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Abstract

Noting that world knowledge continuously
evolves over time, large language models
(LLMs) need to be properly adjusted by per-
forming the “knowledge editing”, such as
updating outdated information or correcting
false information, etc. Pursuing the reliable
“massive” editing ability in terms of gener-
alization and specificity, this paper proposes
a unified knowledge editing method referred
to by in-COntext retrieval-augmented Mass-
Editing Memory (COMEM), which combines
two types of editing approaches — parameter up-
dating and in-context knowledge editing (IKE).
In particular, COMEM includes the retrieval-
augmented IKE, a novel extension of IKE to
a massive editing task based on the updat-
ing-aware demonstration construction. Exper-
imental results on the zsRE and CounterFact
datasets show that the proposed COMEM out-
performs all existing methods, leading to state-
of-the-art performance. Our code is available
at https://github.com/xxxx/xxxx.

1 Introduction

Large language models (LLMs), owing to their
stored vast amount of world knowledge, have re-
ported the remarkable abilities of understanding
and generating natural languages, as well as achiev-
ing the state-of-the-art performances in a wide
range of natural language processing (NLP) ap-
plications (Touvron et al., 2023; OpenAl, 2023;
Petroni et al., 2020). Given the demands of enhanc-
ing controllability for LLMs in knowledge manip-
ulation (Onoe et al., 2022; Dhingra et al., 2022;
Liska et al., 2022) and content generation (Zhao
et al., 2023; Ji et al., 2023; Lazaridou et al., 2021;
Agarwal and Nenkova, 2022; Gallegos et al., 2023),
there has been recently increasing studies on the
“knowledge editing” task, which aims to explicitly
provide the “editing” mechanism such as revising
knowledge or correcting false information in LLMs
in a controllable, scaled, and effective manner. In

particular, the paper addresses the “massive” edit-
ing task as in (Meng et al., 2022b), because LLMs
readily face the issue of the massive edits which
requires to update much more than hundreds or
thousands of facts, given huge knowledge space.

Approaches for knowledge editing in LLMs have
been categorized to two main types: parameter
updating and in-context knowledge editing (IKE).
Parameter updating adjusts local parameters or spe-
cific layers in LLMs in a gradient-based method to
likely generate desired targets given edit requests
(Cao et al., 2021; Mitchell et al., 2022a; Meng
et al., 2022a,b; Li et al., 2023). In the massive
editing task, the advantage of parameter updating
has inherited from LLMs; the knowledge is stored
implicitly in LLM’s parameters and the inference
step for the knowledge lookup is simply proceeded
in a generative manner based on the decoder, with-
out requiring to maintain an external memory or to
search over a set of edits. However, parameter up-
dating may lead to under-editing problem, because
some edits and their relevant facts are interrupted
by other edits thereby being stored in somehow
blurred manner. Furthermore, as noted by (Zheng
et al., 2023), parameter updating may cause side
effects like catastrophic forgetting or over-editing
on out-of-scope knowledge.

On the other hand, motivated by the ability of
in-context learning (ICL) (Brown et al., 2020; Wei
et al., 2023), IKE guides LLMs to generate desired
targets in a given context by prepending the edit-
related specific prompts which consist of relevant
demonstrations. IKE has shown to effectively per-
form the knowledge editing based on demonstra-
tion formatting and organization strategies (Zheng
et al., 2023), without modifying the model parame-
ters. Under the setting of the massive editing task,
however, IKE may require an additional retrieval
step which finds relevant facts given the test query,
which is not required in parameter updating. In ad-
dition, the performance of IKE largely relies on the
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demonstration construction, possibly causing the
risky situation when the demonstrations are not op-
timally desired for some test prompts or contexts.

The goal of knowledge editing is to satisfy
both generalization and specificity, however, there
are somehow the trade-off-like relationship be-
tween these properties. Pursuing the reliable mas-
sive editing ability for more stably satisfying gen-
eralization and specificity, this paper proposes
a unified knowledge editing method referred to
by in-COntext retrieval-augmented Mass-Editing
Memory (COMEM), which combines parametric
updating and IKE, specifically consisting of two
components:

e MEMIT for parameter updating, which
takes a set of massive edits and directly ap-
plies MEMIT (Meng et al., 2022b) to update
the provided knowledge in LLMs.

* Retrieval-augmented IKE, which generates
IKE (Zheng et al., 2023) to deal with massive
edits, by memorizing all edit requests with
their relevant demonstrations from the set of
training edits. Unlike the original IKE (Zheng
et al., 2023), we further propose the updating-
aware demonstration construction, motivating
from that “copy”-type demonstrations are not
much necessary because it is expected that the
use of MEMIT somehow exhibits the basic
editing capability, thus likely obtaining the
proper level of generalization and specificity.
By removing copy types, we could add other
types of demonstrations, which are shown to
be helpful to further improve the final editing
performances under the combined setting.

Our contributions are summarized as follows: 1)
we propose COMEM, a novel knowledge editing
approach that combines parameter updating and
IKE to guide the model towards stable generaliza-
tion and specificity for the massive editing, 2) we
extensively apply IKE to the massive editing set-
ting and present the retrieval-augmented IKE, fur-
ther proposing the updating-aware demonstration
which is optimal under COMEM, 3) the proposed
COMEM shows state-of-the-art performances on
zsRE and CounterFact datasets.

2 Related Work

2.1 Parameter Updating for Knowledge
Editing

The most of recent knowledge editing works were

applied in parameter rewriting manner, and can be

further categorized to two types: hyper-networks-

based methods and attribution-based methods.

