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ABSTRACT

Neural network certification methods heavily rely on convex relaxations to pro-
vide robustness guarantees. However, these relaxations are often imprecise: even
the most accurate single-neuron relaxation is incomplete for general ReLU net-
works, a limitation known as the single-neuron convex barrier. While multi-
neuron relaxations have been heuristically applied to address this issue, two cen-
tral questions arise: (i) whether they overcome the convex barrier, and if not, (ii)
whether they offer theoretical capabilities beyond those of single-neuron relax-
ations. In this work, we present the first rigorous analysis of the expressiveness of
multi-neuron relaxations. Perhaps surprisingly, we show that they are inherently
incomplete, even when allocated sufficient resources to capture finitely many neu-
rons and layers optimally. This result extends the single-neuron barrier to a uni-
versal convex barrier for neural network certification. On the positive side, we
show that completeness can be achieved by either (i) augmenting the network
with a polynomial number of carefully designed ReLU neurons or (ii) partitioning
the input domain into convex sub-polytopes, thereby distinguishing multi-neuron
relaxations from single-neuron ones which are unable to realize the former and
have worse partition complexity for the latter. Our findings establish a foundation
for multi-neuron relaxations and point to new directions for certified robustness,
including training methods tailored to multi-neuron relaxations and verification
methods with multi-neuron relaxations as the main subroutine.

1 INTRODUCTION

Neural networks are vulnerable to adversarial attacks (Szegedy et al., 2014), where a small perturba-
tion to the input can lead to misclassification. Adversarial robustness, which measures the robustness
of a model with respect to adversarial perturbations, has received much research attention in recent
years. However, computing the exact adversarial robustness of a general neural network is coNP-
hard (Katz et al., 2017), while adversarial attacks (Carlini & Wagner, 2017; Tramer et al., 2020) that
try to find an adversarial perturbation can only provide a heuristic upper bound on the robustness of
the model. To tackle this issue, neural network certification has been proposed to provide robustness
guarantees. In the context of robustness certification, the task boils down to providing a numerical
bound on the output of a neural network for all possible inputs within a given set. A central property
of certification is completeness, which requires the method to provide exact bounds for all cases.

Certification methods based on convex relaxations can provide efficient certification by computing
an overapproximation of the feasible output set of a given network, with certain trade-off on the
precision (Wong & Kolter, 2018; Singh et al., 2018; Weng et al., 2018; Gehr et al., 2018; Xu et al.,
2020). They can also be incorporated in the training process to deliver models that are easy to
certify (Shi et al., 2021; Miiller et al., 2023; Mao et al., 2023; 2024a; Palma et al., 2023; Balauca
et al., 2024). Due to the central role of convex relaxations in the context of certified robustness, it is
crucial to understand their theoretical properties.

The Single-Neuron Convex Barrier Single-neuron relaxations are widely studied due to their
popularity and simplicity. However, the single-neuron convex barrier result (Salman et al., 2019;
Palma et al., 2021) prevents single-neuron convex relaxations from providing exact bounds for gen-
eral ReLU networks. Baader et al. (2024) further show that even the most precise single-neuron
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relaxation, namely Triangle (Wong & Kolter, 2018), cannot exactly bound any ReLU network en-
coding the “max” function in R2. To overcome this limitation, multi-neuron relaxations have been
proposed (Singh et al., 2018; Miiller et al., 2022; Zhang et al., 2022), achieving higher empirical
precision. Yet, their theoretical properties remain largely unexplored. In particular, it is unclear
whether multi-neuron relaxations are able to provably bypass the convex barrier and provide com-
plete certification for general ReLU networks, if given sufficient resources. A key challenge is
that, unlike the single-neuron setting—where proving a barrier only requires exhibiting a concrete
network for which the most precise single-neuron relaxation fails—a multi-neuron relaxation can al-
ways be made more precise by allocating more resources, thus this question cannot be answered via
empirical studies. Moreover, solving multi-neuron relaxations is significantly more computationally
expensive, making empirical exploration of their limits difficult.

This Work: Quantifying the Expressiveness and Completeness of Multi-Neuron Relaxations
In this work, we formalize the notion of multi-neuron relaxations and rigorously investigate their ex-
pressiveness. We address two central questions: (i) whether they overcome the single-neuron convex
barrier, and if not, (ii) whether they offer fundamental advantages over single-neuron relaxations.

Key Contributions

e We prove that multi-neuron relaxations are inherently incomplete for general ReL.U networks,
even provided with sufficient resources to capture all neurons in each individual layer optimally
(§3). This incompleteness result is extended to relaxations involving finitely many layers and
networks with non-polynomial activations, e.g., tanh, establishing a universal convex barrier for
neural network certification with convex relaxations (§4).

* We prove that with equivalence-preserving network transformations, a layerwise multi-neuron
relaxation can be a complete verifier, which is impossible for any single-neuron relaxation. This
shows that the expressivity of general ReLLU networks is preserved under multi-neuron relax-
ations: every continuous piecewise linear function can be encoded by a network that is exactly
bounded by some layerwise multi-neuron relaxation (§5.1). This stands in sharp contrast to the
impossibility result established for single-neuron relaxations (Baader et al., 2024): in a case
study, we demonstrate that a simple network implementing the “max” function in R? can be
exactly bounded by a dimension-independent multi-neuron relaxation far weaker than required
by the general theorem.

* We analyze the properties of multi-neuron relaxations under convex polytope partitioning and
show that their partition complexity required to achieve complete certification is strictly lower
than that of single-neuron relaxations (§5.2).

* We discuss the practical implications of the above theorems, including training strategies tai-
lored to multi-neuron relaxations and verification methods with multi-neuron relaxations as the
main subroutine (§6).

