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Abstract
Current air quality surveillance ecosystems cannot1

monitor air pollution levels across time and space2

continuously, and lack the ability to integrate his-3

torical data from heterogeneous sources into arti-4

ficial intelligence algorithms capable of providing5

more insights on the impact of severe air pollution.6

Integrating in-situ sensor and satellite data has at-7

tracted recent attention, but the characteristics of8

graph-based learning with heterogeneous air qual-9

ity data have not been explored in depth.10

In this paper, we present the PANORAMA knowl-11

edge graph based prediction approach of the links12

between pollutants exposure and health outcomes.13

PANORAMA aims at integrating heterogeneous air14

quality and health data in order to better predict and15

explain their relationships. An Extract, Transform,16

and Load process is used to design and incorpo-17

rate discrete data into the knowledge graph, and a18

knowledge graph embedding model is trained and19

tested to assess inferential capabilities of the graph.20

A use case with a dataset related to the Gironde de-21

partment in France is showcased. The promising22

preliminary results of a 31.376 MR, 0.312 MRR,23

and 0.254, 0.335, and 0.524 Hits@ 1, 3, and 10 re-24

spectively on a TransE model suggest the potential25

of leveraging semantic structuring and knowledge26

graph technology for environmental public health.27

1 Introduction28

There has been a correlation between climate and air qual-29

ity and the incidence of disease over the past few decades.30

Despite this, real-time information regarding air pollution is31

limited due to the fragmentation of data sources. Accord-32

ing to the World Health Organization (WHO), air pollution33

causes over 7 million premature deaths annually, the major-34

ity of which occur in low- and middle-income countries1. By35

2060, the number of deaths attributable to outdoor air pollu-36

tion is expected to double, yet many countries lack public air37

quality information. Recent reports indicate that 141 coun-38

tries do not regularly monitor particulate matter, and only 2339

1https://www.who.int/westernpacific/health-topics/air-pollution

countries have more than three monitors per million citizens 40

[Holloway et al., 2021]. 41

Gaseous pollutants and particulate matter contribute to the 42

development and progression of disease[Kampa and Cas- 43

tanas, 2008]. Globally, ground monitors are the most pop- 44

ular source of air quality data, but their limited observation 45

range means they may not accurately reflect the air quality 46

where populations live and work [Ma et al., 2019]. Due 47

to its expansive spatial and geographic coverage and consis- 48

tent data quality, satellite monitoring has gained popularity 49

in the past decade. Satellite data cannot directly assess par- 50

ticulate matter concentration; aerosol optical depth data must 51

be post-processed into particulate matter concentrations. IoT 52

and other portable sensor options have emerged, enabling 53

low-cost, wearable technologies to monitor real-time air qual- 54

ity. Integrating in-situ sensor and satellite data has become 55

increasingly crucial for providing comprehensive air quality 56

data for public health planning, policy development, and re- 57

search. 58

There is gap regarding the automated prediction or fore- 59

casting of disease caused by air quality factors while integrat- 60

ing the various available data sources for air quality. This is 61

particularly the case in the context of Low and Middle Income 62

Countries (LMICs) where in-situ sensors are lacking [Raheja 63

et al., 2022]. Integrating information from multiple sources, 64

such as ground and satellite sensors, results in a multimodal 65

learning approach for air quality data analysis. Rather than 66

relying solely on a single modality for understanding the ef- 67

fects of air pollutants, data integration enables a more com- 68

prehensive knowledge base and thorough analysis. This area 69

has not been thoroughly explored. 70

In this paper, we described the PANORAMA approach 71

(Public heAlth iNdicatOrs generation from Air quality data) 72

for integrating heterogeneous air quality data and health re- 73

lated outcomes into a triple-based knowledge graph [Somé et 74

al., 2019; Some et al., 2019; Hogan et al., 2022] in order to 75

enable predicting the relationship between outdoor air qual- 76

ity and diseases and later explaining this relationship. We 77

report the design and development of the first version of the 78

PANORAMA knowledge graph, as well as the preliminary 79

results obtained by applying a missing links prediction pro- 80

cess over the graph to detect evidenced association between 81

pollutants and health outcomes (diseases). In contrast to pre- 82

vious studies, which employs traditional machine learning 83



techniques for such a task, we use symbolic AI and knowl-84

edge graph-based techniques.85

2 Related Work86

