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Abstract

The ubiquity of dynamic data in domains such as weather, healthcare, and energy
underscores a growing need for effective interpretation and retrieval of time-series
data. These data are inherently tied to domain-specific contexts, such as clinical
notes or weather narratives, making cross-modal retrieval essential not only for
downstream tasks but also for developing robust time-series foundation models by
retrieval-augmented generation (RAG). Despite the increasing demand, time-series
retrieval remains largely underexplored. Existing methods often lack semantic
grounding, struggle to align heterogeneous modalities, and have limited capacity
for handling multi-channel signals. To address this gap, we propose TRACE, a
generic multimodal retriever that grounds time-series embeddings in aligned tex-
tual context. TRACE enables fine-grained channel-level alignment and employs hard
negative mining to facilitate semantically meaningful retrieval. It supports flexible
cross-modal retrieval modes, including Text-to-Timeseries and Timeseries-to-Text,
effectively linking linguistic descriptions with complex temporal patterns. By
retrieving semantically relevant pairs, TRACE enriches downstream models with
informative context, leading to improved predictive accuracy and interpretabil-
ity. Beyond a static retrieval engine, TRACE also serves as a powerful standalone
encoder, with lightweight task-specific tuning that refines context-aware represen-
tations while maintaining strong cross-modal alignment. These representations
achieve state-of-the-art performance on downstream forecasting and classification
tasks. Extensive experiments across multiple domains highlight its dual utility,
as both an effective encoder for downstream applications and a general-purpose
retriever to enhance time-series models 2.

1 Introduction

Time-series data is prevalent across critical domains such as healthcare, weather, and energy [1, 2, 3, 4].
Crucially, such data rarely exists in isolation in real-world applications. It is typically accompanied
by rich, domain-specific textual context, e.g., clinical notes and weather reports [5, 6, 7]. This
inherent multimodality necessitates a shift beyond unimodal time-series analysis towards multi-modal
frameworks that seamlessly integrate these heterogeneous data types.

Cross-modal retrieval between time series and text is not only natural but necessary. As shown
in Figure 1, given a flash flood report describing extreme rainfall and high wind gusts, retrieving
historical time series that exhibit similar patterns can support downstream tasks such as weather
forecasting and disaster warning. Such retrieval also enables the integration of semantically aligned
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Flash Flood Event Report:
A flash flood occurred … Extremely moist air and a weak shortwave trough triggered persistent heavy showers. Rainfall totals reached 6–10+ inches, with a 
record-breaking 16.17 inches. The flooding caused widespread damage before subsiding around midday.

Channel-level Description: 
The temperature ranged from a low of 20.6°C to a high of 33.9°C... There were sporadic instances of precipitation, with a significant peak of 6.0 mm 
…Relative humidity fluctuated between 48.0% and 100.0%, with higher values …Visibility remained relatively high, mostly around 16.09 km, with occasional 
drops… Wind direction showed variability…Wind velocity varied, with notable gusts reaching up to 5.02 m/s…The sky cover ranged from clear to scattered 
clouds…

What weather conditions are likely to follow this flash flood event?

Top-1 Retrieved Time Series (Label: Flash Flood) Cross-modal Retriever

Figure 1: A Use Case of Text-to-Timeseries Retrieval

external knowledge into time series foundation models [8, 9, 10], guiding model attention to relevant
segments, and facilitating more generalizable inference via retrieval-augmented generation (RAG).

Despite the clear demand, time-series retrieval, particularly in a cross-modal context, remains
significantly underexplored. Existing approaches often fall short in several ways [11, 12, 13, 14, 15].
They overlook the rich textual context within time-series data and rely on shallow similarity measures
rather than contextual understanding, leading to a lack of effective cross-modal alignment between
time-series signals and their associated textual descriptions. Moreover, they struggle with the multi-
channel nature of real-world time series, where each channel can encode distinct yet interrelated
information [16, 17, 18]. Importantly, prior work rarely explores retrieval-augmented generation
(RAG) for time series foundation models, restricting their utility in augmenting downstream models.

To address this gap, we introduce TRACE, a novel multimodal Time-series Retriever with Aligned
Context Embedding. As illustrated in Figure 2, TRACE adopts a two-stage training: a pre-training
stage for the time-series encoder, followed by a cross-modal alignment. To address the challenge
of modeling multivariate time series, we introduce Channel Identity Tokens (CITs) into a masked
autoencoder framework pre-trained at both the token level and channel level in Stage 1. CITs guide
the model to attend to unique channel behaviors and enable the learning of channel disentangled
representations, overcoming the limitation of conventional decoder-only foundation models which
often yield embeddings lacking discriminative power for retrieval and classification. In Stage 2, we
propose a novel component for effective cross-modal alignment between time-series embeddings
and their textual counterparts through a hierarchical hard negative mining strategy. At the channel
level, we identify distractor single-channel segments that exhibit misleadingly similar patterns. At
the sample level, we dynamically mine hard negatives by selecting highly similar text descriptions
but with divergent semantics. This dual-level contrastive learning encourages the model to learn both
local precision and global consistency, leading to strong generalization in downstream tasks.

Temperature ranges …

CIT CIT

Humidity fluctuates …

CIT

Precipitation is …

token-level

TRACE: Multimodal Time-series Retriever

channel-level sample-level

MMTS 
Dataset

Stage 1: Pre-training Stage 2: Alignment
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forecasting
classification
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Figure 2: Overview of TRACE. CIT stands for Channel Identity Tokens, which serve as a key bridge
to connect two stages. MMTS denotes multimodal time series.

TRACE is designed with a two-fold utility. It acts as a general-purpose retriever, which provides
relevant information via a soft token interface. The soft token summarizes retrieved time-series
snippets into a latent vector, which is then prepended as a conditioning token, guiding a frozen
time-series foundation model towards more context-aware predictions. Moreover, TRACE serves as a
powerful standalone encoder, producing rich embeddings that achieve state-of-the-art performance on
downstream forecasting and classification tasks. Extensive experiments on both public benchmarks
and our curated multimodal dataset validate the effectiveness of TRACE, demonstrating superior
retrieval accuracy. The retrieved context substantially boosts downstream time-series models in
retrieval-augmented settings, with up to 4.56% increase in classification accuracy and 4.55% reduction
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in forecasting error. In addition, TRACE produces high-quality time-series embeddings that achieve
state-of-the-art results on a wide range of forecasting and classification benchmarks.

The contributions of this paper are: (1) we propose the first multimodal retriever, TRACE, that
learns semantically grounded time-series embeddings through fine-grained dual-level alignment;
(2) we establish new benchmarks on cross-modal retrieval between time series and text, and (3)
extensive validation showcases that TRACE consistently delivers state-of-the-art performance both as
a general-purpose retriever for time-series models and a powerful encoder for time series analysis.

2 Related Work

Time Series Forecasting. Recent work on time-series forecasting has led to a range of model
architectures, each emphasizing different inductive biases. Transformer-based models leverage self-
attention to capture long-range dependencies and flexible temporal dynamics [19, 20, 21, 22, 23, 24,
25, 26, 27, 28]. Linear-based models assume time-series signals can be effectively decomposed and
modeled with simple linear projections [29, 30]. Frequency-domain and mixing-based approaches
aim to model periodicity and multi-scale temporal structures using Fourier transforms or token
mixers [31]. Recently, a variety of time series foundation models have emerged. Timer-XL [9]
leverages Kronecker attention and is pre-trained with multivariate next-token prediction to enable
unified, long-context forecasting. Chronos [32] tokenizes time series via scaling and quantization, and
trains a T5-style model for zero-shot probabilistic forecasting. Time-MoE [10] introduces a sparse
mixture-of-experts architecture to support variable horizons and input lengths. TimesFM [33] uses
input patching and is pre-trained on large-scale data for strong zero-shot performance. Moment [8] and
Moirai [34] adopt masked prediction pretraining to enable generalization across diverse multivariate
forecasting tasks. While these models perform well on forecasting tasks, they are generally unimodal
and not designed for retrieval or integration of external context, highlighting a gap addressed by our
cross-modal retrieval framework.

Time Series Language Models. Recently, several multimodal encoders have been proposed to
integrate time series and text [35, 36, 37, 38, 39, 40], which aim to leverage the generalization
capabilities of large language models by reprogramming time series into token-like representations
or textual prototypes. ChatTime[41] models time series as a foreign language by normalizing and
discretizing continuous signals into token sequences, which are then processed by a large language
model (LLM). ChatTS[42] supports both understanding and reasoning by fine-tuning on synthetic
datasets generated via attribute-based sampling. TimeXL[43] combines a prototype-based time series
encoder with a multimodal prediction framework to capture explainable temporal patterns guided
by aligned textual cues. However, they primarily treat text as global context and lack fine-grained
alignment between structured time series components and textual semantics, leading to suboptimal
cross-modal embedding or retrieval.

