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Abstract

Dataset distillation aims to compress a train-001
ing dataset by creating a small number of in-002
formative synthetic samples such that neural003
networks trained on them perform as well as004
those trained on the original training dataset.005
Current text dataset distillation methods cre-006
ate each synthetic sample as a sequence of007
word embeddings instead of a text to apply008
gradient-based optimization; however, such009
embedding-level distilled datasets cannot be010
used for training other models whose word em-011
bedding weights are different from the model012
used for distillation. To address this issue,013
we propose a novel text dataset distillation ap-014
proach, called Distilling dataset into Language015
Model (DiLM), which trains a language model016
to generate informative synthetic training sam-017
ples as text data, instead of directly optimiz-018
ing synthetic samples. We evaluated DiLM on019
various text classification datasets and showed020
that distilled synthetic datasets from DiLM out-021
perform those from current coreset selection022
methods. DiLM achieved remarkable general-023
ization performance in training different types024
of models and in-context learning of large lan-025
guage models. Our code will be available at026
https://github.com/....027

1 Introduction028

The successful advancements in machine learning029

in a wide range of fields are due to the scaling-up of030

deep neural networks and large training datasets. In031

the natural language processing (NLP) field, large032

language models (LLMs), which are pre-trained033

with a huge amount of text, such as BERT- and034

GPT-family models (Devlin et al., 2019; Liu et al.,035

2019; Radford et al., 2019; Brown et al., 2020),036

have shown remarkable capabilities for various037

NLP tasks. However, training such large-scale038

models requires large computational resources and039

a long time, which makes it difficult to develop new040

LLMs, and even to fine-tune them.041

To address this issue, dataset distillation (Wang 042

et al., 2018b) has attracted much attention in the 043

machine learning community, which aims to reduce 044

training costs by compressing training datasets. 045

In contrast to traditional coreset selection ap- 046

proaches (Wolf, 2011; Sener and Savarese, 2018; 047

Welling, 2009), which heuristically select a small 048

subset of representative training samples from the 049

original dataset, dataset distillation creates more in- 050

formative synthetic samples by distilling the knowl- 051

edge from the original dataset. With this approach, 052

synthetic samples are optimized with gradient de- 053

scent according to objective functions for dataset 054

distillation, including meta-learning (Wang et al., 055

2018b), gradient matching (Zhao et al., 2021), train- 056

ing trajectory matching (Cazenavette et al., 2022), 057

and feature distribution matching (Wang et al., 058

2022; Zhao and Bilen, 2023). The recent remark- 059

able performance of dataset distillation, especially 060

in the computer vision (CV) field, has also led to 061

studies of its various applications, including neural 062

architecture search (Such et al., 2020; Medvedev 063

and D’yakonov, 2021), federated learning (Zhang 064

et al., 2022a; Xiong et al., 2023), continual learn- 065

ing (Wiewel and Yang, 2021; Sangermano et al., 066

2022), and privacy preservation (Dong et al., 2022; 067

Chen et al., 2022). 068

While most previous studies applied dataset dis- 069

tillation only to image classification datasets, some 070

studies focused on text dataset distillation (Su- 071

cholutsky and Schonlau, 2021; Li and Li, 2021; 072

Maekawa et al., 2023; Sahni and Patel, 2023). 073

In contrast to the image, which can be applied 074

gradient-based optimization by considering it as 075

a pixel-wise continuous data, the discrete nature of 076

text makes dataset distillation challenging (Geng 077

et al., 2023; Yu et al., 2023). To address this is- 078

sue, all existing text dataset distillation methods 079

used the widely used neural NLP technique called 080

embedding, i.e., optimizing a synthetic dataset as 081

continuous input word embeddings instead of dis- 082
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Figure 1: Overview of training with DiLM. Gradient matching loss is computed on the learner model between real
samples from the original dataset and generated samples from the generator model. It is then back-propagated
to the generator model via generation probabilities, which weight the learner loss for each generated sample. (a)
Representative teacher for computing real sample’s gradients, which improves the performance and accelerates
convergence by using K-center samples, representing the original dataset, rather than randomly sampled ones. (b)
Diverse mini-batch sampling, which enables the generator model to explore diverse synthetic samples in each
training step.

crete text. However, such embedding-level dis-083

tilled synthetic datasets cannot be used for training084

other models that have different word embedding085

weights, which is a crucial issue in terms of practi-086

cal applications. Furthermore, distilled word em-087

bedding sequences are also completely unreadable088

to humans, which makes it difficult to interpret and089

analyze the original training dataset by observing090

distilled synthetic samples.091

Motivated by these shortcomings, this paper ex-092

plores the text dataset distillation to obtain distilled093

synthetic datasets at the text-level as the first study.094

We propose the first text-level dataset distillation095

approach called “Distilling dataset into Language096

Model (DiLM)”. To overcome the optimization097

difficulty of discrete text, DiLM uses a language098

model as a surrogate continuous optimization target099

instead of directly optimizing a synthetic sample’s100

text. Specifically, DiLM trains a language model to101

minimize the gradient matching loss (Zhao et al.,102

2021) of generated synthetic samples as a dataset103

distillation objective. To enable back-propagating104

the gradient matching loss to the language model,105

we design a differentiable backward pass via loss106

weighting with generation probabilities to bypass107

the non-differentiable generated text (Figure 1).108

In our experiments, we applied DiLM to distill109

three text classification datasets from the GLUE110

benchmark (Wang et al., 2018a), SST-2, QQP, and111

MNLI-m. The results indicate that the synthetic112

datasets distilled with DiLM outperformed repre-113

sentative real samples selected from the original114

datasets with current coreset selection methods. 115

Our distilled datasets also achieved remarkable 116

generalization performance not only for training 117

different types of pre-trained models but also for 118

in-context learning of LLMs as few-shot prompts. 119

Our main contributions are as follows: 120

• To the best of our knowledge, this is the first 121

study to distill a text dataset into a text-level 122

synthetic dataset that are applicable for train- 123

ing models independent of word embedding 124

weights. 125

• We present DiLM, which addresses the dis- 126

creteness of text by using a language model 127

as a surrogate optimization target and back- 128

propagating the distillation loss to the model, 129

bypassing non-differentiable generated text. 130

• Our experimental results indicate that DiLM 131

outperformed the current coreset selection 132

methods not only for training the same model 133

used for distillation, but also for training dif- 134

ferent models independent of the word em- 135

bedding weights, architectures, and training 136

processes. 137

2 Related Work 138

2.1 Dataset Distillation 139

Dataset distillation was first proposed by Wang 140

et al. (2018b), motivated by theoretical interests as 141

well as practical applications for reducing network 142

training costs. Inspired by meta-learning based hy- 143

perparameter optimization (Maclaurin et al., 2015), 144
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Wang et al. (2018b) optimized a small synthetic145

