im- 160

bued with domain knowledge. It should be high- 161

lighted that these models point out the importance 162

of data, and the data-centric training realm is grad- 163

ually emerging. Meanwhile, (Lee et al., 2019; 164

Huang et al., 2019; Chalkidis et al., 2020) have 165

fine-tuned these base models using domain-specific 166

data, creating models that are custom-tailored to 167

specific downstream tasks at a reduced cost. These 168

1The toolchain is open-sourced on Github repos: example_
url and example_url
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efforts have significantly advanced the develop-169

ment of domain-specific Large Language Mod-170

els (LLMs) through dedicated data integration and171

model training.172

Recently, (Zhang et al., 2023b; Ma et al., 2023;173

Peng et al., 2023) have delved into prompt engi-174

neering to unlock the potential of models with-175

out additional training. This approach offers the176

possibility of unifying various geoscience tasks177

and further decreasing the cost of deploying large178

models in domain applications. In geoscience, the179

exploration of large models is still in its nascent180

stages. (Deng et al., 2023b) have amassed a consid-181

erable amount of high-quality data from geoscience182

Wikipedia and research literatures, and further fine-183

tuned the base model, leading to remarkable scien-184

tific proficiency and knowledge in geoscience. For185

the first time, our work employs a large corpus of186

geoscience documents and textbooks, which were187

meticulously cleaned using a dedicated toolchain188

to construct large-scale geoscience models, ensur-189

ing data quality. Moreover, our work encompasses190

the entire process of "further pre-training, super-191

vised fine-tuning, augmented learning" for large192

foundational models for geoscience, bringing the193

largest scale and highest quality proprietary lan-194

guage models to the geoscience field from a data-195

centric perspective. This will open up immense196

possibilities for future research conducted by geo-197

science researchers.198

3 A Data-centric Recipe for Geoscience199

LLM Construction200

3.1 Data collection and cleaning201

To address the lack of geoscience knowledge, we202

gathered approximately six million geoscience re-203

lated documents curated by experts. Additionally,204

we expanded the GeoSignal dataset from K2 to205

enhance support for NLP tasks in geoscience. We206

elaborate on our dataset construction process be-207

low.208

3.2 Customized Pre-training dataset:209

GeoCorpus210

We’ve developed a comprehensive geoscience doc-211

ument collection, amassing over 5.98 million docu-212

ments across disciplines like geology and geogra-213

phy, sourced primarily through Microsoft Research214

(MAG) and supplemented with data from Openalex,215

CommonCrawl, The Pile, and arXiv, and so on.216

Our methodology includes sophisticated data col-217

lection and deduplication techniques, leveraging di- 218

verse sources and copyright-compliant methods to 219

parse and anonymize PDFs. The resulting dataset, 220

optimized for storage efficiency and structured for 221

advanced parsing, forms the basis of a 78B token 222

training corpus, strategically balanced across geo- 223

science and supplementary domains, to support 224

cutting-edge AI research in geoscience. 225

We also employed tokenization method to cope 226

with special tokens, such as [START_FIGURE], 227

[START_TABLE], [START_REF], and 228

[START_FORMULA], to unify text extracted 229

from various sources into a standardized protocol. 230

3.3 The Customized SFT dataset: GeoSignal 231

Version 2 232

Through extensive research, we’ve explored NLP 233

tasks tailored to geoscience, identifying various 234

tasks. However, we’ve noticed untapped unsuper- 235

vised signals within. Tasks include Geoscience 236

Knowledge Graph (NER, RE, text-to-graph trans- 237

formation), Academic Applications (keyword ex- 238

traction, summarization, information retrieval), 239

General Applications (Q&A, geoscience education 240

conversations, text classification), and Geographi- 241

cal Applications (POI queries, multimodal Q&A). 242

These signals can be reconstructed using profes- 243

sional geoscience data websites. We’ve categorized 244

data into literature-related, geoscience-related, and 245

self-instruction-related, the latter distilled from 246

ChatGPT and annotated by geoscience experts 247

for constructing high-quality question-answering 248

datasets. 249

Domain General Natural Language Instruc- 250

tion: We integrated four platforms to restructure 251

signals from various geoscience-related platforms. 252

Deep Literature and DataExpo serve as datasets for 253

referential relationships. Using Grobid, we convert 254

documents into XML, identifying in-text citations 255

and corresponding references. GSO provides valu- 256

able supervised signals by extracting synonyms and 257

definitions. GAKG’s rich graphical information 258

generates binary pairs for sequence-to-sequence 259

supervised data. 260

Restructured Knowledge-intensive Instruc- 261

tion: To construct restructured knowledge- 262

intensive instruction data, we first search for author- 263

itative websites covering paleontology, dinosaurs, 264

fossils, rocks, and other geoscience fields. We 265

then filter these sites, focusing on those with struc- 266

tured data available for extraction. For structured 267

websites, we implement processing similar to K2, 268
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Dataset #blockNum #tokenNum #itemNum #tokenSize #batchRatio

GeoCorpus 25,743,070 52,721,798,004 5,548,479 98.21G 80%
ArXiv 6,691,886 13,704,981,558 742,835 25.53G 10%
Codedata 6,066,725 12,424,652,670 3,456,887 23.14G 10%
Total 38,501,681 78,851,432,232 9,748,201 146.88G -

