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Abstract
Noting that world knowledge continuously001
evolves over time, large language models002
(LLMs) need to be properly adjusted by per-003
forming the “knowledge editing”, such as004
updating outdated information or correcting005
false information, etc. Pursuing the reliable006
“massive” editing ability in terms of gener-007
alization and specificity, this paper proposes008
a unified knowledge editing method referred009
to by in-COntext retrieval-augmented Mass-010
Editing Memory (COMEM), which combines011
two types of editing approaches – parameter up-012
dating and in-context knowledge editing (IKE).013
In particular, COMEM includes the retrieval-014
augmented IKE, a novel extension of IKE to015
a massive editing task based on the updat-016
ing-aware demonstration construction. Exper-017
imental results on the zsRE and CounterFact018
datasets show that the proposed COMEM out-019
performs all existing methods, leading to state-020
of-the-art performance. Our code is available021
at https://github.com/xxxx/xxxx.022

1 Introduction023

Large language models (LLMs), owing to their024

stored vast amount of world knowledge, have re-025

ported the remarkable abilities of understanding026

and generating natural languages, as well as achiev-027

ing the state-of-the-art performances in a wide028

range of natural language processing (NLP) ap-029

plications (Touvron et al., 2023; OpenAI, 2023;030

Petroni et al., 2020). Given the demands of enhanc-031

ing controllability for LLMs in knowledge manip-032

ulation (Onoe et al., 2022; Dhingra et al., 2022;033

Liška et al., 2022) and content generation (Zhao034

et al., 2023; Ji et al., 2023; Lazaridou et al., 2021;035

Agarwal and Nenkova, 2022; Gallegos et al., 2023),036

there has been recently increasing studies on the037

“knowledge editing” task, which aims to explicitly038

provide the “editing” mechanism such as revising039

knowledge or correcting false information in LLMs040

in a controllable, scaled, and effective manner. In041

particular, the paper addresses the “massive” edit- 042

ing task as in (Meng et al., 2022b), because LLMs 043

readily face the issue of the massive edits which 044

requires to update much more than hundreds or 045

thousands of facts, given huge knowledge space. 046

Approaches for knowledge editing in LLMs have 047

been categorized to two main types: parameter 048

updating and in-context knowledge editing (IKE). 049

Parameter updating adjusts local parameters or spe- 050

cific layers in LLMs in a gradient-based method to 051

likely generate desired targets given edit requests 052

(Cao et al., 2021; Mitchell et al., 2022a; Meng 053

et al., 2022a,b; Li et al., 2023). In the massive 054

editing task, the advantage of parameter updating 055

has inherited from LLMs; the knowledge is stored 056

implicitly in LLM’s parameters and the inference 057

step for the knowledge lookup is simply proceeded 058

in a generative manner based on the decoder, with- 059

out requiring to maintain an external memory or to 060

search over a set of edits. However, parameter up- 061

dating may lead to under-editing problem, because 062

some edits and their relevant facts are interrupted 063

by other edits thereby being stored in somehow 064

blurred manner. Furthermore, as noted by (Zheng 065

et al., 2023), parameter updating may cause side 066

effects like catastrophic forgetting or over-editing 067

on out-of-scope knowledge. 068

On the other hand, motivated by the ability of 069

in-context learning (ICL) (Brown et al., 2020; Wei 070

et al., 2023), IKE guides LLMs to generate desired 071

targets in a given context by prepending the edit- 072

related specific prompts which consist of relevant 073

demonstrations. IKE has shown to effectively per- 074

form the knowledge editing based on demonstra- 075

tion formatting and organization strategies (Zheng 076

et al., 2023), without modifying the model parame- 077

ters. Under the setting of the massive editing task, 078

however, IKE may require an additional retrieval 079

step which finds relevant facts given the test query, 080

which is not required in parameter updating. In ad- 081

dition, the performance of IKE largely relies on the 082
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demonstration construction, possibly causing the083

