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Abstract

Implementing effective control mechanisms to
ensure the proper functioning and security of
deployed NLP models, from translation to chat-
bots, is essential. A key ingredient to ensure
safe system behaviour is Out-Of-Distribution
(OOD) detection, which aims to detect whether
an input sample is statistically far from the train-
ing distribution. Although OOD detection is
a widely covered topic in classification tasks,
most methods rely on hidden features output
by the encoder. In this work, we focus on lever-
aging soft-probabilities in a black-box frame-
work, i.e. we can access the soft-predictions
but not the internal states of the model. Our
contributions include: (i) RAINPROOF a Rela-
tive informAItioN Projection OOD detection
framework; and (ii) a more operational evalu-
ation setting for OOD detection. Surprisingly,
we find that OOD detection is not necessarily
aligned with task-specific measures. The OOD
detector may filter out samples well processed
by the model and keep samples that are not,
leading to weaker performance. Our results
show that RAINPROOF provides OOD detection
methods more aligned with task-specific perfor-
mance metrics than traditional OOD detectors.

1 Introduction

Significant progress has been made in Natural Lan-
guage Generation (NLG) in recent years with the
development of powerful generic (e.g., GPT (Rad-
ford et al., 2018; Brown et al., 2020; Bahrini et al.,
2023), LLAMA (Touvron et al., 2023) and its vari-
ants) and task-specific (e.g., Grover (Zellers et al.,
2019), Pegasus (Zhang et al., 2020) and Dialog-
GPT (Zhang et al., 2019b)) text generators. They
power machine translation (MT) systems or chat-
bots that are exposed to the public, and their reli-
ability is a prerequisite for adoption. Text genera-
tors are trained in the context of a so-called closed
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world (Fei and Liu, 2016), where training and test
data are assumed to be drawn i.i.d. from a single
distribution, known as the in-distribution. However,
when deployed, these models operate in an open
world (Parmar et al., 2021; Zhou, 2022) where the
i.i.d. assumption is often violated. Changes in data
distribution are detrimental and induce a drop in
performance. It is necessary to develop tools to pro-
tect models from harmful distribution shifts as it is
a clearly unresolved practical problem (Arora et al.,
2021). For example, a trained translation model
is not expected to be reliable when presented with
another language (e.g. a Spanish model exposed to
Catalan, or a Dutch model exposed to Afrikaans)
or unexpected technical language (e.g., a colloquial
translation model exposed to rare technical terms
from the medical field). They also tend to be re-
leased behind API(OpenAI, 2023) ruling out many
usual features-based OOD detection methods.

Most work on Out-Of-Distribution (OOD) detec-
tion focus on classification, leaving OOD detection
in (conditional) text generation settings mainly un-
explored, even though it is among the most exposed
applications. Existing solutions fall into two cate-
gories. The first one called training-aware methods
(Zhu et al., 2022; Vernekar et al., 2019a,b), mod-
ifies the classifier training by exposing the neural
network to OOD samples during training. The sec-
ond one, called plug-in methods aims to distinguish
regular samples in the in-distribution (IN) from
OOD samples based on the model’s behaviour on
a new input. Plug-in methods include Maximum
Softmax Probabilities (MSP) (Hendrycks and Gim-
pel, 2016) or Energy (Liu et al., 2020) or feature-
based anomaly detectors that compute a per-class
anomaly score (Ming et al., 2022; Ryu et al., 2017;
Huang et al., 2020; Ren et al., 2021a). Although
plug-in methods from classification settings seem
attractive, their adaptation to text generation tasks
is more involved. While text generation can be
seen as a sequence of classification problems, i.e.,



chosing the next token at each step, the number of
possible tokens is two orders of magnitude higher
than usual classification setups.

In this work, we aim to develop new tools to
build more reliable text generators which can be
used in practical systems. To do so, we work under
4 constraints: (i) We do not assume we can access
OOD samples; (ii) We suppose we are in a black-
box scenario: we do not assume we have access
to the internal states of the model but only to the
soft probability distributions it outputs; (iii) The
detectors should be easy enough to use on top of
any existing model to ensure adaptability; (iv) Not
only should OOD detectors be able to filter OOD
samples, but they also are expected to improve the
average performance on the end-task the model has
to perform.

Our contributions. Our main contributions can
be summarized as follows:

1. A more operational benchmark for text gen-
eration OOD detection. We present LOFTER
the Language Out oF disTribution pErformance
benchmaRk. Existing works on OOD detection for
language modelling (Arora et al., 2021) focus on
(i) the English language only, (ii) the GLUE bench-
mark, and (iii) measure performance solely in terms
of OOD detection. LOFTER introduces more real-
istic data shifts in the generative setting that goes
beyond English: language shifts induced by closely
related language pairs (e.g., Spanish and Catalan
or Dutch and Afrikaans (Xiao et al., 2020)1) and
domain change (e.g., medical vs news data or vs di-
alogs). In addition, LOFTER comes with an updated
evaluation setting: detectors’ performance is jointly
evaluated w.r.t the overall system’s performance on
the end task.

2. A novel detector inspired by information pro-
jection. We present RAINPROOF: a Relative in-
formAItioN Projection Out OF distribution detec-
tor. RAINPROOF is fully unsupervised. It is flexible
and can be applied both when no reference samples
(IN) are available (corresponding to scenario s0)
and when they are (corresponding to scenario s1).
RAINPROOF tackles s0 by computing the models’
predictions negentropy (Brillouin, 1953) and uses
it as a measure of normality. For s1, it relies upon
its natural extension: the Information Projection

1Afrikaans is a daughter language of Dutch. The Dutch
sentence: "Appelen zijn gewoonlijk groen, geel of rood" cor-
responds to "Appels is gewoonlik groen, geel of rooi."

(Csiszar and Matus, 2003), which relies on a refer-
ence set to get a data-driven notion of normality.

3. New insights on the operational value of OOD
detectors. Our experiments on LOFTER show that
OOD detectors may filter out samples that are well
processed (i.e. well translated) by the model and
keep samples that are not, leading to weaker perfor-
mance. Our results show that RAINPROOF improves
performance on the end task while removing most
of the OOD samples.

4. Code and reproductibility. We release a plug-
and-play library built upon the Transformers library
that implements our detectors and baselines 2 3.

2 Problem Statement & Related Works

2.1 Notations & conditional text generation

Let us denote Ω, a vocabulary of size |Ω| and
Ω∗ its Kleene closure4. We denote P(Ω) ={
p ∈ [0, 1]|Ω| :

∑|Ω|
i=1 pi = 1

}
the set of probabil-

ity distributions defined over Ω. Let Dtrain be the
training set, composed of N ⩾ 1 i.i.d. samples
{(xi, yi)}Ni=1 ∈ (X × Y)N with probability
law pXY . We denote pX and pY the associated
marginal laws of pXY . Each xi is a sequence of to-
kens, and xij ∈ Ω the jth token of the ith sequence.
xi
⩽t = {xi1, · · · , xit} ∈ Ω∗ denotes the prefix of

length t. The same notations hold for y.
Conditional textual generation. In conditional
textual generation, the goal is to model a probabil-
ity distribution p⋆(x,y) over variable-length text
sequences (x,y) by finding pθ ≈ p⋆(x,y) for
any (x,y). In this work, we assume to have ac-
cess to a pretrained conditional language model
fθ : X × Y → R|Ω|, where the output is the (un-
normalized) logits scores. fθ parameterized pθ, i.e.,
for any (x,y), pθ(x,y) = softmax(fθ(x,y)/T )
where T ∈ R denotes the temperature. Given an
input sequence x, the pretrained language fθ can
recursively generate an output sequence ŷ by sam-
pling yt+1 ∼ pT

θ (·|x, ŷ⩽t), for t ∈ [1, |y|]. Note
that ŷ0 is the start of sentence (< SOS > token).
We denote by S(x), the set of normalized logits
scores generated by the model when the initial in-
put is x i.e., S(x) = {softmax(fθ(x, ŷ⩽t))}|ŷ|t=1.

2https://github.com/icannos/ToddBenchmark
3This work was performed using HPC resources from

GENCI–IDRIS (Grant 2022-AD011013945).
4The Kleene closure corresponds to sequences of arbitrary

size written with words in Ω. Formally: Ω∗ =
∞⋃
i=0

Ωi.

https://github.com/icannos/ToddBenchmark


Note that elements of S(x) are discrete probability
distributions over Ω.

2.2 Problem statement
In OOD detection, the goal is to find an anomaly
score a : X → R+ that quantifies how far a sample
is from the IN distribution. x is classified as IN
or OUT according to the score a(x). We then fix
a threshold γ and classifies the test sample IN if
a(x) ⩽ γ or OOD if a(x) > γ. Formally, let
us denote g(·, γ) the decision function, we take:

g(x, γ) =

{
1 if a (x) > γ
0 if a (x) ⩽ γ.

Remark 1. In our setting, OOD examples are not
available. Tuning γ is a complex task, and it is usu-
ally calibrated using OOD samples. In our work,
we decided not to rely on OOD samples but on the
available training set to fix γ in a realistic setting.
Indeed, even well-tailored datasets might contain
significant shares of outliers (Meister et al., 2023).
Therefore, we fix γ so that at least 80% of the IN
data pass the filtering procedure. See Sec. G.3 for
more details.

2.3 Review of existing OOD detectors
OOD detection for classification. Most works on
OOD detection have focused on detectors for clas-
sifiers and rely either on internal representations
(features-based detectors) or on the final soft prob-
abilities produced by the classifier (softmax based
detectors).
Features-based detectors. They leverage latent
representations to derive anomaly scores. The most
well-known is the Mahanalobis distance (Lee et al.,
2018a; Ren et al., 2021b), but there are other meth-
ods employing Grams matrices (Sastry and Oore,
2020), Fisher Rao distance (Gomes et al., 2022) or
other statistical tests (Haroush et al., 2021). These
methods require access to the latent representations
of the models, which does not fit the black-box sce-
nario. In addition, it is well known in classification
that performing per-class OOD detection is key to
get good performance (Lee et al., 2018b). This
per-class approach is a priori impossible in text
generation since it would have to be done per token
or by some other unknown type of classes. We ar-
gue that it is necessary to find non-class-dependent
solutions, especially when it comes to the Maha-
lanobis distance, which relies upon the hypothesis
that the data are unimodal; we study the validity
of this hypothesis and show that it is not true in a
generative setting in Ap. A.

Softmax-based detectors. These detectors rely on
the soft probabilities produced by the model. The
MSP (Hendrycks and Gimpel, 2017; Hein et al.,
2019; Liang et al., 2018; Hsu et al., 2020) uses
the probability of the mode while others take into
account the entire logit distribution (e.g., Energy-
based scores (Liu et al., 2020)). Due to the large
vocabulary size, it is unclear how these methods
generalize to sequence generation tasks.
OOD detection for text generation. Little work
has been done on OOD detection for text genera-
tion. Therefore, we will follow (Arora et al., 2021;
Podolskiy et al., 2021) and rely on their baselines.
We also generalize common OOD scores such as
MSP or Energy by computing the average score
along the sequence at each step of the text gener-
ation. We refer the reader to Sec. B.7 for more
details.
Quality estimation as OOD detection metric.
Quality Estimation Metrics are not designed to de-
tect OOD samples but to assess the overall quality
of generated samples. However, they are interest-
ing baselines to consider, as OOD samples should
lead to low-quality outputs. We will use COMET
QE (Stewart et al., 2020) as a baseline to filter out
low-quality results induced by OOD samples.
Remark 2. Note that features-based detectors as-
sume white-box access to internal representations,
while softmax-based detectors rely solely on the
final output. Our work operates in a black-box
framework but also includes a comparison to the
Mahalanobis distance for completeness.

3 RAINPROOF OOD detector

3.1 Background
An information measure I : P(Ω)× P(Ω) → R
quantifies the similarity between any pair of dis-
crete distributions p,q ∈ P(Ω). Since Ω is a
finite set, we will adopt the following notations
p = [p1, · · · ,p|Ω|] and q = [q1, · · · ,q|Ω|]. While
there exist information distances, it is, in general,
difficult to build metrics that satisfy all the proper-
ties of a distance, thus we often rely on divergences
that drop the symmetry property and the triangular
inequality.

In what follows, we motivate the information
measures we will use in this work.