Aside from the prior works mentioned, an extended discussion of related work can be found in §A.

2 BACKGROUND

2.1 CONVEX RELAXATIONS FOR CERTIFICATION

Given a function f : RY — R? and a compact domain X C R,
we denote the graph of the function {(x, f(x)) : z € X} by f[X].
The certification task boils down to computing the upper and lower
bounds of f(X) := {f(z)|x € X}, in order to verify that these
bounds meet certain requirements, e.g., adversarial robustness. To -1
this end, convex relaxations approximate f[X] by conditioned con-
vex polytopes S C R4’ satisfying S D f[X], where the condition
depends on the concrete relaxation method. We then take the upper
and lower bounds of S (projected onto RY) as an over-approximation of the bounds of f(X). We
denote by C(ac(l), e 7w(L)) a set of affine constraints on the variables (1), ... (%), Its feasible
set is the intersection of the feasible set of each included affine constraint. When context is clear, we
use C to refer to both the affine constraint set and its feasible set; for two constraint sets C; and Co,

|
IIEECH I

Figure 1: Triangle relaxation of a
ReLU with input z € [—1,1].
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we use C1 A Ca to denote the combination of the constraints in C; and Co, i.e., their feasible sets are
intersected. For an affine constraint set C(x, y) dependent on &, we denote by 7, (C) the projection
of the feasible set onto the x-space, which can be computed by, e.g., applying the Fourier-Motzkin
algorithm to remove the variables in C other than . We assume the domain X to be a convex poly-
tope, e.g., Lo, neighborhoods of a reference point, which is the common practice in certification.
Such convex sets S can be represented by a set of affine constraints C(x, f(x)) as well. For exam-
ple, consider the ReLU function y = p(z) = max(x,0) on the domain X = [—1, 1], represented by
Co = {z > —1,z < 1}. One possible convex relaxation is the Triangle relaxation (Wong & Kolter,
2018), represented by the affine constraints C; = {y > z,y > 0,y < %(x +1)}. Figure 1 illustrates
this, where the black thick line represents f[X] and the colored area stands for S. In this example,
7T$(CO A Cl) = [—1, 1] and Wy(CO A Cl) = [0, 1].

2.2 RELU NETWORK ANALYSIS WITH LAYERWISE AND CROSS-LAYER CONVEX
RELAXATIONS

Consider a network! f = Wj 0 po--- 0 po W; where W, are the affine layers for j € [L] and
p is the ReLU function. Denote the input variable by x, the first layer by v := Wi(x), the
second layer by v(?) := p(v(l) ), and so on?. Assume the input convex polytope X is defined by the
affine constraint set Co(x). A layerwise convex relaxation works as follows. Given the input convex
polytope® Co(x), apply the convex relaxation to the first layer v(*) = T () to obtain a set of affine
constraints Cy (,v})). Then, based on 7,1, (Co A C1), apply it to the second layer v(?) = p(v(V))
to obtain a set of affine constraints Cs(v("), v(?)). Proceeding by layer by layer, we obtain affine
constraint sets C;11 (v, vU+1)), for j € [2L — 2]. All the constraints pertain to a single layer
and no explicit constraint across layers is allowed, e.g., C(x, 'v(QL’l)) would not appear explicitly
in the above procedure. Finally, we combine all constraints to get C = Co(x) A Cy(z, vD) A--- A
Cor—1(vE=2) »(L=1) and solve C to obtain the upper and lower bounds of the output variable
v(2L=1) These bounds are then used to certify the network.

In contrast to layerwise relaxations which consider every layer separately, cross-layer relaxations
(Zhang et al., 2022) include constraints involving multiple consecutive layers. Concretely, let r €
N, for the network f above, a cross-r-layer relaxation processes the first r layers jointly and returns
a set of affine constraints C; (z,v(?), ... v(")). Proceeding again layer by layer, we obtain affine
constraint sets Co(v(M, ..., 01+) . Cop ,(v3L=m=1 . wL=1) and the intersection of
all feasible sets is solved to return bounds on v(22~1), We denote by P, the convex relaxation that
always returns the convex hull of the function graph of every r adjacent layers on an input convex
polytope to the considered layers, which is, by definition, the most precise cross-r-layer convex
relaxation, and likewise denote by P; the most precise layerwise (cross-1-layer) convex relaxation.
In other words, given a feasible set S in the v(?) space, P, returns a constraint set equivalent to the
convex hull of { (v, ..., v(*7)) | ¥() € S} forall i. All cross-r-layer relaxations cannot be made
more precise than P, by definition.

For a set H, we denote its convex hull by conv(H ). For a compact set X C R?, we denote by min X
the d-dimensional vector whose elements are the minimum value of points in X on each coordinate.
For example, min[0, 1] = (0, 0). Given a relaxation method P, a network f, and an input set X,
we denote by £(f, P, X) the vector of lower bounds on each dimension of f computed by P with
respect to X; likewise we denote by u(f, P, X) the upper bounds. In this work, we assume linear
programming is employed to solve the constraint sets generated by the convex relaxation methods,
and it always returns optimal bounds based on the constraints, without indicating the existence or
nonexistence of a feasible point attaining the bounds. A glossary of all notations is detailed in §B.