risky situation when the demonstrations are not op-084

timally desired for some test prompts or contexts.085

The goal of knowledge editing is to satisfy086

both generalization and specificity, however, there087

are somehow the trade-off-like relationship be-088

tween these properties. Pursuing the reliable mas-089

sive editing ability for more stably satisfying gen-090

eralization and specificity, this paper proposes091

a unified knowledge editing method referred to092

by in-COntext retrieval-augmented Mass-Editing093

Memory (COMEM), which combines parametric094

updating and IKE, specifically consisting of two095

components:096

• MEMIT for parameter updating, which097

takes a set of massive edits and directly ap-098

plies MEMIT (Meng et al., 2022b) to update099

the provided knowledge in LLMs.100

• Retrieval-augmented IKE, which generates101

IKE (Zheng et al., 2023) to deal with massive102

edits, by memorizing all edit requests with103

their relevant demonstrations from the set of104

training edits. Unlike the original IKE (Zheng105

et al., 2023), we further propose the updating-106

aware demonstration construction, motivating107

from that “copy”-type demonstrations are not108

much necessary because it is expected that the109

use of MEMIT somehow exhibits the basic110

editing capability, thus likely obtaining the111

proper level of generalization and specificity.112

By removing copy types, we could add other113

types of demonstrations, which are shown to114

be helpful to further improve the final editing115

performances under the combined setting.116

Our contributions are summarized as follows: 1)117

we propose COMEM, a novel knowledge editing118

approach that combines parameter updating and119

IKE to guide the model towards stable generaliza-120

tion and specificity for the massive editing, 2) we121

extensively apply IKE to the massive editing set-122

ting and present the retrieval-augmented IKE, fur-123

ther proposing the updating-aware demonstration124

which is optimal under COMEM, 3) the proposed125

COMEM shows state-of-the-art performances on126

zsRE and CounterFact datasets.127

2 Related Work 128

2.1 Parameter Updating for Knowledge 129

Editing 130

The most of recent knowledge editing works were 131

applied in parameter rewriting manner, and can be 132

further categorized to two types: hyper-networks- 133

based methods and attribution-based methods. 134

For hyper-network-based method: Knowledge 135

Editor (Cao et al., 2021) trained a hyper-network 136

that predict the parameter changes during inference, 137

updating the target fact and retaining other unre- 138

lated knowledge. MEND (Mitchell et al., 2022a) 139

using the hyper-network to convert the initial fine- 140

tuning gradient into a simplified representation us- 141

ing low-rank decomposition and update the gradi- 142

ent. (Mitchell et al., 2022b) offers a higher-capacity 143

solution by incorporating a semi-parametric editing 144

approach with a retrieval augmented counterfactual 145

model. It stores edits in a separate memory and 146

learns to reason with them to influence the predic- 147

tions of the base model. 148

For attribution-based methods: (Dai et al., 2022) 149

explores how LLMs store factual knowledge and 150

introduces the concept of knowledge neurons, and 151

utilizing knowledge neurons for precise factual 152

knowledge editing (updates, erasures) without re- 153

sorting to fine-tuning. ROME (Meng et al., 2022a) 154

is a pioneering that try to locating the model pa- 155

rameter associated with target factual knowledge, 156

and rewriting the key-value pairs in MLP module 157

with computed new vectors. However, all of above 158

methods suffer from significant efficacy and gener- 159

alization deterioration when increasing the required 160

editing volume. MEMIT (Meng et al., 2022b) fur- 161

ther improves ROME to enable massive knowledge 162

editing by spreading the weight changes over mul- 163

tiple model layers. 164

2.2 In-Context Learning for Knowledge 165

Editing 166

In-Context Learning (Dong et al., 2022) is a tech- 167

nique that emerged with the advent of LLMs, where 168

the model learns by observing and incorporating in- 169

formation from the context (Liu et al., 2022; Brown 170

et al., 2020). It involves temporarily adapting or up- 171

dating a model’s parameters based on the provided 172

prompts or demonstrations (Lu et al., 2022; Rubin 173

et al., 2022) in a run, leading to an improvement in 174

model performance. 175

(Si et al., 2023) pioneered the exploration of 176

using In-Context Learning to update knowledge 177
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in LLMs. They demonstrated that incorporating178

various types of demonstrations notably enhances179

the success rate of knowledge editing. IKE (Zheng180

et al., 2023) further extended ICL-based knowledge181

editing in different language model with fewer side182

effects.183

However, both parametric methods and In-184

Context Learning based methods failed to achieve185

a significant improvement in the performance of186

massive knowledge editing task, we integrate both187

paradigm and make further augmentation to elevate188

the upper limit of current performance in massive189

knowledge editing.190

3 Task Definition191

Suppose that S is a set of real-world entities or192

concepts,Mθ is an autoregressive language model193

with the parameter θ and E = {ei}Ni=1 a set of new194

facts to be injected toMθ, where ei = (si, ri, oi)195

is the i-th edit, i.e. a triple that consists of a subject196

si ∈ S, a relation ri, an object oi ∈ S. For nota-197

tional convenience,Mθ(x) is the generated result198

given the input prompt x under the language model199

Mθ is defined as follows:200

Mθ(x) = argmax
y∈S

PMθ
(y|x) (1)201

where PMθ
(y|x) is the generative probability of y,202

given a prefix x.203

The goal of the massive knowledge editing is to
satisfy efficacy, generalization, and specificity, for
“all” edits in E . Formally, for ei ∈ E , let I(ei) be
the edit scope of ei, the set of in-scope examples,
and O(ei) = U − I(ei) be the set of out-of-scope
examples where

U

is a universal set of knowledge 1. For example, ei204

is “Fox News was created in Canada,” an in-scope205

example in I(ei) is “Fox Soccer News originated206

in Canada,” and an out-of-scope example in O(ei)207

is “iOS 6 was created by Apple.” Efficacy, general-208

ization, and specificity are defined as follows:209

• Efficacy, which is satisfied for i-th edit if210

oi =Mθ(xi) where xi is the prefix prompt,211

roughly defined as [si, ri] for i-th edit 2 .212

1The terminologies related to the edit scope are based on
those in (Mitchell et al., 2022b; Zheng et al., 2023)

2Here, [si, ri] refers to a natural language format that con-
sists of si and ri.

• Generalization, which is satisfied for i-th 213

edit if o =Mθ(x) for all in-scope examples 214

(s, r, o) ∈ I(ei) and x = [s; r]. 215

• Specificity, which is satisfied for i-th edit if 216

o = Mθ(x) for all out-of-scope examples 217

(s, r, o) ∈ O(ei) and x = [s; r]. 218

4 Method 219

Figure 1 presents the overall structure of our pro- 220

posed COMEM to inject a set of edits E to the 221

language modelMθ, which combines parameter 222

updating method and IKE. Formally, suppose that 223

T =
{
etj

}M

j=1
is a set of “training” edits in a train- 224

ing set, and each training edit etj is pre-associated 225

with Dt(etj) = (Dc(etj),Du(etj),Dr(etj)) a set of 226

demonstrations of three types including copy, up- 227

date, and retain, denoted as Dc(etj), Du(etj), and 228

Dr(etj), respectively 3. COMEM consists of edit- 229

ing (i.e. training) and inference steps as follows: 230

• Editing step: Given a set of requested edits 231

E , COMEM performs the editing step: 232

Mθ∗ = PU (E ,Mθ) 233

e′1 · · · e′k = NeighborEdits (ei, T ) (2) 234

D(ei) = ConstructDemo
(
Dt(e′j)