First, we rely on the Rényi divergences (Csiszár,
1967). Rényi divergences belong to the f -
divergences family and are parametrized by a
parameter α ∈ R+ − {1}. They are flexible



and include well-known divergences such as the
Kullback-Leiber divergence (KL) (Kullback, 1959)
(when α → 1) or the Hellinger distance (Hellinger,
1909) (when α = 0.5). The Rényi divergence be-
tween p and q is defined as follows:

Dα(p∥q) =
1

α− 1
log

 |Ω|∑
i=1

pα
i

qα−1
i

 . (1)

The Rényi divergence is popular as α allows
weighting the relative influence of the distributions’
tail.

Second, we investigate the Fisher-Rao distance
(FR). FR is a distance on the Riemannian space
formed by the parametric distributions, using the
Fisher information matrix as its metric. It com-
putes the geodesic distance between two discrete
distributions (Rao, 1992) and is defined as follows:

FR(p∥q) = 2

π
arccos

|Ω|∑
i=1

√
pi × qi. (2)

It has recently found many applications (Picot et al.,
2022; Colombo et al., 2022b).

3.2 RAINPROOF for the no-reference scenario (s0)

At inference time, the no-reference scenario (s0)
does not assume the existence of a reference set of
IN samples to decide whether a new input sample is
OOD. Which include, for example, Softmax-based
detectors such as MSP, Energy or the sequence
log-likelihood5

Under these assumptions, our OOD detector
RAINPROOF comprises three steps. For a given in-
put x with generated sentence ŷ:

1. We first use fθ to extract the step-by-step se-
quence of soft distributions S(x).

2. We then compute an anomaly score (aI(x)) by
averaging a step-by-step score provided by I . This
step-by-step score is obtained by measuring the
similarity between a reference distribution u ∈
P(Ω) and one element of S(x). Formally,

aI(x) =
1

|S(x)|
∑

p∈S(x)

I (p∥u) , (3)

where |S(x)| = |ŷ|.
5The detector based on the log-likelihood of the sequence

is defined as aL(x) = − 1
|ŷ|

∑|ŷ|−1
t=0 logpθ(ŷt+1|x, ŷ⩽t).

3. The last step consists of thresholding the previ-
ous anomaly score aI(x). If aI(x) is over a given
threshold γ, we classify x as an OOD example.

Interpretation of Eq. 3. aI(x) measures the
average dissimilarity of the probability distribution
of the next token to normality (as defined by u).
aI(x) also corresponds to the token average un-
certainty of the model fθ to generate ŷ when the
input is x. The intuition behind Eq. 3 is that the
distributions produced by fθ, when exposed to an
OOD sample, should be far from normality and
thus have a high score.

Choice of u and I . The uncertainty definition of
Eq. 3 depends on the choice of both the reference
distribution u and the information measure I. A
natural choice for u is the uniform distribution,
i.e., u = [ 1

|Ω| , · · · ,
1
|Ω| ] which we will use in this

work. It is worth pointing out that I(·||u) yields
the negentropy of a distribution (Brillouin, 1953).
Other possible choices for u include one hot or
tf-idf distribution (Colombo et al., 2022b). For I,
we rely on the Rényi divergence to obtain aDα and
the Fisher-Rao distance to obtain aFR.

3.3 RAINPROOF for the reference scenario (s1)

In the reference scenario (s1), we assume that one
has access to a reference set of IN samples R =

{xi : (xi,yi) ∈ Dtrain}|R|
i=1 where |R| is the size

of the reference set. For example, the Mahalanobis
distance works under this assumption. One of the
weaknesses of Eq. 3 is that it imposes an ad-hoc
choice when using u (the uniform distribution).
In s1, we can leverage R, to obtain a data-driven
notion normality.

Under s1, our OOD detector RAINPROOF follows
these four steps:

1. (Offline) For each xi ∈ R, we generate ŷi

and the associated sequence of probability distribu-
tions (S(xi)). Overall we thus generate

∑
x∈R |ŷi|

probability distributions which could explode for
long sequences6. To overcome this limitation, we
rely on the bag of distributions of each sequence
(Colombo et al., 2022b). We form the set of these

6It is also worth pointing out that projecting at each
timestep would require a per-step reference set in addition
to the computational time required to compute the projections,
therefore we decided to aggregate the probability distributions
over the sequence.



bags of distributions:

S̄∗ =
⋃

xi∈R

 1

|S(xi)|
∑

p∈S(xi)

p

 . (4)

2. (Online) For a given input x with generated sen-
tence ŷ, we compute its bag of distributions repre-
sentation:

p̄(x) =
1

|S(x)|
∑

p∈S(x)

p. (5)

3. (Online) For x, we then compute an anomaly
score a⋆I(x) by projecting p̄(x) on the set S̄∗. For-
mally, a⋆I(x) is defined as:

a⋆I(x) = min
p∈S̄⋆

I(p∥p̄(x)). (6)

We denote p⋆(x) = argmin
p∈S̄∗

I(p∥p̄(x)).

4. The last step consists of thresholding the previ-
ous anomaly score aI(x). If aI(x) is over a given
threshold γ, we classify x as an OOD example.

Interpretation of Eq. 6. aI(x) relies on a Gen-
eralized Information Projection (Kullback, 1954;
Csiszár, 1975, 1984)7 which measures the similar-
ity between p̄(x) and the set S̄∗. Note that the
closest element of S̄∗ in the sens of I can give
insights on the decision of the detector. It allows
interpreting the decision of the detector as we will
see in Tab. 6.

Choice of I. Similarly to Sec. 3.2, we will rely
on the Rényi divergence to define a⋆Rα

(x) and the
Fisher-Rao distance a⋆FR(x).

4 Results on LOFTER

4.1 LOFTER: Language Out oF disTribution
pErformance benchmaRk

LOFTER for NMT. We consider a realistic setting
involving both topic and language shifts. Language
shifts correspond to exposing a model trained for a
given language to another which is either linguisti-
cally close (e.g., Afrikaans for a system trained on
Dutch) or missing in the training data (as it is the
case for german in BLOOM (Scao et al., 2022)).
It is an interesting setting because the differences
between languages might not be obvious but still

7The minimization problem of Eq. 6 finds numerous con-
nections in the theory of large deviation (Sanov, 1958) or in
statistical physics (Jaynes, 1957).

cause a significant drop in performance. For lin-
guistically close languages, we selected closely
related language pairs such as Catalan-Spanish,
Portuguese-Spanish and Afrikaans-Dutch) coming
from the Tatoeba dataset (Tiedemann, 2012) (see
Tab. 8). Domain shifts can involve technical or rare
terms or specific sentence constructions, which can
affect the model’s performance. We simulated such
shifts from Tatoeba MT using news, law (EuroParl
dataset), and medical texts (EMEA).
LOFTER for dialogs. For conversational agents,

we focused on a scenario where a goal-oriented
agent, designed to handle a specific type of con-
versation (e.g., customer conversations, daily dia-
logue), is exposed to an unexpected conversation.
In this case, it is crucial to interrupt the agent so
it does not damage the user’s trust with misplaced
responses. We rely on the Multi WOZ dataset (Zang
et al., 2020), a human-to-human dataset collected in
the Wizard-of-Oz set-up (Kelley, 1984), for IN dis-
tribution data and its associated fine-tuned model.
We simulated shifts using dialogue datasets from
various sources, which are part of the SILICONE
benchmark (Chapuis et al., 2020). Specifically, we
use a goal-oriented dataset (i.e., Switchboard Di-
alog Act Corpus (SwDA) (Stolcke et al., 2000)), a
multi-party meetings dataset (i.e., MRDA (Shriberg
et al., 2004) and Multimodal EmotionLines Dataset
MELD (Poria et al., 2018)), daily communication di-
alogs (i.e., DailyDialog DyDA (Li et al., 2017)), and
scripted scenarii (i.e., IEMOCAP (Tripathi et al.,
2018)). We refer the curious reader to Sec. B.5 for
more details on each dataset.
Model Choices. We evaluated our methods on
open-source and freely available language bilin-
gual models (the Helsinki suite (Tiedemann and
Thottingal, 2020)), on a BLOOM-based instruc-
tions model BLOOMZ (Muennighoff et al., 2022)
(for which German is OOD). For dialogue tasks,
we relied on the Dialog GPT (Zhang et al., 2019b)
model finetuned on Multi WOZ, which acts as IN
distribution. We consider the Helsinki models as
they are used in production for lightweight appli-
cations. Additionally, they are specialized for a
specific language pair and released with their asso-
ciated training set, making them ideal candidates to
study the impact of OOD in a controlled setting.8

Metrics. To evaluate the performance on the OOD
task, we report the Area Under the Receiver Oper-

8Please note that for the likelihood detector, the transla-
tion model is additionally fine-tuned on the development set,
ensuring a strong baseline.



Table 1: Summary of the OOD detection perfor-
mance of our detectors (Ours) compared to commonly
used strong baselines (Bas.). We report the best detector
for each scenario in bold and underline the best overall.
The ↓ indicates that for this score, the lower, the better;
otherwise, the higher, the better.9

Language shifts Domain shifts Dialog shifts
AUROC FPR ↓ AUROC FPR ↓ AUROC FPR ↓

s0

Ours
aDα 0.95 0.25 0.85 0.62 0.79 0.64
aFR 0.93 0.28 0.81 0.67 0.76 0.68

Bas.
aE 0.89 0.44 0.79 0.78 0.65 0.76
aMSP 0.87 0.44 0.79 0.77 0.66 0.72
aL 0.78 0.79 0.73 0.88 0.65 0.95
aCQE 0.71 0.57 0.73 0.88 X X

s1
Ours

aD∗
α

0.88 0.34 0.86 0.50 0.86 0.52
aFR∗ 0.88 0.35 0.81 0.69 0.76 0.75

Bas. aM 0.92 0.26 0.78 0.59 0.84 0.55

Table 2: Correlation between OOD scores and trans-
lation metrics BLEU, BERT-S and COMET.

BERT-S BLEU COMET
ALL IN OUT ALL IN OUT ALL IN OUT

Score

s0

Ours
aDα -0.48 -0.33 -0.53 -0.35 -0.27 -0.38 -0.33 -0.23 -0.22
aFR -0.45 -0.32 -0.45 -0.35 -0.28 -0.37 -0.36 -0.28 -0.26

Bas.

aE -0.08 0.02 -0.44 0.04 0.06 -0.13 0.21 0.25 0.13
aL 0.23 0.25 -0.23 0.30 0.28 0.06 0.44 0.44 0.23
aMSP -0.13 -0.01 -0.43 0.01 0.04 -0.14 0.15 0.21 0.12
aCQE 0.09 0.11 0.08 0.11 0.10 0.21 0.45 0.45 0.74

s1
Ours

aD∗
α

-0.33 -0.20 -0.65 -0.21 -0.16 -0.35 -0.11 -0.03 -0.11
aFR∗ -0.31 -0.20 -0.64 -0.20 -0.15 -0.37 -0.11 -0.04 -0.15

Bas. aM -0.21 -0.12 -0.29 -0.09 -0.05 -0.05 -0.06 -0.01 0.01

ating Characteristic AUROC and the False positive
rate FPR ↓. These methods have been widely em-
ployed in previous research on out-of-distribution
(OOD) detection. An exhaustive description of the
metrics can be found in Sec. 4.1.

4.2 Experiments in MT

Results on language shifts (Tab. 1). We find that
our no-reference methods (aDα and aFR) achieve
better performance than common no-reference
baselines but also outperform the reference-based
baseline. In particular, aDα , by achieving an AUROC
of 0.95 and FPR ↓ of 0.25, outperforms all con-
sidered methods. Moreover, while no-reference
baselines only capture up to 45% of the OOD sam-
ples on average, ours detect up to 55%. In ad-
dition, COMET QE, a quality estimation tool, per-
forms poorly in pure OOD detection, suggesting
that while OOD detection and quality estimation
can be related, they are still different problems.
Results on domain shifts (Tab. 1). We evaluate
the OOD detection performance of RAINPROOF on
domain shifts in Spanish (SPA) and German (DEU)
with technical, medical data and parliamentary data.
For s0, we observe that aDα and aFR outperform
the strongest baselines (i.e., Energy, MSP and se-
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Figure 1: Ablation study on RAINPROOF for α and refer-
ence set size (|R|) for dialogue shift detection. Smaller
α emphasizes the tail of the distribution, while α = 0
counts common non-zero elements.

quence likelihood) by several AUROC points. Inter-
estingly enough, even our no-reference detectors
outperform the reference-based baseline (i.e., aM ,
a deeper study of this phenomenon is presented
in Ap. A). While aDα achieves similar AUROC per-
formance to its information projection counterpart
aD∗

α
, the latter achieve better FPR ↓. Once again,

the COMET QE metric does not yield competitive
performance for OOD detection.