Time Series Retrieval System. Recent work has explored retrieval systems for time series data,
primarily within a unimodal setting [44, 13, 45, 15]. CTSR [11] supports content-based time-series
retrieval using contextual metadata. TimeRAF [12] integrates a trainable retriever with task-specific
time-series knowledge bases for downstream augmentation. TS-RAG [14] retrieves relevant time
series segments using pre-trained encoders and combines them via a mixture-of-experts module to
improve forecasting. However, all of these methods rely solely on time series embeddings and do not
incorporate textual signals, limiting their ability to support multimodal and context-aware retrieval.

3 Proposed Method

As shown in Figure 3, TRACE learns robust time series representations through a masked reconstruction
objective with channel-biased attention in the pre-training stage (Sec. 3.2). Then, each time series
channel is aligned with its corresponding textual description via fine-grained contrastive learning
in the cross-modal alignment stage (Sec. 3.3). We further propose a novel retrieval-augmented
generation strategy for time series foundation models, where TRACE retrieves relevant context for
downstream tasks (Sec. 3.4). This modular design enables both strong standalone performance and
effective integration with existing time series foundation models.
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Figure 3: Illustration of TRACE, which encodes multivariate time series using channel-biased attention
and aligns token embeddings with its corresponding textual description (e.g., zi and zcxt) through
cross-attention and dual-level contrastive learning. z′cxt indicates an in-batch hard negative sample.

3.1 Problem Definition

Multimodal Time-series. Let X ∈ RC×T denote a multivariate time series instance, where C is the
number of channels (or variables) and T is the number of time steps. We assume the availability of
two types of textual information aligned with X. First, for each channel c in an instance X, there
is a corresponding textual description τc that summarizes the behavior or trend of Xc over the time
window [0, T ). These descriptions are denoted as T ch = {τc|c = 1, · · · , C}. Additionally, there is a
sample-level context τcxt summarizing the overall condition occurring during the same time window,
which could be weather reports or clinical narratives, depending on the application domain.

Task Objectives. The goal is to jointly embed the multivariate time series X and its corresponding
textual context T = T ch ∪ {τcxt} into a shared space that supports multiple downstream tasks,
including: (1) forecasting future values XT :T+H ∈ RC×H for the next H time steps; (2) classification,
where the model predicts a categorical label for each time series instance; and (3) cross-modal retrieval,
where the goal is to retrieve relevant time series X based on a text query τcxt or retrieve historical
relevant reports from T given a time series query, etc.

3.2 Stage 1: Time Series Encoder Pre-training

Time Series Tokenization. Given an input multivariate time series X ∈ RC×T , we divide the
temporal dimension into non-overlapping (or strided) patches of length P , resulting in T̂ = ⌊T

P ⌋
patches per channel. Each patch is flattened and linearly projected into a d-dimensional embedding
space using a learnable linear projection. This converts each channel into a sequence of patch tokens
Xpatch

c ∈ RT̂×d, for ∀c ∈ {1, . . . , C}. To capture localized semantics within each channel, we
prepend a learnable channel identity token [CIT] ∈ R1×d to the patch token sequence of each channel.
These tokens serve as explicit representations of channel-level summaries. Each token is uniquely
indexed and not shared across channels, initialized from a standard Gaussian distribution, and trained
jointly with the model. This design allows the model to differentiate between channels and effectively
aggregate channel-wise patterns. We then concatenate all tokenized channels into a single sequence
and insert a global learnable [CLS] token at the beginning of the full sequence. The final token
sequence for a multivariate instance is structured as:

H =
[
[CLS]; [CIT]1;X

patch
1 ; [CIT]2;X

patch
2 ; . . . ; [CIT]C ;X

patch
C

]
∈ RL×d, (1)

where L = C(T̂ + 1) + 1 is the total sequence length after flattening all channel in 1. This
tokenization strategy preserves both temporal and structural granularity: patchification encodes
token-level patterns; [CIT] summarizes intra-channel dynamics; and [CLS] provides a global and
sample-level embedding that can be used for downstream retrieval and classification tasks.

Channel-biased Attention and Rotary PE. To encode channel dependencies in multivariate time
series, we introduce a novel Channel-biased Attention (CbA) mechanism that incorporates both induc-
tive bias for channel disentanglement and temporal order encoding via rotary positional embeddings
(RoPE) [46]. In our CbA, we design a biased attention mask M ∈ {0, 1}L×L to prevent unintended
semantic entanglement across heterogeneous variables. Specifically, for each channel identity token
[CIT]c located at index ic in the flattened sequence, we define Mic,j = 0 if token j /∈ channel
c and 1 otherwise, and Mk,j = 1 if token k is not a [CIT]. Let Q,K,V ∈ RL×d be the learned
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linear projections of the input token embedding H. We apply RoPE to the query (Q) and key (K)
vectors before computing attention. RoPE is applied independently within each channel to the T̂
temporal tokens, and is not applied to the channel identity tokens, which act as position-agnostic
aggregators. The attention weight between tokens i and j in a RoPE-enhanced attention is given by
αij = softmaxj

(
Q⊤

i Rθ∆tij
Kj/

√
d+ logMij

)
, where Rθ∆tij

(·) denotes a rotation by angle θ∆tij ,
and ∆tij is the relative time difference between tokens i and j in their original unflattened sequence.
This is crucial in the multichannel setting, as two tokens that are close in actual time may appear far
apart in the flattened sequence. Using ∆tij ensures that the position encoding remains consistent
with the true temporal structure rather than the flattened channel order. Mij mask enforces channel
disentanglement, while still allowing rich token-level interactions across the full sequence.

Pre-training Setup. We adopt an encoder-only Transformer [47] with multi-head channel-based
attention layers in TRACE. We apply reversible instance normalization [48] to multivariate time series
before tokenizing and embedding. A fixed proportion of these tokens is randomly masked with a
mask ratio of γ, and the model is pre-trained to reconstruct the missing values based on the unmasked
context. We use mean squared error (MSE) loss to supervise pre-training, encouraging the model to
capture cross-channel dependencies while learning transferable representations for downstream tasks.

3.3 Stage 2: Multimodal Alignment Learning

Motivation. Standard contrastive learning methods typically rely on sample-level random negatives.
However, textual descriptions frequently reference specific variables (e.g., temperature spikes, wind
gusts), which cannot be precisely aligned using a single global embedding. To address this, we
introduce channel-level alignment that explicitly models the interaction between individual time-
series channels and their corresponding textual context. This not only enhances semantic precision
but also promotes modularity in representation learning and enables variable-specific interactions.

Cross-attention Between Modalities. After pre-training the time-series encoder via masked recon-
struction, we obtain hidden embedding Hout ∈ RL×d from the final transformer layer, where L is the
full sequence length after flattening all channels. From this, we extract the [CLS] token embedding
h[CLS] ∈ Rd, and the set of channel identity token embeddings H[CIT] = [h1, . . . ,hC ] ∈ RC×d, each
corresponding to a [CIT] token and serving as fine-grained anchors that enable structured reasoning
at the channel level. Let τcxt and τc denote the sample-level and the c-th channel textual context for a
time series instance, respectively. The textual inputs are first encoded using a pre-trained language
model (e.g., a frozen Sentence-Transformer [49]), followed by a learnable linear layer that projects
them into the same d-dimensional embedding space as the time series representations, collectively
denoted as ft(·). This yields semantic embeddings zcxt = ft(τcxt) ∈ Rd for the sample-level context
and zc = ft(τc) ∈ Rd for each channel-level description. We further apply a cross-attention between
H[CIT] ∈ RC×d and channel text embeddings Zch = [z1, . . . , zC ] ∈ RC×d, allowing information
to be fused across aligned channels. This interaction allows the model to refine its channel-wise
time-series representations using semantically aligned textual information.

Dual-level Hard Negative Mining. To enhance the discriminative capacity of the model, we develop
a dual-level hard negative mining strategy that introduces fine-grained contrastive pressure at both the
sample and channel levels. This approach enables the model to distinguish not only between unrelated
time series and text, but also between subtly confusable pairs that share superficial temporal similarity
but diverge semantically. For each time series instance i, we mine negative candidates from all other
sample-level reports in the same batch based on embedding cosine similarity. For a certain channel,
we mine channel-level negatives from a broader candidate pool that includes both intra-instance
distractors (other channels within the same sample) and inter-instance distractors (same-indexed
channels across different samples). Specifically, for the c-th channel of the i-th instance, we define
the sample-level and channel-level negative candidate set as

N (i)
cxt = TopK

{
sim(h

(i)
[CLS], z

(j)
cxt) | j ̸= i

}
,N (i,c)

ch = TopK

{
sim(h(i)

c , z
(j)
c′ ) | c′ ̸= c or j ̸= i

}
,

where K is number of negative samples at each level. Symmetric negative sets are defined in the
reverse direction for z(i)cxt and z

(i)
c by swapping the roles of time series and text. We then compute a

bidirectional InfoNCE loss at sample levels: Ltext→ts
global , Lts→text

global , and similarly for channel-level losses.
The total alignment objective is the average of both directions (Formulations detailed in Appendix C):
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Lalign =
1

2

(
Ltext → ts

global + Lts → text
global

)
+ λch · 1

2

(
Ltext → ts

channel + Lts → text
channel

)
, (2)

where λch controls the contribution of channel-level alignment. The entire alignment objective is
optimized jointly with the trainable parameters of the time series encoder in the pre-training stage
and the linear projection head in ft, while keeping the backbone language model frozen.

