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ABSTRACT

Despite having promising results, style transfer, which requires preparing style
images in advance, may result in lack of creativity and accessibility. Follow-
ing human instruction, on the other hand, is the most natural way to perform
artistic style transfer that can significantly improve controllability for visual ef-
fect applications. We introduce a new task—language-driven image style trans-
fer (LDIST)—to manipulate the style of a content image, guided by a text. We
propose contrastive language visual artist (CLVA) that learns to extract visual se-
mantics from style instructions and accomplish LDIST by the patch-wise style
discriminator. The discriminator considers the correlation between language and
patches of style images or transferred results to jointly embed style instructions.
CLVA further compares contrastive pairs of content image and style instruction to
improve the mutual relativeness between transfer results. The transferred results
from the same content image can preserve consistent content structures. Besides,
they should present analogous style patterns from style instructions that contain
similar visual semantics. The experiments show that our CLVA is effective and
achieves superb transferred results on LDIST.

1 INTRODUCTION

Style transfer (Gatys et al., 2015b; Li et al., 2017c; Huang & Belongie, 2017; Jing et al., 2017)
adopts appearances and visual patterns from another reference style images to manipulate a content
image. Artistic style transfer has a considerable application value for creative visual design, such
as image stylization and video effect (Somavarapu et al., 2020; Zhang et al., 2019b; Wang et al.,
2019a; Gao et al., 2018; Huang et al., 2017b). However, it requires preparing collections of style
image in advance. It even needs to redraw new references first if there is no expected style images,
which is impractical due to an additional overhead. Language is the most natural way for humans to
communicate. If a system can follow textual descriptions and automatically perform style transfer,
we can significantly improve accessibility and controllability.

In this paper, we introduce language-driven image style transfer (LDIST). As shown in Fig. 1,
LDIST treats a content image and an instruction as the input, and the style transferred result is
manipulated from a style description. It should preserve the structure of car scene from the content
image and simultaneously modifies the style pattern that corresponds to “horizontally lined texture,
blues.” Our LDIST task is different from the general language-based image-editing (LBIE) (Nam
et al., 2018; Li et al., 2020; Liu et al., 2020; El-Nouby et al., 2019), which usually alters objects
or properties of object in an image. The main challenge of LDIST is to express visual semantics
from language as style patterns. For example, not only color distributions (“blue” or “green”) but
also texture patterns (“horizontally lined” or “veined, bumpy”) should be presented in transferred
results. More importantly, it requires linking concrete objects with their visual concepts, such as
“zebra” with “black-and-white stripe” or “pineapple” with “bumpy yellow.”

We present contrastive language visual artist (CLVA), including language visual artist (LVA) and
contrastive reasoning (CR), to perform style transfer conditioning on guided texts. LVA preserves
content structures from content images (C) and extracts visual semantics from style instructions (X )
to carry out LDIST. With the patch-wise style discriminator, it considers patches of style image
and transferred result with language to jointly embed style instructions. Furthermore, CR com-
pares contrastive pairs to obtain an additional improvement, where relative content images or style
instructions should present similar content structures or style patterns.

Project website: https://ai-sub.github.io/ldist/
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Figure 1: The introduced language-driven image style transfer (LDIST) task. LDIST allows ma-
nipulating colors and textures of a content image (C), guided by a style instruction (X ).

To evaluate LDIST, we conduct a new dataset built upon DTD2(Wu et al., 2020), which provides
texture images with textual descriptions (X ) as reference styles. We also collect numerous wall-
papers that present diverse scenes as content images (C). The experiments show that our CLVA is
effective for LDIST and achieves superb transferred results on both automatic metrics and human
evaluation. Besides, using natural instructions improves the controllability of style transfer and can
support partial semantic editing of reference style. In summary, our contributions are four-fold:

• We introduce LDIST that follows natural language to accomplish artistic style transfer;
• We present CLVA, which learns to align visual semantics from style instructions with style images,

to provide sufficient style patterns for LDIST;
• For evaluation, we prepare a new dataset containing diverse scenes as content images and descrip-

tions of texture as style instructions;
• Extensive experiments and qualitative examples demonstrate that our CLVA outperforms baselines

on both automatic metrics and human evaluation.