In this section, we highlight some relevant approaches on air87

quality monitoring and the prediction of the impact of poor air88

quality on health outcomes. They are categorized in two cate-89

gories: traditional Machine Learning (ML) based approaches90

and graph based approaches.91

2.1 Traditional ML approaches92

Statistical and machine learning prediction methods have re-93

ceived increasing attention in recent years for the advantages94

they provide in describing complex linear and non-linear rela-95

tionships [Wen et al., 2019]. Prediction methods involving air96

quality have been categorized into two main classes: physi-97

cal and data-driven methods. Physical-based approaches have98

been widely used for air quality modelling in the environ-99

mental community, and includes strategies such as chemical100

transport models, operational street canyon models, Gaus-101

sian plume models, and reduced-scale models. An advantage102

of physical models is their ability to provide insights about103

physical and chemical processes that govern atmospheric104

pollutants and thus explain the variability in the chemical105

and dynamical mechanisms of pollutants [Zhao et al., 2019;106

Zhou et al., 2019]. However, physical methods often require107

a great deal of empirical assumptions and expert-based ad-108

justments to adapt to different regions and contexts. Multiple109

linear regression has been used quite extensively for under-110

standing the relationships between air pollution observations,111

health, and other meteorological variables. This technique112

was built upon when creating land-use regression, which ex-113

tends the linear regression model to make use of land char-114

acteristics, road use, traffic, and other physical environmental115

variables as predictors. This spatial interpolation modelling116

method involves the inclusion of Euclidean buffers around117

pollution monitoring stations, while conventional linear re-118

gression only reflects the coefficients within a study area119

[Beckerman et al., 2013; Shaddick et al., 2018]. With this120

method, land use information can be used to interpolate how121

pollution may be distributed at locations that do not have di-122

rect monitors [Beckerman et al., 2013]. However, land-use123

regression has been criticized for its inflexibility and limita-124

tions when dealing with time-series or temporal data, pre-125

dictor interaction, or collinearity [Beckerman et al., 2013;126

Kerckhoffs et al., 2019]. Following the use of multiple linear127

regression and Poisson regression for time-series data, gen-128

eralized additive models (GAM) became popular in the late129

1990s for dealing with complex and non-linear time-series130

data both widely and in the air quality field [Ma et al., 2020].131

The GAM is more flexible for seasonality and time trends, as132

well as nonlinear relationships, and defines the model using a133

non-parametric smoothing function [Khojasteh et al., 2021].134

The study in [Khojasteh et al., 2021] used the Dickey-135

Fuller test to determine the long-term effects of air pollution136

on respiratory morbidity and mortality and developed non-137

linear autoregressive and artificial neural network models to138

accurately predict it. They found that NO2, SO2, O3, and139

PM10 did not affect respiratory morbidity and mortality in 140

the sensitivity analysis. 141

2.2 Graphs based approaches 142

There have been a variety of use cases of graph learning in 143

healthcare. Patient records for instance, particularly elec- 144

tronic health records (EHRs), have been commonly repre- 145

sented as networks and used to personalize patient predic- 146

tions for precision medicine [Li et al., 2022]. However, the 147

field of graph learning in environmental public health has not 148

been thoroughly investigated, and the characteristics of graph 149

representation of heterogeneous air quality sensor data are 150

not fully understood. Due to the complex topographic struc- 151

ture and diverse types of interactions between nodes, graph 152

learning can be challenging to develop and implement [Li et 153

al., 2022]. [Ferrer-Cid et al., 2021] described the topology 154

of an air pollution monitoring network using graph learn- 155

ing techniques. The primary nodes of air pollution moni- 156

toring networks are ground sensors, but the limited coverage 157

of these sensors demonstrates the critical need for modeling 158

techniques that can increase spatial resolution and utilize the 159

knowledge of neighboring sensors to reconstruct the signal 160

in regions without sensor data [Ferrer-Cid et al., 2021]. The 161

study in [Lin et al., 2020] integrates theories of spatial statis- 162

tics into neural networks for the prediction of geographically- 163

based spatiotemporal phenomena on a fine spatial scale. Us- 164

ing observed air quality measurements from a network of 165

low-cost sensors as well as contextual data describing envi- 166

ronmental characteristics, the objective is to estimate air qual- 167

