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Abstract
Understanding and recognizing the entities of001
Chinese articles highly relies on the fully super-002
vised learning based on the domain-specific003
annotation corpus. However, this paradigm004
fails to generalize over other unlabeled do-005
main data which consists of different entities006
semantics and domain knowledge. To address007
this domain shift issue, we propose the frame-008
work of unsupervised Domain Adaptation with009
Contrastive learning for Chinese NER (DAC-010
NER). We follow Domain Separation Network011
(DSN) framework to leverage private-share pat-012
tern to capture domain-specific and domain-013
invariant knowledge. Specifically, we enhance014
the Chinese word by injecting external lexical015
knowledge base into the context-aware word016
embeddings, and then combine with sentence-017
level semantics to represent the domain knowl-018
edge. To learn the domain-invariant knowledge,019
we replace the conventional adversarial method020
with novel contrastive regularization to further021
improve the generalization abilities. Extensive022
experiments conducted over the labeled source023
domain MSRA and the unlabeled target domain024
Social Media and News show that our approach025
outperforms state-of-the-arts, and achieves the026
improvement of F1 score by 8.7% over the base-027
line1.028

1 Introduction029

Chinese Named Entity Recognition (NER) is one030

of the most challenging tasks of Natural Language031

Processing (NLP), which involves the detection032

and category of named entities (Gui et al., 2019; Xi033

et al., 2021; Zhao et al., 2021). In real-word scenar-034

ios, Chinese NER task has abundant annotations in035

formal domain, which supports for the supervised036

learning. However, it may perform poorly when037

applied to a new domain without any labeled data,038

which can be regarded as a data shift problem (Kim039

et al., 2017; Peng and Dredze, 2017).040

1All the datasets are publicly available. Source codes are
provided in attachments and will be released upon acceptance.

A straightforward method is to pre-train the 041

large-scale labeled data from the source domain, 042

and then fine-tune it with the target domain 043

data (Huang et al., 2015; Keith et al., 2017). How- 044

ever, it highly relies on the human annotations, and 045

the performance of these strategy is still fluctuated 046

and even degraded when directly fine-tuning on a 047

unseen target domain (Zhao et al., 2021) To allevi- 048

ate this problem, unsupervised domain adaptation 049

(UDA) has been proposed to capture the domain- 050

invariant knowledge from data-rich source domain 051

and unlabeled target data to make the model easier 052

adapt to target domain (Bousmalis et al., 2016; Jia 053

et al., 2019; Naik and Rosé, 2020; Ngo et al., 2021). 054

For example, Bousmalis et al. (2016) presents Do- 055

main Separation Network (DSN) to capture the 056

orthogonal representations from shared and private 057

modules; Naik and Rosé (2020) leverages adver- 058

sarial learning for domain label discrimination to 059

capture domain-invariant semantics. 060

There have been many studies on English 061

NER(Kim et al., 2017; Jia et al., 2019; Naik and 062

Rosé, 2020). The main idea is to make the token- 063

level representation learning from source domain 064

better adapt to the target domain. In contrast, Chi- 065

nese named entities are hard to recognize due to 066

the rich semantic knowledge and ambiguous bound- 067

aries information of the Chinese token. Recently 068

methods include (Xu et al., 2018b; Yang et al., 069

2018; Sheng et al., 2020) enhance the representa- 070

tion of Chinese word segmentation across domains. 071

However, the generalization performance of these 072

methods is still poor. We observe that there are still 073

domain gaps at the both word-level and sentence- 074

level between the source domain and the target 075

domain. 076

To address these issues, we introduce a novel 077

framework named DAC-NER for unsupervised 078

Domain Adaption with Contrastive learning for 079

Chinese NER. We further extend DSN (Bousmalis 080

et al., 2016) to learn the domain-invariant infor- 081
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Figure 1: The architecture of our proposed DAC-NER. (Best viewed in color.)