4.3 Experiments in dialogue generation

Results on Dialogue shifts (Tab. 1). Dialogue
shifts are understandably more difficult to detect,
as shown in our experiments, as they are smaller
than language shifts. Our no-reference detectors
do not outperform the Mahalanobis baseline and
achieve only 0.79 in AUROC. The best baseline is
the Mahalanobis distance and achieves better per-
formance on dialogue tasks than on NMT domain
shifts, reaching an AUROC of 0.84. However, our
reference-based detector based on the Rényi infor-
mation projection secures better AUROC (0.86) and
better FPR ↓ (0.52). Even if our detectors achieve
decent results on this task, it is clear that dialogue
shifts will require further work and investigation
(see Ap. F), especially in the wake of LLMs.

4.4 Ablations Study

Fig. 1 shows that RAINPROOF offers a crucial flex-
ibility by utilizing the Rényi divergence with ad-
justable parameter alpha. RAINPROOF’s detectors
show improvement when considering the tail of
the distributions. Notably, lower values of α (close
to 0) yield better results with the Rényi Informa-
tion projection aD∗

α
. This finding suggests that

the tail of the distributions used in text generation
contains contextual information and insights about
the processed texts. These results are consistent



Table 3: Impact of OOD detectors on BLEU for IN data
only, OOD data and the combination of both ALL. We
report average BLEU (Abs.), BLEU gains (G.s) compared
to fθ only, and removed subset share (R.Sh.). γ set to
remove 20% of IN dataset.

IN OOD ALL
Abs. G.s R.Sh Abs. G.s R.Sh Abs. G.s R.Sh

53.7 +0.0 0.0% 30.8 +0.0 0.0% 48.1 +0.0 0.0%

s0

Ours
aFR 57.1 +3.4 17.6% 34.7 +3.9 46.1% 54.9 +6.7 24.9%
aDα 56.1 +2.4 19.9% 39.9 +9.1 62.1% 54.8 +6.7 31.8%

Bas.

aE 56.7 +3.0 20.0% 31.9 +1.1 32.0% 52.1 +3.9 22.7%
aL 58.1 +4.4 19.0% 35.0 +4.2 44.4% 55.3 +7.2 25.5%
aMSP 52.2 -1.5 18.4% 26.7 -4.1 38.5% 46.5 -1.7 25.8%
aCQE 54.7 +1.0 20.0% 32.6 +1.8 20.9% 49.2 +1.1 20.5%

s1
Ours

aD∗
α

53.9 +0.2 19.2% 31.1 +0.3 60.1% 51.0 +2.8 32.0%
aFR∗ 53.9 +0.2 19.0% 31.1 +0.3 59.9% 51.0 +2.8 31.8%

Bas. aM 53.7 -0.0 20.0% 31.9 +1.1 61.4% 50.4 +2.2 33.5%

Table 4: Computation time (in sec). Off. (Onl.) stands
for offline (resp. online) time.

Score Off. Onl.

aDα 2.10−3 s
aMSP 1.10−4 s
aM 40s 3.10−3 s
aD∗

α
9.10−2 s

with recent research in automatic text generation
evaluation (Colombo et al., 2022b). Interestingly,
increasing the size of the reference set beyond 1.2k
has minimal influence. We provide an additional
study of the impact of the temperature and parame-
ter α for the different OOD scores in Ap. E.

5 A More Practical Evaluation

Following previous work, we measure the perfor-
mance of the detectors on the OOD detection task
based on AUROC and FPR ↓. However, this evalua-
tion framework neglects the impact of the detector
on the overall system’s performance and the down-
stream task it performs. We identify three main
evaluation criteria that are important in practice: (i)
execution time, (ii) overall system performance in
terms of the quality of the generated answers, and
(iii) interpretability of the decision. Our study is
conducted on NMT because due to the existence of
relevant and widely adopted metrics for assessing
the quality of a generated sentence (i.e., BLEU (Pap-
ineni et al., 2002) and BERT-S (Zhang et al., 2019a)
and COMET (Stewart et al., 2020)).

5.1 Execution time

Runtime and memory costs. We report in Tab. 4
the runtime of all methods. Detectors for s0 are
faster than the ones for s1. Unlike detectors using
references, no-reference detectors do not require
additional memory. They can be set up easily in a
plug&play manner at virtually no costs.

5.2 Effects of Filtering on Translation Quality

In this experiment, we investigate the impact of
OOD filtering from the perspectives of quality esti-
mation and selective generation.
Global performance. In Tab. 3 and Tab. 5, we
report the global performance of the system (fθ)
with and without OOD detectors on IN samples,
OOD samples, and all samples (ALL). In most
cases, adding detectors increases the average qual-
ity of the returned answers on all three subsets but
with varying efficacy. aMSP is a notable excep-
tion, and we provide a specific correlation analysis
later. While the reference-based detectors tend to
remove more OOD samples, the no-reference de-
tectors demonstrate better performance regarding
the remaining sentences’ average BLEU. Thus, OOD
detector evaluation should consider the final task
performance. Overall, it is worth noting that di-
rectly adapting classical OOD detection methods
(e.g., MSP or Energy) to the sequence generation
problem leads to poor results in terms of perfor-
mance gains (i.e., as measured by BLEU or BERT-S).
aDα removes up to 62% of OOD samples (whereas
the likelihood only removes 45%) and maintains
or improves the average performance of the system
on the end task. In other words, aDα provides the
best combination of OOD detection performance
and system performance improvements.
Threshold free analysis. In Tab. 2, we report the
correlations between OOD scores and quality met-
rics on each data subset (IN and OUT distribution,
and ALL combined). For the OOD detector to im-
prove or maintain performance on the end task, its
score must correlate with performance metrics sim-
ilarly for each subset. We notice that it is not the
case for the likelihood or aMSP. The highest likeli-
hood on IN data corresponds to higher quality an-
swers. Still, the opposite is true for OOD samples,
meaning using the likelihood to remove OOD sam-
ples tends to remove OOD samples that are well
handled by the model. By contrast, RAINPROOF
scores correlate well and in the same way on both
IN and OUT, allowing them to remove OOD sam-
ples while improving performance.

5.3 Towards an interpretable decision

An important dimension of fostering adoption is
the ability to verify the decision taken by the au-
tomatic system. RAINPROOF offers a step in this
direction when used with references: for each in-
put sample, RAINPROOF finds the closest sample



Table 5: Detailed impacts on NMT performance results per tasks (Domain- or Language-shifts) of the different
detectors. We present results on the different parts of the data: IN data, OOD data and the combination of both, ALL.
For each, we report the absolute average BLEU (Abs.), the average gains in BLEU (G.s.) compared to a setting without
OOD filtering (fθ only) and the share of the subset removed by the detector (R.Sh.). We provide more detailed
results on each dataset in Ap. G. In addition, we performed this study using different thresholds see Sec. G.3

Domain shifts Language shifts
IN OOD ALL IN OOD ALL

Abs. G. Rh. Abs. G. Rh. Abs. G. Rh. Abs. G. Rh. Abs. G. Rh. Abs. G. Rh.

46.9 +0.0 0.0% 43.3 +0.0 0.0% 46.2 +0.0 0.0% 60.5 +0.0 0.0% 18.3 +0.0 0.0% 50.1 +0.0 0.0%

s0

Ours
aFR 49.9 +3.0 18.2% 46.8 +3.5 23.0% 50.0 +3.8 19.9% 64.3 +3.8 17.0% 22.6 +4.3 69.3% 59.7 +9.6 29.9%
aDα 49.0 +2.1 20.0% 46.2 +3.0 40.9% 48.0 +1.9 27.8% 63.2 +2.7 19.8% 33.6 +15.3 83.2% 61.6 +11.5 35.8%

Bas.

aE 49.4 +2.6 20.0% 45.5 +2.3 18.0% 48.9 +2.8 19.7% 63.9 +3.4 19.9% 18.4 +0.0 46.0% 55.2 +5.1 25.8%
aL 50.6 +3.8 19.0% 47.5 +4.3 24.2% 50.9 +4.7 21.1% 65.6 +5.1 19.0% 22.4 +4.1 64.6% 59.7 +9.6 30.0%
aMSP 45.6 -1.3 18.8% 33.4 -9.9 45.7% 42.1 -4.1 29.6% 58.9 -1.7 18.1% 20.0 +1.7 31.3% 50.8 +0.7 22.1%
aCQE 48.0 +1.2 20.0% 44.2 +0.9 17.1% 46.8 +0.6 20.2% 61.3 +0.8 20.0% 21.1 +2.8 24.8% 51.6 +1.5 20.9%

s1
Ours

aD∗
α

46.9 +0.0 19.0% 37.4 -5.9 63.1% 46.3 +0.1 35.0% 60.9 +0.4 19.5% 24.7 +6.4 57.0% 55.6 +5.5 29.0%
aFR∗ 46.9 +0.0 18.7% 37.4 -5.9 63.0% 46.3 +0.1 34.8% 60.9 +0.4 19.2% 24.7 +6.4 56.7% 55.6 +5.5 28.7%

Bas. aM 46.7 -0.1 20.0% 43.1 -0.1 62.7% 45.4 -0.7 36.5% 60.6 +0.1 20.0% 20.6 +2.3 60.1% 55.3 +5.2 30.4%

Table 6: Interpretability Analysis OOD source (S.),
their ground-truth (GD.), their generation (Gen.) and
projections onto the reference set.

S. Ahir a la nit vàrem treballar fins a les deu.

Gd. Last night we worked until 10 p.m.

Gen. Ahir a la nit vàrem treballar fins a les deu. BLEU 3.75

p⋆(x) Dar gato por liebre. Score 1.23

S Austràlia no és Àustria.

Gd Australia isn’t Austria.

Gen. Austràlia is not Austria. BLEU 21.86

p⋆(x) La vida no es fácil. Score 0.82

(in the sense of the Information Projection) in the
reference set to take its decision. Tab. 6 present
examples of OOD samples along with their trans-
lation scores, projection scores, and projection on
the reference set. Qualitative analysis shows that,
in general, sentences close to the reference set and
whose projection has a close meaning are better
handled by fθ. Therefore, one can visually inter-
pret the prediction of RAINPROOF and validate it.

6 RAINPROOF on LLM for NMT

As an alternative to NMT models, we can study
the performance of instruction finetuned LLM on
translation tasks. However, it is important to note
that while LLMs are trained on enormous amounts
of data, they still miss many languages. Typically,
they are trained on around 100 languages (Conneau
et al., 2019), this falls far short of the existing 7000
languages. In our test-bed experiments, we decided
to rely on BLOOM models, which have not been
specifically trained on German (DEU) data. There-
fore, We can use German samples to simulate OOD
detection in an instruction-following translation
setting, specifically relying on BLOOMZ (Muen-
nighoff et al., 2022). We prompt the model to trans-

Table 7: OOD detection on BLOOMZ using German
as an OOD language for the LLM.

AUROC FPR ↓

s0

Ours
aFR 0.50 1.00
aDα 0.58 0.92

Bas.
aMSP 0.59 0.90
aE 0.51 0.97
aL 0.54 0.90

s1
Ours

aD∗
α

0.71 0.80
aFR∗ 0.70 0.82

Bas. aM 0.66 0.89

late Tatoeba dataset samples into English, focusing
on languages known to be within the distribution
for BLOOMZ while attempting to separate the Ger-
man samples from them. From Tab. 7, we observed
that our no-reference methods perform comparably
to the aMSP baseline, but are outperformed by the
Mahalanobis distance in this scenario. However,
the information projection methods demonstrate
substantial improvements over all the baselines.