ity values at locations lacking sensors across a fine spatial 168

grid. 169

The current study uses a knowledge graph, a heterogeneous 170

graph that captures knowledge from different datasets, to in- 171

tegrate a variety of air quality and health outcome data [Li et 172

al., 2022]. Knowledge graphs are networks of data expressed 173

through nodes and edges corresponding to important entities 174

of information and the relations that link them together, re- 175

spectively. Using the principles of Linked Data, knowledge 176

graphs provide a tool for combining, exploring, and travers- 177

ing data in context with other connected resources. 178

3 The PANORAMA approach 179

Our objective is to develop a versatile method that can inte- 180

grate diverse data types and modalities to predict the effects 181

of exposure to poor air quality. To achieve this, we aim to rely 182

on readily available Open Data, especially in LMICs, where 183

reliable statistics and monitoring tools could be scarce. Ini- 184

tially, we integrated satellite data on air quality monitoring, 185

ground sensor data, geographical subdivision data, and hos- 186

pital admissions data to validate the approach’s fundamental 187

principle. Our primary focus was on the Gironde department 188

in the southwest of France, where we were able to retrieve the 189

necessary multimodal data to apply the approach. By leverag- 190

ing these data types, we aim to develop a generic method that 191

can be used in the future to predict the effects of air pollution 192

exposure. 193

Figure 2 exhibits the overall workflow of the PANORAMA 194

approach, which consists of the steps described in the follow- 195

ing sections. 196



3.1 Design of the knowledge model197

A model was designed based on nodes of interest to be in-198

tegrated regarding air quality data monitoring and the rela-199

tionships between these nodes. Therefore, the Knowledge200

graph construction begins with modelling the nodes and rela-201

tions that are set to be included in the graph. The knowledge202

graph is a graph-based information represented in the form of203

triplets, to represent entities and their relationships [Li et al.,204

2020] that are a set of symbols. Nodes were selected based on205

discrete air quality data available for the Gironde department.206

The links and their corresponding labels were more partic-207

ular, and thus chosen depending on the semantics available208

within each discrete dataset and the intersecting information209

between the datasets. Custom names for relations were as-210

signed to links between the nodes. The high level view of the211

graph is depicted in figure 1.212

3.2 Knowledge sources selection213

The resulting conceptual model in the previous step was used214

to determine the information to be retrieved from the knowl-215

edge sources. Several knowledge sources were assessed for216

location, reliability and frequency of measurements, range217

of pollutants, and availability of health outcome data. Such218

evaluation of knowledge sources was necessary to understand219

how fragmented, unavailable, and unreliable data may af-220

fect the ability to integrate and produce downstream findings.221

While this is an expected challenge considering the data of in-222

terest, it is essential that the PANORAMA knowledge graph223

is developed and tested on consistent and valid data to ensure224

its applicability in settings where data may be more disparate,225

difficult to obtain, or unreliable. Two air quality data sources226

and one health outcome data source were selected for their227

frequency of measurements, spatial and temporal coverage,228

reliability, and ability to align location.229

Copernicus Atmospheric Monitoring Service (CAMS)230

The Copernicus Atmospheric Monitoring Service (CAMS) is231

the European Union’s Earth Observation Programme, mon-232

itoring and forecasting European air quality and pollutants233

through satellite and non-satellite observations2. CAMS pro-234

vides consistent and quality-controlled information through235

daily forecasts of air composition and forecasts of global236

long-range transport of pollutants. CAMS focuses on five237

main areas: Air quality and atmospheric composition, ozone238

layer and ultraviolet radiation, emissions and surface fluxes,239

solar radiation, and climate forcing. Free and openly ac-240

cessible, CAMS provides data from two groups of missions:241

(i) the Sentinels, which have been developed specifically for242

CAMS and provided dedicated observations, and (ii) the Con-243

tributing Missions operated by National, European, or Inter-244

national organizations and siphon data to CAMS. For satel-245

lite data obtained from CAMS, which includes measurements246

with a date, value, the pollutant that is measured, and the geo-247

graphical coordinates of the measurement, the following cus-248

tom links were established: hasValue, hasDate, hasPollutant,249

fromLocation.250

2Copernicus Services — Copernicus. Accessed April 25, 2023.
https://www.copernicus.eu/en/copernicus- services