For hyper-network-based method: Knowledge
Editor (Cao et al., 2021) trained a hyper-network
that predict the parameter changes during inference,
updating the target fact and retaining other unre-
lated knowledge. MEND (Mitchell et al., 2022a)
using the hyper-network to convert the initial fine-
tuning gradient into a simplified representation us-
ing low-rank decomposition and update the gradi-
ent. (Mitchell et al., 2022b) offers a higher-capacity
solution by incorporating a semi-parametric editing
approach with a retrieval augmented counterfactual
model. It stores edits in a separate memory and
learns to reason with them to influence the predic-
tions of the base model.

For attribution-based methods: (Dai et al., 2022)
explores how LLMs store factual knowledge and
introduces the concept of knowledge neurons, and
utilizing knowledge neurons for precise factual
knowledge editing (updates, erasures) without re-
sorting to fine-tuning. ROME (Meng et al., 2022a)
is a pioneering that try to locating the model pa-
rameter associated with target factual knowledge,
and rewriting the key-value pairs in MLP module
with computed new vectors. However, all of above
methods suffer from significant efficacy and gener-
alization deterioration when increasing the required
editing volume. MEMIT (Meng et al., 2022b) fur-
ther improves ROME to enable massive knowledge
editing by spreading the weight changes over mul-
tiple model layers.

2.2 In-Context Learning for Knowledge
Editing

In-Context Learning (Dong et al., 2022) is a tech-
nique that emerged with the advent of LLMs, where
the model learns by observing and incorporating in-
formation from the context (Liu et al., 2022; Brown
et al., 2020). It involves temporarily adapting or up-
dating a model’s parameters based on the provided
prompts or demonstrations (Lu et al., 2022; Rubin
et al., 2022) in a run, leading to an improvement in
model performance.

(Si et al., 2023) pioneered the exploration of
using In-Context Learning to update knowledge



in LL.Ms. They demonstrated that incorporating
various types of demonstrations notably enhances
the success rate of knowledge editing. IKE (Zheng
et al., 2023) further extended ICL-based knowledge
editing in different language model with fewer side
effects.

However, both parametric methods and In-
Context Learning based methods failed to achieve
a significant improvement in the performance of
massive knowledge editing task, we integrate both
paradigm and make further augmentation to elevate
the upper limit of current performance in massive
knowledge editing.

3 Task Definition

Suppose that S is a set of real-world entities or
concepts, My is an autoregressive language model
with the parameter 6 and € = {e;}1\| a set of new
facts to be injected to My, where e¢; = (s;,7,0;)
is the ¢-th edit, i.e. a triple that consists of a subject
s; € S, arelation r;, an object 0; € S. For nota-
tional convenience, My(x) is the generated result
given the input prompt z under the language model
My is defined as follows:

My (x) = argmax Ppy, (y|x) (D
yeS

where Py, (y|x) is the generative probability of y,
given a prefix z.

The goal of the massive knowledge editing is to
satisfy efficacy, generalization, and specificity, for
“all” edits in £. Formally, for e; € &, let Z(e;) be
the edit scope of e;, the set of in-scope examples,
and O(e;) = U — Z(e;) be the set of out-of-scope
examples where

u

is a universal set of knowledge '. For example, ¢;
is “Fox News was created in Canada,” an in-scope
example in Z(e;) is “Fox Soccer News originated
in Canada,” and an out-of-scope example in O(e;)
is “iOS 6 was created by Apple.” Efficacy, general-
ization, and specificity are defined as follows:

 Efficacy, which is satisfied for ¢-th edit if
0; = My(x;) where z; is the prefix prompt,
roughly defined as [s;, ;] for i-th edit 2 .

'The terminologies related to the edit scope are based on
those in (Mitchell et al., 2022b; Zheng et al., 2023)

“Here, [s;, r;] refers to a natural language format that con-
sists of s; and 7;.

* Generalization, which is satisfied for i-th
edit if o = My(x) for all in-scope examples
(s,r,0) € I(e;) and x = [s;7].

* Specificity, which is satisfied for ¢-th edit if
o = My(z) for all out-of-scope examples
(s,r,0) € O(e;) and © = [s;7].

4 Method

Figure 1 presents the overall structure of our pro-
posed COMEM to inject a set of edits £ to the
language model My, which combines parameter
updating method and IKE. Formally, suppose that

M
T = {eﬁ-} is a set of “training” edits in a train-
Jj=1

ing set, and each training edit e§~ is pre-associated
with D¥(ef) = (D°(eh), D*(¢}), D" (€f)) a set of
demonstrations of three types including copy, up-
date, and retain, denoted as Dc(ep, D“(eé), and
D”(e?), respectively >. COMEM consists of edit-
ing (i.e. training) and inference steps as follows:

» Editing step: Given a set of requested edits
&, COMEM performs the editing step:

MG* = PU (5, M@)
ey ---e,. = NeighborEdits (e;, T) (2)
D(e;) = ConstructDemo <Dt(e;)§:1)

where PU is the parameter updating method
of knowledge editing that injects a set of ed-
its £ to the language model My and returns
the language model with the updated parame-
ter 0%, NeighborEdits is the retrieval function
that returns the top-k training edits that are
the most similar to the given requested edit
e;, and ConstructDemo is the demonstration
construction component that selects a subset
of the demonstrations in the top-k training
edits, based on the updating-aware selection
criteria.