7 Conclusion

This work introduces a detection framework called
RAINPROOF and a new benchmark called LOFTER
for black-box OOD detection on text generator. We
adopt an operational perspective by not only con-
sidering OOD performance but also task-specific
metrics: despite the good results obtained in pure
OOD detection, OOD filtering can harm the per-
formance of the final system, as it is the case for
aMSP or aM . We found that RAINPROOF succeed in
removing OOD while inducing significant gains in
translation performance both on OOD samples and
in general. In conclusion, this work paves the way
for developing text-generation OOD detectors and
calls for a global evaluation when benchmarking
future OOD detectors.



8 Limitations

While this work does not bear significant ethical
or impact hazards, it is worth pointing out that it is
not a perfect, absolutely safe solution against OOD
distribution samples. Preventing the processing
of OOD samples is an important part of ensuring
ML algorithms’ safety and robustness but it cannot
guarantee total safety nor avoid all OOD samples.
In this work, we approach the problem of OOD
detection from a performance standpoint: we argue
that OOD detectors should increase performance
metrics since they should remove risky samples.
However, no one can give such guarantees, and
the outputs of ML models should always be taken
with caution, whatever safety measures or filters
are in place. Additionally, we showed that our
methods worked in a specific setting of language
shifts or topic shifts, mainly on translation tasks.
While our methods performed well for small lan-
guage shifts (shifts induced by linguistically close
languages) and showed promising results on detect-
ing topic shifts, the latter task remains particularly
hard. Further work should explore different types
of distribution shifts in other newer settings such
as different types of instructions or problems given
to instruction-finetuned models.
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A Examining the Limitations of
Mahalanobis-Based OOD Detector for
Text Generation

(a) deu date on fra model. (b) spa date on fra model.

Figure 2: PCA reduction of encoder’s hidden features
for IN and OUT distribution samples, with Mahalanobis
distance mean (green cross). The plot reveals the multi-
modal nature of the distributions.

The main drawback of the Mahalanobis distance
is assuming a single-mode distribution. In text
classification, this is mitigated by fitting one Maha-
lanobis scorer per class. However, in text genera-
tion, this assumption is flawed as there are multiple
modes as illustrated in Fig. 2). PCA of Fig. 2 illus-
trate a failure case of the Mahalanobis distance in
the case of OOD detection.

B Experimental setting

In this section, we dive into the details and defini-
tions of our experimental setting. First, we present
our OOD detection performance metrics (Sec. B.1),
then we provide a couple samples for one of the
small language shifts (Sec. B.4). We also discuss
the choices of pre-trained model (Sec. B.6) and
how we adapted common OOD detectors to the
text generation case (Sec. B.7).

B.1 Additionnal details on metrics
OOD Detection is usually an unbalanced binary
classification problem where the class of interest is
OUT. Let us denote Z the random variable corre-
sponding to actually being out of distribution. We
can assess the performance of our OOD detectors
focusing on the False alarm rate and on the True
detection rate. The False alarm rate or False
positive rate (FPR) is the proportion of samples
misclassified as OUT. For a score threshold γ, we
have FPR = Pr

(
a(x) > γ |Z = 0

)
. The True

detection rate or True positive rate (TPR) is the
proportion of OOD samples that are detected by the
method. It is given by TPR = Pr

(
a(x) > γ |Z =

1
)
.

In order to evaluate the performance of our meth-
ods we will focus and report mainly the AUROC and
the FPR ↓, we provide more detailed metrics and
experiments in Sec. B.1.

Area Under the Receiver Operating Charac-
teristic curve (AUROC). The Receiver Operating
Characteristic curve is curve obtained by plotting
the True positive rate against the False positive
rate. The area under this curve is the probabil-
ity that an in-distribution example Xin has an
anomaly score higher than an OOD sample xout:
AUROC= Pr(a(xin) > a(xout)). It is given by γ 7→
(Pr

(
a(x) > γ |Z = 0

)
,Pr

(
a(x) > γ |Z = 1

)
).

False Positive Rate at 95% True Positive Rate
(FPR ↓). We accept to allow only a given false posi-
tive rate r corresponding to a defined level of safety
and we want to know what share of positive sam-
ples we actually catch under this constraint. It leads
to select a threshold γr such that the corresponding
TPR equals r. At this threshold, one then computes:
Pr(a(x) > γr |Z = 0) with γr s.t. TPR(γr) = r.
r is chosen depending on the difficulty of the task
at hand and the required level of safety.

For the sake of brevity, we present only
AUROCand FPR ↓metrics in our aggregated results
but we also used Detection error and Area Under
the Precision-Recall curve metrics and those are
presented in our full results section (Ap. F).

Detection error. It is simply the probability of
miss-classification for a given True positive rate.

Area Under the Precision-Recall curve
(AUPR-IN/AUPR-OUT). The Precision-Recall curve
plots the recall (true detection rate) against the
precision (actual proportion of OOD amongst the
predicted OOD). The area under this curve γ 7→
(Pr

(
Z = 1 | s(X) ⩽ γ

)
,Pr

(
s(X) ⩽ γ |Z = 1

)
)

captures the trade-off between precision and recall
made by the model. A high value represents a
high precision and a high recall i.e. the detector
captures most of the positive samples while having
few False positives.



B.2 Language pairs

Model IN data OUT data
Language shift

DEU-ENG Tatoeba DEU News FR
DEU-ENG Tatoeba DEU Tatoeba NLD

SPA-ENG Tatoeba SPA News FR
SPA-ENG Tatoeba SPA Tatoeba CAT
SPA-ENG Tatoeba SPA Tatoeba POR

NLD-ENG Tatoeba SPA AFR

Domain shift
DEU-ENG Tatoeba DEU EMEA DEU
DEU-ENG Tatoeba DEU Eurparl DEU
DEU-ENG Tatoeba DEU EMEA DEU
DEU-ENG Tatoeba DEU Eurparl DEU

Table 8: Summary of models and studied shifts.

B.3 Dataset sizes

Dataset Name Size

Tatoeba AFR 1373
Tattoeba CAT 1630
Tatoeba DEU 3000
Tatoeba NLD 3000
Tatoeba POR 3000
Tatoebamt ES 3000
newscommentary DE 3000
newscommentary ES 3000
newscommentary FR 6000
newscommentary NL 3000
amazonreviewsmulti DE 3000
amazonreviewsmulti ES 3000
dailydialog default 3000
europarlbilingual DE 3000
europarlbilingual ES 3000
EMEA DE 3000
EMEA ES 3000
EMEA NL 3000
multiwoz 3000
silicone dydae 3000
silicone iemocap 805
silicone maptask 2963
silicone melds 1109
silicone mrda 3000
silicone oasis 1513
silicone sem 485
silicone swda 3000

Table 9: Number of samples in each (test) datasets

B.4 Samples

In Tab. 10 we provide examples of small shifts in
translation between Spanish and Catalan and its
impact on a spanish to english translation model.

B.5 Dialog datasets

Switchboard Dialog Act Corpus (SwDA) is a cor-
pus of telephonic conversations. The corpus pro-
vides labels, topic and speaker information (Stolcke
et al., 2000).
ICSI MRDA Corpus (MRDA) contains transcript
75h of naturally occuring meetings involving more
than 50 people (Shriberg et al., 2004).
DaylyDialog Act Corpus (DyDA) contains daily
common communications between people, cover-
ing topic such as small talk, meteo or daily activi-
ties (Li et al., 2017).
Interactive Emotional Dyadic Motion Capture
IEMOCAP)(Tripathi et al., 2018) consists of tran-
scripts of improvisations or scripted scenarii sup-
posed to outline the expression of emotions.

B.6 Choices of models

To perform our experiments we needed models that
were already well installed and deployed and that
would also support OOD settings. For translation
tasks, we needed specialized models for a notion of
OOD to be easily defined. It would be indeed more
hazardous to define a notion of OOD language
when working with a multilingual model. The same
is true for conversational models.
Neural Machine Translation model. We bench-
mark our OOD method on translation models pro-
vided by Helsinky NLP (Tiedemann and Thottingal,
2020) on several pairs of languages with large and
small shifts. We extended the experiment to detect
domain shifts. These models are indeed specialized
in each language pair and are widely recognised
in the neural machine translation field. For our ex-
periments we used the testing set provided along
these models, so we can consider that they have
been fine-tuned over the same distribution.
Conversational model. We used a dialog-
GPT (Zhang et al., 2019b) model fine-tuned on
the Multi WOZ dataset as chat bot model. The fine-
tuning on daily dialogue-type tasks ensures that
the model is specialized, thus allowing us to get a
good definition of samples not being in its range of
expertise. Moreover, the choice of the architecture,
DialogGPT, guarantees that our results are valid on
a very common architecture.



Source sentence Expected translation Translation BLEU

A en Tom li agrada la tecnologia. Tom likes technology. Tom li likes technology. 42.73
Ací està la teua bossa. Here is your bag. Ací está la teua bossa. 8.12
Això et posarà en perill. That’ll put you in danger. Això et posarà en perill. 8.12
A Londres hi han molts parcs bonics. There are many beautiful parks in London. To London hi han molts parcs bonics. 6.57
Aquest pa és molt deliciós. This bread is very delicious. Aquest pa és molt deliciós. 8.12
A tots els meus amics els agraden els videojocs. All my friends like playing videogames. A tots els meus amics els agrade els videojocs. 4.20
Açò és un peix. This is a fish. Aaaaaaaaaaaaaaaaaaaa ... aaaaaaaaaaaaaaaaaaaaaaaaaa 0.00
Moltes felicitats! Congratulations! Moltes congrats! 27.52
Bon any nou! Happy New Year! Bon any nou! 15.97
Aquell que menteix, robarà. He that will lie, will steal. The one who’s mindless, he’ll steal. 12.22
Jo sóc qui té la clau. I’m the one who has the key. Jo soc qui te la clau. 5.69
En Tom surt a treballar cada matí a dos quarts de set. Tom leaves for work at 6:30 every morning. In Tom surt to pull each matí to two quarts of set. 3.67
Ell m’ha dit que la seva casa era embruixada. He told me that his house was haunted. Ell m’ha dit that the seva house was haunted. 27.78
Aquest és el lloc on va nèixer el meu pare. This is the place where my father was born. Aquest is the lloc on va nèixer el meu pare. 8.30

Table 10: Example of behaviours of a language model trained to handle Spanish inputs on Catalan inputs.

B.7 Generalization of existing OOD detectors
to Sequence Generation

In this section, we extend classical OOD detection
score to the conditional text generation settting.
Common OOD detectors were built for classifica-
tion tasks and we need to adapt them to conditional
text generation. Our task can be viewed as a se-
quence of classification problems with a very large
number of classes (the size of the vocabulary). We
chose the most naive approach which consists of
averaging the OOD scores over the sequence. We
experimented with other aggregation such as the
min/max or the standard deviation without getting
interesting results.
Likelihood Score The most naive approach to
build a OOD score is to rely solely on the log-
likelihood of the sequence. For a conditioning x
we define the log-likelyhood score by aL(x) =

−
∑|ŷ|−1

t=0 logpθ(ŷt+1|x, ŷ⩽t). The likelihood is
the same as the perplexity.
Average Maximum Softmax Probability score
The maximum softmax probability (Hendrycks and
Gimpel, 2017) takes the probability of the mode
of the categorical distribution as score of OOD.
We extend thise definition in the case of sequence
of probability distribution by averaging this score
along the sequence. For a given conditioning x,
we define the average MSP score aMSP(x) =
1
|ŷ|

∑|ŷ|
t=1 max

i∈[|0,K|]
pT
θ (i|x, ŷ⩽t)). While it is closely

linked to uncertainty measures it discards most of
the information contained in the probability distri-
bution. It discards the whole probability distribu-
tion. We claim that much more information can be
retrieve by studying the whole distribution.
Average Energy score We extend the definition
of the energy score described in (Liu et al., 2020)
to a sequence of probability distributions by av-
eraging the score along the sequence. For a

given conditioning x and a temperature T we de-
fine the average energy of the sequence:aE(x) ≜
− T

|ŷ|
∑|ŷ|

t=1 log
∑|Ω|

i efθ(x,ŷ⩽t)i/T . It corresponds
to the normalization term of the softmax function
applied on the logits. While it takes into account
the whole distribution, it only takes into account the
amount of unormalized mass before normalization
without attention to how this mass is distributed
along the features.
Mahalanobis distance Following (Lee et al.,
2018a; Colombo et al., 2022a) compute the Ma-
halanobis matrice based on the samples of a given
reference set R. In our case we are using encoder-
decoder models we use the output of the last hidden
layer of the encoder as embedding. Let’s denote
ϕ(x) this embedding for a conditioning x. Let µ
and Σ be respectively, the mean and the covariance
of these embedding on the reference set. We define
aM(x) =

(
1 + (ϕ(x)− µ)⊤Σ−1(ϕ(x)− µ)

)−1.