Atmo Nouvelle-Aquitaine pollutants data 251

Atmo Nouvelle-Aquitaine is the regional air observatory in 252

the Nouvelle-Aquitaine region of France3. According to the 253

law on air and rational use of energy, Atmo has several goals, 254

including the monitoring of air 24 hours a day and forecast- 255

ing the air quality in the region, predicting pollution episodes 256

and altering the authorities. As of December 2020, Atmo 257

Nouvelle-Aquitaine has a fixed sensor network of 44 pollu- 258

tion measurement stations and over 100 analyzers, which op- 259

eration continuously days a week, 24 hours a day. For data 260

obtained from Atmo service, which includes measurements 261

with a unit, date, value, and name, the pollutant that is mea- 262

sured, and the location of the sensor, the following custom 263

links were established: hasValue, hasDate, hasUnit, hasPol- 264

lutant, fromLocation. 265

SAMU Urgences de France 266

SAMU Urgences de France (SUDF) is the French organiza- 267

tion of prehospital emergency medicine and ensure appropri- 268

ate medical attention, from which emergency calls receive the 269

most appropriate response as soon as possible according to 270

the urgency and severity. From the emergency call, a variety 271

of services are available depending on the nature of the call. 272

These options include medical advice, a private ambulance, a 273

general practitioner, etc. There is one SAMU per French de- 274

partment, approximately one for every 500,000 inhabitants, 275

and nearly 100 in total. SAMU data are organized at the level 276

of entries. Specifically, entry-level data are collected for each 277

contact with SAMU and include the entry identification num- 278

ber, date, main complaint, INSEE area code, age and sex of 279

the individual, and possible diagnostic information including 280

an International Classification of Diseases (ICD) code. For 281

data obtained from SAMU Urgences de France, which in- 282

cludes entries with an identification number, date, main com- 283

plaint, sex, age, possible diagnosis, and the location of the en- 284

try, the following custom links were established: hasReason, 285

hasDate, isSex, isAge, hasCondition, hasICD, hasDiagnosis, 286

fromLocation. 287

The National Institute of Statistics and Economic Studies 288

The National Institute of Statistics and Economic Studies 289

(INSEE) collects, analyses and disseminates information on 290

the French economy and society4. Created in 1946, INSEE 291

is a Directorate-General of the Ministries for the Economy 292

and for Finances and is the official body for the design, pro- 293

duction and dissemination of official statistics. Pertaining to 294

the present study, INSEE describes and analyzes regions and 295

territories in France according to codes. Within France, IN- 296

SEE provides codes for each region, department, arrondisse- 297

ment, canton, and municipality, and thus provides granular 298

geographic and regional information across the country. For 299

specificity, INSEE provides codes, descriptors, and the rela- 300

tionship between geographical levels. All data provided by 301

3Atmo Nouvelle-Aquitaine, l’observatoire régional de
l’air. Atmo Nouvelle-Aquitaine. Published December
5, 2016. Accessed April 25, 2023. https://www.atmo-
nouvelleaquitaine.org/article/atmo-nouvelle-aquitaine-
lobservatoire-regional-de-lair

4Getting to know INSEE — Insee. Accessed April 25, 2023.
https://www.insee.fr/en/information/2381925



Figure 1: High level view of the conceptual model of the knowledge graph. The link to be predicted is the one between the health outcomes
node (Emergency Help) and the Pollutants node.