mation from both word-level and sentence-level to082

make the model better adapt to target domain. Con-083

cretely, given labeled data from source domain and084

unlabeled data from target domain, we first lever-085

age Pre-trained Language Model (PLM) to repre-086

sent the rich semantics from the given sentence. To087

further improve the generalization of the model,088

we propose Knowledge-aware Domain Injector089

(KDI) to capture both word-level and sentence-090

level domain knowledge. In details, we first inject091

pre-trained Chinese lexical Knowledge Base Em-092

beddings (KBE) with context-aware embeddings093

from the PLM to enhance the semantics of Chi-094

nese word segmentation. Then, we combine it with095

the sentence-level semantics from the representa-096

tion of [CLS] token. During the training stage,097

we propose contrastive regularization learning for098

capturing the domain-invariant meta-knowledge,099

which is the novel technique for domain adaptation.100

Specially, we leverage dropout sampling mecha-101

nism to generate more augment representations. In102

addition, we follow (Bousmalis et al., 2016) to in-103

troduce a shared PLM decoder as a regular method104

to enable the separated private and share features105

to be reconstructed back.106

The contributions of this paper are three fold:107

• We propose an UDA framework based on108

contrastive learning. To our knowledge, it is109

the first to apply contrastive learning to cross-110

domain adaptation for Chinese NER.111

• In DAC-NER, a novel Knowledge-aware Do-112

main Injector is proposed to capture the113

domain-invariant knowledge both from word-114

level and sentence-level semantics.115

• Experimental results over three datasets sug- 116

gest that our framework consistently outper- 117

form state-of-the-arts by a relative large mar- 118

gin. 119

2 DAC-NER: The Proposed Framework 120

We start with a brief overview of the DAC-NER, 121

and followed by the details of the framework. The 122

architecture of DAC-NER is shown in Figure 1. 123

2.1 Brief Overview 124

We introduce some basic notations. Given two 125

training set Ds and Dt, where Ds = {(xs
i ,y

s
i )}

Ns
i=1 126

denotes the source domain dataset with Ns labeled 127

training samples, Dt = {xt
i}

Nt
i=1 denotes the target 128

domain dataset with Nt unlabeled training sam- 129

ples. The goal of our framework is to transfer the 130

semantics knowledge from the labeled source do- 131

main data to unlabeled target domain data, and to 132

recognize the named entities over target domain 133

evaluating samples. Specifically, we first seek to 134

learn the word-level and sentence-level domain spe- 135

cific knowledge from source domain and target do- 136

main, respectively. Particularly, we introduce two 137

word-level representation mapping Ewr and Ekn. 138

Ewr : x → w is the word embedding mapping 139

that maps the word w to the vector w retrieved 140

from the embedding table of PLM. Ekn : x→ e is 141

the knowledge base mapping that maps the word 142

w to the vector e pre-trained by the ConVE algo- 143

rithm(Dettmers et al., 2018). 144

To capture the domain-invariant knowledge, we 145

follow the strategy of DSN (Bousmalis et al., 146

2016) to introduce a share module named domain- 147

invariant injector and private module named 148
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domain-specific injector. Additionally, we also149

find that the adversarial training process in DSN150

is so hard, which fails to generalize on unseen do-151

main over Chinese task. In contrast, we propose a152

novel contrastive regularization to learn the domain-153

invariant knowledge, which is more suitable for the154

model generalization.155

2.2 Main Architecture156

To further enhance the abilities of adaptation, we157

introduce the universal encoder PLM for the rep-158

resentation learning. Let xs = xs1, x
s
2, · · · , xsn159

and xt = xt1, x
t
2, · · · , xtn denote the two input160

sentences 2 that randomly select from source do-161

main and target domain, respectively. xs ∈ Ds,162

xt ∈ Dt. ns, nt represent the length of sen-163

tence from source domain and target domain, re-164

spectively. We first encode each sentence 3 by a165

parameter-shared PLM to obtain the context-aware166

word embeddings: ws
i = Ewr(x

s
i ), w

t
i = Ewr(x

t
i),167

where ws
i , wt

i is the pre-trained word embeddings168

of xsi and xti, respectively. Based on these semantic-169

rich representations, we propose series module to170

capture domain knowledge.171

In addition, We find the share-private172

paradigm (Bousmalis et al., 2016) where173

the model learns the share semantics knowledge174

from cross-domain and the independent domain-175

specific knowledge are suitable for UDA (Kim176

et al., 2017). In this paper, we follow this structure177

and propose Knowledge-aware Domain Injection178

(KDI) to further enhance the domain adaptation for179

Chinese NER. Specifically, KDI requires the share180

module to capture the public knowledge both from181

both source domain and target domain with the182

same parameters. Tow other independent private183

modules are designed to learn domain-specific184

representations. We denote the parameters of the185

share module, the private module over source186

domain data and the private module over target187

domain data as Θc, Θps and Θpt, respectively.188

2.3 Knowledge-aware Domain Injection189

To enhance the model capability and features, we190

simultaneously capture word-level and sentence-191

level representations.192

Word-level Representations. To enhance the193

Chinese word representations, we propose to in-194

2In the experimental settings, we consider that the length
of two sentence is the same.