B.8 Computational budget
We had a budget of 20000h on NVIDIA V100 GPU.
While this is an important number it was used to
compute the benchmarks over many pairs and lan-
guages. In practice our OOD detectors do not re-
quire much addition computation overhead since
they only rely on the probability distributions al-
ready output by the models.

B.9 Towards an interpretable decision
An important dimension of fostering adoption is the
ability to verify the decision taken by the automatic
system. RAINPROOF offers a step in this direction
when used with references: for each input sample,
RAINPROOF finds the closest sample (in the sense
of the Information Projection) in the reference set
to take its decision. We present in Tab. 11 some
OOD samples along with their translation scores,
projection scores, and their projection on the refer-



Table 11: OOD inputs, their translations and projections
onto the reference set. The first 2 are far from the refer-
ence set and not well translated whereas the next 2 are
very close to the reference set and well translated. We
can, for that matter, notice that the projection is quite
close to the input sentence grammatically speaking.

Source Ahir a la nit vàrem treballar fins a les deu.

Ground truth Last night we worked until 10 p.m.

Generated Ahir a la nit vàrem treballar fins a les deu. BLEU 3.75

p⋆(x) Dar gato por liebre. Score 1.23

Source Aquesta cola s’ha esbravat i no té bon gust.

Ground-truth This cola has lost its fizz and doesn’t taste any good.

Generated This tail s’ha esbravat i no tea bon gust. BLEU 4.09

p⋆(x) Esta cuchara es de té. Score 1.14

source Aquesta és una carta molt estranya.

Ground-truth This is a very strange letter.

Generated This is a molt estranya card. BLEU 26.27

p⋆(x) Este carro es chiquito. Score 0.74

source Austràlia no és Àustria.

Ground-truth Australia isn’t Austria.

Generated Austràlia is not Austria. BLEU 21.86

p⋆(x) La vida no es fácil. Score 0.82

ence set. We notice that, in general, sentences that
are close to the reference set, and whose projec-
tion has a close meaning, are better handled by fθ.
Therefore, one can visually interpret the prediction
of RAINPROOF, and validate it. This observation
further validates our method.

C Scaling to larger models

In order to validate our results we perform ex-
periments on larger and general-purpose mod-
els such as BloomZ (Muennighoff et al., 2022),
NLLB (Team et al., 2022) and the Facebook
WMT16 submission (Ng et al., 2020).

AUROC FPR ↓ AUPR-IN AUPR-OUT Err

s0

Ours aDα 0.72 0.80 0.54 0.79 0.51

Bas.
aCQE 0.65 0.95 0.74 0.59 0.52
aL 0.47 0.89 0.59 0.50 0.43

s1

Ours.
aD∗

α
0.74 0.87 0.80 0.68 0.34

aFR∗ 0.74 0.88 0.80 0.67 0.35

Bas.
aC 0.70 0.90 0.80 0.52 0.38
aD 0.64 0.89 0.54 0.67 0.53
aM 0.62 0.81 0.66 0.55 0.38

Table 12: Performance in OOD detection on large trans-
lation model Facebook WMT-19 submission. (RUS-
DEU).

AUROC FPR ↓ AUPR-IN AUPR-OUT Err

s0

Ours
aFR 0.57 0.93 0.50 0.64 0.50
aDα 0.58 0.92 0.52 0.63 0.51

Bas.
aMSP 0.59 0.90 0.64 0.52 0.42
aE 0.51 0.97 0.47 0.55 0.57
aL 0.54 0.90 0.44 0.62 0.53

s1
s1

aD∗
α

0.71 0.82 0.73 0.64 0.39
aFR∗ 0.70 0.82 0.73 0.64 0.40

Bas. aM 0.66 0.89 0.74 0.56 0.42

Table 13: OOD detection on BloomZ using German as
an OOD language for the instruction model.

C.1 Negative results on NLLB

By the very definition of the No-Language-Left-
Behind model, it should be particularly hard to find
OOD language to benchmark on. The model still
requires special token to be set in the sequence to
define the source and target languages. We tried
to apply our OOD detection methods to situations
where the presented language does not correspond
to the source language set by the special token. We
found that in this scenario the likelihood was by
far the best discriminator of OOD samples. It can
be explained by the fact that our inputs are not
actually OOD, they are just not consistent with the
source language token, but the model is still well
calibrated overall on these inputs.

AUROC FPR ↓ AUPR-IN AUPR-OUT Err

s0

Ours
aFR 0.50 1.00 0.75 0.75 0.51
aDα 0.57 0.95 0.60 0.62 0.50

Bas.
aMSP 0.71 0.80 0.71 0.68 0.42
aE 0.53 0.97 0.54 0.50 0.51
aL 0.80 0.59 0.78 0.79 0.32

s1
Ours aFR∗ 0.54 0.93 0.57 0.49 0.46
Bas. aM 0.62 0.89 0.67 0.54 0.42

Table 14: Performance in OOD detection for NLLB.

D Additional OOD features-based
baselines

To further support the point that features-based
detectors have important flaws when it comes to
text generation we compare our best performing
OOD score to SOTA OOD detectors in text such as
the DataDepth (aD) (Colombo et al., 2022a) and
the Maximum Cosine Projection (aC) (Zhou et al.,
2021).



AUROC FPR ↓ AUPR-IN AUPR-OUT Err

s0

Ours aDα 0.85 0.66 0.69 0.91 0.47

Bas.
aCQE 0.76 0.51 0.78 0.71 0.20
aL 0.81 0.55 0.86 0.69 0.20

s1 Bas.
aC 0.61 0.95 0.82 0.36 0.32
aD 0.57 0.93 0.35 0.75 0.67
aM 0.70 0.80 0.46 0.84 0.58

Table 15: Comparison of our best detector aDα
against

SOTA features based-ood detectors on close language
shifts.

E Parameters tuning

Detectors depend on their anomaly score to make
decisions, and these scores can be parametric. First
of all, soft probability-based scores depend on the
soft probability distribution and its scaling. There-
fore, the temperature is a crucial parameter to tune
to get the most performance. While a small tem-
perature makes the distribution pickier, a higher
value spreads the probability mass along the classes.
Moreover, the Rényi divergence depends on a fac-
tor α. We provide here further results and analysis
of those parameters on our results.

In Fig. 3, we analyse the impact of the temper-
ature and α parameter for our Renyi-Negentropy
score. Consistently with results for the information
projection we find that the tail of the distribution is
important to ensure good detection of OOD sam-
ples for all language shifts. A temperature higher
than 2 and lower values of α yield the best results.
We recommend using α = 0.5 with a temperature
of 2.

We found that our aDα score, the Rényi negen-
tropy is more stable concerning the temperature and
the considered datasets and shifts than the energy-
based OOD score and the MSP score. Indeed, in
Fig. 4, we show that the baselines do not behave
consistently across datasets when the temperature
changes. This is a problem when deploying these
scores in production. Indeed, we cannot fit a tem-
perature for each possible type of shift or OOD
samples. By contrast, there exist sets of parame-
ters (temperature and α) for which our negentropy-
based scores perform consistently across different
shifts.

F Performance of our detectors in OOD
detection

F.1 Importance of tails’ distributions
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Figure 5: Impact of α on the performance of the
Rényi information projection for dialog shifts detection.
A smaller α increases the weight of the tail of the distri-
bution. An α of 0 would consist in counting the number
of the common non zero elements.

Our results show that, when it comes to domain
shift (domain shifts in translation or dialog shifts),
reference-based detectors are required to obtain
good results. They also show that, the more these
detectors take into account the tail of the distribu-
tions, the better they are, as displayed in Fig. 5.
We find that low values of α (near 0) yields bet-
ter results with the Rényi Information projection
aD∗

α
. It suggests that the tail of the distributions

used during text generation carries context infor-
mation and insights on the processed texts. Such
results are consistent with findings of recent works
in the context of automatic evaluation of text gen-
eration (Colombo et al., 2022b).

F.2 Summary of our results

In Fig. 6 we present the different performance lev-
els of all the detectors we studied. We can see that
in every task our detectors outperform the baselines
but also that in dialog shift, while the Mahalanobis
distance outperform clearly our detectors for s0,
they still outperform baselines for their scenario by
far.

F.3 Detailed results of OOD detection
performances

In this section, we present the performances of our
OOD detectors on each detailed tasks, i.e. for each
pair of IN and OOD data with all the considered
metrics. Our metrics outperform other OOD detec-
tors baselines in almost all scenarios.



(a) SPA-CAT (b) SPA-POR (c) NLD-AFR (d) SPA-FRA

Figure 3: Effect of the temperature and α parameter for aDα on the performance on OOD detection in terms of
AUROC.

Table 16: Detailed results of the performances of our OOD detectors on different language shifts. The first language
of the pair is the reference language of the model and the second one is the studied shift.

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.99 1.00 1.00 0.02 0.83 0.01 0.71 1.00
aFR 0.98 1.00 0.99 0.03 0.83 0.02 0.71 1.00

Baselines

aE 0.96 0.96 0.97 0.05 0.82 0.05 0.71 1.00
aL 0.61 0.84 0.78 0.53 0.63 0.76 0.60 0.65
aMSP 0.96 0.99 0.98 0.05 0.82 0.05 0.71 1.00
aCQE 0.50 0.76 0.62 0.60 0.34 0.87 0.42 0.29

s1

Ours

aD∗
α

1.00 1.00 1.00 0.02 0.83 0.00 0.71 1.00
aD∗

KL
0.96 0.99 0.99 0.03 0.83 0.03 0.71 0.99

aDmean
α

1.00 1.00 1.00 0.02 0.83 0.00 0.71 0.99
aDmean

KL
0.99 0.98 0.99 0.02 0.83 0.00 0.71 0.99

aFR∗ 1.00 1.00 1.00 0.02 0.83 0.00 0.71 1.00
aFRmean 0.99 0.97 0.98 0.02 0.82 0.01 0.71 0.98

Baselines
aC 0.39 0.74 0.60 0.64 0.42 0.94 0.42 0.42
aM 0.64 0.91 0.82 0.33 0.63 0.47 0.62 0.64

(a) deu-nld

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.80 0.97 0.91 0.33 0.67 0.41 0.54 1.00
aFR 0.80 0.96 0.91 0.37 0.67 0.46 0.54 0.87

Baselines

aE 0.61 0.89 0.77 0.71 0.54 0.88 0.46 1.00
aL 0.55 0.89 0.75 0.70 0.35 0.88 0.21 1.00
aMSP 0.61 0.90 0.73 0.70 0.41 0.87 0.37 1.00
aCQE 0.27 0.76 0.51 0.80 0.25 1.00 0.23 0.27

s1

Ours

aD∗
α

0.48 0.87 0.70 0.73 0.50 0.91 0.44 0.57
aD∗

KL
0.39 0.85 0.66 0.74 0.43 0.93 0.39 0.48

aDmean
α

0.58 0.89 0.77 0.74 0.54 0.92 0.47 0.65
aDmean

KL
0.45 0.79 0.63 0.79 0.45 1.00 0.41 0.50

aFR∗ 0.45 0.86 0.69 0.74 0.46 0.92 0.41 0.52
aFRmean 0.41 0.76 0.56 0.79 0.00 0.99 0.00 0.00

Baselines
aC 0.33 0.84 0.63 0.75 0.40 0.94 0.33 0.50
aM 0.37 0.89 0.71 0.65 0.46 0.81 0.41 0.51

(b) spa-cat

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.67 0.95 0.87 0.55 0.55 0.67 0.45 1.00
aFR 0.64 0.94 0.83 0.58 0.55 0.70 0.45 0.72