INSEE is open-access and free. The department of Gironde,302

which is of interest in this study, is associated with code 33,303

and the codes for each arrondissement, canton, and munici-304

pality in this department begin with this code and add subse-305

quent digits as the geographic level of interest becomes more306

granular.307

International Classification of Diseases, Version 10308

The WHO International Classification of Diseases (ICD) Ver-309

sion 10 Vocabulary was obtained from BioPortal, an online310

biomedical ontology and terminology repository [Noy et al.,311

2009]. Medical and clinical terminology are described in the312

ICD as codes, and these codes are used as the main foun-313

dation for most disease and health records and statistics in314

medical care, research, and public health.315

3.3 Extraction and transformation of knowledge316

Information was extracted from the knowledge sources,317

cleaned, and made available as triples in Turtle format with318

PANORAMA identifiers and the name of each relationship319

between entities. CAMS data was delivered in netCDF for-320

mat for all global geographical coordinates and required the321

initial step of conversion to tabular Comma-Separated Value322

(CSV) format prior to cleaning. Post-conversion, data was323

restricted to the geographical coordinates of Gironde, France324

according to Google coordinates. Data obtained from Atmo325

and CAMS were subject to the same preparation: (i) Dates326

between 01-01-2017 and 31-12-2019; (ii) Only pollutants of327

interest included: PM2.5, PM10, CO, NO2, O3, SO2. Data328

obtained from SUDF was similarly prepared: (i) Dates be-329

tween 01-01-2017 and 31-12-2019; (ii) Only entries which330

include a possible diagnosis (ICD code). Then, post-cleaning331

was necessary in order to normalize the entities to ensure332

that links could be created between the disparate knowl-333

edge sources. Indeed, in air quality and health data, dif-334

ferent terms or descriptions exist for the same entity. En-335

tity normalization is required to map the terms, ensuring336

that linking entities are represented analogously between re-337

sources. In the PANORAMA knowledge graph, all nodes338

must be harmonized according to their location (which acts339

as a proxy) to create links between the selected knowledge340

sources. Entity normalization was achieved using INSEE ge-341

ographical data, which describes different levels of regions342

in Gironde as codes. SUDF data was previously mapped343

to INSEE geographical codes prior to data being obtained.344

For instance, the Atmo Sensor Location << Bordeaux −345

Bastide >> was normalized to the INSEE Commune <<346

Bordeaux >> with the INSEE Code ”33063.0”, while347

<< Ambes2 >> was normalized to ”Ambes” with IN- 348

SEE Code << 33528.0 >>. CAMS data described location 349

through geographical coordinates to the tenth place. Loca- 350

tion was mapped to INSEE codes accordingly. For instance, 351

CAMS Coordinate << 44.8”N,−0, 6”W >> was mapped 352

to the INSEE Commune << Bordeaux >> with the code 353

<< 33063.0 >>. 354

3.4 Loading into the triplestore 355

RDF statements are comprised of a three-part structure link- 356

ing resources, which can be identified with a URI, together 357

depicting two entities and the relation between them. This se- 358

mantic data is represented as subject-predicate-object triples 359

for implementation into a knowledge graph. A set of triples 360

makes an RDF graph, and in a graph, nodes represent enti- 361

ties and edges represents relationships between entities. RDF 362

triples are well suited for representing highly interconnected 363

data. The set of PANORAMA triples are loaded and intercon- 364

nected in a knowledge graph database. In the present study, 365

11 custom relations are defined in this study: hasValue, has- 366

Date, hasUnit, hasPollutant, fromLocation, hasReason, isSex, 367

isAge, hasCondition, hasICD, hasDiagnosis. 368

Triples were extracted from unstructured tabular data us- 369

ing RDFLib 6.1.1, a Python package for working with RDF. 370

For each data source, a tabular data frame was loaded and 371

parsed with RDFLib. A namespace of ’http://panorama.org/’ 372

was set. A namespace is a mapping that connects URIs to 373

a set prefix. For instance, a URI concept was created for 374

each measurement accordingly for Atmo Nouvelle-Aquitaine 375

and CAMS data: measureConcept = URIRef(”http : 376

//panorama.org/Measure”). Finally, all the triples have 377

been loaded into a semantic graph database, Blazegraph5. 378

The latter is an open source Triplestore and graph database 379

for storing and querying linked data and support RDF and 380

SPARQL Protocol and RDF Query Language (SPARQL). 381

3.5 Predicting the links between pollutants and 382

health outcomes 383

As already mentioned, we turn the identification of links be- 384

tween pollutants and health outcomes to a knowledge graph 385

completion problem. Generally, knowledge graphs are in- 386

complete sets with many missing facts. Thus, Knowledge 387

Graph Completion aims to fill in missing triples to support 388

graph completeness and improve prediction and the perfor- 389

mance of other downstream applications, such as link predic- 390

tion [Guan et al., 2018]. Knowledge graph embeddings are 391

5https://blazegraph.com/



Figure 2: Overall workflow of PANORAMA. Nodes are selected
based on interest for integration and connected with edges to form
the conceptual knowledge graph. After loading in a triplestore, the
embedding model is developed and link prediction is conducted to
predict the possible association between pollutants and health out-
comes.