2 RELATED WORK

Artistic Style Transfer Style transfer (Gatys et al., 2015b; Li et al., 2017b; Risser et al., 2017;
Li et al., 2017a; Ruder et al., 2016; Li & Wand, 2016b; Champandard, 2016; Chen & Hsu, 2016;
Mechrez et al., 2018; Liao et al., 2017; Gatys et al., 2017; Atarsaikhan et al., 2017; Castillo et al.,
2017; Selim et al., 2016; Jing et al., 2017) is to redraw an image with a specific style. In general,
style transfer can be divided into two categories: photorealistic and artistic. Photorealistic style
transfer (Zhang et al., 2017b; Luan et al., 2017; Mechrez et al., 2017; Li et al., 2018; Yoo et al.,
2019; Park et al., 2020b) aims at applying reference styles on scenes without hurting details and
satisfying contradictory objectives. By contrast, artistic style transfer (Huang et al., 2017a; Gupta
et al., 2017; Chen et al., 2017a; Johnson et al., 2016; Ulyanov et al., 2016; 2017; Li & Wand, 2016a;
Chen et al., 2018a; Jiang & Fu, 2017; Lu et al., 2017; Azadi et al., 2018; Liu et al., 2017; Wang
et al., 2017; Jing et al., 2018; Dumoulin et al., 2017; Chen et al., 2017b;c; Zhang & Dana, 2017;
Chen & Schmidt, 2016; Ghiasi et al., 2017; Li et al., 2017c; Huang & Belongie, 2017; Kotovenko
et al., 2019; Sanakoyeu et al., 2018; Kolkin et al., 2019; Li et al., 2019) captures style concepts
from reference and modifies color distributions and texture patterns of content images. However, it
requires preparing numerous style images in advance, which limits practicality of style transfer. To
tackle this issue, LDIST allows following textual descriptions to perform artistic style transfer.

Language-based Image Editing The general task of LDIST is language-based image editing
(LBIE), which also uses language to edit input images. With rule-based instructions and prede-
fined semantic labels, they (Cheng et al., 2013; Laput et al., 2013) first carry out LBIE but under
limited practicality. Inspired by text-to-image generation (Reed et al., 2016; Zhang et al., 2017a;
Xu et al., 2018), previous works (Chen et al., 2018b; Shinagawa et al., 2017; Dong et al., 2017;
Nam et al., 2018; Li et al., 2020; Xia et al., 2021; Liu et al., 2020; El-Nouby et al., 2019; Fu et al.,
2020) perform LBIE by conditional GAN. LBIE usually modifies objects and properties of objects
in the image. In contrast, LDIST aims at preserving the scene structure from the content image and
manipulating the color distribution and the texture pattern from the style instruction.

Contrastive Representation Learning Contrastive learning has been widely used in self-
supervised maximizing mutual information (He et al., 2020; Hjelm et al., 2019; Löwe et al., 2019;
Misra & van der Maaten, 2020; Wu et al., 2018b). For computer vision, they involve patch-wise
comparison (Hénaff et al., 2019; Park et al., 2020a) to provide contrastive loss. For language, both
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Figure 2: Contrastive language visual artist (CLVA), including language visual artist (LVA) and
contrastive reasoning (CR). LVA learns to jointly embed style images (S) and style instructions (X )
by the patch-wise style discriminator (D) and perform LDIST for content images (C). CR compares
contrasitve pairs ({C1,X1}, {C2,X2}) to improve the relativeness between transferred results (Ô).

positive and negative contexts are sampled to learn sentence representation (Logeswaran & Lee,
2018; Srinivas et al., 2020). Regarding vision-and-language research, we are the first to apply con-
trastive learning into image editing by considering contrastive visual-text pairs to improve LDIST.

3 LANGUAGE-DRIVEN IMAGE STYLE TRANSFER (LDIST)

3.1 OVERVIEW OF CLVA

We introduce the language-driven image style transfer (LDIST) task to manipulate colors and tex-
tures of a content image (C), guided by a style instruction (X ). As illustrated in Fig. 1, a system is
required to extract not only color distribution but also texture patterns from style instructions (X ).
For training, we have pairs of style image (S) with style instruction (X ) to learn the correlation
between visual patterns and language semantics. During testing, only style instructions (X ) are
provided for LDIST to carry out style transfer purely relied on language.