3.4 Retrieval-augmented Generation with Time Series Foundation Models

As shown in Figure 2, TRACE enables retrieval-augmented generation (RAG) for time series foundation
models, inspired by the success of RAG in NLP [50, 13]. Given a query time series, TRACE computes
its [CLS] token embedding and retrieves the top-R most relevant multimodal pairs (Xi, τ icxt)

R

i=1

from the pre-built multimodal database based on the embedding similarity, where Xi is a historical
multivariate time series and τ icxt is the associated sample-level context. Specifically, the time series
component is encoded to h

(i)
ts ∈ Rd, and the textual context τ icxt is encoded to z

(i)
cxt ∈ Rd (as in

Sec. 3.3). These representations are concatenated, stacked, and mapped through a single trainable
projection layer to generate a final, dense soft token P, which serves as a continuous prompt that is
prepended to the query sequence input. This design allows the downstream forecaster to incorporate
external knowledge without architectural modification. Importantly, the base time-series foundation
model remains frozen during training; only the projection layer and a lightweight task-specific
head are updated. This approach ensures efficiency and model-agnosticism, enabling plug-and-play
integration across diverse backbone architectures. In effect, TRACE acts as a structured, external
memory, enriching the model’s input with historically grounded and semantically aligned context.

4 Experiments

We evaluate TRACE from three key perspectives: (1) its effectiveness in cross-modal retrieval (Sec. 4.2)
and time-sereis retrieval (Sec. 4.3) compared to strong baselines, (2) its utility as a retriever in retrieval-
augmented forecasting pipelines (Sec 4.4), and (3) its generalization ability as a standalone encoder
for forecasting and classification (Sec. 4.5). Experiments are conducted on public benchmarks and
our curated multimodal dataset designed to assess cross-modal alignment and retrieval performance.

4.1 Experimental Setting

Dataset. To support real-world multimodal time series applications, we construct a new dataset in the
weather domain with three aligned components: multivariate time series, sample-level event reports,
and synthetic channel-level descriptions, specifically for downstream forecasting and event-type
classification tasks. The event reports are sourced from the NOAA Events Database [51], while the
associated time series data are retrieved from the NOAA Global Historical Climatology Network
(GHCN) [52]. We focus on stations and time windows characterized by frequent severe weather events
and extract historical multivariate time-series segments at multiple temporal resolutions, anchored at
event onset. To enhance data diversity and model robustness, we also sample non-event (i.e., typical)
periods from the same stations, as well as from geographically distinct locations. Each time-series
segment includes seven variables (e.g., temperature, relative humidity, precipitation) and is annotated
with either a specific event type or a non-event label. To evaluate performance in the univariate
setting, we further incorporate the three largest subsets—Health, Energy, and Environment—from
TimeMMD [5], a multimodal benchmark designed for time series forecasting, where each single-
variate instance is aligned with a sample-level textual report (e.g., clinical notes, incident logs). This
setting allows us to assess the model’s generalization across diverse domains and varying channel
configurations. Full dataset details and illustrative examples are provided in Appendix B.

Baselines. We evaluate against the state-of-the-art traditional time series models and recent time series
foundation models. Traditional baselines include DLinear [29], iTransformer [24], PatchTST [22],
TimesNet [53], TimeMixer [54], and multimodal model FSCA [37]. These models are trained from
scratch on each task. For foundation models, we include Chronos[32], TimesFM [33], Timer-XL [9],
Time-MoE [10], Moirai [34] and Moment [8]. We refer to Appendix D.1 for baseline details.

Implementation Details. The default TRACE consists of a 6-layer Transformer encoder with a hidden
dimension of 384 and 6 attention heads. We use the AdamW [55] optimizer with a linear warmup
followed by a cosine decay schedule. Pre-training is conducted with a mask ratio of 0.3, and runs for
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up to 400 epochs. We take 32 in-batch negative samples at each level in the alignment stage and run
for up to 300 epochs. All experiments are conducted over five runs with different random seeds on
NVIDIA A100 40GB GPUs. We refer to Appendix D.2 for experiment configurations and details.

4.2 Cross-modal Retrieval

Alignment Setup. To evaluate the model’s retrieval performance, we conduct a controlled comparison
by replacing the encoder in TRACE with several strong time series foundation models that produce
fixed-length embeddings. Each encoder is jointly fine-tuned end-to-end with a lightweight projection
layer following the sentence encoder, using a contrastive learning objective. While TRACE leverages
[CLS] and [CIT] embeddings for dual-level alignment, other baselines use mean pooling over the
sequence due to their architectural constraints.

Evaluation Metrics. TRACE supports flexible retrieval modes, including cross-modal (Text-to-TS
and TS-to-Text) and unimodal TS-to-TS retrieval. For cross-modal retrieval, a query in one modality
is used to retrieve its corresponding counterpart in the other modality based on embedding cosine
similarity. The evaluation includes several metrics:

• Label Matching uses P@k to measure the precision of correctly labeled items among the top-k
retrieval, and Mean Reciprocal Rank (MRR) to assess the rank of the first correct item.

• Modality Matching evaluates whether a query retrieves its paired instance from the opposite
modality, using P@k for top-k precision and MRR for the rank of the true counterpart.

• Text Similarity uses ROUGE between the query text and the text paired with the top-1 retrieved
time series (for text-to-ts scenario), or between the top-1 retrieved text and the original text paired
with the query time series (for ts-to-text scenario).

• Time Series Similarity computes MAE and MSE between the time series linked to the query and
that of the top-1 retrieved pair, defined similarly to Text Similarity.

Results. As shown in Table 1, TRACE consistently achieves state-of-the-art performance in two
retrieval settings with approximately 90% top-1 label matching and 44% top-1 modality matching.
Notably, this retrieval precision surpasses the classification accuracy of all train-from-scratch models
reported in Table 4, highlighting the strength of alignment supervision in learning discriminative
representations. Among baselines, Moment outperforms other foundation models, suggesting that
encoder-only architectures are better suited for dense retrieval tasks. In contrast, TRACE provides
fine-grained embeddings for cross-modal alignment, enabling it to recover semantical counterparts
with high precision.

Table 1: Retrieval results on 2,000 bidirectional Text–Timeseries query pairs. “Random” indicates a
non-informative retriever that ranks candidates uniformly at random.

Label Matching Modality Matching Text Time Series
Retriever P@1 (↑) P@5 (↑) MRR (↑) P@1 (↑) P@5 (↑) MRR (↑) ROUGE (↑) MAE (↓) MSE (↓)

Random 42.61 47.50 0.583 0.00 0.00 0.00 0.416 0.874 1.653

T
S-

to
-T

ex
t w/ Time-MoE 46.46 43.98 0.612 1.79 5.93 0.052 0.482 0.837 1.607

w/ Timer-XL 36.34 38.16 0.543 4.29 12.61 0.090 0.482 0.793 1.493
w/ TS2Vec 50.47 48.72 0.651 4.37 14.57 0.112 0.503 0.784 1.462
w/ Moment 55.73 53.18 0.691 7.78 21.68 0.154 0.515 0.747 1.415
TRACE 90.08 77.60 0.940 44.10 70.24 0.560 0.717 0.403 0.771

Te
xt

-t
o-

T
S w/ Time-MoE 57.08 52.22 0.656 0.75 2.89 0.031 0.460 0.857 1.578

w/ Timer-XL 63.91 58.71 0.731 2.94 9.47 0.073 0.463 0.821 1.568
w/ TS2Vec 60.28 56.41 0.706 7.42 23.70 0.184 0.471 0.806 1.490
w/ Moment 64.67 59.53 0.740 5.83 18.15 0.133 0.488 0.778 1.467
TRACE 89.63 78.39 0.938 43.72 69.84 0.557 0.713 0.411 0.793

4.3 Timeseries-to-Timeseries Retrieval

To further assess the effectiveness of TRACE, we conduct a TS-to-TS retrieval task where each query
is matched against all other time series to identify the most semantically similar ones. The evaluation
is performed using the label matching metrics (Sec. 4.2), including Precision@1, Precision@5, and
Mean Reciprocal Rank (MRR), alongside query time as a proxy for computational efficiency.