dataset by gradient decent such that models trained146

on it have a lower training loss for the original147

dataset. Recently, several surrogate objectives have148

been proposed to improve the performance and ef-149

ficiency of dataset distillation. DC (Zhao et al.,150

2021) and DSA (Zhao and Bilen, 2021) focused on151

gradient matching between real and synthetic sam-152

ples. DM (Zhao and Bilen, 2023) and CAFE (Wang153

et al., 2022) proposed feature distribution matching,154

which requires less GPU memory for optimizing155

synthetic datasets. MTT (Cazenavette et al., 2022)156

and TESLA (Cui et al., 2023) optimized synthetic157

samples to approximate trajectories of model pa-158

rameters trained with real data. SLDD (Sucholut-159

sky and Schonlau, 2021) and LDD (Bohdal et al.,160

2020) introduced learnable soft-labels, which are161

optimized together with input images to make each162

synthetic sample more informative.163

While the most current research on dataset dis-164

tillation involves only image classification datasets,165

some studies also focused on text classification166

datasets. Sucholutsky and Schonlau (2021) and Li167

and Li (2021) applied the original meta-learning168

based method by Wang et al. (2018b) to text169

datasets. To overcome the discrete nature of text,170

which makes applying gradient-based methods dif-171

ficult, they optimized synthetic samples in the pre-172

trained GloVe word embedding space (Penning-173

ton et al., 2014) instead of actual words of text as174

the optimization target. Maekawa et al. (2023) ex-175

tended the text dataset distillation to the pre-trained176

BERT model and improved its performance by in-177

troducing learnable attention labels, which directly178

guide the self-attention probabilities of the models.179

Sahni and Patel (2023) explored dataset distilla-180

tion in multilingual text classification datasets in181

the context of fairness, interpretability, and cross-182

architecture generalization. Although these meth-183

ods perform well for text classification datasets, dis-184

tilled synthetic datasets obtained with them cannot185

be used for training other models that have different186

word embedding weights. Although Sucholutsky187

and Schonlau (2021) and Sahni and Patel (2023)188

transformed their distilled synthetic samples to text189

by finding a word that has the nearest neighbor em-190

bedding, the converted text consists of unrelated191

words and does not make sense, which makes it192

difficult to interpret and analyze them. Moreover,193

the performance of distilled datasets after being194

converted to text has also not been investigated.195

2.2 Generative Models 196

Recent studies on dataset distillation in the 197

CV field used generative adversarial networks 198

(GANs) (Goodfellow et al., 2014), i.e., training the 199

model parameters and/or their latent input noises 200

instead of synthetic images. These methods gener- 201

alize distilled synthetic images to different model 202

architectures by restricting them to the genera- 203

tive distribution learned from the original dataset. 204

DiM (Wang et al., 2023) fine-tuned a GAN to gen- 205

erate informative synthetic images from randomly 206

sampled latent noises, where distilled datasets of 207

different sizes can be produced without retraining 208

the model. GTNs (Such et al., 2020) trained a 209

GAN to generate informative images, instead of 210

realistic images, to accelerate neural architecture 211

search. GTNs also learned a latent noise for each 212

synthetic image as a curriculum of training learner 213

networks. IT-GAN (Zhao and Bilen, 2022) and 214

GLaD (Cazenavette et al., 2023) used a pre-trained 215

GAN as a generative prior of synthetic samples and 216

only optimized the latent noises. 217

Inspired by these studies, we also introduce a 218

generative model with a different motivation for 219

text dataset distillation: to avoid the difficulties of 220

directly optimizing discrete text, we instead op- 221

timize the continuous parameters of a generative 222

model to generate distilled synthetic samples. How- 223

ever, since all previous studies that used generative 224

models for image dataset distillation trained them 225

and/or their input latent noises by back-propagating 226

the distillation loss to them via generated images, 227

none of them can be applied to text data, which are 228

non-differentiable due to their discrete nature. 229

3 Methodology 230

In this section, we introduce DiLM, which dis- 231

tills text datasets into text data, not word embed- 232

dings, for the model-agnostic applicability and in- 233

terpretability of the distilled synthetic datasets. The 234

main idea of DiLM is to avoid the optimization dif- 235

ficulties of discrete text by instead training continu- 236

ous parameters of a language model as a surrogate 237

optimization target of dataset distillation. 238

3.1 Overview 239

Given a training dataset Dreal = {xi}|Dreal|
i=1 , the goal 240

of DiLM is to obtain a generator model, parame- 241

terized by ϕ, that generates a distilled synthetic 242

dataset Dsyn = {x̃i}
|Dsyn|
i=1 (|Dsyn| ≪ |Dreal|), such 243

that a learner model, parameterized by θ, trained 244
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on Dsyn performs well. To achieve this goal, the245