k
j=1

)
235

where PU is the parameter updating method 236

of knowledge editing that injects a set of ed- 237

its E to the language modelMθ and returns 238

the language model with the updated parame- 239

ter θ∗, NeighborEdits is the retrieval function 240

that returns the top-k training edits that are 241

the most similar to the given requested edit 242

ei, and ConstructDemo is the demonstration 243

construction component that selects a subset 244

of the demonstrations in the top-k training 245

edits, based on the updating-aware selection 246

criteria. 247

• Inference step: Given a testing prompt of 248

x = [s; r], COMEM performs the inference 249

step: 250

D(x) = GetDemo(x,D(ei)Ni=1) 251

y = Mθ∗([prompt (D(x)) ;x]) (3) 252

where D(ei)Ni=1 is a pre-constructed set 253

of demonstrations corresponding to E , and 254

3Here, the demonstration types of copy, update and retrain
correspond to the “requested”, “paraphrased”, and “neighbor-
hood” prompts in the dataset, respectively.
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Figure 1: An overall illustration of COMEM: Given a set of massive edits E parameter-updated (PU) language
model is first obtained by using MEMIT (in Section 4.1), and the retrieval-augmented IKE is subsequentially
performed (in Section 4.2) to combine the effects of parameter updating and IKE in a complementary manner.
During the editing step, the retrieval-augmented IKE constructs updating-aware demonstrations consisting of only
update and remain types, based on a set of neighbors in the training edits of each requested edit ei. During inference
step, the test query (s, r) is given, COMEM retrieves the requested edit stored during the editing step by matching
with (s, r, obtain its associated demonstrations, which are concatenated with the test prompt of (s, r) being fed into
M∗, which finally predicts the target objects as required in E , while retaining other non-edited knowledge (i.e.,
"iOS 6 was created by Apple").

GetDemo returns a set of online few-shot255

demonstrations for IKE, prompt (D(x)) is the256

prompting function that linearizes the selected257

few-shot demonstrations D(x) via a proper258

prompting template, [prompt (D(x)) ;x] is259

the concatenated prompt that consists of the260

demonstrations and the testing prompt x, and261

y is the predicted object returned by COMEM262

given x.263

4.1 Parameter Updating Method: MEMIT264

For PU, the parameter updating method, we em-265

ploy MEMIT proposed by (Meng et al., 2022b),266

which involves rewriting local model parameters267

across a range of layers. The detailed description268

of MEMIT is presented in Appendix A.269

4.2 Retrieval Augmented In-Context270

Knowledge Editing271

Given the parametric updated modelMθ∗, we per-272

form the retrieval-augmented IKE, which consists273

of NeighborEdits and ConstructDemo for the edit-274

ing step, and GetDemo for the inference step.275

4.2.1 Updating-aware Demonstration 276

Construction 277

Unlike IKE that use 32 demonstrations for "copy", 278

"update", and "retain" with a ratio of 1 : 3 : 4 (an 279

example shown in Appendix H), we propose the 280

updating-aware demonstration construction for the 281

ConstructDemo, given our COMEM setting where 282

IKE is subsequentially applied on the parameter- 283

updated language model Mθ∗, not being used 284

solely as a single editing method. 285

The underlying assumption is that once param- 286

eter updating is applied, Mθ∗ is likely equipped 287

with a proper level of editing capabilities, in terms 288

of efficacy, generalization, and specificity. When 289

applying IKE onMθ∗, the language model is up- 290

dated to somehow handle properly in-scope and 291

out-of-scope examples, unlike the original setting 292

of IKE in (Zheng et al., 2023) based on the fully 293

unedited status. In the preliminary experiment, we 294

found that the use of copy-type demonstrations was 295

not helpful to improve the editing capabilities under 296

COMET setting. Because the effect of ICL is lim- 297

ited by the maximum input length of the language 298

model, we would like construct more impactable 299

demonstrations in a way of adding non-copy-type 300

demonstrations from more training edits which are 301
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similar to the current given edit.302

The updating-aware demonstration construction303

consists of NeighborEdits and ConstructDemo.304

Dense Retrieval for Finding Neighbor Edits305

We use the dense retrieval for NeighborEdits306

based on the cosine similarity between the train-307

ing edit eTj and the given requested edit ei. More308

precisely, suppose thatMsent is an additional sen-309

tence encoder, whereMsent(s) ∈ Rd is the sen-310

tence vector for a given sentence s. For nota-311

tional convenience, given an edit e = (s, r, o),312

Msent(e) =Msent([s; r; o]) where [s; r; o] is the313

natural language format that concatenates s, r, and314

o using a proper verbalizing template. The simi-315

larity between e = (s, r, o) and e′ = (s, r, o) is316

defined as follows:317

sim(e, e′) = cos(Msent(e),Msent(e
′)) (4)318

For a given edit ei ∈ E , NeighborEdits (ei, T ) is319

defined as follows:320

top-k
{
(etj , sim(ei, e

t
j))