* Inference step: Given a testing prompt of
x = [s;r], COMEM performs the inference
step:

D(z) =
y =

GetDemo(x, D(e;)Y)
M- ([prompt (D(z)) ; z]) (3)

where D(e;)Y, is a pre-constructed set
of demonstrations corresponding to &£, and
3Here, the demonstration types of copy, update and retrain

correspond to the “requested”, “paraphrased”, and “neighbor-
hood” prompts in the dataset, respectively.
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Figure 1: An overall illustration of COMEM: Given a set of massive edits £ parameter-updated (PU) language
model is first obtained by using MEMIT (in Section 4.1), and the retrieval-augmented IKE is subsequentially
performed (in Section 4.2) to combine the effects of parameter updating and IKE in a complementary manner.
During the editing step, the retrieval-augmented IKE constructs updating-aware demonstrations consisting of only
update and remain types, based on a set of neighbors in the training edits of each requested edit e;. During inference
step, the test query (s, 7) is given, COMEM retrieves the requested edit stored during the editing step by matching
with (s, r, obtain its associated demonstrations, which are concatenated with the test prompt of (s, ) being fed into
M*, which finally predicts the target objects as required in £, while retaining other non-edited knowledge (i.e.,

"iOS 6 was created by Apple").

GetDemo returns a set of online few-shot
demonstrations for IKE, prompt (D(x)) is the
prompting function that linearizes the selected
few-shot demonstrations D(x) via a proper
prompting template, [prompt (D(x));x] is
the concatenated prompt that consists of the
demonstrations and the testing prompt z, and
y is the predicted object returned by COMEM
given .

4.1 Parameter Updating Method: MEMIT

For PU, the parameter updating method, we em-
ploy MEMIT proposed by (Meng et al., 2022b),
which involves rewriting local model parameters
across a range of layers. The detailed description
of MEMIT is presented in Appendix A.

4.2 Retrieval Augmented In-Context
Knowledge Editing

Given the parametric updated model My,, we per-
form the retrieval-augmented IKE, which consists
of NeighborEdits and ConstructDemo for the edit-
ing step, and GetDemo for the inference step.

4.2.1 Updating-aware Demonstration
Construction

Unlike IKE that use 32 demonstrations for "copy”,
"update", and "retain” with aratioof 1 : 3 : 4 (an
example shown in Appendix H), we propose the
updating-aware demonstration construction for the
ConstructDemo, given our COMEM setting where
IKE is subsequentially applied on the parameter-
updated language model My,, not being used
solely as a single editing method.

The underlying assumption is that once param-
eter updating is applied, My, is likely equipped
with a proper level of editing capabilities, in terms
of efficacy, generalization, and specificity. When
applying IKE on My,, the language model is up-
dated to somehow handle properly in-scope and
out-of-scope examples, unlike the original setting
of IKE in (Zheng et al., 2023) based on the fully
unedited status. In the preliminary experiment, we
found that the use of copy-type demonstrations was
not helpful to improve the editing capabilities under
COMET setting. Because the effect of ICL is lim-
ited by the maximum input length of the language
model, we would like construct more impactable
demonstrations in a way of adding non-copy-type
demonstrations from more training edits which are



similar to the current given edit.

The updating-aware demonstration construction
consists of NeighborEdits and ConstructDemo.

Dense Retrieval for Finding Neighbor Edits

We use the dense retrieval for NeighborEdits
based on the cosine similarity between the train-
ing edit e]T and the given requested edit e;. More
precisely, suppose that M., is an additional sen-
tence encoder, where M c,,:(s) € R? is the sen-
tence vector for a given sentence s. For nota-
tional convenience, given an edit e = (s,7,0),
Misent(€) = Mgent([s;7; 0]) where [s; r; 0] is the
natural language format that concatenates s, r, and
o using a proper verbalizing template. The simi-
larity between e = (s,7,0) and ¢’ = (s,7,0) is
defined as follows:

sim(e,e') = cos(Msent(€), Msent(€')) (4

For a given edit e; € &, NeighborEdits (e;, T) is
defined as follows:

top-k { (eﬁ-, sim/(e;, 6;)) }M

Jj=1

6))

where top-k is the operator for selecting top-k ele-
ments given the set of pairs of objects and their as-
sociated similarities. For M ¢,,¢, we deploy the pre-
trained sentence encoder (Reimers and Gurevych,
2019)

Constructing Demonstration of Update and
Retain Types Once we have {¢/ ---€}} € T us-

ing NeighborEdits, ConstructDemo (Dt(e;);‘?:l)
construct a set of demonstrations by selecting m
update-type and n remain-type demonstrations in
D(e}) and DT (e}), respectively for e}. As a re-
sult, we have k(m + n) demonstrations for each
requested edit e;, and N x k(m + n) demonstra-
tions in D in total for the massive edit request in

E.

4.2.2 Retrieval-augmented Inference Step

Retrieval-augmented Inference Step Given a test
prompting ¢ = (s, ), we match the subject and
relation part in £ in the dataset and obtain e, =
(s,r,0) € E. GetDemo returns the set of the asso-
ciated k(m + n) demonstrations for e,, defined as
follows:

GetDemo(z, D(e;)N1) = D(e,) (6)

The resulting demonstrations are further concate-
nated with the test prompt ¢ for finally predicting
an output by COMEM.