overall procedure of DiLM is composed of the fol-246

lowing three steps:247

1. We fist simply train the generator model to248

generate synthetic training samples that be-249

long to the same distribution as in the original250

dataset Dreal (Section 3.2).251

2. We then fine-tune the generator model to gen-252

erate “informative” training samples by min-253

imizing the gradient matching loss between254

generated and real samples (Section 3.3).255

3. We obtain distilled dataset Dsyn by gener-256

ating synthetic samples with the generator257

model and selecting representative samples258

from them by using a clustering-based coreset259

selection method (Section 3.4).260

We describe the details of each step in the following261

sections.262

3.2 Synthetic Training Data Generation with263

Language Model264

Inspired by the remarkable text generation capa-265

bility of pre-trained transformer language mod-266

els (Radford et al., 2019), we use them as the gen-267

erator model to generate synthetic training samples268

of sufficient quality to be used for training models.269

Before training the generator model to generate270

more informative synthetic samples than real sam-271

ples in the original dataset, we first simply train a272

language model to generate training samples that273

belong to the same distribution as in the original274

training dataset for the initial parameters of the275

generator model.276

When we target at text classification tasks, we277

need to control the generator model to generate278

samples for each specific class. Therefore, we intro-279

duce class-specific beginning-of-sentence tokens280

<bos_i>, which are added to the head of each train-281

ing sample to train the generator model to generate282

samples of the corresponding class following it.283

For each training sample, an end-of-sentence token284

<eos> is also added, and the sample is fed to the285

generator model as follows:286

<bos_i> sentence of class i <eos>.287

To involve text classification tasks that specify the288

relation between two sentences, such as semantic289

similarity and natural language inference (NLI), we290

use a separate token <sep> to split two sentences291

as292

<bos_i> sentence 1 <sep> sentence 2 293

<eos>. 294

The generator model is trained on them with the 295

language modeling loss Lϕ(xi) as 296

Lϕ(xi) = − 1

|xi|
∑
wt∈xi

log pϕ(wt|w<t), (1) 297

where wt is a token in xi and |xi| is the length of 298

xi. In this way, we pre-train the generator model 299

parameters ϕ to generate synthetic training data 300

like real data, and use them as the initial parameter 301

for training for gradient matching, described in the 302

following section. 303

3.3 Training for Gradient Matching 304

In this section, we explain how to fine-tune the pre- 305

trained generator model, described in Section 3.2, 306

to generate synthetic training samples that are more 307

informative than real samples in the original dataset. 308

Specifically, we describe gradient matching, which 309

is an optimization objective for dataset distillation, 310

and the model updating procedure to deal with the 311

discreteness of text. We also introduce two tech- 312

niques to improve DiLM: representative teacher 313

and diverse mini-batch sampling. 314

Gradient Matching. To distill the knowledge of 315

the original dataset Dreal into generated synthetic 316

samples from the generator model, we optimize 317

the gradient matching loss (Zhao et al., 2021) as 318

the objective for dataset distillation. Given a mini- 319

batch of real samples {xi}Mi=1 and a mini-batch 320

of synthetic samples {x̃i}Ni=1, which is generated 321

from the generator model, the gradient matching 322

loss LGM on the learner model parameters θ is cal- 323

culated as 324

LGM = D
(
∇θLreal,∇θLsyn

)
where

Lreal =
1

M

M∑
i=1

lθ(xi), Lsyn =
1

N

N∑
i=1

lθ(x̃i),

(2)

325

where lθ(·) is the loss function for learning tasks 326

such as cross-entropy loss, and D(·, ·) is the cosine 327

similarity-based distance function, expressed as 328

D(A,B) = 1− A ·B
∥A∥∥B∥

. (3) 329

Following a previous study (Zhao et al., 2021), we 330

separately calculate the gradient matching loss for 331
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Algorithm 1: Optimization for DiLM
Input : Dreal: original dataset; ϕ: generator model;

θ: learner model; S: # of outer loop; T : # of
inner loop; K: # of learner updating loop in
each inner step; M : batch size of real data;
N : batch size of synthetic data; η: learning
rate of θ; α: learning rate of ϕ.

// Outer loop

1 for s = 1, . . . , S do
// Initialize learner

2 Initialize θ ∼ p(θ0)
// Inner loop

3 for t = 1, . . . , T do
// Compute gradient matching loss for each class

4 for c = 1, . . . , C do
// Compute loss with real samples

5 {x(c)
i }

M
i=1 ∼ D

(c)
real

6 L(c)
real ←

1
M

∑M
i=1 lθ(x

(c)
i )

// Compute loss with synthetic samples

7 {x̃(c)
i }

N
i=1 ∼ pϕ(x̃)

8 for i = 1, . . . , N do
9 ai ← pϕ(x̃

(c)
i )/

∑N
j=1 pϕ(x̃

(c)
j )

10 L(c)
syn ←

∑N
i=1 ailθ(x̃

(c)
i )

// Gradient matching loss (Eq. (3))

11 L(c)
GM ← D(∇θL(c)

real,∇θL(c)
syn ))

// Update generator

12 ϕ← ϕ− α∇ϕ
1
C

∑C
c=1 L

(c)
GM

// Update learner for K steps

13 for k = 1, . . . , K do
14 Xreal ∼ Dreal
15 θ ← θ − η∇θLθ(Xreal)

Output :ϕ: Parameters of generator model.

each class and combine them to update the gener-332

ator model parameters ϕ. To consider the gradi-333

ent on the learner model parameters θ throughout334

the entire training process, the generator model is335

trained with the nested loop algorithm, including336

the outer loop which initializes θ at the beginning,337

and the inner loop which updates θ for K steps338

with real samples (see Algorithm 1).339

Generator Updating. As we described in Sec-340

tion 2.2, the gradient matching loss LGM cannot341

be directly back-propagated to the generator model342

parameters ϕ via generated samples {x̃i}Ni=1, like343

the case with image datasets, because they consist344

of discrete text. To address this issue, we design345

an alternative backward pass, inspired by a previ-346

ous study (Hiraoka et al., 2020), which optimizes a347

tokenization model for the downstream task’s loss348

through a non-differentiable procedure. When com-349

puting the generated sample’s loss Lsyn, instead350

of simply averaging the losses for each generated351

sample as in Eq. (2), we weight them with their352

generation probabilities pϕ(x̃i) as 353

Lsyn =
N∑
i=1

ai lθ(x̃i), (4) 354

ai =
pϕ(x̃i)∑N
j=1 pϕ(x̃j)