2.3  SINGLE-NEURON AND MULTI-NEURON RELAXATIONS

Within the framework of layerwise convex relaxations, the optimal constraint set on an affine layer
y=Ax + bisalways C(x,y) = {Ax +b—y < 0,—Ax — b+ y < 0}, which translates to the

"Unless explicitly stated otherwise, the term network is understood as ReLU neural network.
2We consider affine transformation and ReLU as separate layers throughout the paper.
3We always assume the input convex polytope is non-empty.
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equality y = Ax + b. Such constraints introduce no loss of precision, and thus are adopted by most
convex relaxation methods. Concretely, other than IBP, all convex relaxation methods considered
in this paper use the exact constraints on affine layers. The core difference between relaxation
methods is how they handle the ReL.U function. Single-neuron relaxation methods process each
ReLU neuron separately and disregard the interdependence between neurons, while multi-neuron
relaxations consider a group of ReLU neurons jointly. For the vector =, x; denotes its i-th entry
and x is the subvector of o with entries corresponding to the indices in the set I. For the ReLU
layer y = p(x) with = € R?, the constraint sets computed by single-neuron relaxations are of the
form C(x;,y;) with ¢ € [d]. In contrast, multi-neuron relaxations produce constraints of the form
C(xy,,yr,) with I, I C [d]. We only consider multi-neuron relaxations that are at least as precise
as single-neuron relaxations, i.e., for every ¢ € [d], there exist I, I such thati € I; N Is.

Singh et al. (2019a) propose the first multi-neuron relaxation called k-ReLU. For the ReLU layer
y = p(x), it considers at most k unstable neurons jointly—we call neurons that switch their activa-
tion states within the input set as unstable, otherwise we call them stable— and returns C(x, y;),
with I C [d],|I| < k. However, k-ReLU is incomplete for general ReLU networks even when
k = oo (see §3), thus we consider a stronger multi-neuron relaxation which only restricts the
number of output variables in the constraints, allowing C(x, y) to be of the form C(x,y;) with
I C [d],|I]| < k. Similar tricks are also used in Tjandraatmadja et al. (2020). We denote this spe-
cial multi-neuron relaxation as My, and assume it always computes the convex hull of (x, p(x1)),
while only one index set I is allowed per ReLU layer. We emphasize that M, is allowed to consider
unstable and stable neurons together, while k-ReLU only considers unstable neurons and the corre-
sponding inputs jointly, thus M, is more precise even when k-ReLU also computes the convex hull
of the considered variables. Neurons that are not considered by a multi-neuron relaxation are pro-
cessed by the single-neuron Triangle relaxation. For ReLU networks of width no more than &k, My,
as a layerwise relaxation, is equivalent to the most precise layerwise relaxation P;. We note that P,
is a multi-neuron relaxation by definition, for every 7 € NT. A toy example is provided in §C to
further illustrate the concepts introduced above. We refer interested readers to Baader et al. (2024)
for a more detailed introduction to concrete single-neuron and multi-neuron relaxation methods.

3 LAYERWISE MULTI-NEURON INCOMPLETENESS

In this section, we establish the incompleteness result for layerwise multi-neuron relaxations. We
consider P;, the most precise layerwise multi-neuron relaxation by definition, and show that it is
incomplete, and the relaxation error can be arbitrarily large. This result naturally extends to all
layerwise ReLU network verifiers, as they cannot be more precise than P .

We start with a simple example to demonstrate the idea. Consider the input set X = [—1, 1]? and the
ReLU network f = f opoWi, where [/ = p(x; —1)+p(1—x1)+ p(x2 — 1)+ p(1 — x2) encodes
the function f’(z1, 2) = |21 —1|+|z2— 1|, € R?, and W} is the affine transformation Wy () :=

(:i _1155) x + (:82) , forx € R%. Let u := p(W;(x)). As illustrated in Figure 2, the affine

layer W7 and the subsequent ReLU transform the input set into the polytope union U = {u; >
O,us > 0,u1 +uy <1}U{l <uy <2,us =0} U{l <uy <2 ,u; =0}. The minimal value
of f on X is thus min f(X) = min f/(U) = 1. However, we will show ¢(f,P1,X) < 0, hence it
is impossible to obtain the exact lower bound. To see this, consider the specific point u* = (1,1).
On one hand, since P; is a sound convex relaxation, the affine constraints obtained on the layer p
and W characterize a convex superset of U, thus a superset of the convex hull of U which contains
u*. On the other hand, since P; prohibits affine constraints across nonadjacent layers, the affine
constraints induced by the subsequent layers f/ cannot remove u* from the feasible set (formalized
later in Lemma 3.1). Hence, the returned lower bound satisfies £(f, P1, X) < f'(u*) = 0.

We observe a general phenomenon from the example above: for a ReLU network f = fso f1, where
f1 and fy are its subnetworks, if (1) f; maps the input set to a set U whose convex hull is its strict
superset, that is, conv(U) \ U # (, and (2) the subsequent network f, attains its extremal values
at some point u € conv(U) \ U, then a layerwise convex relaxation method cannot provide exact
bounds on f for the given input set. This reveals a fundamental limit of layerwise multi-neuron
verifiers: there exist networks for which no verifier can provide exact bounds. In other words, all
layerwise multi-neuron relaxations are incomplete, regardless of how many neurons in a single layer
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Figure 2: Blue area shows how the input box transforms under W, and ReLU; shaded area is the feasible set
computed by P;.

are jointly considered. Further, as we shall show next, the relaxation error can be unbounded. The
rest of this section is devoted to formalizing and proving the ideas above.

We first establish two lemmata characterizing properties of layerwise convex relaxations.
Lemma 3.1 below states that affine constraints induced by layerwise convex relaxations on some
hidden layer cannot reduce the feasible set on its preceding layers.