}M

j=1
(5)321

where top-k is the operator for selecting top-k ele-322

ments given the set of pairs of objects and their as-323

sociated similarities. ForMsent, we deploy the pre-324

trained sentence encoder (Reimers and Gurevych,325

2019)326

Constructing Demonstration of Update and327

Retain Types Once we have {e′1 · · · e′k} ∈ T us-328

ing NeighborEdits, ConstructDemo
(
Dt(e′j)

k
j=1

)
329

construct a set of demonstrations by selecting m330

update-type and n remain-type demonstrations in331

Du(e′j) and Dr(e′j), respectively for e′j . As a re-332

sult, we have k(m + n) demonstrations for each333

requested edit ei, and N × k(m + n) demonstra-334

tions in D in total for the massive edit request in335

E .336

4.2.2 Retrieval-augmented Inference Step337

Retrieval-augmented Inference Step Given a test338

prompting q = (s, r), we match the subject and339

relation part in E in the dataset and obtain eq =340

(s, r, o) ∈ E . GetDemo returns the set of the asso-341

ciated k(m+ n) demonstrations for eq, defined as342

follows:343

GetDemo(x,D(ei)Ni=1) = D(eq) (6)344

The resulting demonstrations are further concate-345

nated with the test prompt q for finally predicting346

an output by COMEM.347

5 Experiments 348

5.1 Dataset and Metrics 349

We first evaluated COMEM on Zero-Shot Rela- 350

tion Extraction (zsRE, Levy et al. (2017)) dataset 351

with 10,000 knowledge edits following (Cao et al., 352

2021; Mitchell et al., 2022a; Meng et al., 2022b). 353

After process, each evaluate sample has one fac- 354

tual statement and its paraphrase, and one natural 355

question that irrelevant to the factual statement, see 356

example in Appendix G. 357

In this dataset, the metric Efficacy measures the 358

editing accuracy: 359

E[o∗ = argmaxPM∗((s, r))]. (7) 360

Paraphrase measures the same accuracy on para- 361

phrase prompt: 362

E[o∗ = argmaxPM∗((s, r))], (8) 363

where p(·) denote the paraphrase of prompt. And 364

Specificity is the model’s maximum probability 365

accuracy on unrelated questions that should not be 366

edited: 367

E[o = argmaxPM∗((s, r))], (9) 368

where u(·) denote the editing-irrelevant statement. 369

The Score is the harmonic mean of above three 370

metrics that reflects the integrated performance of 371

the model. 372

We also test our method on CounterFact dataset 373

(Meng et al., 2022a) following (Meng et al., 374

2022a,b; Zheng et al., 2023), which contains 375

21,919 samples, each sample contains a factual 376

statements, 2 paraphrase of the statements and 10 377

neighbor prompts that irrelevant to the fact, de- 378

tailed format can be seen in Appendix G. Simi- 379

lar to the three aforementioned metrics (Efficacy, 380

Paraphrase and Specificity) on zsRE, the Efficacy 381

Score (ES), Paraphrase Score (PS), and Neigh- 382

borhood Score (NS) will be computed to represent 383

the accuracy terms. We also report their mean dif- 384

ference (magnitude) terms: Efficacy Magnitude 385

(EM), Paraphrase Magnitude (PM), and Neigh- 386

borhood Magnitude (NM) that measure the sig- 387

nificance of editing, detailed definition can be seen 388

in Appendix E. And the aggregated Score (S) is 389

the harmonic mean of ES, PS, and NS. 390

Our implementation details are provided in Ap- 391

pendix D. 392
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Figure 2: An illustration of retrieval augmented IKE to construct updating-aware demonstration. Given the requested
edit ei, the dense retrieval is first performed to find the top-k neighbor edits in the training sets, which are most
similar to ei. Then, the demonstrations of m update and n retrain-types for each neighbor edit are selected to create
k(m + n) demonstrations for D(ei). During the inference step, a new query (s, r) is provided and the retrieval
is performed by selecting eq = (s, r, o) where the subject and relation elements are matched. D(eq) are finally
provided as online demonstrations for a query (s, r).

5.2 Baselines393

We choose the GPT-J (6B) model (Wang and Ko-394

matsuzaki, 2021) which wildly used by related395

works as backbone and compare COMEM with396

existing knowledge-editing works:397

• FT The naive GPT-J model fine-tuned on the398

edit facts, using early stop to prevent over-399

fitting and weight decay to prevent forgetful-400

ness following (Meng et al., 2022b).401

• MEND (Mitchell et al., 2022a), a learning402

based method that predict weight changes us-403

ing hyper-networks.404

• ROME (Meng et al., 2022a), a direct para-405

metric updating method that rewrite key-value406

pairs in MLP layers, it edit single knowledge407

at a time, and need to perform iteratively for408

multiple editing.409

• MEMIT (Meng et al., 2022b), parametric up-410

dating method that can edits massive knowl-411

edge at one time, it can scale up to thousands412

of knowledge edits for GPT-J (6B) or larger413

models.414

• IKE (Zheng et al., 2023), a pure In-Context 415

Learning based method that use three kinds 416

of designed demonstrations ("copy", "update" 417

and "retain") as prompt to steer the language 418

models prediction. 419

• PMET (Li et al., 2023) is an optimized para- 420

metric multiple knowledge editing work that 421

simultaneously optimizes the hidden states of 422

Multi-Head Self Attention (MHSA) and Feed- 423

Forward Network (FFN) layers and precisely 424

update the FFN weights. 425

6 Results 426

In this section, we present experimental results for 427

massive knowledge editing task on zsRE (Levy 428

et al., 2017) and CounterFact (Meng et al., 2022a) 429

datasets, comparing them with recently proposed 430

baselines. Additionally, we conduct discussions 431

and analyses based on ablation studies. 432

6.1 Main Results 433

Results on zsRE. We compared the Efficacy, Para- 434

phrase, and Specificity metrics with baselines on 435

zsRE, the results are listed in Table 1. COMEM 436
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Method Score ↑ Efficacy ↑ Paraphrase ↑ Specificity ↑
GPT-J 26.4 26.4 25.8 27.0
FT 42.1 69.6 64.8 24.1
MEND 20.0 19.4 18.6 22.4
ROME 2.6 21.0 19.6 0.9
MEMIT 50.7 96.7 89.7 26.6
IKE 35.3 100 100 15.4
PMET 51.0 96.9 90.6 26.7
COMEM 61.7 100 100 34.9