. (5) 355

Therefore, LGM can be back-propagated to ϕ 356

through the differentiable pass via loss weights ai, 357

as illustrated in Figure 1. Intuitively, the generator 358

model is updated to increase its generation proba- 359

bilities of synthetic samples that improve gradient 360

similarity. 361

Representative Teacher. To improve DiLM, we 362

consider enhancing the gradient teacher of real sam- 363

ples by using representative samples for each mini- 364

batch of real samples instead of randomly selected 365

ones. Inspired by Liu et al. (2023), we select the 366

representative samples with K-centers (Wolf, 2011; 367

Sener and Savarese, 2018), a clustering-based core- 368

set selection method (Figure 1a). Specifically, we 369

divide all the real training samples for each class 370

into M sub-clusters by using the K-means algo- 371

rithm on the feature space of the learner model, 372

and choose the center sample of each sub-cluster. 373

As shown in (Liu et al., 2023), the representative 374

samples selected by K-centers provide the proper 375

teacher gradient by including diverse samples that 376

cover the overall distribution for each class and 377

eliminating samples near the decision boundaries, 378

which have dominant gradients with large norms. 379

Considering coverage and robustness, we generate 380

10 representative sample sets by running the K- 381

means algorithm with different random seeds at the 382

beginning of training and use one as a mini-batch 383

of real samples in each training step.1 384

Diverse Mini-batch Sampling. Diversity in a 385

mini-batch of generated samples for each step af- 386

fects the sample space that the generator model 387

explores in training. If the generator model only 388

generates many samples that are similar to each 389

other, this leads to the biased optimization of the 390

generator model. To address this issue, we intro- 391

duce diverse mini-batch sampling of generated sam- 392

ples in the training process of DiLM (Figure 1b). 393

Instead of generating N synthetic samples for each 394

step, the generator model generates N × Iint syn- 395

thetic samples at the same time, where Iint is the 396

1Liu et al. (2023) repeatedly re-generated the K-center
representative samples by conducting clustering on the feature
space of the different learner model’s states throughout the
inner loop. However, it is very time consuming with BERT as
the learner model, as in our study.
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SST-2 (2 classes, 67.3k) QQP (2 classes, 364k) MNLI-m (3 classes, 393k)

Data/class 5 10 20 5 10 20 5 10 20

Random 58.1±5.2 64.3±7.4 70.3±6.8 51.5±5.6 56.0±4.8 59.1±3.8 35.6±2.1 37.7±2.6 40.1±3.2
K-centers 70.8±4.1 75.9±4.7 79.8±3.5 60.7±3.8 60.9±3.1 62.6±2.7 36.2±2.4 41.8±3.2 45.3±3.0
Herding 70.2±5.7 73.2±5.7 76.9±4.4 56.0±5.6 59.7±4.1 62.3±3.4 36.2±3.8 38.7±3.7 42.8±3.5

TDD (embed.) 89.6±0.4 - - 81.5±0.2 - - 75.6±0.2 - -
TDD (text) 50.2±1.6 - - 39.6±6.8 - - 33.4±1.8 - -

Vanilla LM 65.2±6.8 71.7±6.8 77.6±4.1 56.7±4.4 59.3±3.8 62.5±3.3 36.3±2.7 40.5±2.9 43.6±3.1
DiLM 72.5±5.9 76.3±4.6 80.3±2.8 58.8±5.2 62.2±3.3 64.4±2.6 39.7±2.7 44.8±3.1 48.7±2.6

Full dataset 92.7 89.6 86.7

Table 1: Performance comparison of DiLM with coreset selection methods and TDD for training the BERTBASE
model. Green highlighted results indicate that DiLM outperformed the coreset selection methods. Red highlighted
results indicate performance degradation of distilled datasets from TDD after being converted to text. Note that we
could not conduct the experiments for TDD with larger DPC settings due to GPU memory requirements.

generation interval. The generated synthetic sam-397

ples are then divided into N sub-clusters with the398

K-means algorithm, and a mini-batch of synthetic399

samples for each step is constructed by randomly400

choosing one sample from each sub-cluster.401

3.4 Generate Synthetic Dataset402

We obtain distilled dataset Dsyn by generating syn-403

thetic samples with the trained generator model.404

To include representative samples of the model’s405

generative distribution pϕ(x̃), we use the coreset se-406

lection method again to select generated synthetic407

samples. Specifically, we generate 100 times as408

many synthetic samples as the distilled dataset size409

|Dsyn| by top-p sampling with p = 0.95, consid-410

ering the diversity, and then construct Dsyn with411

K-center representative samples. This makes Dsyn412

to include diverse synthetic samples by removing413

redundant samples caused by the biased generative414

distribution of the model.415

4 Experimental Settings416

Datasets. We evaluated DiLM in distilling three417

major text classification datasets, SST-2, QQP, and418

MNLI-m, from the GLUE benchmark (Wang et al.,419

2018a). Following Wang et al. (2018a), we report420

accuracy for SST-2 and MNLI-m, and the average421

of accuracy and F1 score for QQP as our results.422

More details about each dataset are shown in Ap-423

pendix A.424

Baselines. Following previous studies on dataset425

distillation in the CV field, we compared the426

performance of DiLM with three coreset selec-427

tion methods, Random, K-centers (Wolf, 2011;428

Sener and Savarese, 2018), and Herding (Welling,429

2009), as well as TDD (Sucholutsky and Schon-430

lau, 2021), which is a recent embedding-level dis- 431

tillation method. Note that TDD also trains the 432

learnable soft-labels and learning rates for each 433

training step together with the input word embed- 434

dings. We also evaluated the vanilla LM, which 435

only learns the synthetic training data generation 436

(Section 3.2), to validate the effectiveness of the 437

training for gradient matching, described in Sec- 438

tion 3.3. The details of each baseline are given in 439

Appendix B. 440

Evaluation. For evaluation, we used BERTBASE 441

and other three pre-trained models, RoBERTaBASE, 442

BERTLARGE, and XLNetBASE, as learner models 443

(see more details in Appendix C). We trained a 444

learner model on the distilled datasets for 200 steps 445

by using AdamW (Loshchilov and Hutter, 2019) 446

with a learning rate of 1.0×10−4 and a batch size of 447

64.2 For Herding and TDD, we trained the learner 448

model on their datasets for 100 times. For other 449

methods, we generated 20 datasets with different 450

random seeds and trained the learner model on 451

each of them for 5 times. We report the average 452

and standard deviation for these 100 models. 453

Implementation. We used the 128M parameter 454

version of GPT-23 (Radford et al., 2019) as the gen- 455

erator model of DiLM, and used BERTBASE (De- 456

vlin et al., 2019) as the learner model, on which we 457

calculated the gradient matching loss. To reduce 458

the computational costs, we calculated the gradient 459

matching loss only for the randomly initialized last 460

layer parameters, which tend to have dominantly 461

larger gradient than the pre-trained parameters. We 462

set the number of each loop for training DiLM 463

2We did not follow this training protocol for TDD, since
TDD optimizes learning rates as well for each step with a
specific synthetic sample order.