Lemma 3.1. Let L € Nand let X be a convex polytope. Consider a ReLU network f = fro---ofj.
Denote the variable of the j-th hidden layer of f by v¥), for j € [L — 1], and the variable of the
output layer by v(X). For 1 < i < L, let Cy(x, vV, ..., v®) and Ca(x,v™),... v)) be the
set of all constraints obtained by applying P; to the first ¢ and L layers of f, respectively. Then,
Tp (Cr(x, v ™)) = 76 (Cox, v D), ... vP)),

The proof is based on the definition of layerwise convex relaxations and is straightforward; we defer
it to §E.1. Lemma 3.1 shows that the constraints induced by the deeper-than-: layers do not affect
the feasible set of v(?). Despite the simplicity, this observation leads to Lemma 3.2, which states
that the bounds computed by P; cannot be better than splitting the network into two subnetworks at
some hidden layer and then computing their convex hulls separately.

Lemma 3.2. Let X be a convex polytope and consider a network f := fo o fi, where f;
and fy are its subnetworks. Then, ¢(f,P1,X) < min(f2(conv(f1(X)))) and u(f, P1,X) >
max(fo(conv(f1(X)))).

The proof of Lemma 3.2 is as follows: for f7, the best approximation that a convex relaxation can
attain is the convex hull of the output set of f7; as a consequence of Lemma 3.1, when processing
f2, P1 will take the whole set conv(f1 (X)) into account. Thus, the best bound that 7P; can achieve
is no better than bounding f5(conv(f1(X))). The detailed proof of Lemma 3.2 is deferred to §E.2.

Now we are ready to show that the layerwise multi-neuron relaxation P; is incomplete.

Theorem 3.3. Let d € N and let X be a convex polytope in R?. For every 0 < T < oo, there
exists a ReLU network f : R? — R such that £(f,P1, X) < min f(X) — T, and a ReLU network
g : R? — R such that u(g, Py, X) > maxg(X) + T.

The proof is deferred to §E.3. Informally, we construct a network f such that the convex hull
of the output set of the first subnetwork is a strict superset of the output set, and the subsequent
layers attain its extreme values at points outside the reachable set. The construction is similar to
the example provided at the beginning of this section. Then, we can scale the weights of the output
layer by a large enough constant to make the relaxation error arbitrarily large.

Theorem 3.3 is an unfortunate result for layerwise multi-neuron relaxations. It shows that every
layerwise convex relaxation has a failure case where the relaxation error is arbitrarily large, though
calculating them, e.g., Py, is already computationally expensive for large networks.

4 CROSS-LAYER MULTI-NEURON INCOMPLETENESS

For networks of L layers, Py, can provide exact bounds as it computes the convex hull of the input-
output function. Since P; is proven incomplete in §3, the natural question is whether there exists
some r € N for P, to be complete. Instead of fixing 7 to be a constant, we consider this question
in its full generality by allowing r to depend on L and ask: does there exist « € (0, 1) such that
Prax(1,|«L]) Provides exact bounds for all networks with L layers? Our result is rather surprising:
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no such « exists. This directly implies the incompleteness of P,. for all € NT. Thus, the commonly
believed “single-neuron” barrier of convex relaxations is actually a misnomer, as it extends to every
multi-neuron convex relaxation, and should be renamed the universal convex barrier.

The key insight behind our result is that for every fixed « € (0,1), the cross-layer relaxation
Prax(1,|«L]) shares similar limitations to Py for certain networks. Formally,

Lemma 4.1. Let o € (0,1),d,d’, L1, Ly € N, and X C R be a convex polytope. For every
L,-layer network f; : R — R< and Lo-layer network f5 : R? — R, there exist L > Li + L and
a L-layer network f such that (i) f(x) = f2 o fi(x), for V& € X, and (ii) £(f, Pmax(1,[aL]) X) <
min fa(conv(f1(X))) and u(f, Pmax(1,[ar ), X) = max fa(conv(fi(X))).

Lemma 4.1 extends Lemma 3.2 to cross-layer convex relaxations. The idea behind its proof is similar
to the pumping lemma: the original network f2 o f; is pumped by adding dummy identity layers
between f; and fy. While cross-layer relaxations allow direct information exchange across layers
to improve bound preciseness, the pumped dummy layers block this information exchange, thereby
disabling the relaxation from providing exact bounds. The formal proof is deferred to §F.1. We note
that, however, only direct information exchange between f; and f is blocked by this construction,
and the cross-layer relaxation is free to provide exact bounds for both f; and fo, which is easily
done by Prax(1,|ar]) When a — 1 for large enough L. This is also the key difference between
layerwise and cross-layer relaxations. Nevertheless, merely blocking this information is sufficient
to make the relaxation incomplete, as shown in Theorem 4.2.

Theorem 4.2. Let d € N and let X C R? be a convex polytope. For every a € (0,1) and
every constant 7' > 0, there exists a network f : R? — R such that £(f, Prmax(1,|aL]) X) <

min f(X) — T, and a network g : R? — R such that u(g, Pmax(1,[aL]), X ) = max g(X) + T.

The proof is based on the construction when proving Theorem 3.3. Specifically, we take the con-
struction therein and apply Lemma 4.1 to obtain a deeper network that has the same semantics. Then,
since the convex hull and the exact output set of f; do not completely overlap, we use a similar ar-
gument as in the proof of Theorem 3.3 to show that the Ppax(1, |« ) Telaxation is incomplete for
every a € (0, 1). The formal proof is deferred to §F.2. This result directly extends to Prax(k,|aL])
for every constant k € N7

The implication of Theorem 4.2 is daunting: even though Prax(1,| oz ) is much more powerful than
every practical convex relaxation algorithm, it is still incomplete, and the bounding error can be
arbitrarily large. This shows a hard threshold in the completeness of cross-layer convex relaxation
verifiers: P| | is complete when a = 1 and incomplete when o < 1.