Baseline Setup. We compare TRACE, against several representative time series retrieval methods.
Euclidean Distance (ED) serves as a simple statistical baseline based on mean-pooled raw time
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series. Dynamic Time Warping (DTW), a classic elastic matching method, evaluates similarity by
aligning sequences with potential shifts. SAX-VSM [56] leverages symbolic aggregation and vector
space modeling to convert time series into symbolic representations for efficient textual retrieval.
CTSR [11] is a learnable baseline that uses contextual metadata to enhance retrieval.

Table 2: TS-to-TS Retrieval perfor-
mance comparison. Evaluation is con-
ducted over 1000 randomly sampled
weather time-series queries.

Method P@1 P@5 MRR Time (s)
ED 0.548 0.762 0.644 0.083
DTW 0.380 0.770 0.543 2273.93
SAX-VSM 0.551 0.769 0.649 0.343
CTSR 0.682 0.893 0.802 0.057
TRACE 0.900 0.986 0.938 0.045

Analysis. As shown in Table 2, TRACE substantially out-
performs all baselines across accuracy metrics while main-
taining the lowest retrieval latency. Notably, despite the
design simplicity of SAX-VSM and its moderate perfor-
mance gains over raw ED, it fails to capture deep temporal
or semantic patterns. CTSR, while benefiting from struc-
tured cues, struggles to generalize as effectively in purely
time-series scenarios. The results suggest that TRACE,
when equipped with task-driven objectives and textual
alignment-aware training, provides not only superior re-
trieval quality but also enables scalable and efficient re-
trieval pipelines. A detailed case study on TS-to-TS retrieval is presented in Appendix D.8, illustrating
how TRACE’s structured aggregation across all channels effectively captures global semantics and
highlights the most semantically dominant channels contributing to retrieval relevance.

4.4 Retrieval-augmented Time Series Forecasting

Table 3: Forecasting performance on Weather dataset
for next 24 steps under different retrieval-augmented
generation settings.

Timer-XL Time-MoE Moment TRACE

Setting MAE MSE MAE MSE MAE MSE MAE MSE

w/o RAG 0.729 1.055 0.635 0.903 0.645 0.816 0.576 0.718
w/ TS-only 0.720 1.009 0.621 0.801 0.628 0.797 0.556 0.698
w/ TS+Text 0.712 0.984 0.611 0.787 0.631 0.801 0.555 0.696

Setup. We use TRACE to retrieve the
most relevant timeseries–text pairs from
the curated corpus based on time-series em-
bedding similarity, which is then passed
through trainable linear layers to produce
a soft prompt. For TS-only setting, the
prompt is derived solely from the retrieved
raw time series, denoted as hts; for TS+Text,
we concatenate hts and semantic embed-
ding zcxt from the retrieved text to form the prompt. This soft prompt is then prepended to the query
for the downstream forecasting layer, without fine-tuning the pre-trained model weights. We refer
to Appendix D.5 for implementation details. We test two architecture families: (1) decoder-only
models, including Timer-XL and Time-MoE, where the prompt is prepended at every autoregressive
generation step, and (2) encoder-only models, Moment and TRACE, where the prompt is prepended
to the encoder’s hidden states and followed by a trainable forecasting head. In all settings, only the
linear projection layers for prompt generation and the forecasting head (for encoder-only) are trained.

Results. Table 3 presents the forecasting results across decoder-only and encoder-only models under
different RAG settings, augmented by top-R retrieved instances. We refer to Figure 4 (d) for ablation
on R. The results reveal that retrieval augmentation consistently improves forecasting performance
across all models, and the TS+Text setting leads to the most significant gains for decoder-only models
like Timer-XL and Time-MoE. Notably, TRACE shows marginal improvement when moving from
TS-only to TS+Text retrieval, which can be attributed to that its multimodal embedding space is already
aligned with textual descriptions. This alignment reduces the dependency on additional textual signals
and justifies TRACE ’s design as a lightweight, general-purpose retriever for RAG pipelines. Moreover,
these results indicate decoder-only models are more sensitive to the richness of retrieved modalities,
whereas encoder-only models exhibit more stable and better capacity for internalizing and utilizing
structured representations. While our RAG design adopts a simple embedding concatenation strategy,
it primarily validates the general utility of retrieved content across different model families. We leave
optimizing augmentation architectures for future work.

4.5 Standalone Time Series Encoder

Setup. To evaluate TRACE as a standalone encoder, we conduct experiments on forecasting and
classification tasks. We compare TRACE against full-shot models all trained from scratch, and time
series foundation models. All foundation models are evaluated in a zero-shot setting, except for
Moment and TRACE, which are fine-tuned on the forecasting head following the official protocol for
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Table 5: Forecasting results (MAE and MSE) of full-shot models and time series foundation models
on multi-variate (M) and univariate (U) datasets. Red: the best, Blue: the 2nd best.

Model
Weather (M) Health (U) Energy (U) Environment (U) #

1stH = 7 H = 24 H = 12 H = 48 H = 12 H = 48 H = 48 H = 336
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Z
er

o-
sh

ot
Chronos 0.560 0.937 0.646 1.094 0.650 1.106 0.987 2.019 0.263 0.148 0.554 0.553 0.536 0.612 0.583 0.671 0
Time-MoE 0.579 0.803 0.635 0.903 0.604 0.981 0.832 1.697 0.205 0.089 0.451 0.396 0.562 0.508 0.836 0.969 2
TimesFM 0.550 0.859 0.640 1.034 0.610 0.913 0.865 1.685 0.248 0.137 0.499 0.482 0.503 0.532 0.531 0.569 0
Timer-XL 0.645 0.912 0.729 1.055 0.741 1.235 0.988 1.892 0.236 0.118 0.460 0.424 0.549 0.564 0.565 0.574 0
Moirai 0.593 1.001 0.675 1.135 0.976 3.029 1.569 8.125 0.318 0.273 0.692 1.415 0.935 12.428 2.237 25.011 0
Moment 0.572 0.732 0.645 0.816 0.988 1.824 0.997 1.902 0.471 0.411 0.542 0.542 0.449 0.375 0.554 0.502 2

Fu
ll-

sh
ot

DLinear 0.593 0.778 0.691 0.884 1.178 2.421 1.132 2.256 0.410 0.273 0.546 0.512 0.561 0.515 0.581 0.534 0
iTransformer 0.518 0.707 0.591 0.814 0.676 1.072 0.911 1.747 0.267 0.124 0.487 0.399 0.486 0.425 0.511 0.458 0
PatchTST 0.529 0.723 0.599 0.826 0.656 1.034 0.902 1.708 0.263 0.121 0.489 0.407 0.493 0.462 0.525 0.511 0
TimesNet 0.497 0.654 0.581 0.786 0.820 1.376 0.969 1.903 0.270 0.127 0.496 0.398 0.520 0.486 0.489 0.430 0
TimeMixer 0.501 0.667 0.585 0.787 1.091 2.215 1.126 2.250 0.376 0.246 0.538 0.491 0.558 0.553 0.559 0.568 0
FSCA 0.496 0.642 0.780 0.762 0.756 1.240 0.969 1.904 0.278 0.136 0.520 0.466 0.497 0.462 0.511 0.496 1
TRACE 0.501 0.623 0.576 0.718 0.547 0.768 0.827 1.435 0.230 0.113 0.448 0.389 0.455 0.403 0.475 0.413 11

forecasting. For classification, we evaluate on our curated weather dataset and fine-tune all foundation
models in the same setting to ensure a fair comparison (detailed in Appendix D.6).

Table 4: Weather Event Clas-
sification Results.
Model Accuracy F1
Train-from-scratch Model
DLinear 82.37 65.78
iTransformer 84.99 68.29
PatchTST 84.78 69.13
TimesNet 86.09 68.97
TimeMixer 84.78 68.65
FSCA 85.62 69.41

Finetune a Pre-trained Model
Time-MoElarge 59.09 19.74
Momentbase 65.43 28.29
Timer-XL 72.38 33.45
Chronostiny 74.79 40.21
TRACE w/o RAG 85.20 69.98
TRACE w/ RAG 89.76 72.36

Results. As shown in Table 5, TRACE outperforms baselines across
different datasets and showcases capability on longer forecasting
horizons (H), whereas the performance of baselines exhibits con-
siderable variation. This observation justifies the cross-modal de-
sign behind TRACE, which equips the model with stronger semantic
grounding and context-aware forecasting. In the event-type clas-
sification task (as shown in Table 4), we observe that fine-tuned
foundation models underperform traditional train-from-scratch base-
lines, suggesting that their embeddings may be overgeneralized and
poorly adapted to domain-specific classification signals. In con-
trast, TRACE achieves significantly higher accuracy and F1 without
RAG, and benefits further from the retrieval-augmented setting. This
demonstrates TRACE’s ability to retain discriminative structure while
maintaining broad semantic alignment, which is essential for robust
downstream deployment. Full results of other foundation model
variants are in Appendix D.4.