3We add series special tokens to support for encoding by
PLM, such as [CLS] and [SEP].

ject pre-trained knowledge base embeddings with 195

word embeddings. For example, given a Chinese 196

word xsi from source domain, we retrieve the enti- 197

ties from the knowledge base 4 that have the same 198

lemma with the word, and the averaged entity em- 199

beddings are stored as their knowledge base em- 200

beddings. Formally, we generate the knowledge 201

base representation esi of xsi : 202

esi = Mean(Ekn(ej)|lemma(xsi ) = lemma(ej)),
(1) 203

where lemma is the lemmatization operator (Dai 204

et al., 2021). The calculation of knowledge base 205

representations of word xti from target domain is 206

the same as Equal 1. 207

We then use the gating mechanism to inject the 208

knowledge retrieved from the knowledge base to 209

plain word embeddings. For example, we can ob- 210

tain the knowledge-enhanced word embeddings of 211

xsi through the private module over source domain 212

data, formally: 213

gps
i = gatepsi ·w

s
i + (1− gatepsi ) · esi , (2) 214

where i denotes the i-th word in sentence. gatepsi ∈ 215

[0, 1] is the trainable gating coefficient. In the 216

same way, we can obtain four representations 217

gps
i ,gpt

i ,gcs
i ,gct

i ∈ Rn×h through all modules and 218

domains, respectively. The corresponding matrix 219

are denoted as Gps,Gpt,Gcs,Gct ∈ Rn×h, h is 220

the hidden dimension. The trainable gating coef- 221

ficients are gatepsi ∈ Θps, gatepti ∈ Θpt, gatecsi ∈ 222

Θc, gatecti ∈ Θc. 223

Sentence-level Representations. As the discus- 224

sion above, Chinese words have different seman- 225

tics when demonstrate over cross-domain, which 226

highly guided by the sentence-level representations. 227

We select GRUs (Cho et al., 2014) to encode the 228

context-ware word embeddings 5. We also take 229

the example of calculation through private module 230

over source domain data, formally: 231

−→
spsj =

−−→
GRUps(

−−→
spsj−1,w

s
j), (3) 232

←−sj =
←−−
GRUps(

←−−
spsj+1,w

s
j), (4) 233

spsj = [
−→
spsj ;
←−
spsj ], (5) 234

4We use SKCC (Wang and Yu, 2003) as our knowledge
base, the pre-training algorithm is ConVE (Dettmers et al.,
2018).

5A straightforward way is to use the embeddings of
[CLS] from PLM as the sentence representations. However,
it is not effect for share-private paradigm because that it has
no parameters.
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Figure 2: An example of contrastive regularization with
dropout sampling.