supervised learning models that learn vector representations392

of nodes and edges of labeled, directed multigraphs. The aim393

is to map and project entities and relations into a low- di-394

mensional and continuous vector space, on which other oper-395

ations can be conducted. In our case, a Knowledge Graph396

Embedding Model (KGEM) was trained and evaluated on397

the PANORAMA knowledge graph using several model algo-398

rithms and a set of hyperparameters (see figure 4. A training399

knowledge graph is subjected to the architecture of a model400

with a couple layers: (i) lookup layer (simply assigns an em-401

bedding to each node and edge type of the graph); (ii) scoring402

layer, interacting with a loss function; (iii) negatives gener-403

ation process; (iv) optimization (to train embeddings, which404

are used by the above scoring function to predict new links,405

the downstream task).406

In this study, we have tested three different embeddings407

models, respectively Translating Embeddings (TransE)[Bor-408

des et al., 2013], RotatE[Huang et al., 2021] and409

ComplEx[Trouillon et al., 2016] which is a semantic match-410

ing model that serves as an alternative to translational dis-411

tance models. RotatE is another translational distance model412

inspired by TransE, but instead switches to complex vector413

Figure 3: Examples of triples extracted in the study. A measure
node, acquired from tabular Atmo or CAMS data, is assigned to the
http://panorama.org/ namespace.

Figure 4: A KGEM comprises several layers: a lookup layer, a scor-
ing layer, a negatives generation process, and optimization. Embed-
ding of nodes and links of the original knowledge graph allows for
downstream tasks such as link prediction.

space C to define relations as rotational from head to tail of a 414

triple. 415

4 Results 416

4.1 The PANORAMA Knowledge graph 417

The graph is depicted with all conceptual nodes and edges in 418

figure 6. It contains 1,922,998 triples, consisting of 443,332 419

entities and 13 relation types (Table 1). The graph con- 420

tains entities from CAMS, Atmo, SUDF, ICD10, and INSEE. 421

There are two pre-defined relations in the graph acquired 422

from RDF Vocabulary: rdf : type, which is an instance of 423

rdf : Property that is used to declare that a resource is an 424

instance of a class, and rdfs : label, which is another instance 425

of rdf : Property that provides a label or readable version 426

of a resource’s name. An example of Turtle format rendering 427

for a pollutant measure is depicted in figure 5. 428

There are a total of 2,145 unique ICD10 codes included in 429

the graph, identified from SUDF entries and 6 pollutants have 430

been included: PM2.5, PM10, NO2, O3, SO2 and CO. The 431

different measurements were acquired from both Atmo and 432

CAMS data, but CO was only available in CAMS data. There 433

are a total of 6 locations included in the knowledge graph. 434

They are assigned to the following INSEE communes: ”Le 435

Temple”, “Ambes”, ”Merignac”, ”Bordeaux”, ”Bassens”, and 436

”Talence”. These communes are assigned to INSEE URIs 437

Triples |E| |R| Training Testing

1,922,998 443,332 13 1,634,548 288,450

Table 1: The number of triples, entities, and relations along with the
training and testing split of triples for the first PANORAMA knowl-
edge graph.



Figure 5: Triples from the CAMS dataset. Relations, in green, are assigned to nodes according to the measurement of interest

Figure 6: The conceptual knowledge graph obtained after the integration of the different knowledge sources. The green banners indicate
the knowledge sources. Nodes are indicated with yellow squares and Literal nodes are indicated with bolded text. Links are indicated with
directed black arrows and are labelled according to the relation.