5 Ablation Studies

Hyper-parameter Sensitivity. Figure 4 presents a comprehensive ablation study investigating the
effects of patch length P , positional embedding (PE) types, and the number of retrieved instances
R used in our RAG setup. Rotary PE consistently outperforms Relative PE by achieving lower
reconstruction and forecasting MSEs as well as higher classification accuracy, particularly when
using a smaller model size (d = 384). Notably, increasing the model size to d = 768 does not yield
significant improvements, especially for downstream forecasting and classification tasks, suggesting
that careful architectural design and PE choice may matter more than simply scaling parameters.
Across tasks, mid-range patch lengths (e.g., P = 6) offer the best trade-off between local and global
temporal resolution. In Figure 4 (d), we observe that time series foundation models are relatively
robust to the choice of R, and models augmented with aligned text generally outperform their TS-only
counterparts, highlighting the benefit of cross-modal retrieval in improving forecasting performance.

(a) (b) (c) (d)

Figure 4: Ablation studies on patch length, positional embedding, and hidden dimension for (a)
Reconstruction MSE, (b) Classification Accuracy (%), and (c) Average Forecasting MSE. (d) shows
ablation studies on the number of retrieved instances (R) in the RAG pipeline.
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Attention Variants. Table 6 assess the impact of key architectural choices in TRACE, including
channel identity token (CIT) and different attention mechanisms. Removing CIT results in a notable
increase in average MSE, indicating its importance for capturing fine-grained temporal dependencies.
We also replace the channel-biased attention (CbA) with two alternatives: full attention, similar to
a multivariate variant of Moment [8], and causal attention, analogous to decoder-only designs like
Timer-XL [9], Both alternatives yield degraded performance. These results highlight the effectiveness
of the architectural design in TRACE, particularly the synergy between CIT and CbA in achieving
outstanding performance. We refer to Appendix D.9 for runtime and efficiency evaluation.

Table 6: Ablation study on attention variants
in pre-training architecture.

Avg. MSE Acc. (%)

TRACE 0.670±0.013 85.20±0.13
w/o CIT 0.713±0.016 85.04±0.26
CbA⇒ Full Attn 0.705±0.013 84.18±0.11
CbA⇒ Causal Attn 0.682±0.015 83.72±0.13

44.5 44.0
43.1 43.7

★

Figure 5: Retrieval performance under vary-
ing numbers of negative samples. The best is
indicated by ⋆.

Cross-Attention and Hard Negative Sampling. Fig-
ure 5 presents an ablation study on key components
in TRACE for retrieval precision under different num-
bers of negative samples (K). “all” indicates using
the entire batch (excluding the paired counterpart)
as negatives. The default model, using nomic text
encoder [57], consistently achieves the highest per-
formance, especially when K is small, highlighting
its efficacy in low-computation settings. Removing
the final cross-attention module between time series
and text leads to notable performance degradation
under small K, suggesting that cross-modal fusion
becomes especially crucial when fewer negatives are
available. Similarly, eliminating channel-level align-
ment yields a consistent drop, confirming the strength
of the proposed dual-level contrastive mechanism.
Substituting nomic with weaker text encoders like
bge or MiniLM results in worse performance, imply-
ing that high-quality embeddings are necessary for
discriminating harder negatives. Overall, these trends
support the effectiveness of our hard negative mining
strategy and emphasize the importance of dual-level
alignment in retrieval performance. We provide em-
pirical case studies in Appendix D.7.

6 Conclusion and Future Work

We introduce TRACE, a multimodal framework that aligns time series with textual descriptions at
both channel and sample levels. Extensive experiments demonstrate that TRACE outperforms strong
baselines across retrieval, standalone encoding, retrieval-augmented settings, and generalizes well
across model families. One limitation is that TRACE relies on supervised textual alignment, which
may not be readily available in all domains. In future work, we plan to extend TRACE to support
weakly supervised and semi-supervised settings, where textual context is partially missing or noisy.
Another promising direction is integrating domain adaptation techniques to improve generalization
across unseen domains and sensor modalities (e.g., image, video). Moreover, exploring autoregressive
generation conditioned on retrieved time series–text pairs may further enhance understanding tasks in
temporal modeling. We refer to Appendix E for a detailed discussion on social impact.
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write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3,4 and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix for more details.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for
how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for repro-
ducibility. In the case of closed-source models, it may be that access to the
model is limited in some way (e.g., to registered users), but it should be possible
for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Code link will be put for the camera-ready copy
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and Appendix for more details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 4 and Appendix for more details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: See Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All section

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: All assets are properly cited

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Appendix

A Notations

The main notations used throughout this paper are summarized in Table 7.

Table 7: Summary of the notations used in this paper.
Notation Description

X ∈ RC×T Input multivariate time series with C channels and T time steps
P Patch length for time series tokenization
T̂ Number of temporal patches per channel (⌊T/P ⌋)
C Number of channels (variables)
T Number of time steps in the original sequence
H Forecasting horizon
d Embedding dimension
L Length of the flattened token sequence

Xpatch
i Embedding of the i-th patch token

M ∈ {0, 1}L×L Biased attention mask for the flatten token sequence
Hout ∈ RL×d Output token embeddings from the Transformer encoder
h[CLS] ∈ Rd Embedding of the global [CLS] token

H[CIT] ∈ RC×d Embeddings of Channel Identity Tokens (CITs)
τcxt Sample-level textual context associated with a time series
τc Channel-level textual description for the c-th variable

zcxt ∈ Rd Semantic embedding of the sample-level text
zc ∈ Rd Semantic embedding of the channel-level text
Ncxt,Nch Sample-level and channel-level hard negative candidate sets

B Dataset Curation

We curate a new multimodal time series dataset in the weather domain by extending MTBench [6]. It
is built from two primary sources:

• Event reports from the NOAA Storm Events Database[51], which contains detailed narratives
of severe weather occurrences across the U.S.

• Weather Time Series (TS) data from the NOAA Global Historical Climatology Network -
Hourly (GHCN-h)[52], covering multiple meteorological variables.

When applying TRACE to our curated dataset, the sample-level context is event report, while the
channel-level description is synthetically generated by LLMs.

B.1 Station and Event Selection

We begin by selecting over 100 U.S. locations frequently affected by severe weather events and
associated with long narrative reports. This yields approximately 5,000 event entries. For each event
location, we identify nearby GHCN-h weather stations and extract multivariate TS data anchored at
the start time of each event.

B.2 Time Series Sampling

Each event is treated as an anchor point to extract TS data at three resolutions:

• Hourly for 7 days

• Every 4 hours for 28 days
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• Daily for 180 days

This results in approximately 15,000 TS samples from event-associated windows. To balance the
dataset, we sample an additional 30,000 TS sequences from the same stations at random non-event
times, ensuring no overlapping event narratives. To enhance weather diversity, we also sample 30,000
TS sequences from geographically distant stations without any event association, using randomly
selected anchor times. See Figure 6. All time series instances contain seven channels: temperature,
humidity, wind_u, wind_v, visibility, precipitation, and sky code. The curated weather dataset
contains a total of 74,337 time series instances, and the lengths have a mean of 169.25 and a median
of 168.0.

With Event Without Event

Figure 6: The red points are locations with event reports and the blue points are locations without
event reports

Example: An Event Report of Debris Flow

"event type": "Debris Flow",
"state": "CALIFORNIA",
"cz name": "TULARE",
"begin datetime": "2021-12-14 13:14:00",
"end datetime": "2021-12-14 16:14:00",
"narrative": "A strong low pressure system dropped southeast out of the Gulf of Alaska
on December 12 and intensified off the Pacific Northwest coast on December 13 pulling up
some deep moisture which was pushed into central California during the afternoon. The
precipitation intensified during the evening of December 13 through the morning of December
14 as the low carved out a deep upper trough which pushed across California during the
afternoon of December 14. This system produced 2 to 4 inches of liquid precipitation over the
Sierra Nevada from Sequoia National Park northward and 1 to 3 inches of liquid precipitation
south of Sequoia Park. The precipitation fell mainly in the form of snow above 5500 feet
and several high elevation SNOTELs estimated 2 to 4 feet of new snowfall. The snow level
lowered to as low as 1500 feet during the evening of December 14 as the cooler airmass
behind the system pushed into central California. Much of the San Joaquin Valley picked up
between 1 to 2 inches of rainfall while the Kern County Mountains picked up between 0.75
and 1.5 inches of liquid precipitation. The Kern County Desert areas only picked up between
a quarter and a half inch of rain at most locations due to rain shadowing. The storm produced
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widespread minor nuisance flooding in the San Joaquin Valley and Sierra foothills with a few
rock slides noticed. Several roads were closed as a precaution and chain restrictions were
implemented on some roads in the Sierra Nevada. The storm also produced strong winds over
the West Side Hills as well as in the Grapevine and Tehachapi areas in Kern County. Several
stations in these areas measured wind gusts exceeding 50 mph with a few locations near the
Grapevine measuring brief gusts exceeding 70 mph. California Highway Patrol reported mud,
rock and dirt covering most of North Plano St. near Lynch Dr.",

B.3 Synthetic Description Generation

We use ChatGPT to generate channel-level textual descriptions for selected TS samples, where all TS
samples linked to event reports are included. We also randomly select 50% of TS samples from both
the non-event windows at event-associated stations and the non-event-associated stations to generate
channel-level descriptions for event-label balance. The generated descriptions follow the style of
TimeCap[7], but each is additionally annotated with one or more keywords selected from the set as
auxiliary information: {Clear, Cloudy, Rainy, Snowy, Windy, Foggy, Hot, Cold, Humid, Stormy}.
We use a consistent meta-prompt to elicit both descriptive and label-aligned outputs. A full example
of the meta-prompt and a generated description is provided in B.4.