We present contrastive language visual artist (CLVA) in Fig. 2. Language visual artist (LVA) extracts
content structures from content images (C) and visual patterns from style instructions (X ) to carry
out LDIST. LVA adopts the patch-wise style discriminator (D) to connect extracted visual semantics
to patches of paired style image (PS in Fig. 2). Contrastive reasoning (CR) allows comparing
contrastive pairs of content image and style instruction (C1 − X1, C2 − X1, and C2 − X2). In this
way, it should present consistent content structures from the same content images (C2) or analogous
style patterns from related style images (S1 and S2), despite using different style instructions.

3.2 LANGUAGE VISUAL ARTIST (LVA)

To tackle LDIST, language visual artist (LVA) first adopts visual encoder (GE) to extract the content
feature (hC) and the style feature (hS ) for an image and text encoder (φ) to extract the style instruc-
tion feature (hSX ) from an instruction. hC ∈ Rh′×w′×c is a spatial tensor containing the content
structure feature, and hS ∈ Rs is a vector representing the global style pattern but without spatial
information. SSX ∈ Rs embeds into the same space of hS to reflect the extracted visual semantic.
Then, visual decoder (GD) produces transferred result (Ô) from hCC and hSX , which performs style
transfer for content images by style instructions:

hCC , h
S
C = GE(C),

hSX = φ(X ),
Ô = GD(h

C
C , h
S
X ).

(1)
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In particular, visual decoder (GD) applies self-attention (Zhang et al., 2019a; El-Nouby et al., 2019;
Fu et al., 2020) along the channel side to fuse content features (hC) and style features (hS ), where
hS is concatenated with hC along each spatial dimension. There are two goals to train LVA for
LDIST: preserving content structures from content images and presenting style patterns correlated
with visual semantics of style instructions.

Structure Reconstruction For content structures, we conduct an auto-encoder (Hinton & Salakhut-
dinov, 2006) process, where visual decoder (GD) should be able to reconstruct input content images
using extracted content features and style features from visual encoder (GE):

Ĉ = GD(h
C
C , h
S
C ),

Lrec = ||Ĉ − C||2.
(2)

The reconstruction loss (Lrec) is computed as the mean L2 difference between reconstructed content
images (Ĉ) and input content images (C), where visual encoder learns to preserve content structures.

Patch-wise Style Discriminator (D) Regarding style patterns, results (Ô) guided by style instruc-
tions (X ) are expected to present analogously to reference style images (S). To address the connec-
tion between language semantics from X and visual semantics from S, we introduce the patch-wise
style discriminator (D). Inspired by texture synthesis (Xian et al., 2018; Gatys et al., 2015a), im-
ages with analogous patch patterns should appear perceptually similar texture patterns. D tries to
recognize the correspondence between an image patch (P) and a style instruction (X ):

PÔ,PS = Crop(Ô),Crop(S),
Lpsd = log(1−D(PÔ,X )),
LD = log(1−D(PÔ,X )) + log(D(PS ,X )),

(3)

where Crop is to randomly crop an image (1/8 on each side) into patches. With the patch-wise
style loss (Lpsd), we aim at generating transferred results that are correlated with style instructions.
On the other hand, by the discriminator loss (LD), D learns to distinguish that patches from style
images (PS ) are true cases, and patches from transferred results (PÔ) should be false cases. This
adversarial loss (Goodfellow et al., 2014; Salehi et al., 2020) enforces that style patterns from style
instructions are presented similarly with style images in transferred results, which jointly embeds
the extracted visual semantic between each other.

Content Matching and Style Matching To further enhance the alignment with inputs, inspired by
cycle consistency (Wang et al., 2019b; Zhu et al., 2017; Wu et al., 2018a; Dwibedi et al., 2019; Qiao
et al., 2019; Yi et al., 2017; Xia et al., 2016), we consider the content matching loss (Lcm) and the
style matching loss (Lsm) of transferred results (Ô). We adopt visual encoder (GE) again to extract
content features (hCÔ) and style features (hSÔ) of Ô, where hCÔ and hSÔ should correlate with content
features (hCC) of content image and style features (hSS ) of reference style image (S):

(hCÔ, h
S
Ô), (h

C
S , h

S
S) = GE(Ô), GE(S),

Lcm,Lsm = ||hCÔ − h
C
C ||2, ||hSÔ − h

S
S ||2.

(4)

Therefore, transferred results are required to align with content structures and style patterns from
inputs, which meets the goal of LDIST.