Baselines

aE 0.65 0.94 0.84 0.62 0.57 0.74 0.46 1.00
aL 0.64 0.94 0.84 0.65 0.31 0.79 0.19 1.00
aMSP 0.61 0.94 0.83 0.62 0.31 0.75 0.19 1.00
aCQE 0.29 0.85 0.58 0.76 0.27 0.92 0.28 0.26

s1

Ours

aD∗
α

0.48 0.94 0.79 0.47 0.47 0.57 0.40 0.57
aD∗

KL
0.37 0.94 0.75 0.49 0.40 0.59 0.35 0.47

aDmean
α

0.66 0.93 0.83 0.69 0.39 0.84 0.34 0.46
aDmean

KL
0.29 0.82 0.55 0.80 0.00 0.97 0.00 0.00

aFR∗ 0.47 0.94 0.78 0.47 0.46 0.57 0.39 0.56
aFRmean 0.52 0.90 0.75 0.74 0.00 0.90 0.00 0.00

Baselines
aC 0.23 0.86 0.58 0.77 0.29 0.94 0.22 0.40
aM 0.35 0.92 0.74 0.61 0.45 0.74 0.39 0.55

(c) nld-afr

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.99 1.00 1.00 0.02 0.83 0.01 0.71 1.00
aFR 0.97 0.99 0.99 0.04 0.83 0.04 0.71 1.00

Baselines

aE 0.97 0.97 0.98 0.04 0.82 0.03 0.71 1.00
aL 0.68 0.83 0.77 0.58 0.61 0.85 0.60 0.63
aMSP 0.98 0.99 0.99 0.04 0.83 0.03 0.71 1.00
aCQE 0.48 0.85 0.68 0.38 0.37 0.55 0.42 0.33

s1

Ours

aD∗
α

1.00 1.00 1.00 0.02 0.83 0.00 0.71 1.00
aD∗

KL
0.98 1.00 0.99 0.02 0.83 0.01 0.71 1.00

aDmean
α

1.00 1.00 1.00 0.01 0.83 0.00 0.71 1.00
aDmean

KL
1.00 1.00 1.00 0.02 0.83 0.00 0.71 0.99

aFR∗ 1.00 1.00 1.00 0.02 0.83 0.00 0.71 1.00
aFRmean 0.99 0.99 0.99 0.02 0.83 0.00 0.71 0.99

Baselines
aC 0.38 0.73 0.61 0.66 0.45 0.97 0.43 0.46
aM 0.68 0.92 0.84 0.29 0.66 0.41 0.63 0.69

(d) deu-fra

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 1.00 1.00 1.00 0.02 0.83 0.00 0.71 1.00
aFR 0.99 1.00 1.00 0.02 0.83 0.01 0.71 1.00

Baselines

aE 0.98 0.98 0.98 0.04 0.83 0.03 0.71 1.00
aL 0.53 0.83 0.73 0.53 0.53 0.77 0.54 0.52
aMSP 0.97 0.99 0.99 0.04 0.82 0.04 0.71 1.00
aCQE 0.58 0.87 0.74 0.38 0.50 0.55 0.50 0.50

s1

Ours

aD∗
α

0.99 1.00 1.00 0.02 0.83 0.01 0.71 1.00
aD∗

KL
0.90 0.99 0.97 0.07 0.83 0.07 0.71 0.99

aDmean
α

1.00 1.00 1.00 0.02 0.83 0.00 0.71 1.00
aDmean

KL
0.99 0.99 0.99 0.02 0.83 0.01 0.71 0.99

aFR∗ 0.99 1.00 1.00 0.02 0.83 0.01 0.71 1.00
aFRmean 0.99 0.98 0.99 0.03 0.82 0.01 0.71 0.98

Baselines
aC 0.41 0.71 0.57 0.65 0.00 0.96 0.00 0.00
aM 0.81 0.97 0.93 0.13 0.82 0.17 0.71 0.97

(e) spa-fra

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.91 0.97 0.95 0.20 0.80 0.27 0.70 1.00
aFR 0.92 0.97 0.95 0.19 0.80 0.26 0.70 0.93

Baselines

aE 0.71 0.84 0.79 0.58 0.64 0.85 0.62 1.00
aL 0.69 0.83 0.77 0.58 0.50 0.85 0.33 1.00
aMSP 0.67 0.86 0.74 0.58 0.55 0.84 0.55 1.00
aCQE 0.46 0.67 0.54 0.67 0.30 0.98 0.38 0.24

s1

Ours

aD∗
α

0.74 0.83 0.78 0.60 0.65 0.87 0.63 0.68
aD∗

KL
0.67 0.82 0.76 0.62 0.63 0.90 0.61 0.64

aDmean
α

0.80 0.87 0.84 0.57 0.70 0.82 0.65 0.75
aDmean

KL
0.68 0.72 0.70 0.68 0.61 0.99 0.61 0.62

aFR∗ 0.72 0.83 0.78 0.60 0.63 0.88 0.61 0.66
aFRmean 0.48 0.60 0.48 0.68 0.00 1.00 0.00 0.00

Baselines
aC 0.48 0.76 0.66 0.64 0.52 0.94 0.49 0.55
aM 0.61 0.91 0.83 0.38 0.69 0.55 0.65 0.74

(f) spa-por



Table 17: Detailed results of the performances of our OOD detectors on different domain shifts. For Spanish (spa)
and German (de), we present two domains shifts: Technical medical (EMEA) data and legal parlementary texts
(parl) against common language emboddied by the Tatoeba dataset (tat).

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.90 0.76 0.86 0.43 0.81 0.82 0.80 1.00
aFR 0.87 0.73 0.81 0.46 0.77 0.86 0.79 0.75

Baselines
aE 0.88 0.75 0.83 0.49 0.78 0.93 0.79 1.00
aL 0.86 0.73 0.82 0.48 0.76 0.91 0.77 0.74
aMSP 0.89 0.76 0.85 0.44 0.79 0.84 0.80 1.00

s1

Ours

aD∗
α

0.90 0.88 0.90 0.25 0.82 0.45 0.81 0.86
aD∗

KL
0.89 0.83 0.88 0.33 0.82 0.62 0.80 0.83

aDmean
α

0.88 0.73 0.84 0.47 0.78 0.89 0.79 0.77
aDmean

KL
0.87 0.73 0.83 0.48 0.77 0.91 0.79 0.75

aFR∗ 0.85 0.70 0.80 0.50 0.74 0.94 0.77 0.72
aFRmean 0.86 0.67 0.80 0.52 0.75 0.98 0.78 0.72

Baselines
aC 0.88 0.89 0.90 0.25 0.00 0.46 0.00 0.00
aM 0.87 0.90 0.89 0.22 0.81 0.39 0.80 0.81

(a) deu:news-EMEA

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.75 0.75 0.76 0.41 0.67 0.76 0.67 1.00
aFR 0.66 0.67 0.70 0.44 0.45 0.84 0.64 0.35

Baselines
aE 0.75 0.75 0.71 0.44 0.67 0.83 0.69 1.00
aL 0.68 0.61 0.68 0.49 0.67 0.94 0.50 1.00
aMSP 0.75 0.75 0.71 0.45 0.67 0.86 0.50 1.00

s1

Ours

aD∗
α

0.66 0.65 0.68 0.44 0.00 0.84 0.83 0.00
aD∗

KL
0.67 0.63 0.67 0.48 0.00 0.90 0.00 0.00

aDmean
α

0.67 0.67 0.70 0.44 0.00 0.82 0.00 0.00
aDmean

KL
0.66 0.65 0.69 0.45 0.00 0.85 0.00 0.00

aFR∗ 0.62 0.64 0.65 0.45 0.00 0.85 0.00 0.00
aFRmean 0.65 0.67 0.69 0.43 0.00 0.80 0.00 0.00

Baselines
aC 0.57 0.61 0.60 0.46 0.27 0.87 0.47 0.19
aM 0.62 0.66 0.66 0.44 0.00 0.83 0.00 0.00

(b) spa:news-parl

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.75 0.75 0.71 0.41 0.67 0.78 0.66 1.00
aFR 0.61 0.65 0.65 0.45 0.42 0.84 0.61 0.32

Baselines
aE 0.75 0.75 0.68 0.45 0.67 0.85 0.66 1.00
aL 0.63 0.58 0.64 0.51 0.67 0.96 0.50 1.00
aMSP 0.75 0.75 0.68 0.46 0.67 0.86 0.51 1.00

s1

Ours

aD∗
α

0.69 0.66 0.68 0.43 0.30 0.81 0.80 0.22
aD∗

KL
0.66 0.64 0.68 0.46 0.00 0.88 0.00 0.00

aDmean
α

0.65 0.65 0.68 0.45 0.00 0.86 0.00 0.00
aDmean

KL
0.65 0.65 0.68 0.45 0.00 0.85 0.00 0.00

aFR∗ 0.63 0.64 0.66 0.45 0.00 0.86 0.00 0.00
aFRmean 0.64 0.64 0.67 0.45 0.00 0.86 0.00 0.00

Baselines
aC 0.52 0.66 0.59 0.41 0.40 0.78 0.52 0.33
aM 0.58 0.61 0.62 0.47 0.00 0.89 0.00 0.00

(c) deu:news-parl

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.92 0.81 0.89 0.37 0.83 0.70 0.81 1.00
aFR 0.89 0.75 0.85 0.44 0.79 0.82 0.80 0.78

Baselines
aE 0.90 0.77 0.86 0.44 0.80 0.83 0.80 1.00
aL 0.86 0.73 0.82 0.47 0.76 0.89 0.77 0.74
aMSP 0.90 0.80 0.87 0.41 0.81 0.77 0.80 1.00

s1

Ours

aD∗
α

0.88 0.85 0.88 0.29 0.81 0.54 0.80 0.82
aD∗

KL
0.89 0.83 0.88 0.32 0.81 0.59 0.80 0.82

aDmean
α

0.90 0.77 0.86 0.44 0.79 0.83 0.80 0.79
aDmean

KL
0.88 0.75 0.84 0.45 0.77 0.85 0.79 0.75

aFR∗ 0.81 0.66 0.76 0.50 0.70 0.94 0.76 0.65
aFRmean 0.87 0.70 0.81 0.49 0.75 0.94 0.78 0.72

Baselines
aC 0.67 0.59 0.64 0.49 0.00 0.94 0.00 0.00
aM 0.81 0.83 0.83 0.31 0.75 0.58 0.78 0.72

(d) spa:news-EMEA

(a) MSP (b) Energy score

Figure 4: Impact of the temperature used to compute
the energy (aE) and MSP (aMSP) OOD scores in terms
of AUROC.

F.4 ROC AUC curves

F.4.1 Language shifts

In Fig. 7 and Fig. 8 we present the ROC-AUC
curves of our different detectors for language shifts
in translation.

F.4.2 Domain shifts

In Fig. 9 and Fig. 10 we present the ROC-AUC
curves of our different detectors for topic shifts in
translation.

F.4.3 Dialog shifts

In Fig. 11 and Fig. 12 we present the ROC-AUC
curves of our different detectors for topic shifts in
a dialog setting.

G NTM performance

Surprisingly we show that common OOD detectors
tend to exclude samples that the model well handles
and keep some that are not leading to decreasing
overall performance in terms of translation met-
rics. Moreover, it seems this phenomenon is more
dominant in reference-based detectors. We show
that our uncertainty-based detectors mostly avoid
that downfall and provide good OOD detection and
improved translation performances.

G.1 Absolute performances
It is clear (somewhat expected) that NMT models
do not perform as well on OOD data as we can
see in Tab. 19b. However, we find that our OOD
detectors are able to remove most of the worst-case
samples and keep enough well-translated samples
so that with correct filtering our method actually
allows the model to achieve somewhat acceptable
BLEU scores.

G.2 Gains
In Tab. 20 we give the detailed gain in translation
performance based on the BLEU score.

G.3 Choice of threshold
We believe that the choice of the threshold for OOD
detection should not require OOD samples because
we do not want to assume we have access to all kind
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Figure 6: Trade-offs between AUROCand FPR ↓for each tasks and metrics

Table 18: Detailed performance results of our OOD detectors on dialog shift against the Multi WOZ dataset as
reference set.