identified from the INSEE RDF space according to the map-438

ping exemplified earlier.439

4.2 Predicting the link between pollutants and440

diseases441

Link prediction is the main downstream task used to evaluate442

knowledge graph embedding models. There are two main443

types of link prediction that can be conducted: (i) Trans-444

ductive link prediction, in which all links that are predicted445

are relations already seen in the training graph; (ii) Inductive446

link prediction, in which the goal is to predict links between447

unseen entities in the training graph. For the PANORAMA448

knowledge graph, transductive link prediction has been used449

to predict the relation of mayHaveParticipant, which is al-450

ready seen in the training graph between ICD10 and Pollutant451

entities. In this work, the PyKEEN framework6 was used to452

perform the analysis over the knowledge graph. PyKEEN is453

a Python package for reproducible, facile knowledge graph454

embeddings.455

There exist 2,150 triples in the dataset including the may-456

HaveParticipant link between ICD10 and Pollutant entities,457

which serves as the future link of interest in the KGEM. For a458

proof of concept, the KGEM was trained on the following hy-459

perparameters: model algorithms TransE, ComplEx, RotatE,460

epoch size 2, 5, embedding size 50, batch size 128. Simi-461

lar to previous knowledge graph work, test triples are ranked462

against all candidate triples not appearing in the training set.463

The knowledge graph dataset was divided into an 85-15 split464

for training and testing, respectively. This evaluation strategy465

employs a learning to rank problems, in which we can see466

6https://pykeen.github.io/

how well each positive triple in a test set ranks against syn- 467

thetic negatives, built under the same procedure used in the 468

training. This uses information retrieval metrics such as Mean 469

Rank (MR), Mean Reciprocal Rank (MRR), and Hits@K re- 470

spectively. MR computes the arithmetic mean over all indi- 471

vidual ranks. MRR takes the reciprocal of the rank to guaran- 472

tee robustness against outliers. It is more affected by changes 473

of low ranked triples than high ranked triples. Hits@K cal- 474

culates how many positive triples in a test set show up in the 475

top k position against synthetic negative triples. This measure 476

describes the fraction of positive facts that appear in the first 477

k triples of the sorted rank list, and thus does not differenti- 478

ate between triples that rank higher than k. Table 2 exhibits 479

the model losses and the three main metrics of evaluation for 480

the KGEM: MR, MRR, and Hits@K at three levels – 1, 3, 481

and 10 hits. From this table, we can see that the TransE scor- 482

ing function performs better than other model algorithms. An 483

epoch size of 5 also outperformed the competing epoch size 484

of 2 for all metrics in this model. The TransE model with 5 485

epochs achieved the best results with a mean rank of 31.376, 486

mean reciprocal rank of 0.312, and 0.254, 0.335, and 0.524 487

Hits@1, 3, and 10, respectively. 488

5 Discussion and Perspectives 489

5.1 Contributions of the study 490

The present study demonstrated the ability to apply knowl- 491

edge graph technology, which is extremely novel in public 492

health, to sparse air quality data sources and health data. The 493

PANORAMA knowledge graph provides data coherency and 494

a holistic presentation of several knowledge sources. Fur- 495

ther, the graph is able to fill gaps that may exist in discrete 496



Hit@
Epochs Losses MR MRR 10 3 1

TransE 2 0.00437,0.00206 928.582 0.142 0.217 0.182 0.158
5 0.00138,0.00106 31.376 0.312 0.524 0.335 0.254

ComplEx 2 0.01091,0.00580 170058.469 0.0197 0.078 0.0026 0.0038
5 0.00580,0.00576 165203.078 0.0249 0.0182 0.0078 0.00396

RotatE 2 0.00782,0.00781 157281.492 0.0358 0.00468 0.00156 0.00156
5 0.00614,0.00568 26690.462 0.0313 0.000377 0.000223 0.000108

Table 2: Metrics of the knowledge graph embedding model with the following parameters: Scoring functions TransE, ComplEx, RotatE,
epoch size 2, 5, embedding size 50, and batch size 128. The TransE epoch 5 model produced optimal results for the embedding (highlighted)
– a MR of 31.376, MRR of 0.312, and Hits@1, 3, and 10 of 0.254, 0.335, and 0.524 respectively.