3.3 CONTRASTIVE REASONING (CR)

The above LVA process considers LDIST with a single pair of content image and style instruction.
However, a content image should be able to transfer to various styles while preserving the same
content structure. Moreover, related style instructions can apply analogous style patterns to all kinds
of content images. As shown in Fig. 2, contrastive reasoning (CR) compares content structures or
style patterns from transferred results of contrastive pair. A contrastive pair consists of two different
content images (C1 and C2 in Fig. 2) with two reference styles ({S1,X1} and {S2,X2}). We follow
the LVA inference to acquire cross results for pairs of content image and style instruction:

(hCC1 , h
S
C1), (h

C
C2 , h

S
C2) = GE(C1), GE(C2),

hSX1
, hSX2

= φ(X1), φ(X2)

ÔC1−X1 , ÔC1−X2 , ÔC2−X1 , ÔC2−X2 = GD(h
C
C1 , h

S
X1

), GD(h
C
C1 , h

S
X2

), GD(h
C
C2 , h

S
X1

), GD(h
C
C2 , h

S
X2

).
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Algorithm 1 Learning of Language Visual Artist (LVA)
1: GE, GD: Visual Encoder, Visual Decoder
2: φ: Text Encoder
3: D: Patch-wise Style Discriminator
4: while TRAIN VLA do
5: C, {S,X} ← Sampled content/style
6:
7: hC

C , hS
C ← GE(C) Ĉ ← GD(h

C
C , h

S
C )

8: Lrec ← Reconstruction loss . Eq. 2
9: hS

X ← φ(X ) Ô ← GD(h
C
C, h

S
X ) PS , PÔ ← Crop(S), Crop(Ô)

10: Lpsd ← Patch-wise style loss . Eq. 3
11: (hC

Ô , hS
Ô), ( hC

S , hS
S )← GE(Ô), GE(S)

12: Lcm, Lsm ← Content matching loss, Style matching loss . Eq. 4
13:
14: LG←Lrec + Lpsd + Lcm + Lsm
15: LD ← Discriminator loss for D . Eq. 3
16: Update GE, GD, φ by minimizing LG

17: Update D by maximizing LD

18: end while

Consistent Matching The transfer results should present similar content structures (ÔC2−X1
and

ÔC2−X2
) or analogous style patterns (ÔC1−X1

and ÔC2−X1
) if using the same content image (C2) or

the same style instruction (X1):

(hCÔC1−X1

, hSÔC1−X1

), (hCÔC1−X2

, hSÔC1−X2

) = GE(ÔC1−X1
), GE(ÔC1−X2

),

(hCÔC2−X1

, hSÔC2−X1

), (hCÔC2−X2

, hSÔC2−X2

) = GE(ÔC2−X1), GE(ÔC2−X2),

Lc−C = ||hCÔC1−X1

− hCÔC1−X2

||2 + ||hCÔC2−X1

− hCÔC2−X2

||2,

Lc−S = ||hSÔC1−X1

− hSŜ2−1
||2 + ||hSÔC1−X2

− hSÔC2−X2

||2,

(5)

where consistent matching of content structure (Lc−C) or style pattern (Lc−S ) is aligned by content
features or style features of transferred results, extracted by the visual encoder (GE).

Relative Matching Apart from consistent matching, distinct style instructions, which imply cor-
responding visual semantics, should still present relative style patterns in transferred results. For
example, we can only discover “red, repetitive, floral” literally from X2. However, if comparing
reference style images (S1 and S2), we can perceive that they share a similar texture pattern and
link the visual concept of “lacelike” from X2 to “smooth, soft, fabric” from X1. We define relative
matching (Lr−S ) with the cosine similarity (CosSim) between reference style images as the weight:

(hCS1 , h
S
S1), (h

C
S2 , h

S
S2) = GE(S1), GE(S2),

Lr−S = (||hSÔC1−X1

− hSÔC1−X2

||2 + ||hSÔC2−X1

− hSÔC2−X2

||2) · CosSim(hSS1 , h
S
S2).