Table 1: Data distribution of the corpus used for training GEOGALACTICA

matching structured data using Key-Value pairs to269

create natural Instruction and Response pairs.270

Self-Instruct: Following methods outlined in271

Alpaca and Baize, we generate instructional tuning272

data by utilizing problem seeds to generate answers273

from ChatGPT. For geoscience, we generate 1000274

questions per subject and make these problem seeds275

public available.276

For overall data collection, we compile the fol-277

lowing totals and select a proportion for supervised278

fine-tuning. After manual verification and cleaning,279

we finalize a dataset of 100K samples as GeoSignal280

Version 2 for instructional data during supervised281

fine-tuning.282

Finally, the detailed statistic of the instruction283

tuning data is shown in Table 7.284

4 Training285

Building upon the insights gleaned from GLM-286

130B (Zeng et al., 2022), we outline the frame-287

works and strategies for our training phase.288

4.1 Further Pre-training289

Following initial pre-training by Meta AI, we fur-290

ther pre-train the Galactica using GeoCorpus. This291

process aims to refine the model’s understanding292

and generation capabilities within specific domains293

or styles.294

We leverage a accelerators cluster with ROCm295

software stack, coupled with the Megatron-LM296

framework, to conduct further pre-training. The297

computing cluster comprises 512 nodes, each298

equipped with a 32-core CPU, 128GB of memory,299

and 4 pieces of 16G memory accelerators, total-300

ing 2048 accelerators. The Megatron-LM frame-301

work employs 3D parallelism strategies, including302

pipeline-parallel, model-parallel, and data-parallel303

approaches, to maximize GPU performance while304

minimizing communication overhead. With four305

acceleration cards per node, we set the model par-306

allel size to 4 for optimal efficiency. Addition-307

ally, with a mini-batch size of 1, we configure the308

pipeline-parallel size to 16 to fully utilize memory 309

resources. 310

Before the training, we referred to and modified 311

the code available on Hugging Face for converting 312

Hugging Face’s GPT-2 to Megatron’s GPT-2. The 313

conversion parameters can be adjusted based on 314

the actual scale of pipeline parallelism (PP), model 315

parallelism (MP), and data parallelism (DP) during 316

runtime. 317

All the training samples are preprocessed 318

through tokenization. The tokenized results of 319

each document are concatenated using an end-of- 320

sentence (eos) marker. Subsequently, we crop 321

the concatenated sequences into fixed lengths of 322

2048, resulting in 30 million training samples, cor- 323

responding to 7,324 training steps. Prior to for- 324

mal training, we conduct preliminary experimental 325

analyses of node failures and save checkpoints at 326

100-step intervals. After transforming the initial 327

checkpoint format into the required Megatron-LM 328

format, the pre-training process commences. Over 329

a span of 16 days, the computing cluster completes 330

the further pre-training at a speed of 3 minutes per 331

step. However, due to frequent node failures, the 332

actual training duration extends to nearly a month. 333

Following pre-training, we convert the checkpoints 334

into the Hugging Face format for subsequent appli- 335

cations. 336