3https://huggingface.co/gpt2
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to S = 2000, T = 10, and K = 20, and the464

generation interval to Iint = 200 according to our465

preliminary experiments. The mini-batch size of466

real and synthetic samples were respectively set467

to M = 200 and N = 64. More details of our468

implementation are given in Appendix D.469

5 Results and Discussion470

5.1 Performance for BERTBASE471

As shown in Table 1, we first compared DiLM472

with the other baselines for training BERTBASE, on473

which DiLM trained gradient matching. We evalu-474

ated them for different sizes of distilled synthetic475

datasets of 5/10/20 data-per-class (DPC) settings.476

We first found that the vanilla LM, which was477

only trained for synthetic training sample genera-478

tion without gradient matching, clearly underper-479

formed the coreset selection methods. This indi-480

cates that, as can be expected, the quality of the gen-481

erated synthetic samples becomes lower than that482

of real samples in the original datasets. However,483

DiLM, which fine-tuned the vanilla LM with gradi-484

ent matching, improved its performance and even485

outperformed the coreset selection methods overall.486

Note that the performance gains from K-centers487

indicate that DiLM generated synthetic training488

samples that are more effective for model training489

than the real samples in the original datasets.490

When focusing on the difference between the491

three datasets, the performance gains of DiLM on492

QQP and MNLI-m were larger than that on SST-493

2. We believe this is because QQP and MNLI-m,494

which are the tasks to specify the relationship be-495

tween two sentences, are intuitively less likely to496

have real samples that represent the task than SST-497

2, which is a relatively simple negative/positive498

classification task. In addition, it may also be re-499

lated to the size of the original training dataset500

of QQP and MNLI-m, which is five times larger501

than that of SST-2. Since the generator model was502

trained by gradient matching with self-generated503

synthetic samples, it can explore broader sample504

space by pre-training with the original dataset that505

contains enough diversity samples, which results506

in the effective performance of DiLM.507

For TDD, we also evaluated its distilled datasets508

as text data by converting them to discrete tokens509

that have nearest neighbor embeddings. When di-510

rectly using the distilled datasets as word embed-511

dings, TDD achieved remarkable performance even512

compared with the full datasets. However, after513

Dataset Model Random K-centers DiLM

SST-2

BERTBASE (S) 70.3±6.8 79.8±3.5 80.3±2.8

RoBERTaBASE 74.4±5.3 73.9±5.2 78.1±3.8
BERTLARGE 74.7±8.4 80.4±9.1 83.1±6.2
XLNetBASE 69.9±6.2 71.8±5.8 77.9±4.7

QQP

BERTBASE (S) 59.1±3.8 62.6±2.7 64.4±2.6

RoBERTaBASE 60.1±4.0 63.9±3.2 66.4±2.3
BERTLARGE 58.8±6.9 59.0±8.9 62.9±8.6
XLNetBASE 59.1±3.5 60.9±3.0 64.4±2.2

MNLI-m

BERTBASE (S) 40.1±3.2 45.3±3.0 48.7±2.6

RoBERTaBASE 39.6±2.5 44.5±2.6 45.0±2.8
BERTLARGE 40.9±4.5 48.7±4.2 49.6±4.4
XLNetBASE 39.0±2.0 43.5±2.7 44.7±2.7

Table 2: Cross-model generalization performance for
settings of DPC=20. (S) indicates the source model for
gradient matching of DiLM and feature extractor for
K-centers.

Models Random K-centers DiLM

GPT-2-XL (1.5B) 64.8±12.0 64.8±13.3 71.1±13.0
OPT (2.7B) 89.3±5.9 91.5±3.1 92.7±1.9
Llama 2 (7B) 93.6±2.9 94.6±0.7 95.1±0.7

Table 3: Performance of distilled datasets as 5-shot
prompts for in-context learning of SST-2. Each score
is the average and standard deviation for 100 prompts
with 20 distilled datasets and 5 random orders.

converting to text, its performance catastrophically 514

degraded even to the lower-bound performances 515

with random prediction. This suggests that the dis- 516

tilled datasets from TDD are strictly overfitted at 517

the word embedding level and cannot be converted 518

to text without acceptable performance degrada- 519

tion, which is necessary for applying them to other 520

models. This point is the clear advantage of DiLM, 521

which distills synthetic datasets at the text-level. 522

5.2 Cross-model Generalization 523

In contrast to the current embedding-level distil- 524

lation methods, text-level synthetic datasets from 525

DiLM can be leveraged for training different mod- 526

els independent of their word embedding weights. 527

To emphasize this advantage, we evaluated the 528

distilled synthetic datasets for training three mod- 529

els different from BERTBASE, with which the 530

distilled synthetic datasets were obtained, i.e., 531

RoBERTaBASE, BERTLARGE, and XLNetBASE. Ta- 532

ble 2 summarizes the performances of Random, 533

K-centers, and DiLM with DPC=20, where DiLM 534

achieved stably good performances.4 The results 535

4We also show the results with other DPC settings in Ap-
pendix E.
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RT DMS SST-2 QQP MNLI-m

DiLM

✓ ✓ 72.5± 5.9 58.8± 5.2 39.7± 2.7

✓ - 71.3± 5.6 57.5± 4.4 38.8± 3.0
- ✓ 70.9± 5.9 57.6± 5.0 39.5± 2.8
- - 69.2± 6.2 57.7± 5.2 38.3± 2.8

Table 4: Ablation study on the performance improve-
ment techniques of DiLM with the DPC=5 setting. RT
and DMS indicates representative teacher and diverse
mini-batch sampling, respectively.