(6)

When style images are related, it has to align style features to certain extent even if paired style
instructions are different. Otherwise, Lr−S will be close to 0 and ignore this unrelated style pair. The
overall contrastive reasoning loss (Lcrt) considers both consistent matching and relative matching:

Lcrt = Lc−C + Lc−S + Lr−S . (7)

3.4 LEARNING OF CLVA

For each epoch of training, we first train with the LVA process and then CR for our CLVA. Algo. 1
presents the learning process of VLA with the patch-wise style discriminator (D). We consider the
reconstruction loss (Lrec) to preserve content structure and the patch-wise style loss (Lpsd) between
style instruction and visual pattern of transferred results. Both content matching loss (Lcm) and style
matching loss (Lsm) are applied to enhance the matching with the inputs. We minimize LG, the
total of above, to train VLA. At the same time, we update D by maximizing the discriminator loss
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(LD) to distinguish true (from style images (PS )) or false (from transferred results (PÔ)) patches,
with respect to style instructions. During CR, contrastive pairs of content image (C1 and C2) and
style instruction (X1 and X2) are randomly sampled. The transferred results are produced across the
contrastive pair. For example, ÔC1−X1

and ÔC2−X1
are from the same X1, and ÔC2−X1

and ÔC2−X2

are from the same C2. We further update by minimizing the contrastive reasoning loss (Lcrt) to allow
considering content structure consistency and style relativeness from contrastive transferred results.
Therefore, the overall optimization of CLVA can be summarized as:

LG =Lrec + Lpsd + Lcm + Lsm,

min
G,φ

max
D
LG + LD + Lcrt.

(8)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset To evaluate our contrastive language visual artist (CLVA), we build a new dataset for
language-driven image style transfer (LDIST). We collect 14,924 wallpapers from Wallpaper-
sCraft1, which presents diverse scenes as content images (C). Each content image is resized to
256x192 in our experiment. For style instructions, the DTD2 (Wu et al., 2020) dataset supplies
5,368 pairs of texture image and natural description. We consider texture images (Cimpoi et al.,
2014) as style images (S) and related descriptions as style instructions (X ), illustrated in Fig. 3. We
randomly sample 2,500 pairs of unseen content image and unseen style instruction, which are not
accessible for training, to evaluate the generalizability of LDIST during testing. Note that both style
images and style instructions appear for training, but only style instructions are provided during
testing to perform style transfer guided by language.

Evaluation Metrics To support large-scale evaluation, we treat style transfer results from style
images as the semi-ground truth (Semi-GT) (Al-Sarraf et al., 2014; Borkar et al., 2010; Salvo, 2013)
by FastStyleTransfer (Hub, 2021). We apply the following metrics to compare the visual similarity
between LDIST results and Semi-GT:

• Structural Similarity Index Measure (SSIM): SSIM (Wang et al., 2004) compares images in
the luminance, contrast, and structure aspects. A higher SSIM has a higher structural similarity;

• Perceptual Loss (Percept): Percept (Johnson et al., 2016) computes from the gram matrix of
visual features. A lower Percept difference shows that two results share the similar style pattern;

• Frechet Activitation Distance (FAD): Inspired from FID (Heusel et al., 2017), FAD is computed
by the mean L2 distance of the activations from the Inception V3 (Szegedy et al., 2016) feature.
As a distance metric, a lower FAD represents that LDIST results and Semi-GT are more relevant.

Apart from visual similarity, we also consider the correlation between style instructions and LDIST
results. We adopt CLIP (Shi et al., 2020; Wu et al., 2021) that provides visual-text matching:

• Vision-and-Language Similarity (VLS): VLS calculates the cosine similarity between the joint
embedding of the instruction (X ) and the transferred result (Ô) from CLIP;

• Relative Similarity (RS): Since VLS only provides an absolute score of semantic matching, we
regard the relative VLS with the Semi-GT (O) as RS to reduce the influence from CLIP;

VLS(Ô,X ) = CosSim(CLIP(Ô),CLIP(X )),RS(Ô,O) = VLS(Ô,X )
VLS(O,X )

. (9)

We also conduct human evaluation in Sec. 4.2 to investigate the quality from the human aspect.

Baselines Since being a brand new task, there is no existing baseline on our LDIST. We consider
typical arbitrary style transfer methods, where a single trained model should support any content
images and style images, as the compared baselines. Style instructions are jointly embedded with
style features for training and directly serves as the provided style during testing.

• NST (Gatys et al., 2015b): NST adopts the gram matrix as the style feature and requires numerous
iterations of optimization to acquire the transferred result;

1WallpapersCraft: https://wallpaperscraft.com/
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Automatic Metrics (vs. Semi-GT) Human Evaluation (↑)
Method SSIM (↑) Percept (↓) FAD (↓) VLS (↑) RS (↑) vs. Instruction vs. Style

NST 12.121 0.11728 0.17647 21.973 96.853 491 490
WCT 36.114 0.05073 0.13164 22.265 98.078 534 547
AdaIN 57.228 0.02747 0.11731 22.475 98.261 594 597
CLVA 60.586 0.02076 0.11318 22.785 98.798 631 616

Table 1: Testing results on automatic metrics and human evaluation (accumulated ranking points).