4.2 Supervised Fine-Tuning (SFT) 337

LLMs undergo SFT post-pre-training on a more 338

focused dataset under human supervision, adapting 339

the model to specific tasks or enhancing perfor- 340

mance in certain areas. 341

We employed SFT to boost the geoscientific rea- 342

soning of large-scale models on specific tasks, en- 343

suring effective transfer of language capabilities 344

while maintaining pre-training generalization. 345

We utilized DeepSpeed frameworks, primarily 346

utilizing the accelerators cluster. SFT truncated to 347

128 nodes and 512 accelerators, maintaining pre- 348

training learning rate schedule (max LR: 1e5) with 349

linear warmup (100 steps) and Adam optimizer 350

4



Figure 2: Training curve during the further pre-training.

Figure 3: Training curve during the SFT on Geosignal.

Figure 4: Training curve during the tools SFT.

(β1 = 0.9, β2 = 0.999, weight decay: 0.05, ϵ :351

1e− 8).352

We also utilized DeepSpeed ZeRO3 and gradient353

checkpoint for memory optimization, limiting in-354

put sequence length to 512. Global batch size is set355

to 512 due to DeepSpeed limitations. Default Hug-356

gingface trainer framework settings is used, train-357

ing conducted on Alpaca dataset for three epochs,358

completed within one day with Megatron-LM sup-359

port.360

We implemented SFT in two stages refer to K2’s361

recipe, aligning model with humans via Alpaca362

instruction tuning data in the first stage and utiliz-363

ing GeoSignal v2 in the second stage, the learning364

curve is shown as Figure 3.365

Moreover, we also do geoscience data-centric366

tool learning, the learning curve is shown as Fig-367

ure 4.368

4.3 Deploy 369

In various specialized fields, researchers often aim 370

to utilize models with lower resources and costs, 371

and geoscience field is no exception. Using GE- 372

OGALACTICA requires a minimum of 140GB of 373

GPU memory, a significant expenditure for many 374

independent research institutions. Therefore, we 375

also offer a post-training quantization method for 376

GEOGALACTICA, reducing its memory consump- 377

tion from 130GB to 30GB while maintaining con- 378

siderable capabilities, we will illustrate in experi- 379

ment session. 380

We do quantization via GPTQ method(Frantar 381

et al., 2022), which does post-training quantization 382

of large language models. We adopt this method 383

to enable the compression of GEOGALACTICA to 384

8 bits per weight with minimal accuracy loss, sig- 385

nificantly reducing computational and storage re- 386

quirements. GPTQ allows the execution of model 387

GEOGALACTICA on a single GPU, offering consid- 388

erable speedups and making geoscience generative 389

AI more accessible and efficient. 390

To better serve the communities in low-resource 391

vertical fields, we have selected 1,000 documents 392

from various geoscience fields to form the GPTQ 393

dataset used for quantisation. 394

We believe that even though the GPTQ aims 395

to work on any kind of data, remaining actually 396

zero-shot, using a dataset more appropriate to the 397

GEOGALACTICA training can improve quantiza- 398

tion accuracy. 399

5 Experiments 400

Once model training is complete, we proceed to 401

evaluate its scientific and geoscientific knowledge. 402
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Evaluation is divided into two parts, including au-403