S Experiments

5.1 Dataset and Metrics

We first evaluated COMEM on Zero-Shot Rela-
tion Extraction (zsRE, Levy et al. (2017)) dataset
with 10,000 knowledge edits following (Cao et al.,
2021; Mitchell et al., 2022a; Meng et al., 2022b).
After process, each evaluate sample has one fac-
tual statement and its paraphrase, and one natural
question that irrelevant to the factual statement, see
example in Appendix G.

In this dataset, the metric Efficacy measures the
editing accuracy:

E[o* = argmaxP - ((s,7))]. 7

Paraphrase measures the same accuracy on para-
phrase prompt:

E[O* = argmaxP = ((S’ T))]? (8)

where p(-) denote the paraphrase of prompt. And
Specificity is the model’s maximum probability
accuracy on unrelated questions that should not be
edited:

E[O = argmaxP = ((57 ’I“))], &)

where u(-) denote the editing-irrelevant statement.
The Score is the harmonic mean of above three
metrics that reflects the integrated performance of
the model.

We also test our method on CounterFact dataset
(Meng et al.,, 2022a) following (Meng et al.,
2022a,b; Zheng et al., 2023), which contains
21,919 samples, each sample contains a factual
statements, 2 paraphrase of the statements and 10
neighbor prompts that irrelevant to the fact, de-
tailed format can be seen in Appendix G. Simi-
lar to the three aforementioned metrics (Efficacy,
Paraphrase and Specificity) on zsRE, the Efficacy
Score (ES), Paraphrase Score (PS), and Neigh-
borhood Score (NS) will be computed to represent
the accuracy terms. We also report their mean dif-
ference (magnitude) terms: Efficacy Magnitude
(EM), Paraphrase Magnitude (PM), and Neigh-
borhood Magnitude (NM) that measure the sig-
nificance of editing, detailed definition can be seen
in Appendix E. And the aggregated Score (S) is
the harmonic mean of ES, PS, and NS.

Our implementation details are provided in Ap-
pendix D.
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Figure 2: An illustration of retrieval augmented IKE to construct updating-aware demonstration. Given the requested
edit e;, the dense retrieval is first performed to find the top-%k neighbor edits in the training sets, which are most
similar to e;. Then, the demonstrations of m update and n retrain-types for each neighbor edit are selected to create
k(m + n) demonstrations for D(e;). During the inference step, a new query (s, r) is provided and the retrieval
is performed by selecting e, = (s, 7, 0) where the subject and relation elements are matched. D(e,) are finally

provided as online demonstrations for a query (s, 7).

5.2 Baselines

We choose the GPT-J (6B) model (Wang and Ko-
matsuzaki, 2021) which wildly used by related
works as backbone and compare COMEM with
existing knowledge-editing works:

* FT The naive GPT-J model fine-tuned on the
edit facts, using early stop to prevent over-
fitting and weight decay to prevent forgetful-
ness following (Meng et al., 2022b).

* MEND (Mitchell et al., 2022a), a learning
based method that predict weight changes us-
ing hyper-networks.

* ROME (Meng et al., 2022a), a direct para-
metric updating method that rewrite key-value
pairs in MLP layers, it edit single knowledge
at a time, and need to perform iteratively for
multiple editing.

* MEMIT (Meng et al., 2022b), parametric up-
dating method that can edits massive knowl-
edge at one time, it can scale up to thousands
of knowledge edits for GPT-J (6B) or larger
models.

* IKE (Zheng et al., 2023), a pure In-Context
Learning based method that use three kinds
of designed demonstrations ("copy”, "update”
and "retain”) as prompt to steer the language

models prediction.

* PMET (Li et al., 2023) is an optimized para-
metric multiple knowledge editing work that
simultaneously optimizes the hidden states of
Multi-Head Self Attention (MHSA) and Feed-
Forward Network (FFN) layers and precisely
update the FFN weights.

6 Results

In this section, we present experimental results for
massive knowledge editing task on zsRE (Levy
et al., 2017) and CounterFact (Meng et al., 2022a)
datasets, comparing them with recently proposed
baselines. Additionally, we conduct discussions
and analyses based on ablation studies.

6.1 Main Results

Results on zsRE. We compared the Efficacy, Para-
phrase, and Specificity metrics with baselines on
zsRE, the results are listed in Table 1. COMEM



Method Scoret Efficacy{ Paraphrase? Specificity 1
GPT-J 26.4 26.4 25.8 27.0
FT 42.1 69.6 64.8 241
MEND 20.0 19.4 18.6 224
ROME 2.6 21.0 19.6 0.9
MEMIT 50.7 96.7 89.7 26.6
IKE 353 100 100 15.4
PMET 51.0 96.9 90.6 20.7
COMEM  61.7 100 100 34.9

Table 1: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on zsRE dataset. Column-wise best

are in bold, second best are underlined.

achieved best results on all metrics and showed
a significant boost in the aggregated Score (har-
monic mean of Efficacy, Paraphrase and Speci-
ficity). MEND (Mitchell et al., 2022a) and ROME
(Meng et al., 2022a) are baselines that are inca-
pable of massive knowledge editing, consequently,
they performed even worse than fine-tuning. Mas-
sive knowledge editing method such as MEMIT
(Meng et al., 2022b) and PMET (Li et al., 2023)
can provide strong editing efficacy with good gen-
eralization (in Paraphrase) and Specificity, while
leaving room for further improvements. The pure
In-Context Learning method IKE (Zheng et al.,
2023) can also achieve the best scores for Efficacy
and Paraphrase, but it does not exhibit ideal Speci-
ficity in such massive editing context.