Beyond the ReL.U activation. While the incompleteness results we established so far are for ReLU
networks, they can be naturally extended to non-polynomial activation functions such as sigmoid
and tanh as follows. Recall that the extension to cross-layer incompleteness (Theorem 4.2) is based
on the pumping construction of Lemma 4.1 which extends to other activations, thus it suffices to
show that layerwise incompleteness extends to non-polynomial activations. The proof relies on two
observations: (i) there exists a network f and an input set X such that conv(f(X))\ f(X) # 0, thus
there exists a nonempty open set A such that A C conv(f(X))\ f(X), and (ii) there exists another
network g such that g(conv(f(X))) attains its minimum only inside A. Given a non-polynomial
activation function, by the universal approximation theorem (Hornik et al., 1989), the network class
is dense in the space of continuous functions, thus the first condition is easy to satisfy. The second
condition can be satisfied by constructing a network that approximates a continuous function that
attains its unique minimum in A. With these two core ingredients, the rest of the proof is similar to
that of ReL.U networks. We defer the formal statements and proofs to §J. Further, while we focus
on the absolute bounding error in the main text, the relative bounding error can also be shown to be
arbitrarily large; we defer the formal statements and proofs to §1.

5 MAKING MULTI-NEURON VERIFIERS COMPLETE

We have shown in §3 and §4 that no multi-neuron relaxation can achieve completeness. In this sec-
tion, we study techniques to augment multi-neuron methods into complete verifiers. First, we show
that a layerwise multi-neuron relaxation, specifically P, can be turned into a complete verifier by an
equivalence-preserving structural transformation, which is impossible for any single-neuron relax-
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ation (§5.1). While this result does not directly yield a practical algorithm, an immediate corollary is
that every continuous piecewise linear function can be expressed by a ReLU network that is exactly
bounded by a layerwise multi-neuron relaxation, unattainable by single-neuron relaxations. Sec-
ond, we show a sufficient and necessary condition for PP; to be complete under a convex polytope
partition, and that single-neuron relaxations inherently require more partitions to be complete (§5.2).

5.1 COMPLETENESS VIA NETWORK TRANSFORMATIONS

In this section, we consider a strong layerwise multi-neuron relaxation, namely P;, and show that
it can be turned into a complete verifier by semantic-preserving structural transformation of the
network. Given a network f to be verified, we can always construct a network g equivalent to f but
structurally more amenable to Py, so as to enable exact bounds. We formally state it in Theorem 5.1.

Theorem 5.1. Ford,d’ € N*,let f : RY — R? be a network and let X C R¢ be a convex polytope.

There exists a network g : R¢ — R% satisfying g = f on X, such that £(g, P;, X) = min f(X)
and u(g, P1, X) = max f(X).

The high-level idea is as follows: P; considers constraints involving a single layer, thus we need
to ensure sufficient information is passed through the hidden layers to the output layer for P; to
provide exact bounds. This is achieved by expanding the hidden layers of f on width and making
the additional neurons copy the input variable. In this way, the last layer contains sufficient infor-
mation of the input and as such P, which ensures the convex hull of the last layer’s variables, can
equivalently ensure the convex hull of f[X]. Detailed proof is deferred to §G.1.

Theorem 5.1 shows that P; is powerful enough for complete certification if an equivalence-
preserving transformation is allowed. While calculating P; for the transformed network might be
computationally expensive and potentially intractable, the core message from Theorem 5.1 is that
the expressivity of ReLU networks is no longer limited by the relaxation. As mentioned in §1, un-
der single-neuron relaxations, the expressivity of exactly bounded ReLLU networks is limited to 1-D
continuous piecewise linear functions (Baader et al., 2024): beyond 1-D, even the simple “max”
function in R? cannot be encoded by a ReLU network that is exactly bounded by single-neuron re-
laxations. In contrast, an immediate corollary of Theorem 5.1 is that multi-neuron preserves the full
expressivity of ReLU networks as representers of general continuous piecewise linear functions:

Corollary 5.2. For d € NT, let f : R? — R be a continuous piecewise linear function, and let
X C R%be a convex polytope. There exists a network g : R? — R satisfying g = f on X, such
that £(g, Py, X) = min f(X) and u(g, P1, X) = max f(X).

Corollary 5.2 shows that for every continuous piecewise linear function, there exists a ReLU network
encoding it that can be exactly bounded by P;. In practice, a multi-neuron relaxation much weaker
than P; may be enough for exact bounds. To illustrate this, we now examine the concrete example
of the “max” function in R? and show that M is sufficient to exactly bound a network encoding it.

Case study: max(z1, 2, ..., 24) can be exactly bounded by M.

First, consider the case d = 2. The function range is

[0, 1]. We can represent the “max” function by the ReLU @1 oy 7 c 1
network f = xo + p(x1 — x2), as illustrated in Figure 3. @ -1 O\
This network has width two (nodes ¢ and d) and one un- © 0D M@
stable neuron (node c). Recall that M; computes the con- 1 p :

vex hull of (z, p(x;)) for some i for each ReLU layer.
Figure 3: A network encoding f =

We now show that M; computes the exact bounds of f. max(z1,z2).