Table 1: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on zsRE dataset. Column-wise best
are in bold, second best are underlined.

achieved best results on all metrics and showed437

a significant boost in the aggregated Score (har-438

monic mean of Efficacy, Paraphrase and Speci-439

ficity). MEND (Mitchell et al., 2022a) and ROME440

(Meng et al., 2022a) are baselines that are inca-441

pable of massive knowledge editing, consequently,442

they performed even worse than fine-tuning. Mas-443

sive knowledge editing method such as MEMIT444

(Meng et al., 2022b) and PMET (Li et al., 2023)445

can provide strong editing efficacy with good gen-446

eralization (in Paraphrase) and Specificity, while447

leaving room for further improvements. The pure448

In-Context Learning method IKE (Zheng et al.,449

2023) can also achieve the best scores for Efficacy450

and Paraphrase, but it does not exhibit ideal Speci-451

ficity in such massive editing context.452

Results on CounterFact Table 2 shows the com-453

parison results on CounterFact. We report the ac-454

curacy terms ES, PS, NS and the magnitude terms455

EM, PM, NM on this dataset, and the Score S456

is the harmonic mean of accuracy terms. It can457

be seen that our proposed COMEM can achieve458

the best overall performance. Similar to the re-459

sults on zsRE, MEND (Mitchell et al., 2022a)460

and ROME (Meng et al., 2022a) losing Efficacy461

and Generalization on massive knowledge editing,462

while MEND achieved best Neighborhood Score.463

Interestingly, fine-tuned model performs well on464

Efficacy and Generalization, but also deteriorated465

severely in Specificity. There are no significant466

difference between parametric massive knowledge467

updating methods (Meng et al., 2022b; Li et al.,468

2023) and IKE (Zheng et al., 2023) in terms of469

Efficacy, including our method. However, there470

are still considerable gaps in Generalization for471

parametric methods when compared with IKE and472

COMEM. For IKE, it achieved high Efficacy and473

Generalization performance, while underwhelming474

in Specificity. 475

From the above main results, intensive knowl- 476

edge editing task beyond the capability of methods 477

that designed for single or few knowledge editing 478

(Mitchell et al., 2022a; Meng et al., 2022a). For 479

models that are capable for massive editing, para- 480

metric methods (Meng et al., 2022b; Li et al., 2023) 481

performed well while still leaving room for further 482

optimization. Pure In-Context Learning method 483

exhibits a drop in Specificity with massive editing 484

compared to fewer edits as it achieves better Neigh- 485

borhood Score on 2,000 edits test (77.0 on original 486

CounterFact in IKE’s (Zheng et al., 2023) paper 487

and 67.6 on filtered CounterFact4 in our test). Be- 488

sides the significant impact brought by unfiltered 489

conflicting samples, this drop is primarily caused 490

by the shrink of the retrieval corpus size as more 491

data samples are allocated to the test set, resulting 492

in smaller retrieval searching space, and In-Context 493

Learning method in this task heavily relies on the 494

quality of demonstrations constructed from the re- 495

trieved neighbors. 496

COMEM leverages both the strong foundational 497

efficacy of parametric updating and the augmenta- 498

tion capabilities of In-Context Learning, achieving 499

state-of-the-art performance in massive knowledge 500

editing. We show some output examples in Ap- 501

pendix I. 502

6.2 Ablation on zsRE 503

We conducted ablation experiments on zsRE to 504

demonstrate the necessity of using Parametric Up- 505

dating in advance and In-Context Learning aug- 506

mentation, as well as the impact of using different 507

numbers of neighbors (i.e., the quantity of demon- 508

4We use the CounterFact dataset which filtered to remove
the samples that violate multiple knowledge editing paradigm
as described in Section 4.3, the filtered dataset is also referred
to as multi-CounterFact.
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Method Score Efficacy Generalization Specificity
S ↑ ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑

GPT-J 20.47 14.66 -7.40 15.06 -7.50 83.97 7.65
FT 63.54 99.91 98.24 88.14 48.65 38.67 -8.22
MEND 25.23 17.61 -12.19 20.10 -11.34 80.83 12.55
ROME 49.92 49.36 -0.03 49.51 -0.09 50.92 0.09
MEMIT 85.71 99.10 87.85 88.33 38.02 73.59 4.64
IKE 84.88 99.98 92.86 96.29 67.37 66.88 25.19
PMET 86.20 99.50 - 92.80 - 71.40 -
COMEM 88.09 99.87 94.88 96.42 71.00 73.14 35.87

Table 2: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on CounterFact dataset. Column-wise
best are in bold, second best are underlined.

strations) on performance.509

It can be seen from Table 3 that when without510

using parametric updating, the model struggles to511

achieve optimal Generalization and exhibits poor512

Specificity. On the other hand, solely relying on513

parametric updating (i.e., without ICL) leads to514

an overall performance decline, particularly with a515

notable deterioration in Generalization.516

Increasing the number of nearest neighbors to517

construct ICL demonstrations can enhance perfor-518

mance, although Efficacy and Generalization reach519

their optimum with fewer demonstrations (k = 8).520

Method S ↑ ES ↑ PS ↑ NS ↑
- w/o PU 46.8 100 99.9 22.7
- w/o ICL 50.7 96.7 89.7 26.6
- k = 8 57.6 100 100 31.2
- k = 16 59.7 100 100 33.1
- k = 24 61.7 100 100 34.9

Table 3: Ablation study on zsRE. k denotes the num-
ber of retrieved nearest neighbors. w/o PU and w/o
ICL denote without Parametric Updating and without
In-Context Learning respectively, and w/o PE was con-
ducted under the setting of k = 24. ES, PS, and NS
reflect the model’s Efficacy, Generalization, and Speci-
ficity.