tomated evaluation over new version of GeoBench404

to exam the geoscience knowledge comprehension405

of the models, and functional evaluation to test the406

model over selecting geoscience tasks407

5.1 Benchmarks408

We evaluate the model abilities of geoscience409

knowledge comprehension over three benchmarks,410

including general knowledge evaluation benchmark411

MMLU, geoscience knowledge evaluation bench-412

mark GeoBench, and the ASBOG test, proposed413

by this paper.414

MMLU. The MMLU divided into math and non-415

math sections by Galactica, indicates improvement416

in specific model skills (algebra, biology, chemistry,417

mathematics) after processing 6 million geoscience-418

related literature documents. Enhancement in math-419

ematics, machine learning attributed to mathemati-420

cal geology, biological geoscience, chemical ge-421

ology papers, showcasing geoscience’s interdis-422

ciplinary nature. However, physics performance423

favors original Galactica over our model, while424

unrelated disciplines (medical genetics, medicine,425

electrical engineering) show decline. Furthermore,426

Our model and original Galactica demonstrate sim-427

ilar average performance in math-related MMLU428

sections.429

GeoBench. GeoBench is proposed by K2 (Deng430

et al., 2023b) for assessing geoscientific task perfor-431

mance, consisting tasks NPEE and APTest. There432

are 183 multiple-choice questions in NPEE and433

1,395 in total in the AP Test, constituting the ob-434

jective task set. Meanwhile, K2 gathers all 939435

subjective questions in NPEE to be the subjective436

tasks set and use 50 to measure the baselines with437

human evaluation.438

ASBOG. The ASBOG Fundamentals of Geol-439

ogy Examination is a requirement for a person to440

become a Licensed Professional Geologist and to441

offer geologic services to the public in States that442

register geologists by examination. We collect 113443

pieces if the textual multiple choices questions.444

Through these evaluations, we aim to compre-445

hensively assess the model’s abilities and compare446

its performance against automated benchmarks and447

human assessments, ensuring competence in scien-448

tific and geoscientific domains.449

5.2 Automatic Evaluation450

Our tests on GeoBench reveals larger academic451

models outperforming NPEE but underperforming452

Baselines NPEE APTest ASBOG

Random 27.1 20.0 25.0
ChatGPT 48.8 20.0 25.6
Gal-6.7B 25.7 29.9 23.9
LLaMA-7B 21.6 27.6 22.1
K2-7B 39.9 29.3 27.1
Gal-30B 41.2 38.5 22.9
GalAlp-30B 42.6 44.1 23.8
GEOGALACTICA 46.6 36.9 53.0

Table 2: Comparison among baselines on Objective
tasks.

in AP Study, indicating a bias towards advanced 453

knowledge due to training on academic research 454

achievements like literatures. This highlights the 455

need to address basic knowledge deficiencies for 456

future improvements. 457

Surprisingly, machine learning has experienced 458

significant enhancement, likely due to the inclusion 459

of GitHub code in our corpus. In summary, subjects 460

closely related to geoscience, including those logi- 461

cally connected to geology and its subfields, have 462

shown notable progress. However, disciplines like 463

physics indicate that the original Galactica outper- 464

forms our GEOGALACTICA and subjects unrelated 465

to geosciences, such as medical genetics, medicine, 466

and electrical engineering, have shown a decline 467

in performance. It is noteworthy that GEOGALAC- 468

TICA and the original Galactica are generally at 469

a similar stage regarding average performance in 470

math-related subjects within the MMLU. The re- 471

sults are in subsection B.1. 472

After assessing mathematical subjects, we an- 473

alyzed excluded subjects. Overall, our model 474

slightly outperforms original Galactica in average 475

non-math-related MMLU subjects. Notably, global 476

facts, US History, and World History show signifi- 477

cant improvement, likely due to history’s intertwin- 478

ing with geoscience. This underscores geoscience’s 479

profound impact on global progress. Moreover, in 480

conceptual physics, learning from geoscience doc- 481

uments improves model understanding, indicating 482

misalignment with traditional education. However, 483

Models struggle to apply geoscience-related knowl- 484

edge to college and high school-level problems. 485

The results are in subsection B.2. 486

5.3 Functional Evaluation 487

We invited ten geoscience researchers participating 488

in voting and scoring. Model performance is com- 489

pared with five other large-scale platforms in open 490
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testing. In this section, we evaluated five open mod-491