Results on CounterFact Table 2 shows the com-
parison results on CounterFact. We report the ac-
curacy terms ES, PS, NS and the magnitude terms
EM, PM, NM on this dataset, and the Score S
is the harmonic mean of accuracy terms. It can
be seen that our proposed COMEM can achieve
the best overall performance. Similar to the re-
sults on zsRE, MEND (Mitchell et al., 2022a)
and ROME (Meng et al., 2022a) losing Efficacy
and Generalization on massive knowledge editing,
while MEND achieved best Neighborhood Score.
Interestingly, fine-tuned model performs well on
Efficacy and Generalization, but also deteriorated
severely in Specificity. There are no significant
difference between parametric massive knowledge
updating methods (Meng et al., 2022b; Li et al.,
2023) and IKE (Zheng et al., 2023) in terms of
Efficacy, including our method. However, there
are still considerable gaps in Generalization for
parametric methods when compared with IKE and
COMEM. For IKE, it achieved high Efficacy and
Generalization performance, while underwhelming

in Specificity.

From the above main results, intensive knowl-
edge editing task beyond the capability of methods
that designed for single or few knowledge editing
(Mitchell et al., 2022a; Meng et al., 2022a). For
models that are capable for massive editing, para-
metric methods (Meng et al., 2022b; Li et al., 2023)
performed well while still leaving room for further
optimization. Pure In-Context Learning method
exhibits a drop in Specificity with massive editing
compared to fewer edits as it achieves better Neigh-
borhood Score on 2,000 edits test (77.0 on original
CounterFact in IKE’s (Zheng et al., 2023) paper
and 67.6 on filtered CounterFact* in our test). Be-
sides the significant impact brought by unfiltered
conflicting samples, this drop is primarily caused
by the shrink of the retrieval corpus size as more
data samples are allocated to the test set, resulting
in smaller retrieval searching space, and In-Context
Learning method in this task heavily relies on the
quality of demonstrations constructed from the re-
trieved neighbors.

COMEM leverages both the strong foundational
efficacy of parametric updating and the augmenta-
tion capabilities of In-Context Learning, achieving
state-of-the-art performance in massive knowledge
editing. We show some output examples in Ap-
pendix L.

6.2 Ablation on zsRE

We conducted ablation experiments on zsRE to
demonstrate the necessity of using Parametric Up-
dating in advance and In-Context Learning aug-
mentation, as well as the impact of using different
numbers of neighbors (i.e., the quantity of demon-

“We use the CounterFact dataset which filtered to remove
the samples that violate multiple knowledge editing paradigm
as described in Section 4.3, the filtered dataset is also referred
to as multi-CounterFact.



Method Score Efficacy Generalization  Specificity
St EST EM{T PST PMtT NST NM?
GPT-J 2047 1466 -740 1506 -7.50 8397 7.65
FT 63.54 9991 98.24 88.14 48.65 38.67 -8.22
MEND 2523 17.61 -12.19 20.10 -11.34 80.83 12.55
ROME 4992 4936 -0.03 4951 -0.09 5092 0.09
MEMIT  85.71 99.10 87.85 8833 38.02 73.59 4.64
IKE 84.88 9998 92.86 96.29 67.37 66.88 25.19
PMET 86.20 99.50 - 92.80 - 71.40 -
COMEM 88.09 99.87 94.88 9642 71.00 73.14 35.87

Table 2: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on CounterFact dataset. Column-wise

best are in bold, second best are underlined.

strations) on performance.

It can be seen from Table 3 that when without
using parametric updating, the model struggles to
achieve optimal Generalization and exhibits poor
Specificity. On the other hand, solely relying on
parametric updating (i.e., without ICL) leads to
an overall performance decline, particularly with a
notable deterioration in Generalization.

Increasing the number of nearest neighbors to
construct ICL demonstrations can enhance perfor-
mance, although Efficacy and Generalization reach
their optimum with fewer demonstrations (k = 8).

Method St ESt PST NS1?T
-w/oPU 468 100 99.9 22.7
-w/oICL 50.7 96.7 89.7 26.6
-k=28 57.6 100 100 31.2
-k =16 597 100 100 33.1
-k=24 617 100 100 349

Table 3: Ablation study on zsRE. k£ denotes the num-
ber of retrieved nearest neighbors. w/o PU and w/o
ICL denote without Parametric Updating and without
In-Context Learning respectively, and w/o PE was con-
ducted under the setting of k& = 24. ES, PS, and NS
reflect the model’s Efficacy, Generalization, and Speci-

ficity.

6.3 Ablation on CounterFact

The ablation study on CounterFact in Table 4 shows
that both solely parametric updating and solely In-
Context Learning Editing can achieve good Speci-
ficity, but suffer from a significant drop in Gener-
alization. More precisely, parametric updating can
provide slightly stronger Efficacy and Generaliza-
tion than pure In-Context Learning.

There is a difference between the results on
CounterFact and zsRE that solely use In-Context

Learning can achieve best Neighborhood Score on
CounterFact, mainly because CounterFact dataset
can provide us more neighborhood prompts to
strength Specificity.

Integrate parametric updating with In-Context
Learning significantly enhances Generalization
and slightly strengthens Efficacy, but leads to a
loss in Specificity. However, increasing the num-
ber of demonstrations can help regain Specificity
without compromising other aspects.