indicate that the distilled datasets from DiLM con-536

sistently performed well for training the different537

models, even though DiLM trained gradient match-538

ing only for the BERTBASE model’s parameters.539

It is worth noting that our distilled datasets show540

successful generalization performance not only for541

training RoBERTaBASE and BERTLARGE, which542

have the same model architecture as BERTBASE,543

but also for training XLNetBASE, which is an au-544

toregressive model using the hidden state of the545

<eos> token for classification, while BERTBASE is546

an autoencoding model using the hidden state of547

the [CLS] token.548

We also evaluated the distilled datasets from549

DiLM as few-shot prompts for in-context learning550

of LLMs. Table 3 shows the performance of Ran-551

dom, K-centers, and DiLM for in-context learning552

for SST-2 with three different sizes of LLMs, GPT-553

2-XL (Radford et al., 2019), OPT (Zhang et al.,554

2022b), and Llama 2 (Touvron et al., 2023). Sur-555

prisingly, the distilled datasets from DiLM consis-556

tently performed well for the in-context learning,557

compared with Random and K-centers.558

These remarkable generalization performances559

across models and training processes strongly sup-560

port the advantage of DiLM to distill datasets at the561

text-level.562

5.3 Analysis and Discussion563

Ablation Study. Table 4 shows the results of the564

ablation study for the performance improvement565

techniques of the representative teacher for gradi-566

ent matching and the diverse mini-batch sampling567

of synthetic samples during training of DiLM. The568

results indicate that both two techniques are consis-569

tently effective for DiLM.570

Scaling of DPC. We investigated the performance571

of DiLM when increasing the size of synthetic572

datasets. Note that DiLM does not require retrain-573

ing the generator model for generating distilled syn-574

thetic datasets for different DPCs, which is also the575
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Figure 2: Performance for increasing number of syn-
thetic samples with DPC ∈ {1, 5, 10, 20, 50, 100, 200}.
We plot the mean and 95% confidence interval for 100
models trained on distilled datasets from DiLM.

advantage of using generative models for dataset 576

distillation. As shown in Figure 2, the performance 577

of the distilled datasets generally scaled with in- 578

creasing DPC. 579

Distilled Data Examples. We gave examples of 580

distilled synthetic samples for each dataset in Ap- 581

pendix F. We found that DiLM successfully gen- 582

erated interpretable synthetic samples that are ap- 583

propriate for the tasks of the original datasets. Al- 584

though DiLM consistently generated high quality 585

synthetic samples for SST-2 and QQP, the repe- 586

tition problem can be observed in some lengthy 587

samples for MNLI-m. This suggests that there is 588

still room for performance improvements of DiLM 589

by using a larger and more sophisticated pre-trained 590

language model for the generator model than the 591

small GPT-2 used in our current experiments. 592

6 Conclusion 593

We proposed the first text-level dataset distillation 594

approach, called DiLM, which trains a language 595

model to generate informative synthetic samples 596

as text data for model-agnostic applicability and 597

interpretability of distilled datasets. Experimental 598

results across various text classification datasets 599

indicated that the distilled datasets from DiLM 600

achieve successful performance for training various 601

types of models beyond the source model used for 602

distillation, even for in-context learning of LLMs. 603
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Limitations604

The following three points are the limitations of this605

work. (i) Although DiLM achieved remarkable per-606

formance as a text-level distillation method, there607

is still a performance gap from the full datasets.608

DiLM has room for the performance improvement609

by employing larger and more sophisticated pre-610

trained language models as the generator model611

or using other dataset distillation objectives as an612

alternative to the gradient matching. (ii) In our613

experiments, we applied DiLM to distill only text614

classification task datasets. DiLM can be applied615

to text generation tasks as well by just consider-616

ing the entire original training dataset as the data617

for a single label. In future work, we should ex-618

plore the application of DiLM for more difficult619

settings, such as the text generation tasks and full-620

scratch training of language models. (iii) While pri-621

vacy preservation of the original training datasets622

is one of the applications of dataset distillation, it623

is difficult to apply DiLM to the privacy preserva-624

tion because the distilled synthetic datasets from625

DiLM may include real samples from the original626

dataset due to the training data memorization of627

the language model. However, we believe that the628

advantage of DiLM to generate distilled synthetic629

datasets at the text-level, enabling the training of630

models independent of word embedding weights,631

is more valuable than the application to the privacy632

preservation in terms of practical applications.633
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A Datasets896

We used three text classification datasets in the897

GLUE benchmark (Wang et al., 2018a) from hug-898

gingface datasets.5 SST-2 is a banally sentiment899

classification (negative/positive) task for movie re-900

view sentences. QQP is a task to identify whether901

a question pair is semantically equivalent or not.902

MNLI-m is a natural language inference task to903

predict a premise sentence entails or contradicts904

a hypothesis sentence or neither (neutral). We re-905

ported the evaluation results on the validation set906

in Section 5, since the test set is not publicly avail-907

able. For MNLI-m, we used the matched-domain908

validation set for evaluation. We summarizes the909

statistics of each dataset in Table 5.910

Dataset Metric #Train #Dev #Class

SST-2 accuracy 67k 872 2
QQP accuracy/F1 364k 40k 2

MNLI-m accuracy 393k 9.8k 3

Table 5: Summary of statistics of evaluation datasets

B Baselines Details911

In this section, we explain the details of the baseline912

methods used in our experiments.913

B.1 Coreset Selection914

Random is the simplest baseline, which randomly915

selects real samples from the original training916

dataset.917

K-centers (Wolf, 2011; Sener and Savarese, 2018)918

is a standard coreset selection method that selects919

the center samples of sub-clusters as a coreset,920

which eliminates redundant samples and covers921

the distribution of the original dataset.922

Herding (Welling, 2009) is also a standard coreset923

selection method that greedily selects real samples924

to match their mean embedding with that of the925

original dataset.926

For K-centers and Herding, we used the last927

hidden state of the [CLS] token in the BERTBASE928

model as a feature of each training sample.929

B.2 Embedding-level Dataset Distillation930

TDD6 (Sucholutsky and Schonlau, 2021) is the931

current embedding level text dataset distillation932

5https://huggingface.co/datasets/glue
6We used the implementation by Maekawa et al. (2023),

because it also employs BERT as the learner model.