• WCT (Li et al., 2017c): WCT applies an encoder-decoder architecture for style transfer, where
the whitening transform and the coloring transform is to match the covariance of the style feature;

• AdaIn (Huang & Belongie, 2017): AdaIn is also a feed-forward-based method that incorporates
the adaptive instance normalization to fuse the content feature and the style feature.

Implementation Detail Visual encoder (GE) contains 4 layers of downsampling ResBlock (He
et al., 2015) to extract content feature and style feature. Particularly, style feature is acquired from
a dense layer after average pooling to represent a global style pattern without spatial information.
To understand style instructions, text encoder (φ) first adopts RoBERTa (Liu et al., 2019; Reimers
& Gurevych, 2019) for a general language representation, and then a dense layer to jointly embed
with style feature. During self-attention in visual decoder (GD), we first shrink the size of the CNN
channel down to 64 (Zhang et al., 2019a), but expand into the same input size 256 as the output. GD
is built upon 4 upsampling ResBlocks and a convolution layer with output feature 3 to produce RGB
results. The patch-wise style discriminator (D) follows a similar architecture, where self-attention
with a dense layer determines the correlation between instruction feature and patch style feature
(El-Nouby et al., 2019; Fu et al., 2020) from φ and GE. We adopt Adam (Kingma & Ba, 2015) to
optimize the entire CLVA with learning rate 3e-4 for LG, 1e-4 for LD, and 3e-5 for Lcrt.

4.2 QUANTITATIVE RESULTS

Automatic Evaluation Table 1 shows the automatic evaluation results on LDIST. For NST (Gatys
et al., 2015b), although style instructions are jointly embedded with gram matrices, it cannot pro-
vide sufficient style features and leads to poor transferred results (low 12.1 SSIM and high 0.117
Percept). Both WCT (Li et al., 2017c) and AdaIN (Huang & Belongie, 2017) relies on predefined
style statistics, which makes the style transform quite limited (low 36.1 SSIM of WCT and high
0.117 FAD of AdaIn). Our CLVA, which adopts contrastive reasoning to compare pairs of content
image and style instruction, achieves the best LDIST results with the highest 60.6 SSIM, the lowest
0.021 Percept, and the lowest 0.113 FAD. A similar trend can be found on the visual-text matching
evaluation. NST and WCT are both subject to limited style features from style instructions and result
in lower VLS and RS. On the other hand, with the patch-wise discriminator between style images
and transferred results from style instructions, our CLVA can obtain LDIST results that are more
correlated with style instructions (the highest 22.8 VLS and the highest 98.8 RS).

Human Evaluation Apart from automatic metrics, we also investigate the quality of LDIST results
from the human aspect. Table 1 demonstrates human evaluation between baselines and our CLVA.
We randomly sample 75 results from pairs of content image and style instruction. MTurkers from
Amazon Mechanical Turks2 (AMT) rank the correlation of the LDIST result from each method
between the style instruction (vs. Instruction) or the style image (vs. Style), where rank 1 gets
4 points, rank 2 gets 3 points, and so on. Each example is assigned to 3 different MTurkers to
avoid evaluation bias. At first, our CLVA acquires the highest points (631 points in total) regarding
style instructions (vs. Instruction), which indicates that transferred results from CLVA are the most
corresponding for humans. Concerning style images (vs. Style), we still obtain the highest 616
points and represent that CLVA is not only corresponding to style instructions but also correlated
with style patterns. Last but not least, we discover that human evaluation results follow a similar
trend to the results of automatic metrics. It shows that our conducted automatic metrics are aligned
with the human aspect and can provide a reasonable large-scale evaluation for LDIST.

2Amazon Mechanical Turks: https://www.mturk.com/
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Figure 3: Visualization of baselines and our CLVA on language-driven image style transfer (LDIST).