where [·; ·] represents the vector concatenate. At235

last, we will obtain all sentence-level representa-236

tions sj
ps, sj

pt, sj
cs, sj

ct through all modules and237

domains. The corresponding matrix are denoted as238

Sps,Spt,Scs,Sct ∈ Rn×h.239

2.4 Domain-knowledge Projection240

To enhance the representations, we project the241

word-level embeddings and sentence-level embed-242

dings into domain representations. Specifically, we243

have:244

Hps = Relu(Wps[Sps,Gps] + bps), (6)245

246
Hpt = Relu(Wpt[Spt,Gpt] + bpt), (7)247

248
Hcs = Relu(Wcs[Scs,Gcs] + bcs), (8)249

250
Hct = Relu(Wct[Sct,Gct] + bct), (9)251

where Wps, Wpt, Wcs, Wct are the trainable ma-252

trix, bps, bpt, bcs, bct are the trainable bias param-253

eters. Relu is the activation function.254

2.5 Training Schemes of DAC-NER255

In the previous sections, we describe the model256

architecture of DAC-NER aims to capture the en-257

hanced domain knowledge. In this part, we outline258

show the training schemes for domain adaptation259

for Chinese NER.260

Named Entity Recognition (NER). In the train-261

ing stage, we only have labeled data from source262

domain. We follow (Kim et al., 2017) to view NER263

as a sequence labeling problem. At the head of264

PLM, we choose Conditional Random Field (CRF)265

as the predictor. Specifically, we choose the repre-266

sentations Hps of source domain data through the267

share module. The task-specific loss can be written 268

as: 269

LNER = −
∑

(xt
i,y

s
i )∈Ds

logp(ys
i |xt

i,Θ1), (10) 270

where Θ1 is the parameters of CRF layer. 271

Domain-invariant Contrastive Regularization 272

(DCR). The main significant part for UDA is to 273

capture the domain-invariant meta-knowledge from 274

cross-domain. Previous methods (Bousmalis et al., 275

2016; Huang et al., 2015; Zhang and Yang, 2018) 276

generally leverage adversarial learning to let the 277

model unable to classify the domain class. How- 278

ever, we find this method only captures the instance- 279

level meta-knowledge, it is not suitable for word- 280

level because that the semantics of each word in 281

cross-domain are different. 282

In this paper, we leverage contrastive learning for 283

capturing domain-invariant knowledge. The repre- 284

sentations Hcs of source domain sentence through 285

share module fully contains the transferable knowl- 286

edge (Bousmalis et al., 2016), which can be used 287

as an anchor. Intuitively, if the representations of 288

target domain data learned by the model are similar 289

to Hcs, the model will be easy to adapt the domain- 290

specific knowledge to unlabeled target domain due 291

to the similar meta-knowledge. Specifically, the 292

goal is to reduce the semantics distance between 293

Hcs and Hct, and increase the semantics gap be- 294

tween Hcs and Hps, Hct and Hpt, respectively. 295

As shown in Figure 2, to further enhance the gen- 296

eralization, we use dropout mechanism (Xu et al., 297

2018a) to randomly reset the value in each repre- 298

sentations as 0. We denote V(x) as the dropout 299

function to map the input vector x into series of 300

pseudo vectors. In addition, we select cosine sim- 301

ilarity function S(x,y) to represent the distance 302

between two given vectors x and y. The contrastive 303

loss function can be calculated as: 304

LDCR = − 1

|V(Hps)|
×

|V(Hps)|∑
i=1

log[
expS(Hcs,Hct)

expS(Hcs,Hct) + expS(Hcs, Ĥps
i )

]

+
1

|V(Hpt)|
×

|V(Hpt)|∑
i=1

log[
expS(Hcs,Hct)

expS(Hcs,Hct) + expS(Hct, Ĥpt
i )

]

(11) 305

where | · | denotes the number of dropout sampling 306
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Dataset #train #dev #test All
MSRA 40551 4506 3442 48499
Weibo 1256 249 249 1754

People’s Daily 20510 2278 4558 27346

Table 1: Dataset Statistics

vectors, and is the hyper-parameter in our experi-307

ment.308

Reconstruction Learning (RL). Following pre-309

vious work (Bousmalis et al., 2016; Kim et al.,310

2017), we reconstruct the hidden representations311

to the origin input sentences. Formally, we obtain312

the two concatenated vectors from each domain,313

and then feed them into one linear layer to map the314

hidden representations into the dimension h. We315

have:316

Ĥs = Ws[Hps;Hcs], Ĥt = Wt[Hpt;Hct],
(12)317

where Ws,Wt are the trainable parameters. We318

use these two representations Ĥs, Ĥt to re-generate319

the input sentences xs,xt by the PLM 6, respec-320

tively. We follow Kim et al. (2017) to use averaged321

log loss function:322

LRL =−
∑

(xs
i )∈Ds

1

n

n∑
j=1

logp(xsj |Ĥs,Θ2)

−
∑

(xt
i)∈Dt

1

n

n∑
j=1

logp(xtj |Ĥt,Θ2),

(13)323

where Θ2 is the parameter of the reconstruction324

PLM.325

Joint Learning. For unsupervised domain326

adaptation learning, we joint optimize our frame-327

work DAC-NER by the formula:328

L = LNER + λLDCR + µLRL + α||Θ||2, (14)329

where λ ∈ [0, 1], µ ∈ [0, 1] are the coefficient330

hyper-parameters of training loss, α > 0 is the L2331

regularization value.332

3 Experiments333

In this section, we conduct a series of experiments334

on public datasets to evaluate our approach.335

3.1 Experimental Settings336

Datasets. We employ 3 widely used datasets in our337

experiments to evaluate the DAC-NER, including338

6During re-generating, the model structure is the same as
the universal encoder PLM, but the parameters are different.