method. TDD also optimizes learnable soft- 933

labels and learning rates together with input word 934

embeddings by the original meta-learning ap- 935

proach (Wang et al., 2018b). Following the best per- 936

forming settings in Maekawa et al. (2023), which 937

applied this approach to the BERT model, we used 938

one synthetic sample per class as a mini-batch of 939

a single gradient step and fixed the order of syn- 940

thetic samples, which means the learner model is 941

trained with 5 gradient steps in the experiments in 942

Section 5 with DPC=5. Similar to DiLM, TDD 943

also used BERTBASE as the learner model for dis- 944

tillation. 945

C Learner Models 946

BERTBASE
7 (Devlin et al., 2019) was used as the 947

source model for training for dataset distillation 948

and the feature extractor of the coreset selection 949

methods. Following the fine-tuning settings in De- 950

vlin et al. (2019), we used a randomly initialized 951

linear layer on the top of the last hidden state of the 952

[CLS] token. 953

RoBERTaBASE
8 is a BERT derivative model pro- 954

posed by Liu et al. (2019). This model has the 955

same size and architecture as BERTBASE, but has 956

different parameters pre-trained with the masked 957

language modeling (MLM) task, without the next 958

sentence prediction (NSP) task, on a larger corpus 959

than the BERT models. 960

BERTLARGE
9 is the 24 layer, 340M parameter ver- 961

sion of BERT, while BERTBASE has 12 layers and 962

110M parameters. 963

XLNetBASE
10 is an autoregressive model in con- 964

trast to BERT and RoBERTa. Following (Yang 965

et al., 2019), we used a randomly initialized lin- 966

ear layer on the top of the last hidden state of the 967

<eos> token, which involves entire tokens in the 968

sequence. 969

D Implementation Details 970

Table 6 shows the details of hyperparameter set- 971

tings in our experiments. Our implementation was 972

based on PyTorch 2.1.0, and we used pre-trained 973

models from Hugging Face Transformers 4.30.0. 974

All model training and evaluation in our exper- 975

iments were conducted with the half-precision 976

(BFloat16) on a single RTX 3090 (24GB), RTX 977

7https://huggingface.co/bert-base-uncased
8https://huggingface.co/roberta-base
9https://huggingface.co/bert-large-uncased

10https://huggingface.co/xlnet-base-cased
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A6000 (48GB), or A100 PCIe (80GB) according978

to the required GPU memory size for each experi-979

ment.980

Pre-training settings of DiLM

Optimizer AdamW
Learning rate 1.0× 10−5

Learning rate scheduler Linear warm-up and
cosine annealing

Warmup ratio 0.05
Waight decay 0.01
Gradient clipping 1.0
Dropout ratio 0.1
# of training steps 80,000
Batch size 64

Fine-tuning settings of DiLM

Optimizer AdamW
Learning rate 3.0× 10−7

Learning rate scheduler Linear warm-up and
cosine annealing

Warmup ratio 0.05
Waight decay 0.01
Gradient clipping 1.0
Dropout ratio 0.1
# of outer loop (S) 20,000
# of inner loop (T ) 10
# of learner updating steps (K) 20
Batch size of real samples (M ) 200
Batch size of synthetic samples (N ) 64
Generation interval (Iint) 200

Learner training settings for evaluation

Oprimizer AdamW
Learning rate 1.0× 10−4

Learning rate scheduler Linear warm-up and
cosine annealing

Warmup ratio 0.5
Waight decay 0.01
Gradient clipping 1.0
Dropout ratio 0.1
# of training steps 200
Batch size 64

Table 6: Hyperparameter settings in our experiments

E Results for Cross-model Generalization981

Tables 7 and 8 show the cross-model generaliza-982

tion performances with DPC=5,10 settings. As in983

the setting of DPC=20 in Table 2, DiLM also per-984

formed well in training different models than the985

source model.986

F Distilled Synthetic Data Examples987

We gave examples of distilled synthetic samples988

from DiLM in Tables 9, 10, and 11. Generated syn-989

thetic examples with DiLM were interpretable and990

seem to represent the tasks of the original training991

dataset.992

Dataset Model Random K-centers DiLM

SST-2

BERTBASE (S) 58.1±5.2 70.8±4.1 72.5±5.9

RoBERTaBASE 60.6±7.6 74.2±4.9 75.1±4.6
BERTLARGE 60.4±8.4 70.0±8.2 73.7±8.4
XLNetBASE 57.0±5.5 66.4±5.0 69.5±6.6

QQP

BERTBASE (S) 51.5±5.6 60.7±3.8 58.8±5.2

RoBERTaBASE 52.5±6.0 63.9±3.3 62.4±3.7
BERTLARGE 53.3±6.7 58.3±5.8 58.8±5.7
XLNetBASE 52.6±5.2 62.6±3.1 60.2±4.6

MNLI-m

BERTBASE (S) 35.6±2.1 36.2±2.4 39.7±2.7

RoBERTaBASE 35.8±2.1 37.4±2.1 38.8±3.0
BERTLARGE 36.9±2.8 37.4±2.9 41.5±3.7
XLNetBASE 35.4±1.4 37.0±1.5 37.3±1.9

Table 7: Cross-model generalization performance for
the setting of DPC=5. (S) indicates the source model
for gradient matching of DiLM and feature extractor for
K-centers.

Dataset Model Random K-centers DiLM

SST2

BERTBASE (S) 64.3±7.4 75.9±4.7 76.3±4.6

RoBERTaBASE 68.6±7.1 74.6±5.6 77.1±4.1
BERTLARGE 67.2±8.5 76.6±8.4 79.2±7.8
XLNetBASE 63.7±7.5 68.0±6.1 74.2±4.9

QQP

BERTBASE (S) 56.0±4.8 60.9±3.1 62.2±3.3

RoBERTaBASE 56.4±5.3 64.0±2.7 63.9±4.3
BERTLARGE 53.7±8.5 59.4±5.6 60.6±7.5
XLNetBASE 55.0±4.5 61.4±3.2 62.8±2.2

MNLI

BERTBASE (S) 37.7±2.6 41.8±3.2 44.8±3.1

RoBERTaBASE 37.1±2.2 42.1±2.6 40.9±2.6
BERTLARGE 39.7±3.6 43.4±4.4 45.4±4.1
XLNetBASE 37.0±1.4 41.5±2.6 40.6±1.9

Table 8: Cross-model generalization performance for
the setting of DPC=10. (S) indicates the source model
for gradient matching of DiLM and feature extractor for
K-centers.
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Label Sentence

negative

is too amateurishly square to work as storytelling, and the ensemble cast lacks depth and resonance.