Ablation Settings Automatic Metrics (vs. Semi-GT)

Lrec+Lpsd Lcm Lsm Lcst SSIM (↑) Percept (↓) FAD (↓) VLS (↑) RS (↑)
(a) 7 (Warm-Up from AdaIn) 57.258 0.02798 0.11733 22.552 98.437
(b) 3 7 7 7 57.874 0.02576 0.11566 22.567 98.474
(c) 3 3 7 7 59.244 0.02927 0.11559 22.589 98.554
(d) 3 7 3 7 58.059 0.02318 0.11410 22.602 98.566
(e) 3 3 3 7 59.491 0.02244 0.11399 22.604 98.597
(f) 3 3 3 3 60.586 0.02076 0.11318 22.785 98.798

Table 2: Ablation study with reconstruction (Lrec), patch-wise style discriminator (Lpsd), content
matching (Lcm), style matching (Lsm), and contrastive reasoning (Lcst) of CLVA.

4.3 ABLATION STUDY

We conduct an ablation study to present the effect of each component in Table 2. At row (a), our
CLVA is purely pretrained on AdaIn results as a warm-up. It slightly overpasses AdaIn, which shows
that our self-attention fusion between content images and style instructions has stronger generaliz-
ability than the adaptive instance normalization on LDIST. With the reconstruction loss (Lrec) and
the patch-wise style discriminator (Lpsd) at row (b), CLVA can transfer more concrete structures and
more correlated style patterns with respect to content images and style instructions. We then discuss
the strength of content matching (Lcm) and style matching (Lsm) at row (c)-(e). In particular, con-
tent matching helps the scene similarity to content images (higher 59.2 SSIM at row (c)). For style
matching, it aims at producing analogous visual patterns to style images, which leads to better style
quality (lower 0.023 Percept and higher 22.6 VLS at row (d)). If considering altogether at row (e),
it can benefit from both. In the end, contrastive reasoning (Lcrt) further enables CLVA to consider
contrastive pairs, making a comprehensive improvement on LDIST at row (f).

Method BS=1 BS=50

NST 40.40 1,035
WCT 0.159 4.796
AdaIN 0.010 0.336
CLVA 0.009 0.268

Table 3: Inference time cost.

Inference Efficiency Table 3 shows the inference time (in second)
about running LDIST on GPU (NVIDIA TITAN X) with different
batch sizes (BS). NST, which relies on numerous iterations, executes
with low efficiency. Despite being an encoder-decoder architecture,
the coloring transform in WCT takes an overhead when searching
the correlation. In contrast, both AdaIN and our CLVA go through
a feed-forward process (about 100 FPS). CLVA even achieves 180
FPS with parallelization of 50 examples (with image size 256x192).
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Figure 5: Visualization of CLVA results3 on diverse pairs of content image and style instruction.

Qualitative Results Fig. 3 demonstrates the visualization results of baselines and our CLVA on
LDIST, along with the semi-ground truth (Semi-GT). For NST, the pixels are broken and lead to
poor style quality of transferred results. WCT merely picks color information from style instructions,
where it only transfers color distribution but not style patterns. AdaIn produces better results, but
the objects in content images sometimes become vague. With the patch-wise style discriminator and
contrastive reasoning, our CLVA captures not only color distribution but also texture patterns that
are correlated with style instructions. For example, the first row of the second content image, though
our CLVA result is not that matching with the Semi-GT, it presents a corresponding pink appearance
with a soft texture as the assigned “pinkish pillow covers” in the style instruction. Fig. 5 illustrates
more visualization results3 by our CLVA on diverse pairs of content image and style instruction.

Figure 4: Partial semantic editing.

Fine-grained Control via Partial Semantic Editing Fur-
thermore, LDIST allows fine-grained control of transferred
styles via partial semantic editing. As shown in Fig. 4, we
can easily modify the language prompts to control the style
semantic. For example, we can manipulate the color dis-
tribution from “green” to “orange” or the texture pattern
from “veined, bumpy” to “fabric, metallic”. Then, the re-
lated semantics of LDIST results would be changed corre-
spondingly by the edited style instructions.

5 CONCLUSION

We introduce language-driven image style transfer (LDIST) to manipulate colors and textures of
a content image by a style instruction. We propose contrastive language visual artist (CLVA) that
adopts the patch-wise style discriminator and contrastive reasoning to jointly learn between style
images and style instructions. The experiments show that CLVA outperforms baselines on both au-
tomatic metrics and human evaluation, and using guided language can improve accessibility without
preparing style images. LDIST also supports partial semantic editing, which makes visual applica-
tions like image/video effect more controllable for humans.

3Please visit project website for more visualization results: https://ai-sub.github.io/ldist/
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