6.3 Ablation on CounterFact521

The ablation study on CounterFact in Table 4 shows522

that both solely parametric updating and solely In-523

Context Learning Editing can achieve good Speci-524

ficity, but suffer from a significant drop in Gener-525

alization. More precisely, parametric updating can526

provide slightly stronger Efficacy and Generaliza-527

tion than pure In-Context Learning.528

There is a difference between the results on529

CounterFact and zsRE that solely use In-Context530

Learning can achieve best Neighborhood Score on 531

CounterFact, mainly because CounterFact dataset 532

can provide us more neighborhood prompts to 533

strength Specificity. 534

Integrate parametric updating with In-Context 535

Learning significantly enhances Generalization 536

and slightly strengthens Efficacy, but leads to a 537

loss in Specificity. However, increasing the num- 538

ber of demonstrations can help regain Specificity 539

without compromising other aspects. 540

Method S ↑ ES ↑ PS ↑ NS ↑
- w/o PU 85.29 99.60 85.64 74.31
- w/o ICL 85.71 99.10 88.33 73.59
- k = 3 85.72 99.95 96.43 68.39
- k = 4 87.08 99.93 96.43 71.05
- k = 5 88.09 99.87 96.42 73.14

Table 4: Ablation study on CounterFact. Similar to on
the zsRE dataset, k is the number of nearest neighbors
used for ICL demonstration construction, the test of
without introducing parametric updating (w/o PE) was
conducted under the setting of k = 5.

7 Conclusion 541

In this paper, we proposed COMEM, the unified 542

framework of parameter updating and IKE for mas- 543

sive knowledge editing task. Extensive experi- 544

ments on zsRE and CounterFact datasets showed 545

that COMEM leaded to the state-of-the-art overall 546

performances, outperforming most existing knowl- 547

edge editing methods. 548

In future work, we would like to explore how 549

to parameterize the in-context learning demonstra- 550

tions into the language model, to avoid the infer- 551

ence efficiency decrease caused by lengthy input 552

prompts, ultimately striving for more concise and 553

efficient knowledge editing. 554
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Limitations555

Our work optimizes based on In-Context Learning556

after parametric rewriting, yet ICL cannot achieve557

permanent or long-term model knowledge updates.558

This means that currently the optimized part cannot559

avoid lengthy demonstration inputs, and concate-560

nating such demonstrations every time the model561

restarts is inefficient. Therefore, achieving perma-562

nent or long-term optimal knowledge editing per-563

formance requires exploring methods to parameter-564

ize the ICL demonstrations. This would also allow565

the final model to operate without lengthy input566

prompts, thereby enhancing inference efficiency,567

which is one of our future directions. Addition-568

ally, current models primarily operate on data sam-569

ples in tuple form like (subject, relation, object),570

whereas real-world natural language comes in more571

diverse and complex forms. Exploring weather the572

current work can generalize to universal text for-573

mats is also an important future task.574
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A Detailed Process of MEMIT 737

Note the MLP weights in a Transformer (Vaswani 738

et al., 2017) as W that can be operated as a key- 739

value store, where WK ≈ V , K = [k1|k2|...] 740

and V = [v1|v2|...]. Given requested edits 741

mathcalE = {(si, ri, oi)}, language modelMθ, 742

layers to edit L = {L1, L2, ..., Ll}, and pre- 743

cached covariance constant CL of k computed 744

from Wikipedia samples (Meng et al., 2022a). For 745

each (si, ri, oi) ∈ E , a target vector zi will be com- 746

puted: 747

zi ← hLl
i + δi, (10) 748

where δi is optimized by: 749

δi ← argmin
δi

1

P

P∑
j=1

ξi 750

751
ξi = − logPM(h

Ll
i +=δi)

[oi|xj ⊕ (si, ri)] (11) 752

Then for each editing layer L ∈ L, the hidden state 753

is updated by: 754

hLi ← hL−1
i + aLi +mL

i (12) 755

where a and m denote the "attention" and "MLP" 756

contributions computed from previous layers in 757

Transformer (Vaswani et al., 2017) model. On the 758

current layer, for each (si, ri, oi) ∈ E , the MLP 759

key updated as: 760

kLi ← kLi =
1

P

P∑
j=1

k(xj + si) (13) 761
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where xj are random prefixes that aid generaliza-762