The input box is defined by the constraints {z; > 0,21 <

1,29 > 0,29 < 1}. Besides, the constraints on the affine

layers are {a = z1 — x2,b = z3,f = ¢+ d}. Under these constraints, we compute bounds of
the neurons of the first affine layer by linear programming, yielding a € [—1,1] and b € [0, 1].
For the stable node d, the constraint is then {d = b}. For the unstable node ¢, the constraint is
{c > 0,¢ > a,c <1-b,c < a+ b}, where the first two inequalities are based on the property
of the ReLU function and the last two inequalities are based on the capability of M; to compute
conv((a,b,c)) given conv((a,b)) = {a > —b,a < 1 —15b,b € [0,1],a € [-1,1]}. Note that
conv((a, b)) is provided to M because only a single affine layer is parsed before the ReLU layer.
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Therefore, wehave f =c+d=c+22>04+22>0and f=c+d=c+a:<1—-b+a3 <1
Thus, M returns the exact upper and lower bounds. We remark that k-ReLLU, equivalent to the
Triangle relaxation in this case for every k > 1 since there is only one unstable neuron, induces on
node c the constraint set {¢ > 0, ¢ > a, ¢ < 0.5a + 0.5}. The resulting upper bound is 1.5, which is
inexact, consistent to Baader et al. (2024).

Based on the 2-D case, we extend the result to R?. Indeed, we can rewrite “max” in a nested
form according to max(z1,xa, ..., 2q) = max(max(xi,zs),...,xq). By the previous argument,
a multi-neuron relaxation can bound v = max(x1, x2) exactly. Note that u has no interdependency
with x3, ..., x4, thus we can repeat the procedure above for max(u, zs, ..., z4). By induction on
d, a multi-neuron relaxation, namely M, can bound the output of a ReLU network expressing the
“max” function in R? exactly.

5.2 COMPLETENESS VIA CONVEX POLYTOPE PARTITIONING

In this section, we discuss how to achieve completeness for general networks (without transforma-
tion) by partitioning the input set into convex sub-polytopes.

Branch-and-bound (BaB) is currently the most effective complete verifier. It progressively divides
the current problem into subproblems, solves each subproblem recursively, and combines the results
to yield the bounds. With a similar strategy—we call it polytope partitioning—7P; can be turned into
a complete verifier. The idea is to partition the input set of every layer into smaller convex polytopes
so that P; exactly bounds each of them. The exact bounds of the original input set can then be
obtained by aggregating bounds of the smaller polytopes. An algorithm is provided in §D.

We first prove completeness, i.e., polytope partitioning enables P; to calculate exact bounds.

Proposition 5.3. Let L € N and dy,dy,...,dr+1 € N*. Consider an input set X C R% and
anetwork f = Wyi10po---0po Wy, where W; : R%-1 — R% are the associated affine
transformations for j € [L + 1]. Denote the subnetworks of f by f; := W1 0po---0po Wy,
for j € [L]. Assume Hi,...,H, C X such that Hy,...,H, are convex polytopes, f(X) =
f(Hy)U---U f(H,), and f;(H}) is a convex polytope for all j € [L] and k € [v], then

min f(X) = gli[n] O(f, P, Hy)  max f(X) = kmcﬁU(ﬁ P1, Hy)
S1% el

Proposition 5.3 states that when we partition the input set into a finite collection of convex polytopes,
such that each polytope remains as a convex polytope through the subsequent layers, then P; can re-
turn exact bounds on the input set. The proof of Proposition 5.3 (c.f. §G.2) is based on investigating
how affine and ReL.U layers transform polytopes. Essentially, an affine transformation converts an
input convex polytope into a convex polytope in the output space, and the ReL.U function transforms
a convex polytope into a union of convex polytopes. See Figure 4 for a visualization. We note that
the conditions in Proposition 5.3 are not only sufficient, but also necessary: if there is a sub-polytope
that is no longer a convex polytope after some layer, then the convex hull of the output set of that
layer on this sub-polytope is strictly larger than the actual feasible set. From the discussion in §3,
we have already known P; cannot return exact bounds for general networks when this occurs.

A key question with partitioning is: what is the complexity of partitioning, that is, the number
of subproblems to be solved? In particular, how does it compare with BaB when single-neuron
relaxations are used for bounding? Before answering this question, we first formally define the
(worst-case) partition complexity.

Definition 5.4. Let P be a complete certification method, f a network, and X an input set. Define
the partition complexity of P on f for X, denoted by #Partition(P, f, X), to be the maximum
number of subproblems P needs to solve to compute the exact bounds of f on X.

Definition 5.5. Let f be a ReLU network with k¥ ReLU neurons, and X be an input set. For z € X,
the activation pattern of f at x is defined as the binary vector @ € {—1,1}* such that a; = 1 if the
i-th ReLU neuron is activated at x, and a; = —1 otherwise. Denote the number of distinct activation
patterns of f on X by A(f, X).

Examples. BaB with DEEPPOLY (Singh et al., 2019b) as the bounding method has partition com-
plexity equal to A(f, X), since enumerating all possible activation patterns is both sufficient and
necessary for exact bounds. BaB with IBP (Gowal et al., 2018) as the bounding method has infinite
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Figure 4: A partion of the input set where every part remains as a convex polytope through the layers.

partition complexity for the network 1 + p(z2 — 1), which encodes the “max” function on [0, 1]2.
To see this, assume there exists a finite partition of the input set such that IBP returns exact bounds
with this partition. Taking the right-upper partition, we can always find a subset of it in the form
B = [p, 1] x [g, 1] for some p,q < 1. Then, the IBP upper bound for x5 — 21 on B is 1 — p, the
IBP upper bound for p(xs — 21) is 1 — p, and the IBP upper bound for x is 1. Therefore, the IBP
upper bound for f on B is at least 2 — p, which is inexact compared to the exact upper bound 1.

In the following, we compare the partition complexity of BaB, when single-neuron relaxations and
multi-neuron relaxations are used for bounding, respectively, showing that they are separated by
A(f, X). This result holds for every single-neuron and multi-neuron relaxation in general, and does
not require any assumption on the network or input set.