B.4 Prompt for Weather Description Generation and an example synthetic description

Weather Summary Prompt

You are a daily weather reporter, asked to summarize the past seven days of hourly weather
(or the past 28 days of 4-hourly weather, or the past 6 months of daily weather, depending on
the selected mode).
It will be multichannel with temperature, precipitation, relative_humidity,
visibility, wind_u, and wind_v aspects. Summarize these channels and label the overall
weather with one or more keywords from the set:
{Clear, Cloudy, Rainy, Snowy, Windy, Foggy, Hot, Cold, Humid, Stormy}.
You are not expected to report each time point individually. Instead, analyze the entire period
as a whole. Additionally, for temperature, precipitation, and relative_humidity,
identify any noticeable trends, potential periodicities (e.g., daily or weekly patterns), overall
volatility, and any clear outliers that stand out. You do not need to analyze other channels for
these advanced statistics.
The input includes:

• Location
• Date
• Temperature time series
• Precipitation time series
• Relative humidity time series
• Visibility time series
• Wind_u time series
• Wind_v time series
• Sky cover codes

Sky cover codes are interpreted as follows:
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Code Meaning Sky Fraction Covered
00 CLR (Clear) 0/8 or 0%
01 FEW 1/8 ( 12%)
02 FEW 2/8 - 3/8 (25%-37%)
03 SCT (Scattered) 4/8 ( 50%)
04 SCT 5/8 ( 62%)
05 BKN (Broken) 6/8 ( 75%)
06 BKN 7/8 - 8/8 (87%-100%)
07 BKN ∼9/10
08 OVC (Overcast) 10/10 (100%)
09 VV (Vertical Visibility) Sky obscured
10 X (Unknown) Partially obscured

Please summarize the data using the following format:
• Date: {sentence of date}
• Location: {sentence of location}
• Temperature: {sentence of temperature}
• Precipitation: {sentence of precipitation}
• Relative Humidity: {sentence of relative humidity}
• Visibility: {sentence of visibility}
• Wind_V: {sentence of wind_v}
• Wind_U: {sentence of wind_u}
• Sky Cover: {sentence of sky cover}
• Keywords: {list of keywords from label set}

No additional explanation or commentary should be included in the output.

Example: Generated Weather Summary

Date: The past 28 days from January 30, 2021, to February 26, 2021.
Location: The weather data is from Pike, Kentucky.
Temperature: The temperature ranged from a low of -10.07 °C to a high of 20.25 °C, with
noticeable fluctuations and a general upward trend towards the end of the period, indicating
warming conditions.
Precipitation: There was no recorded precipitation throughout the 28 days, indicating dry
weather.
Relative Humidity: Relative humidity varied significantly, peaking at 100% on multiple
occasions, with a general trend of higher humidity levels during the earlier part of the period
and lower levels towards the end.
Visibility: Visibility remained consistently high at 14.58 km throughout the reporting period.
Wind_V: Wind velocity showed variability, with occasional gusts and a general trend of calm
conditions.
Wind_U: Wind direction fluctuated, with both positive and negative values indicating changes
in wind patterns.
Sky Cover: The sky was consistently clear with no significant cloud cover reported.
Keywords: [Clear, Cold, Humid]

B.5 Dataset Details

Our curated weather dataset contains a total of 74,337 time series instances. We allocate 9,561 of
these exclusively for the forecasting task, ensuring this subset is disjoint from the pretraining and
classification data to avoid any potential label leakage or information overlap. The classification task
is formulated as multi-class event prediction, where each time series instance is annotated by the
NOAA System with a corresponding weather event type from nine common severe weather events,
and one special category for non-events. The event labels are as follows: Lightning (0), Debris
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Table 8: Dataset size for each task.
Dataset Type Train Test Val Total
Newly Curated Weather Dataset
Forecasting (H=7) 6,690 957 1,914 9,561
Pretraining & Classification 45,339 6,484 12,953 64,776

Public Dataset from TimeMMD [5]
Health (H=12) 929 266 129 1,324
Energy (H=12) 992 284 138 1,414
Environment (H=48) 7,628 2,173 1,064 10,865

Flow (1), Flash Flood (2), Heavy Rain (3), Tornado (4), Funnel Cloud (5), Hail (6), Flood (7),
Thunderstorm Wind (8). Instances that do not correspond to any specific event are labeled as None.
This setup ensures the model learns to distinguish between distinct event types while being robust
to trivial (non-event) data. We follow the original split to create train/test/val set for TimeMMD
forecasting tasks [5].

C Alignment Objective: Full Formulation

To fully capture the structured alignment between multivariate time series and text, we employ a
dual-level contrastive learning strategy, consisting of sample-level and channel-level hard negative
mining.

C.1 Hard Negative Candidate Sets

Given a time series instance i with C channels, we define the following negative sets:

Sample-level negative sets. For aligning the global [CLS] embedding h
(i)
[CLS] of instance i with its

corresponding sample-level textual embedding z
(i)
cxt, we mine hard negatives from other samples in

the batch. Specifically:

N (i)
cxt = TopK

{
sim(h

(i)
[CLS], z

(j)
cxt) | j ̸= i

}
, (3)

and symmetrically,

N (i,text)
cxt = TopK

{
sim(z

(i)
cxt,h

(j)
[CLS]) | j ̸= i

}
. (4)

Channel-level negative sets. To align each channel-specific CIT embedding h
(i)
c with its corre-

sponding channel-level text embedding z
(i)
c , we mine two types of distractors:

• Intra-instance negatives: embeddings from other channels within the same instance, i.e., z(i)c′

where c′ ̸= c;

• Inter-instance negatives: same-indexed channel embeddings across different instances, i.e.,
z
(j)
c where j ̸= i.

Formally, the channel-level negative set is defined as:

N (i,c)
ch = TopK

{
sim(h(i)

c , z
(j)
c′ ) | c′ ̸= c or j ̸= i

}
, (5)

and similarly in the reverse direction:

N (i,c,text)
ch = TopK

{
sim(z(i)c ,h

(j)
c′ ) | c′ ̸= c or j ̸= i

}
. (6)
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C.2 Contrastive Alignment Loss

We adopt a bidirectional InfoNCE loss at both the sample and channel levels. For each alignment
direction, the objective maximizes the similarity between the positive pair and minimizes similarity
with hard negatives.

Sample-level loss.

Ltext→ts
global = − log

exp(sim(z
(i)
cxt,h

(i)
[CLS])/τ)∑

j∈{i}∪N (i,text)
cxt

exp(sim(z
(i)
cxt,h

(j)
[CLS])/τ)

(7)

Lts→text
global = − log

exp(sim(h
(i)
[CLS], z

(i)
cxt)/τ)∑

j∈{i}∪N (i)
cxt

exp(sim(h
(i)
[CLS], z

(j)
cxt)/τ)

(8)

Channel-level loss.

Ltext→ts
channel =

1

C

C∑
c=1

− log
exp(sim(z

(i)
c ,h

(i)
c )/τ)∑

(j,c′)∈{(i,c)}∪N (i,c,text)
ch

exp(sim(z
(i)
c ,h

(j)
c′ )/τ)

(9)

Lts→text
channel =

1

C

C∑
c=1

− log
exp(sim(h

(i)
c , z

(i)
c )/τ)∑

(j,c′)∈{(i,c)}∪N (i,c)
ch

exp(sim(h
(i)
c , z

(j)
c′ )/τ)

(10)

C.3 Total Loss Objective

The total alignment loss is the average of both sample-level and channel-level contrastive losses:

Lalign =
1

2

(
Ltext→ts
global + Lts→text

global

)
+ λch ·

1

2

(
Ltext→ts
channel + Lts→text

channel

)
, (11)

where τ is the temperature hyperparameter, and λch is a hyperparameter, controlling the contribution
of channel-level alignment. We set λch = 1.0 as default in experiments.

D Experiments

D.1 Baselines

D.1.1 Full-shot Time Series Models

DLinear [29]is a lightweight time-series forecasting model that decomposes the input into trend and
seasonal components, and applies simple linear layers to each component separately. Despite its
simplicity, DLinear has demonstrated strong performance on both long- and short-term forecasting
tasks by effectively capturing linear temporal patterns without relying on complex neural architectures.