tion across contexts. The distributed residual ϕ763

over remaining layers is computed as:764

ϕL
i ←

zi − hLl
i

l − idx(L) + 1
(14)765

where idx(L) denote the number index of L. Thus766

in this layer kL = {kLi } and ϕL = {ϕL
i }.767

To update the MLP weights in the editing lay-768

ers, for each layer L ∈ L, the adding weight is769

computed as:770

∆L ← ϕLkL
T
(CL + kLkL

T
)−1, (15)771

finally in current layer L the MLP weights updated772

as:773

WL ←WL +∆L, (16)774

after the above updating performed on all the edit-775

ing layers, we can obtain the parametric updated776

modelMθ∗ .777

B Demonstration Analysis for Parametric778

Updated Model779

We demonstrate that a parametric updated model780

does not need additional "Efficacy Demonstrations"781

but requires more for Specificity in In-Context782

Learning stage.783

In IKE’s work (Zheng et al., 2023), three kinds of784

demonstrations ("copy", "update", "retain") were785

designed for In-Context Learning knowledge edit-786

ing, where "update" demonstrations contribute to787

Generalization and "retain" demonstrations im-788

prove Specificity. Removing "copy" demonstra-789

tions also lead to performance degradation as there790

was a drop in Specificity. We tested weather the791

"copy" demonstrations still have significance for792

the parametric updated models, as strong Efficacy793

and Specificity have been pre-provided by parame-794

ter rewriting.795

We keep the number of total demonstrations796

fixed and redistribute "copy" to "retain" demonstra-797

tions, since IKE losing some Specificity when ex-798

panding the number of edits from 2,000 to 10,000.799

Table 5 demonstrates that this redistribution im-800

proved the Neighborhood Score without compro-801

mising Efficacy and Generalization, leading to an802

overall promotion in performance.803

C Demonstration Analysis on Query804

Prompt805

Table 6 indicates that pre-appending the new knowl-806

edge demonstration before the query for the para-807

C/U/R S ↑ ES ↑ PS ↑ NS ↑
4/12/16 83.53 99.99 98.64 63.43
2/12/18 84.25 99.99 98.51 64.70
0/12/20 84.80 99.98 98.53 65.70

Table 5: Various demonstration distributions applied for
parametric updated model. The demonstration format
used in this test is adopted from IKE, where C, U, and
R denote the number of "copy", "update", and "retain"
demonstrations.

metric updated model resulted in a significant drop 808

in Specificity, as the model was given prompts 809

that excessively biased its predictions towards new 810

facts. 811

Method S ↑ ES ↑ PS ↑ NS ↑
zsRE
- w/ Pre 56.3 100 100 30.0
- w/o Pre 61.7 100 100 34.9
CounterFact
- w/ Pre 86.28 99.28 97.03 69.48
- w/o Pre 88.09 99.87 96.42 73.14

Table 6: Comparison of pre-appending the new knowl-
edge demonstration before the query prompt or not.

D Implementation Details 812

We use GPT-J (6B) (Wang and Komatsuzaki, 2021) 813

as backbone language model to enabling maximum 814

number of comparable cases with related works. 815

For zsRE (Levy et al., 2017) dataset, we ex- 816

tract 10,000 samples as test set to perform massive 817

knowledge editing, and use sentence-transformer 818

toolkit to retrieve k nearest neighbors from the rest 819

set (172,282 samples) of data. Our best result was 820

tested on k = 24 setting, resulting in 48 demonstra- 821

tions for each test sample, wherein each neighbor 822

provides one paraphrase prompt (m = 1) and one 823

irrelevant prompt (n = 1) used for demonstration 824

construction. In our experiments, larger k values 825

will result in the input sequence length of most sam- 826

ples exceeding the maximum input length of GPT-J 827

(6B). We first run parametric updating on the test 828

set following (Meng et al., 2022b), then using the 829

edited model to perform In-context Learning. 830

We tested IKE (Zheng et al., 2023) on zsRE 831

with the same demonstration setting as in their pa- 832

per: retrieve top 32 nearest neighbors and assign 833

the usage of factual statement, paraphrase prompt, 834

neighborhood prompt for "copy", "update", "re- 835

tain" demonstration with the ratio of 1:3:4. Other 836
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baselines were tested by previous works on this837