Proposition 5.6. Let S be some single-neuron relaxation and M be some multi-neuron relax-
ation. For every ReLU network f and every input set X, #Partition(BaB(M), f, X) < A(f, X) <
#Partition(BaB(S), f, X).

For BaB, enumerating all possible activation patterns is necessary to obtain exact bounds even with
the most precise single-neuron bounding algorithm. In contrast, Proposition 5.6 states that the acti-
vation pattern provides an upper bound on the polytope partition complexity. The proof is deferred
to §G.2. Although Proposition 5.6 establishes a clear separation on partition complexity between
BaB with single-neuron relaxations and multi-neuron relaxations, the upper bound can be quite con-
servative for powerful multi-neuron relaxations such as P;. We show this with a concrete example
in §H, in which P; with polytope partition has exponentially smaller time complexity than BaB with
DEEPPOLY.

6 DISCUSSION

We established a universal convex barrier, essentially ruling out the possibility of complete veri-
fiers based solely on any convex relaxation. This implies that convex relaxations should only be
applied as a subroutine in a complete verification method, such as BaB. All existing BaB methods
apply single-neuron relaxations for bounding the subproblems. However, our results suggest that
subproblem bounding with multi-neuron relaxations has strictly lower partition complexity. This
indicates potential interest in applying efficient multi-neuron relaxations to bound the subproblems
during BaB. In addition, existing efforts on training certified models focus on single-neuron relax-
ations, despite the fact that none of the single-neuron relaxations can provide exact bounds for any
networks encoding complex functions. In contrast, results established in §5.1 suggest that certified
training with multi-neuron relaxations may be more effective, as they can provide exact bounds
for every continuous piecewise linear function encoded by some networks. We leave the further
investigation of practical algorithms to future work.

7 CONCLUSION

We conducted the first in-depth study on the expressiveness of multi-neuron convex relaxations. We
extended the established single-neuron convex barrier to a universal convex barrier for multi-neuron
relaxations, showing that they are inherently incomplete regardless of the resources allocated. On
the positive side, we showed that completeness can be achieved by multi-neuron relaxations when
augmented with equivalency-preserving network transformations or convex polytope partitioning,
and established clear separations between multi-neuron and single-neuron relaxations in both cases.
Our findings lay a solid foundation for multi-neuron relaxations and point to new directions for
certified robustness.
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A RELATED WORK

Neural Network Certification Existing methods for neural network certification can be cate-
gorized into complete and incomplete methods. Complete methods commonly rely on solving a
mixed-integer program (Tjeng et al., 2019; Anderson et al., 2020; Tjandraatmadja et al., 2020; Tsay
et al., 2021) to provide exact bounds for the output of a network. The state-of-the-art complete
method (Zhang et al., 2022; Shi et al., 2024; Xu et al., 2021; Ferrari et al., 2022) is based on solv-
ing the mixed integer program with branch-and-bound (Bunel et al., 2020) on the integer variables.
These methods are naturally computationally expensive and do not scale well. Incomplete methods,
on the other hand, provide sound but inexact bounds, based on convex relaxations of the feasible
output set of a network. Xu et al. (2020) characterizes widely-recognized single-neuron convex re-
laxations (Mirman et al., 2018; Wong et al., 2018; Zhang et al., 2018; Singh et al., 2019b) by their
induced affine constraints, where the bounds are yielded by efficient but not necessarily optimal
solvers. However, Salman et al. (2019) empirically identify a single-neuron convex barrier, prevent-
ing single-neuron relaxations from providing exact bounds for general ReLU networks, even with
costly optimal solvers. To bypass this barrier, multi-neuron relaxations (Singh et al., 2018; Zhang
et al., 2022; Miiller et al., 2022) have been proposed and achieved higher precision empirically.

Multi-neuron Relaxations in Practice To bypass the single-neuron barrier, multi-neuron relax-
ations (Singh et al., 2018; Zhang et al., 2022; Miiller et al., 2022) have been proposed, achieving
higher precision empirically. In particular, Singh et al. (2019a) and Miiller et al. (2022) are looser
versions of P; discussed in this paper; Zhang et al. (2022) is a looser version of Py,. Ferrari et al.
(2022) combine multi-neuron relaxations with BaB and find that applying multi-neuron relaxations
before BaB yields a superior overall performance. These practical applications motivate us to rig-
orously study the fundamental limit of multi-neuron relaxations. Furthermore, the certified training
community (Miiller et al., 2023; Mao et al., 2023; 2024a) has already employed multi-neuron re-
laxations in verification, but not yet in training. This also motivates us to explore the possibility of
combining multi-neuron with certified training.

Certification with Convex Relaxations Existing work on the certification with convex relaxations
focuses on the expressiveness of single-neuron relaxations. We distinguish three convex relaxation
methods typically considered by theoretical work: Interval Bound Propagation (IBP) (Mirman et al.,
2018; Gowal et al., 2018), which ignores the interdependency between neurons and use intervals
{[a,b] | a,b € R} for relaxation; Triangle relaxation (Wong & Kolter, 2018), which approximates
the ReLU function by a triangle in the input-output space; and multi-neuron relaxations (Singh et al.,
2018; Zhang et al., 2022; Miiller et al., 2022) which considers a group of ReLU neurons jointly in a
single affine constraint. On the positive side, Baader et al. (2020) show the universal approximation
theorem for certified models, stating that for every continuous piecewise linear function f : R — R
and every € > 0, there exists a ReLLU network that approximates f, for which IBP provides bounds
within error e. This result is generalized to other activations by Wang et al. (2022). However,
Mirman et al. (2022) shows that there exists a continuous piecewise linear function for which IBP
analysis of every finite ReLU network encoding this function provides inexact bounds. Further, Mao
et al. (2024b) shows that a strong regularization on the parameter signs is required for IBP to provide
good bounds. Beyond IBP, Baader et al. (2024) show that even Triangle, the most precise single-
neuron relaxation, cannot exactly bound any ReLU network that encodes the “max” function in R?,
although it is provably more expressive than IBP in R. While Baader et al. (2024) also shows that
every ReLU network with a single hidden layer can be exactly bounded by multi-neuron relaxations
with sufficient budget, the theoretical properties of multi-neuron relaxations in the certification of
general ReLU networks remain unknown. We remark that this review is not exhaustive, especially
regarding convex relaxations beyond neural network certification, and refer readers to Huchette
et al. (2023) for a more comprehensive survey on MILP formulations, polyhedral geometry and
expressiveness of ReLU networks.