is so lousy that you can not enjoy it

incredibly lifeless, with the lack-of-attention span

the script’s contrived, lame screenplay and listless direction are just the ticket cost.

a cheap scam that only weak claims to dramatic impact and creepy-crawly humor.

positive

is a wonderous accomplishment of veracity and narrative grace.

very best

a fully realized story with keen insights into parapsychological phenomena and the soulful nuances of the
grieving process

it one of the best-sustained ideas i have ever seen on the screen.

a surprisingly sweet, tender drama that does a superb job contrasting the sleekness of the film’s present with the
playful paranoia of the film’s past.

Table 9: Distilled synthetic samples for SST-2 with DPC=5

Label Question 1 Question 2

not duplicate

Why should I write a good backmatter for an interna-
tional conference?

Where can I study internationally on business logic?

How long does it take you to learn the German lan-
guage?

How long does it take to learn the English language?

What are some unexpected things first-time visitors to
Colombia notice?

What are some unexpected things first-time visitors to
Canada notice?

Why is red in PFUS something I can’t see when I tap
PFUS?

Did one have a chance to see one of the real masterpieces
being played by Richard Bachardo in MS Dhoni Cricket:
Live Streaming, in the Permanent XI Test Center at
Mumbai?

How does digital gatekeeper disable ads on a WiFi band? How can I enabledisable my WiFi network on my HTC
phone?

duplicate

How do I recover my Gmail account after recovery? How do I recover my Gmail account from recovery?

How do you prevent hair loss without touching hair? How do I prevent hair loss without touching hair?

How do I get successful in C.E.? How can I get successful in C.E.?

What is the best word or link you use to explain the
meaning of a certain book to a friend?

What is the best word or link you use to explain the
meaning of a certain book to a friend?

How will the ban of Rs 500 and Rs 1000 notes affect
Indian economy?

How will the 500 and 1000 rupee notes ban affect the
Indian economy?

Table 10: Distilled synthetic samples for QQP with DPC=5
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Label Premise Hypothesis

entailment

Guess we are all here, friends. We were all here, friends.

The costs to the Service, often estimated to be between
$100 and $150 million, will be higher because of the
reduced volume of post-1991 pleadings by six states and
28 other states requiring service members to produce
basic records electronically.

Costs to the Service are higher because of reduced
volume of post-1991 pleadings by six states and 28
other states requiring service members to produce basic
records electronically.

uh-huh is that right because like i say a lot of people tell
me we could make it cheaper if we wanted but we didn’t
i mean our family life is just so far so far that

It seems that a lot of people tell me that it could be
cheaper if we wanted but we don’t really think we could
make it cheaper.

However, the CEF report suggested that some of the fol-
lowing could serve to reduce the burden on small entities
with federally or nonfederal support for compliance with
the rule and to minimize the number of affected entities
receiving small reductions of federal payments.

Some things could be considered part of the CEF report
for reducing burdens on small entities.

If you are a casino business owner looking to expand
your profits, opportunities and experiences, or even to
retain some intellectual property you acquired during
your travels in other countries, it is best to visit Can-
cio, Parnell’s (National Cancia) resort in Montego Bay,
where prices and travel policies range from a very rea-
sonable $50.

The casino has plenty of opportunities you can expand
your profits with in Cancio, Parnell’s resort.

neutral

oh in that case you have to give them uh six months to
come and you know and let them go on

They don’t have to get their first six months if they
return.

This is highly valued nationally because of its steeply
pro-retirement payment culture, which is perceived as
a great success rate by the profession and outside of
its area of employment, particularly among the field’s
young professionals.

Out of all the fields in the population, it is highly val-
ued by the professional community because it provides
confidence that the community will care more about its
growth.

yeah right now i i still wish they were a little more The idea of having people tell us what to do is good for
their business and prospects.

In fact, there is one wonder why Republican leaders are
afraid to mention his name.

Republican leaders are not afraid of his name because
he is in need of attention.

To me, it’s an excellent system. I think it could be a good system for a number of reasons.

contradiction

yeah well you know i can’t i can’t i know sometimes
i just i’ll remember remembering for once the former
minister might be sympathetic to some of the Serbian
government cases that they might say well there’s no
way out um no matter what their approach to the possi-
bility of a peace dividend a lot of people i think i think
are are willing to compromise and and to stand up and
say who’s right and who’s wrong and i think it’s a good
idea and

I can’t recall the minister’s views on different Serbian
government cases.

I suppose you could say, if it were not for the gleam
of light in the hour of your death-boom, that the fatal
effects were of a furtive rather than a ferocious nature?

I don’t think you could confirm it is a furtive either.

i think something has to change there They have no plans at all to change.

The revisions take into account the range of factors that
varying units of measure represent when evaluating new
disclosure requirements and when determining whether
it should be possible to offer various types of similar
products for different reasons.

The revisions go against the current practice and do not
consider whether it should be possible to offer different
types of similar products for different reasons.

yeah i uh i uh i don’t think there’s that’s a bad place to
live in some part of the world and do everything else that
it’s really not because people have gotten up in arms but
it’s all it’s all a lot of money to run a very very wealthy
individual home

I don’t think we should be buying a very wealthy home
in an undeveloped area in the developed world.

Table 11: Distilled synthetic samples for MNLI-m with DPC=5

15


	Introduction
	Related Work
	Dataset Distillation
	Generative Models

	Methodology
	Overview
	Synthetic Training Data Generation with Language Model
	Training for Gradient Matching
	Generate Synthetic Dataset

	Experimental Settings
	Results and Discussion
	Performance for BERTBASE
	Cross-model Generalization
	Analysis and Discussion

	Conclusion
	Datasets
	Baselines Details
	Coreset Selection
	Embedding-level Dataset Distillation

	Learner Models
	Implementation Details
	Results for Cross-model Generalization
	Distilled Synthetic Data Examples