els alongside our model. including MOSS, Qwen,492

ChatGPT, Yiyan (Ernie Bot), ChatGLM.493

We adopted K2’s Human Evaluation framework494

to define evaluation metrics for open-ended ques-495

tions, comprising scientificity, correctness, and co-496

herence, scored between 1 to 3:497

Scientificity: Assesses if the generated content498

aligns with geoscience professional discourse, with499

scores indicating the quality from not good (1) to500

very good (3).501

Correctness: Judges if the information provided502

is convincing and accurate from a geoscience ex-503

pert’s perspective, with scores ranging from incor-504

rect (1) to correct (3).505

Coherence: Evaluates the consistency and506

smoothness of the text in discussing a specific topic,507

graded from not good (1) to very good (3).508

These metrics enable the calculation of cumula-509

tive scores. For functional questions of the large510

model, the evaluation metric is relative ranking.511

Participants receive responses from all six models512

for the same input, and expert judges rank these513

models in order from 1 to 6. The overall ranking514

of each model is then determined. Ten geoscience515

practitioners, including six students and four teach-516

ers, were invited for this evaluation process.517

The tasks and corresponding scores are pre-518

sented as follows:519

In the evaluation of functional tasks, we have520

chosen to utilize our model specifically for analyz-521

ing scientific research literature, aiming to enhance522

comprehension and interpretation. When external523

information input is unnecessary, we rely on the524

consistent output provided by the ChatALL inter-525

face. Since the overall evaluation involves ranking,526

lower scores are preferred. The tasks include:527

• Knowledge-based Associative Judgment528

Question: Questions are formulated based529

on the knowledge trees in GSO to determine530

the presence or absence of knowledge system531

relationships.532

• Research Paper Titling Task: Abstracts533

from 20 geoscience research papers are ran-534

domly selected and inputted into the model535

to generate titles, demonstrating the model’s536

grasp of knowledge points and familiarity537

with the field.538

• Geoscience Research Functionality: To en-539

sure fairness in incorporating external re-540

search papers, we use our own PDF parsing 541

solution for interpretation and rely on consis- 542

tent output from the ChatALL interface. For 543

GEOGALACTICA, interactions are conducted 544

through our UI interface, producing outputs 545

accordingly. 546

In interpreting scientific literature, we often 547

inquire about speech writing based on the arti- 548

cle’s content, summarization assistance, and 549

recommendation of prerequisite knowledge 550

points. We assessed five papers covering vari- 551

ous domains of Earth sciences and written in 552

different styles. 553

The tasks and corresponding scores are pre- 554

sented as follows: 555

We can envision that functional characters rep- 556

resent the services currently available from scien- 557

tific large language models. Despite the persistent 558

illusions created by large language models, it’s 559

challenging to directly influence these disciplines 560

from an educational and instructional standpoint. 561

However, we can offer simple aids such as ques- 562

tion generation, summarization, rapid reading, and 563

information extraction. Our goal is to facilitate re- 564

search in the geosciences, thereby enhancing the 565

efficiency of scholarly research in this field. 566

Fortunately, we came across Galpaca-30B on 567

Hugging Face, which significantly reduced the car- 568

bon emissions from our finetuning experiments. 569

This model utilized Alpaca’s instructions to learn 570

from the dataset and was applied to SFT on 571

Galactica-30B. Upon horizontal comparison as an 572

ablation experiments, Galpaca-30B performed no- 573

tably worse than the original Galactica and GE- 574