Method ST EST PST NST
“w/oPU 8529 99.60 85.64 7431
~w/oICL 8571 99.10 88.33 73.59
k=3 8572 99.95 9643 68.39
k=4  87.08 99.93 9643 71.05
k=5 88.09 99.87 9642 73.14

Table 4: Ablation study on CounterFact. Similar to on
the zsRE dataset, k is the number of nearest neighbors
used for ICL demonstration construction, the test of
without introducing parametric updating (w/o PE) was
conducted under the setting of k = 5.

7 Conclusion

In this paper, we proposed COMEM, the unified
framework of parameter updating and IKE for mas-
sive knowledge editing task. Extensive experi-
ments on zsRE and CounterFact datasets showed
that COMEM leaded to the state-of-the-art overall
performances, outperforming most existing knowl-
edge editing methods.

In future work, we would like to explore how
to parameterize the in-context learning demonstra-
tions into the language model, to avoid the infer-
ence efficiency decrease caused by lengthy input
prompts, ultimately striving for more concise and
efficient knowledge editing.



Limitations

Our work optimizes based on In-Context Learning
after parametric rewriting, yet ICL cannot achieve
permanent or long-term model knowledge updates.
This means that currently the optimized part cannot
avoid lengthy demonstration inputs, and concate-
nating such demonstrations every time the model
restarts is inefficient. Therefore, achieving perma-
nent or long-term optimal knowledge editing per-
formance requires exploring methods to parameter-
ize the ICL demonstrations. This would also allow
the final model to operate without lengthy input
prompts, thereby enhancing inference efficiency,
which is one of our future directions. Addition-
ally, current models primarily operate on data sam-
ples in tuple form like (subject, relation, object),
whereas real-world natural language comes in more
diverse and complex forms. Exploring weather the
current work can generalize to universal text for-
mats is also an important future task.

References

Oshin Agarwal and Ani Nenkova. 2022. Temporal ef-
fects on pre-trained models for language processing
tasks. Transactions of the Association for Computa-
tional Linguistics, 10:904-921.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. Transactions of the

Association for Computational Linguistics, 10:257—

273.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed.
2023. Bias and fairness in large language models: A
survey.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya,
Devang Agrawal, Adam Liska, Tayfun Terzi, Mai
Gimenez, Cyprien de Masson d’ Autume, Tomas Ko-
cisky, Sebastian Ruder, et al. 2021. Mind the gap:
Assessing temporal generalization in neural language
models. Advances in Neural Information Processing
Systems, 34:29348-29363.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-

ing (CoNLL 2017), pages 333-342.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Adam Liska, Tom4§ Kocisky, Elena Gribovskaya, Tay-
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien
de Masson d’ Autume, Tim Scholtes, Manzil Zaheer,
Susannah Young, Ellen Gilsenan-McMahon Sophia
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022.
Streamingga: A benchmark for adaptation to new
knowledge over time in question answering models.
arXiv preprint arXiv:2205.11388.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.


https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
http://arxiv.org/abs/2309.00770
http://arxiv.org/abs/2309.00770
http://arxiv.org/abs/2309.00770
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 15817-15831. PMLR.

Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg
Durrett. 2022. Entity cloze by date: What LMs know
about unseen entities. In Findings of the Associa-
tion for Computational Linguistics: NAACL 2022,
pages 693-702, Seattle, United States. Association
for Computational Linguistics.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report.  ArXiv,

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktischel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. arXiv preprint
arXiv:2005.04611.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655-2671, Seattle, United States.
Association for Computational Linguistics.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Boyd-Graber, and Li-
juan Wang. 2023. Prompting gpt-3 to be reliable. In
International Conference on Learning Representa-
tions (ICLR).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

10

you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and Tengyu Ma. 2023.
Larger language models do in-context learning dif-
ferently.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

A Detailed Process of MEMIT

Note the MLP weights in a Transformer (Vaswani
et al., 2017) as W that can be operated as a key-
value store, where WK ~ V, K = [ki|kz]...]
and V [vi|vg]...]. Given requested edits
mathcal E = {(s;,7i,0;)}, language model My,
layers to edit £ {L1, Lo, ...,L;}, and pre-
cached covariance constant C* of k computed
from Wikipedia samples (Meng et al., 2022a). For
each (s;,7,0;) € &, a target vector z; will be com-
puted:

zi — hP 45, (10)

where 9; is optimized by:
1 L
6; argérimn Iz ; &

G =108l g loilzs © (si,m)] - AD

Then for each editing layer L € L, the hidden state
is updated by:

hE « hE ek 4+ mf (12)

where a and m denote the "attention” and "MLP"
contributions computed from previous layers in
Transformer (Vaswani et al., 2017) model. On the
current layer, for each (s;,7;,0;) € &, the MLP
key updated as:

P
1
kP — kP = 5 > k(xj+ si) (13)
j=1
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where z; are random prefixes that aid generaliza-
tion across contexts. The distributed residual ¢
over remaining layers is computed as:

L

T T ide (D) + 1 (14

where idx(L) denote the number index of L. Thus
in this layer k¥ = {k/} and ¢ = {¢]}.

To update the MLP weights in the editing lay-
ers, for each layer L € L, the adding weight is
computed as:

AL« gLELT (O £ KLEETYTL (15)

finally in current layer L the MLP weights updated
as:

W« wh + AL, (16)
after the above updating performed on all the edit-

ing layers, we can obtain the parametric updated
model Mg«

B Demonstration Analysis for Parametric
Updated Model

We demonstrate that a parametric updated model
does not need additional "Efficacy Demonstrations"
but requires more for Specificity in In-Context
Learning stage.