knowledge sources, such as missing measurements on par-497

ticular dates or in particular locations, that may be achieved498

with the integration of other air quality data. This graph can499

recognize ambiguous entities in context, connect entities to500

similar data sources, leverage related information in a dataset,501

and provides a foundation for use in other settings and con-502

texts. Moreover, promising results of the embedding model503

demonstrate inferential reasoning abilities about health from504

air quality and pollution. A mean rank of 31.376 and mean505

reciprocal rank of 0.312 for an initial embedding model us-506

ing a TransE scoring function show that future renditions of507

the model will likely be able to produce insightful prediction508

results. A Hits@10 result of 0.524 indicates that there is a509

proportion of 0.524 of correct positive facts (plausible asso-510

ciation between pollutants and health outcomes) appearing511

in the top 10 entries of a sorted ranked list again synthetic512

negatives in the model, demonstrating further aptitude of this513

knowledge graph’s embeddings and link prediction. These514

hits indicate that over half of results in a sorted ranked list515

are relevant, and as the model matures with the fine-tuning of516

hyperparameters, inferential reasoning is probable.517

5.2 Limitations of the study518

The study presents some limitations and challenges. Firstly,519

the ability to create a semantic knowledge graph from a vari-520

ety of heterogeneous sources is entirely reliant on the ability521

to align and harmonize the discrete data. In this study, it was522

possible to merge the data sources on location (which acts523

as a proxy), simply due to the availability of these different524

sources in the same region. However, this will be a continued525

challenge in applying this knowledge graph without adapta-526

tion in other settings, as the presence of harmonizing vari-527

ables is fully dependent on data availability in the context of528

interest. In a global health setting, in which the PANORAMA529

knowledge graph may be of important use, such harmonizing530

variables may not be always present. In the context of LMICs,531

relying on Open Data could be a relevant alternative for pre-532

diction tasks at the macro level. A major challenge with us-533

ing complex and heterogeneous data is the varying granular-534

ity (particularly spatial coverage of satellite Vs in-situ sen-535

sors based data) and frequency of data variables, particularly536

those which will be used for harmonization. When only a537

limited number of measurement locations are available, or538

when the measurement locations are sparse and not spatially539

representative of the target region, taking into account only540

neighborhood-level spatial or temporal dependencies may re- 541

sult in overfitting [Lin et al., 2020]. Air quality data tends to 542

be available at different specificities, and in the current study, 543

proved to be challenging for integrating Atmo, CAMS, and 544

SUDF data. CAMS data is geolocated according to geograph- 545

ical coordinates, but only to the tenths place for each latitude 546

and longitude value. When examining a small region such as 547

Gironde for application of PANORAMA, it proved difficult 548

to align such high-level coordinates from CAMS with Atmo 549

in-situ sensors, which record data at the sensor’s precise lo- 550

cation. Thus, it is expected that there will be some variation 551

in the locations, which may impede the process of harmo- 552

nization. This challenge will likely disappear when applied 553

to larger areas or with data sources that provide more precise 554

location records, such as GPS coordinates. However, it is un- 555

realistic to assume that such perfect data will be obtained for 556

other applications; this represents a limitation to be consid- 557

ered moving forward. Lastly, ambiguity among data sources 558

for identical variable records presents a challenge. This study 559

was fortunate to have access to health data containing symp- 560

tom and disease identifiers based on the internationally rec- 561

ognized ICD vocabulary. However, health data is indicated 562

differently across the globe, and this lexical gap may make 563

harmonization difficult. 564

5.3 Future works 565

The PANORAMA knowledge graph was initially created 566

with the primary purpose of being used in global health 567

contexts where air quality data is sparse and heterogeneous. 568

However, the graph’s potential extends beyond this initial ap- 569

plication, and there is an interest in testing its capabilities in 570

other settings such as the Global South. Doing so will provide 571

insights into global health contexts and help us understand 572

the graph’s limitations with various data sources. One way to 573

enhance the graph’s potential is by integrating data collected 574

by citizen scientists or the Internet of Things (IoT) using low- 575

cost sensors. It will be relevant to investigate similarly to [Lin 576

et al., 2020] how to exploit both local autocorrelation patterns 577

and global autocorrelation trends of predictions and labeled 578

data in the learned spatio-temporal embedding space for ac- 579

curate fine-scale prediction tasks with limited labeled data. 580

Additionally, it would be interesting to explore the dynamic 581

modality of measures of exposure as discussed in Letellier et 582

al. [Letellier et al., 2022], while utilizing geolocated meta- 583

data provided by mobile operators’ Call Data Records. 584
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