PatchTST [22] reformulates time-series forecasting as a patch-based sequence modeling problem.
It splits the input time series into non-overlapping patches and applies a Transformer encoder to
model inter-patch dependencies. The design removes positional encoding and avoids decoder layers,
making the model more suitable for forecasting tasks while benefiting from the global receptive field
of Transformers.

iTransformer [24] (Instance-aware Transformer) extends Transformer-based forecasting by modeling
instance-wise variations. It introduces a shared backbone Transformer and an instance-specific
modulation mechanism, enabling the model to better adapt to diverse temporal dynamics across
different time-series samples. This design improves generalization and robustness, particularly for
multivariate forecasting.

TimesNet [53] proposes a novel temporal block that captures multi-frequency patterns in time-series
data using learnable convolutions in the frequency domain. By combining time and frequency-domain
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features, TimesNet achieves strong performance across a variety of datasets. It is particularly effective
at modeling both short-term and long-term temporal dependencies.

TimeMixer [54] employs a structured state-space-inspired architecture where time mixing and
channel mixing operations alternate. It replaces self-attention with parameter-efficient mixing blocks
that blend information across the temporal and feature dimensions. TimeMixer is designed for
scalable forecasting and excels in low-resource regimes due to its compact architecture and efficient
training.

FSCA [37] introduces a new paradigm that aligns time series (TS) with a linguistic component in
the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS
data, thereby activating their capabilities. FSCA uses a Dual-Scale Context-Alignment Graph Neural
Networks (DSCA-GNNs) framework to achieve both structural and logical alignment, demonstrate
good performance in few-shot and zero-shot settings.

D.1.2 Time Series Foundation Model

Table 9: Comparison of time-series foundation models.
Method Chronos Time-MoE TimesFM Moirai Moment Timer-XL
Architecture Encoder-Decoder Decoder-Only Decoder-Only Encoder-Only Encoder-Only Decoder-only
(Max) Model Size 710M 2.4B 200M 311M 385M 84M
Input Token Point Point Patch Patch Patch Patch
Max Length 512 4096 512 5000 512 1024
FFN Dense Sparse Dense Dense Dense Dense
Cross-channel ✗ ✗ ✗ ✓ ✗ ✓

We test several recent time-series foundation models that have been pretrained on large-scale datasets
from relevant domains, including weather, healthcare, energy, and environment. These include
Chronos [32], Time-MoE [10], TimesFM [33], Moirai [34], Moment [8], and Timer-XL [9], which
offer strong generalization through large-scale pretraining. A comparison is given in Table 9. To
evaluate retrieval-augmented performance on diverse real-world domains, we integrate our retriever
with three publicly available time-series foundation models: Time-MoE, Timer-XL, and Moment,
which are selected based on the availability of stable, open-source implementations that support
customization and downstream fine-tuning. We leave the adaptation of our retriever to additional
proprietary or closed-source foundation models, as well as its integration into unified pretraining
pipelines, for future work.

Comparison of TRACE with Time-series Foundation Models. It is important to note that our model
is not itself a cross-domain foundation model, but rather a modular encoder-based retriever capable
of enhancing such models. Architecturally, our model adopts an encoder-only design with flexible
point- and patch-based tokenization, supports input sequences exceeding 2,048 tokens, and enables
effective cross-channel interactions through channel-biased attention mechanisms.

D.2 Experiment Configurations

All models are implemented in PyTorch and trained on NVIDIA A100 40GB GPUs. For most time
series models, we adopt the implementation from TSLib [58]3. The sequence length is fixed at 96
for both prediction horizons of 7 and 24. We use mean squared error (MSE) as the loss function for
forecasting tasks, and accuracy for classification. Forecasting models are trained for 10 epochs, while
classification models are trained for up to 150 epochs with early stopping. We follow the official code
to implement other baselines [37]4. All other hyperparameters follow the default settings in TSLib,
except for those explicitly tuned to achieve the best performance, as reported in Tables 10. For our
model, the initial learning rate is tuned from {10−4, 10−3}. The number of attention layers is tuned
from {6, 12}, and the hidden dimension is from {384, 768} with the number of heads in {6, 12}.

3https://github.com/thuml/Time-Series-Library
4https://github.com/tokaka22/ICLR25-FSCA
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Table 10: Best hyperparameters per model
Model Name Learning Rate Encoder Layers Hidden Dimension

DLinear 0.0010 2 32
PatchTST 0.0050 4 64
TimeMixer 0.0100 4 64
TimesNet 0.0010 4 64
iTransformer 0.0100 4 64
FSCA 0.0001 4 256

D.3 Embedding Visualization

Figure 7 presents the cosine similarity matrix between text and time series embeddings across
the test set. The diagonal dominance indicates that TRACE successfully aligns each time series
with its corresponding textual description, suggesting strong one-to-one semantic matching in the
shared embedding space. Off-diagonal similarities remain low, demonstrating the model’s ability to
distinguish unrelated instances. Figure 8 visualizes the joint embedding space using UMAP. Each
color represents a distinct event category, where circles (◦) denote time series instances and crosses
(×) denote their corresponding textual descriptions. A line connects each text–time series pair. We
observe clear clustering by event type, with paired modalities positioned closely in the embedding
space. Notably, for some events (e.g., "Flood" and "Debris Flow"), clusters partially overlap, reflecting
shared underlying dynamics. The tight alignment between paired points validates the effectiveness of
our dual-level alignment strategy, and the modality-mixing within clusters suggests successful fusion
of structured and unstructured signals.
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Figure 7: Cosine Similarity Matrix Between Text
and Time Series Embeddings.
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Figure 8: Umap Visualization of Aligned Text
and Time Series Embeddings.

D.4 Classification Task

Table 11: Weather Event Classification
Accuracy and F1 Score (%).

Model Size Accuracy F1

Time-MoE small 56.27 16.56
large 59.09 19.74

Moment base 65.43 28.29
large 64.94 26.35

Chronos

tiny 74.79 40.21
mini 73.89 37.98
small 71.07 35.39
base 71.42 36.40
large 71.97 36.30

Table 11 reports the classification accuracy and F1 scores
of different size variants of time-series foundation mod-
els on the weather event classification task. We observe
that a larger model size does not necessarily lead to bet-
ter performance. For example, Moment’s base model
achieves a higher F1 score than the large model despite a
lower accuracy. In contrast, Chronos exhibits more stable
performance across scales, with the tiny and mini vari-
ants achieving the best F1 scores, outperforming even
the larger variants. These results suggest that, in domain-
specific classification tasks with relatively limited super-
vision, scaling up foundation models may not always be
beneficial, and smaller models can offer a better balance
between accuracy and efficiency.
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D.5 RAG Setting

In our retrieval-augmented generation (RAG) framework, given a query time series Xq , we compute
its [CLS] token embedding as hq ∈ Rd using the frozen encoder from TRACE. Based on cosine
similarity, we retrieve the top-R most relevant multimodal pairs (Xi, τ icxt)

R

i=1 from the corpus, where
Xi is a historical multivariate time series and τ icxt is the associated sample-level context. Each retrieved
pair is transformed into a soft prompt vector using a trainable linear projection layer. Specifically, the
time series component is encoded to h

(i)
ts ∈ Rd, and the textual context τ icxt is encoded to zcxt(i) ∈ Rd

using a frozen SentenceTransformer, followed by a shared projection. For the TS+Text setting, we
concatenate each pair as p(i) = [h

(i)
ts ; z

(i)
cxt ] ∈ R2d, and stack all R vectors to form the final prompt:

P = Proj
(
[p(1); · · · ;p(R)]

)
∈ Rdf ,

where Proj is a feedforward layer mapping from R2Rd → Rdf , and df is the hidden dimension of
the downstream time series foundation model. For the TS-only setting, we omit the text component
and instead concatenate [h

(1)
ts ; · · · ;h(R)

ts ] ∈ RRd and project into Rdf accordingly.

This dense prompt P is prepended to the query sequence during inference. For decoder-only models
(e.g., Timer-XL, Time-MoE), P is appended to the autoregressive context at each decoding step. For
encoder-only models (e.g., Moment, TRACE), P is inserted as a prefix to the encoder input, i.e.,

ŷ = Head([P|Hq]),

where Hq ∈ RL×df is the encoded query and Head is a forecasting head trained from scratch. In
all configurations, only Proj and Head are updated during training in RAG framework, while the
backbone foundation model remains frozen.

D.6 Standalone Time Series Encoder

To evaluate the classification capabilities of time series foundation models, we finetune a multi-layer
perceptron (MLP) classifier on top of each model’s final output representation, as most existing
time series foundation models do not support classification task by design, except Moment [8], The
MLP consists of four hidden layers with sizes [256, 128, 64, 32], followed by a softmax output layer
corresponding to 9 weather event categories. This architecture was selected based on empirical
tuning for optimal performance on our classification task. We include all available variants from
four foundation model families: Time-MoE, Timer-XL, Moment, and Chronos. All backbone
parameters of the time series foundation models are fully activated and updated during training to
ensure consistency and fair evaluation. Each model is finetuned for 100 epochs using the Adam
optimizer. The training batch size is set to 256 for small and mid-sized variants, and reduced to 128
for larger models to accommodate memory constraints.