MSRA (Levow, 2006), Weibo (Peng and Dredze, 339

2015, 2016) and People’s Daily 7. The distribution 340

of the datasets as shown in Table 1. We take the 341

MSRA as the source domain training data, which 342

has a large amount of labeled data. We use the 343

Weibo and Peoples’ Daily as two target domain 344

dataset, respectively. There are three types of en- 345

tities in MSRA and People’s Daily: PER (person), 346

ORG (organization) and LOC (location). Weibo 347

contains four entities: PER, ORG, LOC and GPE 348

(geo-political). Each of these entities has two sub- 349

types, named and nominally mentioned. We only 350

use named types and incorporate GPE in the cate- 351

gory of LOC. 352

Baseline. We use RoBERTa (Liu et al., 2019) 353

as the backbone, which has a stronger ability to 354

extract general context features of the text. For 355

the baseline, we choose CRF as the NER predictor 356

to obtain the results of the model without domain 357

adaptation over the two target domains data. In 358

addition, we also select the basic framework of 359

Adversarial Domain Adaptation as our baseline. 360

Settings. In the main experiment, the batch size 361

denotes to 64. Specifically, we train our model 362

by the Adam optimizer (Kingma and Ba, 2015). 363

The learning rate for all training stages is fixed to 364

be 1e-5. The training epoch is set to 100, and the 365

model is saved according to the evaluation perfor- 366

mances on the development set. The representa- 367

tions dimension of the Domain-knowledge Projec- 368

tion module is set to 100. For the external Chinese 369

lexical knowledge base, the hidden dimension of 370

pre-trained KBE is 768, which is the same with 371

RoBERTa. For evaluation, the metrics we selected 372

consist of precision (P), recall (R) and correspond- 373

ing F1 value (F1). 374

3.2 Main Results 375

The general experimental results are shown in 376

Table 2. The method in bold is our approach. 377

ADA (Naik and Rosé, 2020) represents the method 378

which leverages adversarial training. Source and 379

Target denote the labeled source domain training 380

data and the unlabeled target domain training data, 381

respectively. For the baseline, we only train the 382

model over MSRA training data. For the other 383

two UDA methods, there are two settings, one 384

is with MSRA as the source domain, Weibo as 385

the target domain, and the other is with People’s 386

7URL: https://libraries.indiana.edu/
peoples-daily-database
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Methods Source Target MSRA Weibo People’s Daily
P R F1 P R F1 P R F1

Baseline MSRA - 96.9 95.6 96.3 47.3 31.1 37.5 86.3 90.0 88.1
ADA MSRA Weibo 92.5 91.2 91.8 50.5 30.6 38.1 85.2 86.4 85.8

(Naik and Rosé, 2020) MSRA People’s Daily 93.3 92.7 93.0 52.0 32.1 39.7 92.6 85.5 88.9

DAC-NER MSRA Weibo 94.6 95.3 95.0 52.5 41.3 46.2 90.1 92.3 91.2
MSRA People’s Daily 95.1 95.6 95.3 50.3 64.1 56.4 96.2 91.8 93.9

Table 2: Comparison among baseline, ADA and DAC-NER over all testing sets in terms of precision (P), recall (R)
and F1 value (F1) (%). The method in bold refers to our approach.

Methods MSRA Weibo
P R F1 P R F1

DAC-NER 94.6 95.3 95.0 52.5 41.3 46.2
w/o. RL 93.0 93.7 93.4 51.2 37.9 43.6

w/o. DCR 94.3 94.0 94.2 49.6 36.1 41.8
w/o. KBE 94.2 93.5 93.8 50.9 31.5 38.9

w/o. SenRe 92.8 94.2 93.5 48.3 34.6 40.3

Table 3: Ablations on Weibo. RL: Reconstruction Learn-
ing, DCR: Domain-invariant Contrastive Regularization,
KBE: external Knowledge Base Embedding, SenRe:
Sentence-level Representation.