In IKE’s work (Zheng et al., 2023), three kinds of
demonstrations ("copy”, "update”, "retain") were
designed for In-Context Learning knowledge edit-
ing, where "update” demonstrations contribute to
Generalization and "retain” demonstrations im-
prove Specificity. Removing "copy” demonstra-
tions also lead to performance degradation as there
was a drop in Specificity. We tested weather the
"copy" demonstrations still have significance for
the parametric updated models, as strong Efficacy
and Specificity have been pre-provided by parame-
ter rewriting.

We keep the number of total demonstrations
fixed and redistribute "copy" to "retain” demonstra-
tions, since IKE losing some Specificity when ex-
panding the number of edits from 2,000 to 10,000.
Table 5 demonstrates that this redistribution im-
proved the Neighborhood Score without compro-
mising Efficacy and Generalization, leading to an
overall promotion in performance.

C Demonstration Analysis on Query
Prompt

Table 6 indicates that pre-appending the new knowl-
edge demonstration before the query for the para-

11

C/UR ST EST PST NST
4/12/16 83.53 99.99 98.64 63.43
2/12/18 8425 99.99 9851 64.70
0/12/20 84.80 99.98 98.53 65.70

Table 5: Various demonstration distributions applied for
parametric updated model. The demonstration format
used in this test is adopted from IKE, where C, U, and

R denote the number of "copy”, "update"”, and "retain”
demonstrations.

metric updated model resulted in a significant drop
in Specificity, as the model was given prompts
that excessively biased its predictions towards new
facts.

Method STt EST PST NS¢
zsRE

-w/ Pre 56.3 100 100 30.0
-w/o Pre 61.7 100 100 349
CounterFact

-w/ Pre 86.28 99.28 97.03 69.48
-w/o Pre 88.09 99.87 96.42 73.14

Table 6: Comparison of pre-appending the new knowl-
edge demonstration before the query prompt or not.

D Implementation Details

We use GPT-J (6B) (Wang and Komatsuzaki, 2021)
as backbone language model to enabling maximum
number of comparable cases with related works.

For zsRE (Levy et al., 2017) dataset, we ex-
tract 10,000 samples as test set to perform massive
knowledge editing, and use sentence-transformer
toolkit to retrieve k£ nearest neighbors from the rest
set (172,282 samples) of data. Our best result was
tested on k = 24 setting, resulting in 48 demonstra-
tions for each test sample, wherein each neighbor
provides one paraphrase prompt (m = 1) and one
irrelevant prompt (n = 1) used for demonstration
construction. In our experiments, larger k values
will result in the input sequence length of most sam-
ples exceeding the maximum input length of GPT-J
(6B). We first run parametric updating on the test
set following (Meng et al., 2022b), then using the
edited model to perform In-context Learning.

We tested IKE (Zheng et al., 2023) on zsRE
with the same demonstration setting as in their pa-
per: retrieve top 32 nearest neighbors and assign
the usage of factual statement, paraphrase prompt,
neighborhood prompt for "copy”, "update"”, "re-
tain" demonstration with the ratio of 1:3:4. Other



baselines were tested by previous works on this
dataset, and we adopted the statistic from their pa-
per (Meng et al., 2022b; Li et al., 2023).

For CounterFact (Meng et al., 2022a) dataset, the
original dataset contains 21,919 samples, but some
of the samples may entail the same prefix (s, )
editing to different new facts, which conflicting
with multiple knowledge editing, therefore need
to be filtered out. We use the filtered set follow-
ing (Meng et al., 2022b) that contains 20,877 in
total. Given that each data sample in this dataset
has 2 paraphrase prompts (m = 2) and 10 neigh-
borhood (irrelevant) prompts (n = 10), the In-
Context Learning prompt consists of k * 12 demon-
strations. Hence, in our optimal setting, the number
of demonstrations for each test sample is 60.

To get the precise results and the Magnitude term
of baselines, we rerun IKE (Zheng et al., 2023) on
the filtered dataset for 10,000 samples under the
same setting in their paper, and retested other base-
lines based on (Meng et al., 2022b)’s repository.
But for PMET (Li et al., 2023), we failed to repro-
duce the experiment due to GPU limitation, thus
we directly adopted their results in the paper.

We also observed that pre-appending new knowl-
edge demonstration before query sequence (used in
IKE) tends to excessively bias the model towards
predicting new facts, resulting in a notable dete-
rioration in Specificity (as shown in Appendix C).
Hence, for any query prompts, we utilize the origi-
nal sequence without any additional context. Ap-
pendix H shows an example of the demonstration.

All of our experiments were conducted on
NVIDIA A6000 GPUs.

E Detailed Definition of Evaluation
Metrics on CounterFact

Accuracy Terms:
Efficacy Score (ES):

E[Pam=(0*|(s,7)) > P (0l (s, ))],
Paraphrase Score (PS):
E[Pre=(0"p(s, 7)) > Pa=(olp(s,7))],

Neighborhood Score (NS):

(I7)
(18)
E[Par= (0" |u(s, ) < Pag=(o|lu(s,r))].