For full-shot time series models, we train them from scratch using a unified training and evaluation
protocol with time series foundation models. Results are shown in Table 4 and Table 11.

D.7 Empirical Case Study

Figure 9 illustrates the capability to align detailed textual context with corresponding multivariate
time series. The retrieval pool is constructed by excluding the query’s paired time series instance.
This setup ensures that retrieved results are non-trivial and reflect the model’s ability to identify
semantically similar yet distinct examples. TRACE leverages both high-level and fine-grained semantic
cues to retrieve the most relevant time series from the curated candidate pool. The top-1 retrieved
sequence closely reflects key patterns in the query text, which can serve as a valuable reference for
downstream forecasting, scenario simulation, or contextual explanation.

D.8 Timeseries-to-Timeseries Retrieval

TS-to-TS Case Study. Figure 10 illustrates a case study of TS-to-TS retrieval using TRACE. Given a
query time series (top row) labeled as Flood, the system retrieves the top-3 most similar samples from
the corpus based on embedding similarity in the shared representation space. The similarity score
for each retrieved sample is shown on the left, with per-channel similarity values annotated below
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Flash Flood Event Report:
A flash flood occurred … due to the remnants of Tropical Storm Barry. Extremely moist air and a weak shortwave trough triggered persistent heavy showers. Rainfall totals reached 6–
10+ inches, with a record-breaking 16.17 inches—the highest 24-hour total in history. The flooding caused widespread damage before subsiding around midday.

Channel-level Description: 
• The temperature ranged from a low of 20.6°C to a high of 33.9°C, showing a noticeable daily pattern with warmer temperatures during the day and cooler temperatures at night. 
• There were sporadic instances of precipitation, with a significant peak of 6.0 mm on July 12, indicating a generally dry week with occasional rainfall. 
• Relative humidity fluctuated between 48.0% and 100.0%, with higher values in the early morning and lower values in the afternoon, suggesting a typical humid summer pattern. 
• Visibility remained relatively high, mostly around 16.09 km, with occasional drops to lower values due to weather conditions. 
• Wind direction showed variability, with some periods of calm winds and others with stronger gusts from various directions. 
• Wind velocity varied, with notable gusts reaching up to 5.02 m/s, indicating some windy conditions at times. 
• The sky cover ranged from clear to scattered clouds, with a few instances of broken clouds, indicating mostly clear conditions throughout the week.

Top-1 Retrieved Time Series (Label: Flash Flood):

Figure 9: A case study of text-to-timeseries retrieval of flash flood-related time series. The key textual
cues are highlighted in color for clarity.
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Figure 10: Visualization of Timeseries-to-Timeseries Retrieval by TRACE

each plot. We observe that all retrieved samples have high overall similarity scores (approximately
0.79–0.81), reflecting strong semantic alignment. The top-2 retrievals are also labeled as Flood,
while the third belongs to a semantically related event, Flash Flood, suggesting that TRACE is
capable of retrieving contextually relevant samples even across closely related labels. Notably, TRACE
enables fine-grained channel-level similarity assessment by leveraging its Channel Identity Tokens
(CIT), which allow independent embedding of channel-specific signals.

However, we also find that high similarity in individual channels (e.g., temperature or precipitation)
does not always guarantee high overall semantic alignment. For instance, the first retrieval shows
moderate similarity across channels but still achieves a high overall semantic score. This highlights
the benefit of TRACE’s structured aggregation over all channels to capture global semantics and
reveal the most semantically dominant channels that contribute most to the retrieval relevance. This
capability enables TRACE to go beyond surface-level similarity, retrieving samples that share latent
event signatures rather than merely matching patterns across all channels uniformly.

D.9 Complexity and Efficiency

D.9.1 Computational Complexity

We analyze the computational complexity of the main components in TRACE, including the encoder
stage, the dual-level contrastive alignment, and the retrieval-augmented generation (RAG) setup.

1. Encoder Pre-training Complexity. Let X ∈ RC×T be the input multivariate time series with C

channels and T time steps. The sequence is tokenized into T̂ = ⌊T/P ⌋ patches per channel, each
projected to a d-dimensional embedding. The total token length after flattening is 1 + C(T̂ + 1).
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This includes one global [CLS] token, one [CIT] token per channel, and T̂ patch tokens per channel.
The encoder is a N -layer Transformer with multi-head channel-biased attention. The complexity per
attention layer is O(L2d) = O(C2T̂ 2d). Note that channel-biased attention applies a sparse mask
M ∈ {0, 1}L×L to restrict certain attention to within-channel interactions, which effectively reduces
the constant factors in practice but not the asymptotic complexity.

2. Dual-level Contrastive Alignment. Let B be the batch size. For each time series, the alignment
stage computes:

• Sample-level similarity: O(B2d) for all h[CLS]–zcxt pairs.
• Channel-level similarity: For C channels and B instances, total cost is O(B2C2d) for hc–zc

pairs.
• Negative mining selects top-R hardest negatives per instance and per channel, which costs
O(B logR+BC logR), and is negligible compared to similarity computation.

3. Retrieval-Augmented Generation. During inference, retrieval selects top-R neighbors for a
query based on cosine similarity:

• Retrieval cost: O(Rd) using approximate methods (e.g., FAISS) from a database.
• Prompt generation: if soft prompt dimension is df , and each retrieved pair contributes d-dim

vector, this yields a projection cost of O(Rddf ).
• The forecasting model remains frozen; only the soft prompt (a single vector of shape [1, df ]) is

appended, incurring no extra Transformer-layer cost.

Summary. Pre-training (Transformer encoder) yields O(L2d) per layer. Alignment yields O(B2d+
B2C2d) and RAG inference yields O(Rddf ) for retrieval and projection.

D.9.2 Empirical Runtime

We report the model size and empirical runtime of TRACE and other baselines in Table 12, including
FSCA [37], which is the second-best train-from-scratch time series model, and time series foundation
models with the availability of open-source implementations. TRACE activates only 0.12M parameters
during finetuning with a lightweight linear head, which is nearly 200× fewer than FSCA and over
700× fewer than Time-MoEsmall. This lightweight design results in substantially faster training and
inference speed. Compared to Moment, TRACE achieves faster training time with significantly fewer
trainable parameters and better performance, which can be attributed to its multichannel modeling
with channel-biased attention. While slightly slower than Timer-XL, which is a decoder-only model
with causal attention, TRACE offers an acceptable overhead given its significantly stronger retrieval
performance and the high quality of embeddings it produces for cross-modal and TS-to-TS retrieval.
It is worth noting that for Timer-XL and Time-MoE, despite their strong generalizability, parameter-
efficient finetuning strategies are relatively underexplored, as all model parameters must be activated
and updated during finetuning for reasonable performance in domain-specific tasks.
Table 12: Comparisons of model efficiency. Activated Params indicates the number of parameters
activated during finetuning for 7-step forecasting on the weather dataset. Training and inference time
are seconds per epoch on the forecasting dataset. Device is a single A100 40GB GPU.

Total Params Activated Params Training Time Inference Time
FSCA 82.35M 22.68M 1249.701 1.589
TRACE 10.78M 0.12M 6.054 0.955

Momentbase 109.87M 0.24M 11.706 1.691
Timer-XLbase 84.44M 84.44M 3.392 0.685
Time-MoEsmall 113.49M 113.49M 106.308 15.545

E Discussion

Limitation. While TRACE demonstrates strong performance in multimodal retrieval and retrieval-
augmented forecasting, it currently assumes the availability of aligned time series–text pairs during
training. In some domains, such alignment may be noisy or incomplete. Additionally, although
channel-level alignment improves interpretability and fine-grained matching, it introduces a modest
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increase in computational overhead during training. We believe these trade-offs are justified by the
performance gains but acknowledge that further optimization may enhance scalability.

Future Work. In future work, we plan to extend TRACE to support weakly supervised and semi-
supervised settings, where textual context is partially missing or noisy. Another promising direction
is integrating domain adaptation techniques to improve generalization across unseen domains and
sensor modalities (e.g., image, video). Moreover, exploring autoregressive generation conditioned on
retrieved time series–text pairs may further enhance understanding tasks in temporal modeling.

Broader Impact. TRACE offers a general framework for cross-modal reasoning in time series
applications, with potential benefits in domains such as healthcare monitoring, disaster forecasting,
and industrial diagnostics. By improving retrieval and interpretation of structured temporal data, our
approach may enhance decision support and model transparency. However, we encourage responsible
deployment and emphasize the importance of auditing training data and retrieval outputs to avoid
amplifying biases present in either modality.
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