Daily as the target domain. Experimental results387

show that: 1) Our framework outperform all state-388

of-the-art baselines over all dataset. 2) We find389

that the baseline performs poorly over target do-390

main data which only trains over source domain.391

In contrast, the method trained with UDA consis-392

tently improve the results due to the domain adap-393

tation. 3) Our method enables to extract domain394

invariant features without any labeled data on tar-395

get domain. Specifically, our method improves396

the F1 value by 8.7% over the target data Weibo.397

4) When using relatively more unlabeled People’s398

Daily data as the target domain, the results show399

that our method can also improve the performance400

on Weibo, demonstrating that our method can ex-401

tract domain-invariant features that have strong402

generalization ability and are beneficial to NER403

classification tasks.404

3.3 Ablation Study405

In this part, we investigate the influence of differ-406

ent modules in our approach DAC-NER. We con-407

ducted ablation experiments with four configura-408

tions: without Reconstruction Learning (RL) mod-409

ule, without Domain-invariant Contrastive Regu-410

larization (DCR) module, without external Knowl-411

edge Base Embedding (KBE) and without sentence-412

level representation (SenRe). As shown in the Ta-413

ble 3, the two columns on the right are the eval-414

uation results on the source domain MSRA and415

target domain Weibo testing sets. When the KBE416

is removed, the F1 score drops by 7.3%, and the417

absence of other modules has relatively little ef- 418

fect on the result, which shows the efficiency of 419

injected external lexical knowledge base into the 420

context-aware word embedding. 421

3.4 Visualization 422

We utilize visualization experiments to demon- 423

strate that our framework can generate high-quality 424

domain-invariant representations on the sentence- 425

level. We use t-SNE (Van der Maaten and Hinton, 426

2008) to show the data distributions of four dif- 427

ferent representations, including Hps, Hpt, Hcs 428

and Hct. As shown in Figure 4. We find that the 429

domain-invariant representations of all domains 430

data are aggregate together, and the corresponding 431

domain-specific representations are independent. 432

It demonstrates the effectiveness of DAC-NER 433

in leveraging the sentence-level knowledge and 434

knowledge-enhanced word embeddings to generate 435

high-quality sentence embeddings for unsupervised 436

domain adaptation Chinese NER. 437

3.5 Case Study 438

To gain a deeper understanding of the improve- 439

ments achieved using DAC-NER, we conduct a 440

manual analysis of out-of-domain examples which 441

the baseline incorrectly marked but our approach 442

correctly recognized. Figure 3 demonstrates three 443

examples from MSRA, Weibo and People’s Daily 444

datasets, showing the comparison between the base- 445

line and our DAC-NER. In the MSRA case, the 446

baseline detected the wrong entity end index, but 447

our two adaptive models can both detect it correctly. 448

This shows that DAC-NER improves the robustness 449

of the model to some extent by learning domain- 450

invariant representations from the source and target 451

domains. In the Weibo case, we can see that only 452

the model adaptive to Weibo data can correctly 453

identify the ORG entity "Tudou.com", and there is 454

no error in recognizing "Niucha Fifth Avenue" as 455

LOC. This shows that our method has captured the 456

domain context knowledge of social media data, 457

because of the semantic features in the Knowledge- 458
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MSRA Weibo People's Daily

     Sentence

祝中国国民党⾰命委员会第九次全
国代表⼤会圆满成功！
I wish the Ninth National Congress 
of the Revolutionary Committee of 
the Chinese Kuomintang a complete 
success!

⽜叉第五⼤道超⼩朋友分享
⾃⼟⾖⽹⾳乐
Niucha Fifth Avenue Super Kid 
share music from Tudou.com

灾后仅10多分钟，中保财险员⼯就赶到⼚⾥，与职⼯们⼀道进⾏抗
灾施救和查勘理赔⼯作。
Only more than 10 minutes after the disaster, the employees of China 
Insurance Property & Casualty Insurance rushed to the factory and 
worked with them on disaster relief and investigation and settlement of 
claims.
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Figure 3: Case studies of different settings on MSRA, Weibo and People’s Daily, where correct entities are in green
and incorrect entities are in red.