OGALACTICA in the majority of disciplines. This 575

indicates that instruction learning in the general 576

domain can significantly impact the performance 577

of specialized domain models during practical eval- 578

uations. 579

5.4 Hallucination Detection 580

As a large language model designed to support 581

academic research, we must address the issue of 582

illusions. Although our current hallucination tests 583

in academic verticals are limited, we can examine 584

the model’s performance from a factual knowledge 585

perspective. We compared the previous geoscience 586

model K2, our base model Galactica-30B, and our 587

GEOGALACTICA, using Wikipedia knowledge of 588

18 keywords across 18 fields of Earth Science as a 589
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MOSS Qwen ChatGPT Yiyan ChatGLM GEOGALACTICA

Noun
Definition

Scientificity 291 419 337 236 278 339
Correctness 302 435 351 276 291 361
Coherence 351 435 357 305 347 393

Beginner
LevelQ&A

Scientificity 116 191 219 176 160 176
Correctness 120 177 214 174 156 173
Coherence 147 207 225 187 184 202

Intermediate
Level Q&A

Scientificity 143 178 210 180 161 162
Correctness 154 180 206 186 163 169
Coherence 178 193 207 189 179 171

Advanced
Level Q&A

Scientificity 166 202 137 190 172 185
Correctness 173 199 133 192 171 187
Coherence 194 209 181 200 194 206

Table 3: We report the results of the selected baselines on Q&A tasks.

MOSS Qwen ChatGPT Yiyan ChatGLM GEOGALACTICA
Knowledge-based

Associative Judgment Sum of Rank 579 557 600 570 752 725

Research Paper
Titling Task Sum of Rank 805 426 326 561 440 451

Geoscience
Research

Functionality

Writing 114 135 62 178 106 135
Summary 164 185 86 139 168 100
Extraction 115 232 51 160 169 212

Table 4: We report the results of the selected baselines on functional tasks.

Focus score

K2-7B 0.6121
Galactica-30B 0.3478
GEOGALACTICA 0.7685

Table 5: Focus score over geoscience entities explana-
tion.

reference point for evaluation using Focus (Zhang590

et al., 2023a).591

5.5 Quantization Accuracy592

In numerous geoscience contexts, researchers re-593

quire large language models to perform geoscien-594

tific reasoning, such as summarizing documents595

and offering concise insights into interdisciplinary596

materials. However, smaller models like K2 (Deng597

et al., 2023b) and OceanGPT (Bi et al., 2023)598

struggle with complex challenges due to limita-599

tions in scalability. To address this, we employ600

quantization to reduce the model size. To guaran-601

tee the accuracy of quantization, we utilize 1,000602

geoscience documents for post-training the GE-603

OGALACTICA. Additionally, we initially pre-train604

and fine-tune the GEOGALACTICA with FP32 pre-605

cision and then convert it to FP16 using PyTorch’s606

quantization techniques. There is a slight decrease607

Perplexity ASBOG

GEOGALACTICA (FP32) 3.71 53.0
GEOGALACTICA (FP16) 3.75 52.5
GEOGALACTICA-8bit-GPTQ 3.88 51.2

Table 6: Quantization Accuracy Evaluation over Per-
plexity and ASBOG Test.

in the model’s performance, which we attribute 608

to the computational differences of the accelera- 609

tors. Table 6 Shows the results of the quantized 610

GEOGALACTICA. 611

6 Conclusion 612

In conclusion, our study underscores the trans- 613

formative potential of domain-specific Large Lan- 614

guage Models (LLMs) in geoscience, achieving 615

notable advancements in understanding Earth’s dy- 616

namics. The development of the GEOGALACTICA 617

model exemplifies how targeted AI can address crit- 618

ical environmental challenges, marking a pivotal 619

step towards harnessing AI for scientific discov- 620

ery. This endeavor not only sets a new benchmark 621

for AI applications in the sciences but also rein- 622

forces the importance of open science, inviting col- 623

laboration and further innovation in the AI-driven 624

exploration of our natural world. 625
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Limitations626