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.87 0.87 0.87 0.31 0.78 0.56 0.79 0.77
aFR 0.73 0.81 0.79 0.34 0.67 0.63 0.75 0.60

Baselines
aE 0.75 0.75 0.62 0.40 0.67 0.75 0.53 1.00
aL 0.81 0.79 0.82 0.39 0.76 0.72 0.75 0.77
aMSP 0.53 0.64 0.57 0.42 0.32 0.78 0.53 0.22

s1
Ours

aD∗
α

0.69 0.69 0.72 0.43 0.60 0.81 0.72 0.52
aD∗

KL
0.66 0.68 0.70 0.44 0.56 0.82 0.70 0.47

aDmean
α

0.62 0.65 0.65 0.44 0.47 0.83 0.65 0.37
aDmean

KL
0.64 0.65 0.67 0.46 0.51 0.86 0.67 0.41

aFR∗ 0.69 0.69 0.72 0.43 0.60 0.82 0.71 0.51
aFRmean 0.55 0.57 0.57 0.48 0.37 0.91 0.58 0.27

Baselines
aC 0.88 0.89 0.90 0.25 0.75 0.46 0.86 0.67
aM 0.87 0.84 0.87 0.33 0.80 0.61 0.80 0.80

(a) dailydialog-default

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.52 0.87 0.72 0.52 0.52 0.69 0.50 0.54
aFR 0.41 0.86 0.69 0.55 0.37 0.73 0.39 0.35

Baselines
aE 0.63 0.87 0.63 0.56 0.43 0.74 0.28 1.00
aL 0.40 0.66 0.47 0.73 0.43 1.00 0.27 1.00
aMSP 0.36 0.86 0.67 0.52 0.31 0.69 0.34 0.28

s1
Ours

aD∗
α

0.69 0.93 0.85 0.40 0.63 0.53 0.56 0.75
aD∗

KL
0.42 0.84 0.67 0.63 0.43 0.85 0.44 0.43

aDmean
α

0.39 0.82 0.64 0.63 0.38 0.85 0.40 0.36
aDmean

KL
0.39 0.81 0.64 0.67 0.40 0.90 0.41 0.38

aFR∗ 0.53 0.88 0.75 0.58 0.54 0.77 0.51 0.59
aFRmean 0.31 0.80 0.58 0.66 0.29 0.88 0.33 0.26

Baselines
aC 0.54 0.89 0.70 0.74 0.59 0.91 0.55 0.64
aM 0.53 0.87 0.74 0.73 0.56 0.99 0.53 0.60

(b) silicone-melds

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.52 0.87 0.72 0.52 0.52 0.69 0.50 0.54
aFR 0.41 0.86 0.69 0.55 0.37 0.73 0.39 0.35

Baselines
aE 0.63 0.87 0.63 0.56 0.43 0.74 0.28 1.00
aL 0.40 0.66 0.47 0.73 0.43 1.00 0.27 1.00
aMSP 0.36 0.86 0.67 0.52 0.31 0.69 0.34 0.28

s1
Ours

aD∗
α

0.69 0.93 0.85 0.40 0.63 0.53 0.56 0.75
aD∗

KL
0.42 0.84 0.67 0.63 0.43 0.85 0.44 0.43

aDmean
α

0.39 0.83 0.65 0.63 0.39 0.84 0.41 0.38
aDmean

KL
0.40 0.82 0.65 0.65 0.40 0.88 0.41 0.38

aFR∗ 0.53 0.88 0.75 0.58 0.54 0.77 0.51 0.59
aFRmean 0.32 0.79 0.59 0.68 0.32 0.91 0.35 0.29

Baselines
aC 0.54 0.89 0.70 0.74 0.59 0.91 0.55 0.64
aM 0.53 0.87 0.74 0.73 0.56 0.99 0.53 0.60

(c) silicone-melde

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.79 0.80 0.81 0.36 0.73 0.68 0.78 0.69
aFR 0.68 0.73 0.70 0.39 0.49 0.74 0.66 0.39

Baselines
aE 0.75 0.75 0.64 0.45 0.67 0.84 0.61 1.00
aL 0.91 0.73 0.85 0.49 0.78 0.94 0.76 0.81
aMSP 0.70 0.65 0.64 0.43 0.54 0.80 0.69 0.45

s1
Ours

aD∗
α

0.92 0.91 0.91 0.23 0.83 0.42 1.00 0.87
aD∗

KL
0.60 0.60 0.61 0.47 0.44 0.89 0.63 0.34

aDmean
α

0.59 0.59 0.60 0.47 0.41 0.90 0.61 0.31
aDmean

KL
0.59 0.58 0.59 0.48 0.41 0.90 0.61 0.31

aFR∗ 0.75 0.74 0.75 0.41 0.65 0.77 0.74 0.58
aFRmean 0.56 0.59 0.59 0.47 0.39 0.89 0.59 0.29

Baselines
aC 0.87 0.87 0.88 0.15 0.80 0.21 0.80 0.84
aM 0.85 0.93 0.91 0.10 0.83 0.21 0.81 0.85

(d) silicone-dydae

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.71 0.74 0.72 0.36 0.63 0.67 0.73 0.55
aFR 0.68 0.73 0.72 0.36 0.57 0.67 0.70 0.48

Baselines
aE 0.75 0.75 0.66 0.39 0.67 0.74 0.53 1.00
aL 0.69 0.48 0.57 0.50 0.67 1.00 0.50 1.00
aMSP 0.61 0.74 0.71 0.36 0.00 0.66 0.00 0.00

s1
Ours

aD∗
α

0.88 0.89 0.88 0.24 0.80 0.44 0.79 0.82
aD∗

KL
0.68 0.70 0.70 0.42 0.56 0.80 0.70 0.47

aDmean
α

0.64 0.67 0.67 0.43 0.49 0.82 0.66 0.39
aDmean

KL
0.65 0.66 0.67 0.44 0.51 0.84 0.67 0.41

aFR∗ 0.79 0.80 0.80 0.36 0.71 0.68 0.76 0.66
aFRmean 0.57 0.59 0.59 0.47 0.38 0.89 0.58 0.28

Baselines
aC 0.87 0.87 0.88 0.15 0.80 0.21 0.80 0.84
aM 0.87 0.95 0.93 0.10 0.86 0.21 0.82 0.90

(e) silicone-swda

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.79 0.80 0.81 0.36 0.73 0.68 0.78 0.69
aFR 0.68 0.73 0.70 0.39 0.49 0.74 0.66 0.39

Baselines
aE 0.75 0.75 0.64 0.45 0.67 0.84 0.61 1.00
aL 0.91 0.73 0.85 0.49 0.78 0.94 0.76 0.81
aMSP 0.70 0.65 0.64 0.43 0.54 0.80 0.69 0.45

s1
Ours

aD∗
α

0.92 0.91 0.91 0.23 0.83 0.42 1.00 0.87
aD∗

KL
0.60 0.60 0.61 0.47 0.44 0.89 0.63 0.34

aDmean
α

0.59 0.59 0.60 0.47 0.41 0.90 0.61 0.31
aDmean

KL
0.58 0.57 0.59 0.49 0.41 0.92 0.61 0.31

aFR∗ 0.75 0.74 0.75 0.41 0.65 0.77 0.74 0.58
aFRmean 0.55 0.58 0.58 0.47 0.38 0.89 0.58 0.28

Baselines
aC 0.84 0.87 0.87 0.13 0.81 0.22 0.81 0.84
aM 0.85 0.93 0.91 0.10 0.83 0.21 0.81 0.85

(f) silicone-dydada

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.42 0.91 0.72 0.57 0.45 0.70 0.40 0.50
aFR 0.41 0.90 0.72 0.57 0.38 0.71 0.35 0.41

Baselines
aE 0.61 0.89 0.63 0.61 0.35 0.76 0.23 1.00
aL 0.53 0.76 0.58 0.80 0.40 1.00 0.34 0.48
aMSP 0.35 0.90 0.68 0.56 0.33 0.70 0.32 0.35

s1
Ours

aD∗
α

0.67 0.95 0.86 0.44 0.58 0.55 0.48 0.77
aD∗

KL
0.29 0.85 0.63 0.72 0.34 0.90 0.32 0.36

aDmean
α

0.27 0.85 0.61 0.72 0.30 0.89 0.29 0.31
aDmean

KL
0.28 0.85 0.61 0.71 0.30 0.89 0.29 0.31

aFR∗ 0.41 0.90 0.73 0.61 0.46 0.77 0.41 0.52

Baselines
aC 0.45 0.92 0.75 0.78 0.53 0.97 0.50 0.56
aM 0.42 0.89 0.70 0.78 0.47 0.99 0.42 0.54

(g) silicone-iemocap

AUPR-IN AUPR-OUT AUROC ERR f1 FPR precision recall
Scenario Score

s0

Ours
aDα 0.71 0.77 0.75 0.33 0.60 0.60 0.72 0.52
aFR 0.69 0.74 0.74 0.36 0.58 0.67 0.71 0.49

Baselines
aE 0.75 0.75 0.70 0.37 0.67 0.68 0.60 1.00
aL 0.72 0.48 0.57 0.50 0.67 1.00 0.50 1.00
aMSP 0.62 0.76 0.73 0.32 0.00 0.59 0.00 0.00

s1
Ours

aD∗
α

0.86 0.88 0.87 0.23 0.79 0.42 0.79 0.80
aD∗

KL
0.66 0.71 0.70 0.41 0.52 0.77 0.68 0.42

aDmean
α

0.63 0.68 0.66 0.42 0.45 0.79 0.64 0.35
aDmean

KL
0.63 0.65 0.66 0.44 0.48 0.84 0.66 0.38

aFR∗ 0.77 0.80 0.79 0.36 0.69 0.66 0.75 0.63
aFRmean 0.57 0.59 0.59 0.47 0.40 0.90 0.60 0.30

Baselines
aC 0.87 0.92 0.94 0.13 0.89 0.22 0.82 0.65
aM 0.88 0.96 0.94 0.10 0.88 0.21 0.82 0.94

(h) silicone-mrda
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Figure 7: ROCAUC curves for our uncertainty-based metrics compared to common baselines for language shift
detection. Baselines are represented in dashed lines.
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Figure 8: ROC-AUC curves for our reference-based metrics compared to common baselines for language shift
detection. Baselines are represented in dashed lines.
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Figure 9: ROC-AUC curves for our uncertainty-based metrics compared to common baselines for domain shift
detection. baselines are represented in dashed lines.
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Figure 10: ROC-AUC curves for our reference-based metrics compared to common baselines for domain shift
detection. baselines are represented in dashed lines.



0.0
0.2
0.4
0.6
0.8
1.0

daily_dialog-default dyda_da iemocap

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

meld_s

0.0 0.2 0.4 0.6 0.8 1.0

mrda

0.0 0.2 0.4 0.6 0.8 1.0

swda

aD

aFR

aMSP
aE

aL

Figure 11: ROC-AUC curves for our uncertainty-based metrics compared to common baselines for dialog shift
detection. baselines are represented in dashed lines.
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Figure 12: ROC-AUC curves for our reference-based metrics compared to common baselines for dialog shift
detection. baselines are represented in dashed lines.



spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Scenario Score

59.63 59.63 62.38 59.63 34.07 59.63 34.07

s0

Ours
aDα 63.82 62.41 67.77 64.78 36.68 63.82 36.69
aFR 62.41 62.41 65.89 63.54 36.10 63.54 36.19

Baselines

aE 62.99 62.99 65.80 62.99 35.87 62.99 35.87
aL 64.52 64.52 67.78 64.52 36.72 64.52 36.72
aMSP 58.15 58.15 60.31 58.15 33.00 58.15 33.00
aCQE 60.36 60.36 63.19 60.36 35.68 60.36 35.68

s1

Ours
aD∗

α
59.99 59.99 62.82 59.99 33.82 59.99 33.82

aFR∗ 59.98 59.98 62.83 59.98 33.78 59.98 33.78

Baselines
aC 60.80 60.80 62.67 60.80 34.48 60.80 34.48
aM 59.63 59.63 62.61 59.63 33.85 59.63 33.85

(a) IN

spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Scenario Score

15.73 15.40 23.79 33.17 28.36 59.38 52.16

s0

Ours
aDα 22.06 38.04 36.51 41.80 33.64 64.11 54.60
aFR 26.41 37.74 33.86 38.17 32.10 62.29 55.02