19)

Magnitude Terms:
Efficacy Magnitude (EM):

B[P (0%|(s,7)) = Pa=(0l(s,7))l,  (20)

Paraphrase Magnitude (PM):

E[Pare(0%|p(s, 7)) = Pm=(olp(s,7))], (21
Neighborhood Magnitude (NM):
E[Pum=(olu(s, 1)) = Pa= (0" |uls, 7))].  (22)

F Extended Comparison of Performance
with In-Context Learning Knowledge
Editing

To make a more detailed comparison with the pure
In-Context Learning method, we tested the perfor-
mance of IKE (Zheng et al., 2023) under the same
number of demonstrations as in our experiments
(k = 3,4,5). Due to the change in the number of
demonstration, we attempted to maintain the ratio
of demonstrations (1:3:4) used for "copy”, "update”
and "retain" in IKE as much as possible to allocate
the additional demonstrations.

Table 7 presents the results. COMEM is slight
inferior in Efficacy Score and Paraphrase Score
but exhibits a noticeable advantage in Neighbor-
hood Score. The higher aggregated score S indi-
cates that the proposed COMEM has better overall
performance.

Method d, ST EST PST NST
IKE 36 8532 100 9630 67.68
COMEM 36 8572 99.95 9643 70.58
IKE 48 8622 100 97.22 68.93
COMEM 48 87.08 99.93 9643 71.05
IKE 60 87.14 99.98 97.32 70.68
COMEM 60 88.09 99.87 9642 73.14

Table 7: Comparison of COMEM with IKE under same
demonstration quantity. d,, denote the number of total
demonstration, where 36, 48, 60 correspond to our ex-
periments with k = 3,4, 5.

G Data Structure

Structure of CounterFact dataset:
{
"case_id": 0,
"requested_rewrite": {
"prompt": "The mother tongue of is",
"target_new": “str": "English",,
"target_true": "str": "French",,
"subject": "Danielle Darrieux"
3,
"paraphrase_prompts": [
"Danielle Darrieux, a native",



"Danielle Darrieux spoke the language"

]

neighborhood_prompts": [
"The native language of Montesquieu is",
"The native language of Raymond Barre is",
"Jacques is a native speaker of",
... (10 prompts in total)
1,
"attribute_prompts": [
"The mother tongue of Douglas Adams is",
... (10 prompts in total)
1,
"generation_prompts": [
"Danielle Darrieux’s mother tongue is",
... (10 prompts in total)

}

Structure of processed zsRE dataset:
{
"case_id": O,
"requested_rewrite": {
"prompt": "What university did {} attend?",
"subject": "Watts Humphrey",
"target_new":
"str": "Illinois Institute of Technology"
"target_true":
"str'": "<lendoftext/>"

}

araphrase_prompts": [
"What university did Watts Humphrey take
part in? "
1,
"neighborhood_prompts": [
"prompt":
"nq question: who played desmond doss
father?",
"target": " Hugo"

H Example of ICL Demonstration

Table 8 shows examples of IKE’s ICL demonstra-
tions, and Table 9 displays our demonstrations.

I Output Examples of Model Outputs

Table 10 presents the output examples of GPT-J
and COMEM, where GPT-J stores the original
unedited knowledge and COMEM is post-edited.
Blue font represent the new knowledge of editing,

font indicates the original knowledge, red
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Demonstration

Type

New Fact: Sky Football was created in Canada

copy Prompt: Sky Football News was created in Canada
update New Fact: Sky Football was created in Canada
Prompt: Sky Football News originated in Canada
retain New Fact: Sky Football was created in Canada
Prompt: i0OS 6 was created by Apple
append Fox News was created in Canada
New Fact: Fox News was created in Canada
query

Prompt: Fox News was created in?

Table 8: Single example of IKE’s (Zheng et al., 2023)
demonstration.

Type Demonstration
New Fact: Sky Football was created in Canada
paraphrase Prompt: Sky Football News originated in Canada
neighborhood New Fact: Sky Football was created in Canada
Prompt: i0OS 6 was created by Apple
append Prompt: Fox News was created in Canada.
query Prompt: Fox News was created in?

Table 9: Single example of our demonstration.

font denote the incorrectly predicted or ambigu-
ous answer, and font means the successful
retain of knowledge that unrelated to the editing
target. It can be observed that the unedited GPT-
J is generally capable of outputting the original
knowledge but occasionally fails to generate cor-
rect answers. COMEM is successful in generating
the edited new knowledge without affecting other
unedited knowledge and it tends to directly provide
concise answers.



Model Type Content or Output
Promot New Knowledge The mother tongue of Danielle Darrieux is English.
P Old Knowledge = The mother tongue of Danielle Darrieux is
Fact The mother tongue of Danielle Darrieux is ___. The correct answer is:
Danielle Darrieux, a native
Paraphrase . . . . .
GPT-J Danielle Darrieux spoke the language ___. A. French B. English C. Spanish D. Italian
(before Neighborhood  The native language of Montesquieu is . Prompt: The native language
editing) (unrelated) Maurice Genevoix, speaker of
. Danielle Darrieux’s mother tongue is ___. 1. 2. 3. 4.
Generation . .. .
Where Danielle Darrieux is from, people speak the language of ___. The answer is:
Fact The mother tongue of Danielle Darrieux is English.
Paraphrase Danielle Darrieux, a native English.
COMEM P Danielle Darrieux spoke the language English.
(after Neighborhood  The native language of Montesquieu is
editing) (unrelated) Maurice Genevoix, speaker of
. Danielle Darrieux’s mother tongue is English.
Generation

Where Danielle Darrieux is from, people speak the language of English.

Table 10: Outputs of models on CounterFact dataset.
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