dataset, and we adopted the statistic from their pa-838

per (Meng et al., 2022b; Li et al., 2023).839

For CounterFact (Meng et al., 2022a) dataset, the840

original dataset contains 21,919 samples, but some841

of the samples may entail the same prefix (s, r)842

editing to different new facts, which conflicting843

with multiple knowledge editing, therefore need844

to be filtered out. We use the filtered set follow-845

ing (Meng et al., 2022b) that contains 20,877 in846

total. Given that each data sample in this dataset847

has 2 paraphrase prompts (m = 2) and 10 neigh-848

borhood (irrelevant) prompts (n = 10), the In-849

Context Learning prompt consists of k ∗ 12 demon-850

strations. Hence, in our optimal setting, the number851

of demonstrations for each test sample is 60.852

To get the precise results and the Magnitude term853

of baselines, we rerun IKE (Zheng et al., 2023) on854

the filtered dataset for 10,000 samples under the855

same setting in their paper, and retested other base-856

lines based on (Meng et al., 2022b)’s repository.857

But for PMET (Li et al., 2023), we failed to repro-858

duce the experiment due to GPU limitation, thus859

we directly adopted their results in the paper.860

We also observed that pre-appending new knowl-861

edge demonstration before query sequence (used in862

IKE) tends to excessively bias the model towards863

predicting new facts, resulting in a notable dete-864

rioration in Specificity (as shown in Appendix C).865

Hence, for any query prompts, we utilize the origi-866

nal sequence without any additional context. Ap-867

pendix H shows an example of the demonstration.868

All of our experiments were conducted on869

NVIDIA A6000 GPUs.870

E Detailed Definition of Evaluation871

Metrics on CounterFact872

Accuracy Terms:873

Efficacy Score (ES):874

E[PM∗(o∗|(s, r)) > PM∗(o|(s, r))], (17)875

Paraphrase Score (PS):876

E[PM∗(o∗|p(s, r)) > PM∗(o|p(s, r))], (18)877

Neighborhood Score (NS):878

E[PM∗(o∗|u(s, r)) < PM∗(o|u(s, r))]. (19)879

Magnitude Terms:880

Efficacy Magnitude (EM):881

E[PM∗(o∗|(s, r))− PM∗(o|(s, r))], (20)882

Paraphrase Magnitude (PM): 883

E[PM∗(o∗|p(s, r))− PM∗(o|p(s, r))], (21) 884

Neighborhood Magnitude (NM): 885

E[PM∗(o|u(s, r))− PM∗(o∗|u(s, r))]. (22) 886

F Extended Comparison of Performance 887

with In-Context Learning Knowledge 888

Editing 889

To make a more detailed comparison with the pure 890

In-Context Learning method, we tested the perfor- 891

mance of IKE (Zheng et al., 2023) under the same 892

number of demonstrations as in our experiments 893

(k = 3, 4, 5). Due to the change in the number of 894

demonstration, we attempted to maintain the ratio 895

of demonstrations (1:3:4) used for "copy", "update" 896

and "retain" in IKE as much as possible to allocate 897

the additional demonstrations. 898

Table 7 presents the results. COMEM is slight 899

inferior in Efficacy Score and Paraphrase Score 900

but exhibits a noticeable advantage in Neighbor- 901

hood Score. The higher aggregated score S indi- 902

cates that the proposed COMEM has better overall 903

performance. 904

Method dn S ↑ ES ↑ PS ↑ NS ↑
IKE 36 85.32 100 96.30 67.68
COMEM 36 85.72 99.95 96.43 70.58
IKE 48 86.22 100 97.22 68.93
COMEM 48 87.08 99.93 96.43 71.05
IKE 60 87.14 99.98 97.32 70.68
COMEM 60 88.09 99.87 96.42 73.14

Table 7: Comparison of COMEM with IKE under same
demonstration quantity. dn denote the number of total
demonstration, where 36, 48, 60 correspond to our ex-
periments with k = 3, 4, 5.

G Data Structure 905

Structure of CounterFact dataset: 906

{ 907

"case_id": 0, 908

"requested_rewrite": { 909

"prompt": "The mother tongue of is", 910

"target_new": “str": "English",, 911

"target_true": "str": "French",, 912

"subject": "Danielle Darrieux" 913

}, 914

"paraphrase_prompts": [ 915

"Danielle Darrieux, a native", 916

12



"Danielle Darrieux spoke the language"917

],918

"neighborhood_prompts": [919

"The native language of Montesquieu is",920

"The native language of Raymond Barre is",921

"Jacques is a native speaker of",922

. . . (10 prompts in total)923

],924

"attribute_prompts": [925

"The mother tongue of Douglas Adams is",926

. . . (10 prompts in total)927

],928

"generation_prompts": [929

"Danielle Darrieux’s mother tongue is",930

. . . (10 prompts in total)931

]932

}933

Structure of processed zsRE dataset:934

{935

"case_id": 0,936

"requested_rewrite": {937

"prompt": "What university did {} attend?",938

"subject": "Watts Humphrey",939

"target_new":940

"str": "Illinois Institute of Technology"941

"target_true":942

"str": "<|endoftext|>"943

},944

"paraphrase_prompts": [945

"What university did Watts Humphrey take946

part in? "947

],948

"neighborhood_prompts": [949

"prompt":950

"nq question: who played desmond doss951

father?",952

"target": " Hugo"953

]954

}955

956

H Example of ICL Demonstration957

Table 8 shows examples of IKE’s ICL demonstra-958

tions, and Table 9 displays our demonstrations.959

I Output Examples of Model Outputs960

Table 10 presents the output examples of GPT-J961

and COMEM, where GPT-J stores the original962

unedited knowledge and COMEM is post-edited.963

Blue font represent the new knowledge of editing,964

yellow font indicates the original knowledge, red965

Type Demonstration

copy
New Fact: Sky Football was created in Canada
Prompt: Sky Football News was created in Canada

update
New Fact: Sky Football was created in Canada
Prompt: Sky Football News originated in Canada

retain
New Fact: Sky Football was created in Canada
Prompt: iOS 6 was created by Apple

append Fox News was created in Canada

query
New Fact: Fox News was created in Canada
Prompt: Fox News was created in?

Table 8: Single example of IKE’s (Zheng et al., 2023)
demonstration.

Type Demonstration

paraphrase
New Fact: Sky Football was created in Canada
Prompt: Sky Football News originated in Canada

neighborhood
New Fact: Sky Football was created in Canada
Prompt: iOS 6 was created by Apple

append Prompt: Fox News was created in Canada.
query Prompt: Fox News was created in?

Table 9: Single example of our demonstration.

font denote the incorrectly predicted or ambigu- 966

ous answer, and green font means the successful 967

retain of knowledge that unrelated to the editing 968

target. It can be observed that the unedited GPT- 969

J is generally capable of outputting the original 970

knowledge but occasionally fails to generate cor- 971

rect answers. COMEM is successful in generating 972

the edited new knowledge without affecting other 973

unedited knowledge and it tends to directly provide 974

concise answers. 975
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Model Type Content or Output

Prompt
New Knowledge The mother tongue of Danielle Darrieux is English.
Old Knowledge The mother tongue of Danielle Darrieux is French.

GPT-J
(before
editing)

Fact The mother tongue of Danielle Darrieux is ___. The correct answer is: French.

Paraphrase
Danielle Darrieux, a native French.
Danielle Darrieux spoke the language ___. A. French B. English C. Spanish D. Italian

Neighborhood
(unrelated)

The native language of Montesquieu is French. Prompt: The native language
Maurice Genevoix, speaker of French.

Generation
Danielle Darrieux’s mother tongue is ___. 1. 2. 3. 4.
Where Danielle Darrieux is from, people speak the language of ___. The answer is: French.

COMEM
(after
editing)

Fact The mother tongue of Danielle Darrieux is English.

Paraphrase
Danielle Darrieux, a native English.
Danielle Darrieux spoke the language English.

Neighborhood
(unrelated)

The native language of Montesquieu is French.
Maurice Genevoix, speaker of French.

Generation
Danielle Darrieux’s mother tongue is English.
Where Danielle Darrieux is from, people speak the language of English.

Table 10: Outputs of models on CounterFact dataset.
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