Baselines

aE 14.44 12.97 27.64 35.11 31.97 60.52 54.48
aL 16.62 14.70 35.90 40.23 34.18 61.32 54.41
aMSP 17.36 18.97 23.78 30.81 26.46 41.51 34.64
aCQE 17.61 16.70 29.02 33.18 29.36 59.66 54.41

s1

Ours
aD∗

α
20.16 23.33 30.74 34.16 27.38 44.45 43.62

aFR∗ 20.15 23.35 30.61 34.16 27.39 44.45 43.61

Baselines
aC 16.84 16.72 23.67 33.32 29.11 59.55 52.19
aM 16.76 19.37 25.64 30.83 27.22 59.73 54.71

(b) OOD

spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Scenario Score

50.25 44.89 55.20 50.81 31.21 59.55 43.12

s0

Ours
aDα 61.50 61.35 65.66 59.61 35.35 63.91 46.32
aFR 60.80 61.35 63.40 56.70 34.34 63.10 46.11

Baselines

aE 54.86 48.72 61.99 53.66 34.19 62.06 45.78
aL 58.75 54.92 65.56 58.32 35.64 63.35 46.22
aMSP 51.26 48.32 52.96 48.65 29.50 56.86 33.37
aCQE 51.69 45.67 57.53 49.91 32.88 60.09 44.38

s1

Ours
aD∗

α
54.33 53.38 59.22 58.34 30.37 59.52 36.91

aFR∗ 54.33 53.39 59.18 58.34 30.37 59.52 36.89

Baselines
aC 53.27 48.88 55.85 50.62 31.77 60.34 43.84
aM 53.55 53.99 58.40 53.80 30.42 59.63 37.86

(c) ALL

Table 19: Absolue translation performances in terms of BLEU on the different subset (IN, OOD, ALL) of each
dataset of our translation OOD performance benchmark.



spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Scenario Score

s0

Ours
aDα +4.19 +2.78 +5.38 +5.15 +2.61 +4.19 +2.62
aFR +2.78 +2.78 +3.50 +3.91 +2.03 +3.91 +2.11

Baselines

aE +3.36 +3.36 +3.42 +3.36 +1.79 +3.36 +1.79
aL +4.89 +4.89 +5.40 +4.89 +2.65 +4.89 +2.65
aMSP -1.48 -1.48 -2.07 -1.48 -1.07 -1.48 -1.07
aCQE +0.73 +0.73 +0.80 +0.73 +1.61 +0.73 +1.61

s1

Ours
aD∗

α
+0.36 +0.36 +0.44 +0.36 -0.26 +0.36 -0.26

aFR∗ +0.35 +0.35 +0.45 +0.35 -0.29 +0.35 -0.29

Baselines
aC +1.17 +1.17 +0.29 +1.17 +0.40 +1.17 +0.40
aM -0.00 -0.00 +0.23 -0.00 -0.22 -0.00 -0.22

(a) IN

spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Scenario Score

s0

Ours
aDα +6.33 +22.64 +12.72 +8.62 +5.28 +4.74 +2.44
aFR +10.68 +22.34 +10.07 +5.00 +3.75 +2.91 +2.85

Baselines

aE -1.29 -2.43 +3.85 +1.94 +3.61 +1.14 +2.31
aL +0.89 -0.70 +12.12 +7.06 +5.82 +1.94 +2.24
aMSP +1.63 +3.57 -0.00 -2.36 -1.90 -17.87 -17.52
aCQE +1.88 +1.30 +5.23 +0.01 +1.00 +0.29 +2.25

s1

Ours
aD∗

α
+4.43 +7.93 +6.95 +0.98 -0.98 -14.92 -8.54

aFR∗ +4.42 +7.95 +6.82 +0.98 -0.97 -14.92 -8.56

Baselines
aC +1.11 +1.32 -0.12 +0.14 +0.75 +0.17 +0.02
aM +1.03 +3.97 +1.86 -2.34 -1.14 +0.36 +2.55

(b) OOD

spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Scenario Score

s0

Ours
aDα +11.24 +16.46 +10.46 +8.80 +4.14 +4.37 +3.20
aFR +10.55 +16.46 +8.20 +5.89 +3.13 +3.56 +2.99

Baselines

aE +4.61 +3.83 +6.80 +2.85 +2.98 +2.52 +2.66
aL +8.50 +10.04 +10.36 +7.51 +4.42 +3.80 +3.10
aMSP +1.01 +3.43 -2.24 -2.16 -1.72 -2.68 -9.74
aCQE +1.44 +0.78 +2.33 -0.90 +1.67 +0.55 +1.26

s1

Ours
aD∗

α
+4.07 +8.49 +4.03 +7.53 -0.85 -0.02 -6.20

aFR∗ +4.08 +8.50 +3.98 +7.52 -0.85 -0.03 -6.23

Baselines
aC +3.02 +3.99 +0.65 -0.19 +0.56 +0.80 +0.72
aM +3.30 +9.10 +3.20 +2.99 -0.79 +0.08 -5.26

(c) ALL

Table 20: Detailed impact of the OOD filtering on the different subset for each task.



spa-cat spa-por nld-afr spa:tat-parl deu:news-parl spa:tat-EMEA deu:news-EMEA
Dataset ALL IN OOD ALL IN OOD ALL IN OOD ALL IN OOD ALL IN OOD ALL IN OOD ALL IN OOD

Scenario Score

s0

Ours
aDα 32% 18% 82% 44% 20% 93% 30% 20% 75% 31% 20% 54% 29% 20% 38% 19% 18% 20% 14% 20% 7%
aFR 34% 20% 86% 44% 20% 93% 26% 17% 69% 24% 17% 39% 28% 20% 37% 16% 17% 12% 15% 19% 10%

Baselines

aE 24% 20% 41% 25% 20% 36% 28% 20% 61% 20% 20% 20% 30% 20% 40% 15% 20% 4% 14% 20% 9%
aL 27% 19% 59% 33% 19% 61% 30% 20% 74% 27% 19% 44% 30% 19% 40% 14% 19% 6% 13% 19% 6%
aMSP 22% 18% 38% 27% 18% 45% 17% 19% 10% 16% 18% 12% 14% 20% 8% 41% 18% 86% 48% 20% 76%
aCQE 21% 20% 25% 20% 20% 19% 22% 20% 31% 13% 20% 0% 28% 20% 37% 14% 20% 1% 25% 20% 31%

s1

Ours
aD∗

α
26% 19% 51% 34% 19% 65% 26% 20% 56% 43% 19% 89% 12% 19% 6% 45% 19% 95% 40% 19% 62%

aFR∗ 26% 19% 51% 35% 19% 65% 25% 19% 55% 43% 19% 89% 12% 18% 6% 45% 19% 95% 40% 18% 62%

Baselines
aC 21% 17% 37% 24% 17% 38% 17% 16% 22% 12% 17% 2% 10% 11% 10% 12% 17% 2% 6% 11% 0%
aM 27% 20% 51% 38% 20% 74% 27% 20% 55% 33% 20% 59% 17% 20% 14% 45% 20% 96% 50% 20% 81%

Table 21: Share of the datasets removed when taking γ so that we keep 80% of the IN distribution.
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Figure 13: Gain in translation performances when
filtering OOD samples with our method on different
datasets and language pairs.

Table 22: Correlation between OOD scores and
translation metrics BLEU and BERT-S on domain shifts
datasets.

BERT-S BLEU COMET
ALL IN OUT ALL IN OUT ALL IN OUT

Score

s0

Ours
aDα -0.31 -0.25 -0.18 -0.19 -0.22 -0.09 -0.29 -0.29 -0.17
aFR -0.37 -0.29 -0.27 -0.25 -0.25 -0.19 -0.34 -0.33 -0.25

Bas.

aE 0.16 0.25 0.33 0.22 0.20 0.39 0.21 0.26 0.33
aL 0.46 0.50 0.48 0.48 0.45 0.49 0.48 0.50 0.46
aMSP 0.12 0.19 0.29 0.20 0.16 0.37 0.16 0.19 0.28
aCQE -0.03 0.12 0.28 -0.01 0.05 0.13 0.14 0.25 0.45

s1
Ours

aD∗
α

-0.24 0.01 0.10 -0.08 -0.00 0.19 -0.15 -0.02 0.13
aFR∗ -0.21 0.02 0.08 -0.08 0.01 0.15 -0.14 -0.02 0.12

Bas. aM -0.20 -0.02 0.00 -0.04 0.00 0.09 -0.13 -0.02 -0.00

of different OOD samples that might occur. There-
fore we choose to fix the False Positive Rate of our
detector by constraining the amount of known IN
distribution samples that are classified as OOD.

H Negative results

H.1 Different aggregation of OOD metrics
Most of our detectors are initially classification
OOD detectors that we adapted for text generation
by averaging them over the generated sequences
and using this aggregated score as a score for the
whole sequence. We experimented with other ag-
gregations such as the standard deviation or the
min/max along the sequence. If the standard devia-
tion gave relatively good results they were still less
interesting that the naive average.

H.2 Negentropy of bag of distributions
We introduced in Sec. 3.3 the bag of distributions
as a way to aggregate a sequence of probability
distribution and compare it to a set of reference
using information projections Sec. 3.3. A natural
idea would be to apply the Negentropy methods
(Sec. 3.2) to these aggregated distributions.

More formally given a sequence of probability
distribution Sθ(x) = {pTθ (x, ŷ⩽t)}nt=1 we would
compute its bag of distributions:

p̄θ(x) ≜
1

|y|

|y|∑
t=1

pθ(x, y⩽t) (7)

And then compute as novelty score:

JD(p) = D(p∥U). (8)

Further experiments have shown that this pro-
cess was unable to discriminate OOD samples or
improve performance translation. We suspect that
the uncertainty at each step is key to capture the
behavior of the language model and that this uncer-
tainty information is lost when averaging probabil-
ity distribution along the sequence.



Table 23: Detailed impacts on NMT performance results per tasks (Domain- or Language-shifts) of the
different OOD detectors with a threshold defined to keep 99% of the IN data. We present results on the different
part of the data: IN data, OOD data and the combination of both, ALL. For each we report the absolute average
BLEU score (Abs.), the average gains in BLEU (G.s.) compared to a setting without OOD filtering (fθ only) and the
share of the subset removed by the detector (R.Sh.).

Domain shifts Language shifts
IN OOD ALL IN OOD ALL

Abs. G.s R.Sh Abs. G.s R.Sh Abs. G.s R.Sh Abs. G.s R.Sh Abs. G.s R.Sh Abs. G.s R.Sh

47.1 +0.0 0.0% 43.4 +0.0 0.0% 45.3 +0.0 0.0% 60.5 +0.0 0.0% 18.1 +0.0 0.0% 43.9 +0.0 0.0%

s0

Ours
aDα 47.3 +0.2 1.0% 44.2 +0.8 5.5% 45.8 +0.5 3.2% 60.7 +0.2 1.0% 21.8 +3.7 34.5% 49.2 +5.4 14.6%
aFR 47.3 +0.2 1.0% 44.1 +0.7 7.2% 45.7 +0.4 4.1% 60.7 +0.2 1.0% 22.3 +4.2 37.0% 49.7 +5.9 15.8%

Bas.
aE 47.3 +0.2 1.0% 44.0 +0.5 1.9% 45.6 +0.4 1.4% 60.9 +0.4 1.0% 18.7 +0.6 17.6% 46.0 +2.1 7.3%
aL 47.3 +0.2 0.9% 44.0 +0.6 1.9% 45.6 +0.4 1.4% 60.8 +0.3 0.9% 19.1 +0.9 18.4% 46.2 +2.3 7.6%
aMSP 47.0 -0.1 1.0% 40.3 -3.1 14.7% 43.5 -1.8 7.8% 60.4 -0.1 1.0% 18.5 +0.3 4.3% 44.3 +0.5 2.5%

s1
Ours

aD∗
α

47.0 -0.1 0.9% 40.3 -3.1 26.5% 43.9 -1.4 13.7% 60.5 -0.0 0.9% 19.3 +1.1 10.5% 45.3 +1.4 4.8%
aFR∗ 47.0 -0.1 0.9% 40.3 -3.1 26.6% 43.9 -1.3 13.8% 60.5 -0.0 0.9% 19.3 +1.1 10.5% 45.3 +1.4 4.8%

Bas. aM 47.0 -0.1 1.0% 41.6 -1.8 18.1% 44.6 -0.7 9.6% 60.5 -0.0 1.0% 18.4 +0.3 12.1% 45.3 +1.4 5.9%