Figure 4: t-SNE visualization of the input representation
over all dataset. (Best viewed in color.)

aware Domain Injection module are incorporated,459

making the representation more context-aware. In460

the People’s Daily case, our two adaptive models461

both recognize it correctly. In summary, DAC-NER462

can improve the generalization ability on other un-463

labeled domain data composed of different entity464

semantics and domain knowledge.465

4 Related Work466

In this section, we summarize the related work on467

Chinese NER, unsupervised domain adaptation and468

contrastive learning.469

Chinese NER. Previous work has shown that470

character-based approaches perform better for Chi-471

nese NER than word-based approaches because of472

the freedom from Chinese word segmentation er-473

rors(He and Wang, 2008; Liu et al., 2010; Li et al.,474

2014). To deal with a dataset with relatively little475

labeled data, Jia et al. (2020) uses a semisupervised476

method by using a pre-trained LM. Recently, there477

is an increasing interest to augment such contex-478

tualized representation with external knowledge.479

These methods focus on augmenting BERT by in- 480

tegrating KG embeddings such as TransE(Bordes 481

et al., 2013). And ERNIE(Sun et al., 2019a,b) en- 482

hances BERT through knowledge integration. In 483

our work, we integrate external knowledge to token- 484

embedding for generating more generalize and ro- 485

bust repreasentation. 486

Unsupervised Domain Adaptation. Existing 487

models for cross-domain Chinese NER rely on nu- 488

merous unlabeled corpus or labeled NER training 489

data in target domains(Peng and Dredze, 2017; Xu 490

et al., 2018b; Yang et al., 2018). The first UDA 491

method is Jia et al. (2019), requiring an external 492

unlabeled data corpus in both the source and target 493

domains to conduct the unsupervised cross-domain 494

NER task, and such resources are difficult to obtain, 495

especially for low-resource target domains. Liu 496

et al. (2020) is the first to conduct zero-resource 497

cross-domain NER, however, this approach does 498

not meet the situation of Chinese NER, which has 499

a lot of noise and ambiguity. 500

Some existing methods(Shi et al., 2018; Yang 501

et al., 2018; Naik and Rosé, 2020) leverage ad- 502

versarial domain adaptation for capturing domain- 503

invariant knowledge. Naik and Rosé (2020) man- 504

ages to reduce event extraction models’ reliance 505

on lexical features. Specifically, Yang et al. (2018) 506

uses a common Bi-LSTM and a private Bi-LSTM 507

for representing annotator generic and -specific in- 508

formation. In adversarial part, they exploit both 509

the source sentences and the crowd-annotated NE 510

labels as basic inputs for the worker discrimina- 511

tion. Our approach is in line with existing works 512

using domain separation network for introducing 513

domain-invariant features. 514

Contrastive Learning. There are a lot of 515
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researches on contrastive learning recently (Le-516

Khac et al., 2020), including Computer Vision517

field (He et al., 2019; Chen et al., 2020) and NLP518

field (Giorgi et al., 2020). A recent work (Wang519

et al., 2021) on UDA builds upon contrastive self-520

supervised learning to align features, using a clus-521

tering method to produce pseudo-labels for the tar-522

get domain. They are instance-level, specifically,523

given an anchor image from one domain and min-524

imize its distances to cross-domain samples from525

the same class relative to those from different cat-526

egories. In contrast, our method aligns features527

based on CL in the shared representation space,528

which is simple and easy to optimize. To the best529

of our knowledge, we are the first to use CL in the530

representation-level.531

5 Conclusion532

In this paper, we present the DAC-NER frame-533

work for unsupervised domain adaptation Chinese534

NER. We propose to inject external Chinese lexi-535

cal knowledge into context-aware embeddings, and536

combine with sentence-level representations to en-537

hance the Chinese word segmentation. In addi-538

tion, we utilize contrastive regularization learning539

to learn the domain-invariant knowledge for bet-540

ter adaptation. Experiments on a variety dataset541

show that our framework outperform state-of-the-542

art baselines. In the future, we will extend our543

framework into semi-supervised learning and few-544

shot learning.545
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