Discipline627

The scope of our research is confined to the field628

of geoscience. The generalization of the recipe of629

our data-centric road-map across different domains630

remains an open question. Meanwhile, it may still631

face challenges with very niche or cutting-edge632

topics within the field that are not well-represented633

in its training data. The researchers should adopt634

their own data to fine-tune the model to their own635

needs.636

Computational Resources637

The GEOGALACTICA model demands substantial638

computational resources for both training and in-639

ference processes. This high demand can restrict640

its accessibility, particularly for institutions and641

researchers with limited resources, and may also642

impede its use in real-time applications where rapid643

response is necessary. Even the quantized version644

of the GEOGALACTICA, which is designed to re-645

duce the computational footprint, still necessitates646

the use of multiple consumer-grade accelerators to647

effectively deploy and run the model. This require-648

ment can be a barrier to entry for smaller organiza-649

tions or individual researchers who may not have650

access to such hardware.651

Ethics Statement652

The dataset utilized for training the GEOGALAC-653

TICA model is comprised of publicly accessible654

documents. We have meticulously ensured that all655

data was collected and processed with utmost re-656

spect for the privacy and intellectual property rights657

of the original authors. Our approach strictly avoids658

the use of any personal data, and we have diligently659

attributed all information to its respective sources.660

It is important to acknowledge that, like all large661

language models (LLMs), GEOGALACTICA might662

inadvertently inherit biases from its training data.663

These biases could potentially impact the fairness664

and accuracy of the model’s outputs. As a result,665

the model may sometimes generate content that de-666

viates from factual accuracy, a phenomenon com-667

monly referred to as "hallucinations." Therefore,668

we strongly advise users and readers to exercise669

discretion when interpreting the outputs generated670

by GEOGALACTICA.671
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A SFT data in GeoSignal 819

The data used to do the supervised fine-tuning is in 820

Table 7: 821

B MMLU Evaluation Results 822

In this section, we append the materials of the 823

MMLU test result for GEOGALACTICA, Galactica, 824

and GalAlpaca. 825

B.1 Math-related tasks in MMLU 826

The Table 8 shows the results of math-related tasks 827

in MMLU. 828

B.2 Non-Math tasks in MMLU 829

The Table 9 shows the results of none-math-related 830

tasks in MMLU. 831
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Signals tuples #NumofSamples

DDE Scholar

Title (with Abstract) (abstract; title) 2,690,569

Abstract (with Publications Fulltext) (fulltext; abstract) 2,601,879

Category (with abstract) (abstract; category) 12,321,212

Related Paper (with abstract) (source abstract; target abstract; reference sentence) 40,047,777

One Sentence Summary (with abstract) (abstract; question; answer) 2,690,569

Reference resolution (sentence; pronoun.; reference item) [including citation] 2,329,820

DDE DataExpo
Title (abstract; title) 216,036

Summary & Abstract (fulltext; abstract) 216,036

GAKG

GAKG

Principal Concepts (sentence; entity; types) 3,892,102

Relations (abstract; sentence; head entity; relation; tail entity) 30,123

Paper table caption (table caption; refering sentence) 2,772,166

Paper illustration caption (illustration caption; refering sentence) 9,128,604

Paper table content (table caption; table content) 2,772,166

Paper illustration content (illustration caption; illustration content) 9,128,604

GSO

Factual knowledge (sentence; facts; improper statement) 114,392

Taxonomy (upper term; term) 112,298

Synonyms (term; synonym term) 23,018

Word description (word; description; source) 110,209

GA-Dialogue Future content and Previous content (corrupted text; corrupted positions; target spans) 5,434

GeoOpenData

dinosaur Factual knowledge (property; property value) 11,348

fossilcalibrations Factual knowledge (property; property value) 1,749

fossilontology Factual knowledge (property; property value) 3,210

mindat Factual knowledge (property; property value) 51,291

ngdb Factual knowledge (property; property value) 148,212

opendatasoft Factual knowledge (property; property value) 37,823

rruff Factual knowledge (property; property value) 32,778

usgsearthquake Factual knowledge (property; property value) 37,284

WordNet
Synonyms (term; synonym term) 6,408

Word description (word; description; source) 27,123

Wikipedia

Title (term; abstract) 3,033,595

Summary & Abstract (fulltext; abstract) 753,920

Entity mentions (paragraph; entities) 3,688,926

Relation (text; subject; property; object) 630,210

IODP
Title (abstract; title) 2,839

Summary & Abstract (fulltext; abstract) 2,638

Table 7: GeoSignal Statistics Table.
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Subject Our model GAL 30B GalAlp 30B

Abstract Algebra 0.300 0.250 0.320
Astronomy 0.461 0.500 0.474
College Biology 0.576 0.576 0.514
College Chemistry 0.370 0.320 0.350
College Computer Science 0.400 0.410 0.370
College Mathematics 0.320 0.350 0.350
College Medicine 0.480 0.520 0.445
College Physics 0.284 0.333 0.294
Econometrics 0.377 0.368 0.368
Electrical Engineering 0.538 0.579 0.503
Elementary Mathematics 0.328 0.310 0.288
Formal Logic 0.302 0.270 0.278
High School Biology 0.565 0.561 0.535
High School Chemistry 0.360 0.399 0.355
High School Computer Science 0.500 0.480 0.510
High School Mathematics 0.311 0.256 0.304
High School Physics 0.298 0.364 0.325
High School Statistics 0.333 0.352 0.319
Machine Learning 0.411 0.339 0.366
Medical Genetics 0.550 0.580 0.520

Average 0.4032 0.40585 0.3894

Table 8: We report the results of the three models in math.
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Subject GeoGal 30B Gal 30B GalAlp 30B

Anatomy 0.496 0.541 0.533
Business Ethics 0.430 0.420 0.470
Clinical Knowledge 0.532 0.555 0.491
Computer Security 0.600 0.650 0.620
Conceptual Physics 0.481 0.434 0.417
Global Facts 0.390 0.300 0.340
High School European History 0.533 0.606 0.491
High School Geography 0.581 0.540 0.515
High: School Gov & Politis 0.534 0.565 0.461
High School Macroeconomics 0.408 0.405 0.367
High School Microeconomics 0.424 0.458 0.424
High School Psychology 0.613 0.628 0.556
High School US History 0.436 0.352 0.319
High School World History 0.620 0.456 0.446
Human Aging 0.552 0.552 0.511
Human Sexuality 0.511 0.565 0.481
International Law 0.612 0.644 0.554
Jurisprudence 0.491 0.472 0.444
Logical Fallacies 0.423 0.472 0.442
Management 0.573 0.602 0.515
Marketing 0.641 0.705 0.607
Miscellaneous 0.522 0.501 0.470
Moral Disputes 0.480 0.462 0.468
Moral Scenarios 0.238 0.244 0.245
Nutrition 0.536 0.520 0.448
Philosophy 0.444 0.492 0.431
Prehistory 0.503 0.522 0.435
Professional Accounting 0.344 0.312 0.319
Professional Iaw 0.326 0.326 0.327
Professional Medicine 0.438 0.449 0.379
Professional Psychology 0.472 0.505 0.449
Public Relations 0.473 0.445 0.455
Security Studies 0.424 0.408 0.322
Sociology 0.537 0.547 0.483
US Foreign Policy 0.550 0.510 0.540
Virology 0.434 0.422 0.410
World Religion 0.421 0.427 0.380

Average 0.487 0.486 0.448

Table 9: We report the results of the three models in social sciences.
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