B NOTATION

We use lowercase boldface letters to denote vectors and uppercase boldface letters to denote ma-
trices. For the vector x, x; denotes its i-th entry and x; is the subvector of = with entries cor-
responding to the indices in the set I. Iy is the N x N identity matrix and 1, and Oy denotes
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1

Figure 5: Visualization of the single-neuron and multi-neuron relaxations for a network encoding f(x) = 0.

the /N-dimensional column vector with all entries equal to 1 and 0, respectively. e; is the column
vector with the i-th element taking value 1 and all other elements 0. For 1 and O without subscript,
we understand them to be vectors of appropriate dimensions according to the context. For matrices
Aiq,..., A,, we designate the block-diagonal matrix with diagonal element-matrices A1, ..., A,,
by diag(A1, ..., An).

For a set H, we denote the convex hull of H by conv H. We represent the ReLU function as
p(x) = max(z, 0). For two vectors a, b € R, a < b denotes elementwise inequality.

The real set is denoted by R, the natural numbers by N, the positive integers by N*, and the d-
dimensional real space by R<. For a set S, |S| denotes the cardinality of S, which is the number of
elements in S. Given r € NT, [r] denotes the set {1,2,...,r}. For a function f and input domain
X, we use f(X) to denote its range {f(x) | * € X} and f[X] to denote its image {(z, f(x)) |
e X}

We use C(x) to denote a set of affine constraints on «, i.e., C = {Ax + b < 0} for some matrix
A and some vector b. For two sets of constraints C1(z) = {AMx + b(M) < 0} and Co(x) =
{A@z + b3 <0},C ACo = {AWz 4+ bV <0A AP 2 + b? < 0} denotes a combination
of the two sets of constraints, i.e., their feasible sets are intersected.

Given a set H = {(z,y) | (z,y) € H}, we denote the projection of H onto the z-space by
mz(H) = {x | Jy : (x,y) € H} and the projection onto the y-space by 7y (H) = {y | Iz :
(z,y) € H}. For a feasible set C defined by the constraint set C(x, y), 7, (C) is the set of values of
« that satisfy the constraints in C.

For a function f : R% — R, an input convex polytope X € R% and a convex relaxation P,
the lower bound of f on X under P is denoted by ¢(f, P, X) and the upper bound is denoted by
u(f,P,X). Concretely, let C(P) be the constraint set induced by P and v € R be the output
variable, then ¢(f, P, X) = min 7, (C(P)) and u(f, P, X) = max 7w, (C(P)).

We call neurons that switch their activation states within the input set as unstable, otherwise call it
stable.

C EXAMPLE ILLUSTRATION

This section contains a toy example to illustrate the concepts we introduced, namely the ReLU
network p(z) — p(x) encoding the zero function f(x) = 0 with input x € [—1,1]. This network
is visualized in Figure 5. The affine constraints are as follows: (i) for the input convex polytope,
we have {x > —1,x < 1}; (ii) for affine layers, we have {a = z,b = x, f = ¢ — d}; (iii) for the
ReLU layer, a single neuron relaxation (Triangle) will have Cs(a, ¢) A Cs(b, d), and a multi-neuron
relaxation (Ms) will have Cy,(a, b, ¢, d). In this case, a multi-neuron relaxation successfully solves
that the upper bound and lower bound of f are zero, while a single-neuron relaxation solves an
inexact upper bound 1 and an inexact lower bound —1.

D PSEUDO-ALGORITHM FOR POLYTOPE PARTITION

In this section, we present a pseudo-algorithm for the polytope partition in §5.2. It serves as a high-
level description of the polytope partitioning algorithm. The actual implementation in practice may
vary depending on the specific problem and the desired performance.
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Algorithm 1 Polytope Partition

Input: network f, input convex polytope X
Output: v = max,cx f(z) and £ = mingecx f(x)
Initialize H « {(X, X)}
for each layer f; in f do
Initialize with a convex polytope collection H = ()
for each pair (Hy, Sk) € H do
Compute the output of f; on Sy, denoted by f;(Sk)
if f;(Sk) is a convex polytope then
Add (I{k7 f](Sk)) to H'

else
Decompose (Hy,Sk) into v convex polytopes Hy,,...,Hy, and the images
Skis- -5k, such that f;(Sk,) is a convex polytope for i = 1,...,v, where v should be as

small as possible
Add (Hy,, f;(Sk,))to H fori=1,...,v
end if
end for
Set H=H'
end for
Initialize ¢ = 400 and u = —c0
for each convex polytope Hy, € H do
Update £ = min(¢, £(f, P1, Hy))
Update u = max(u, u(f, P1, H))
end for
return v and /

Example. Running Algorithm 1 on the “max” example in §5.1, the input box [0, 1]¢ is always
mapped to a convex polytope as it passes through the network layers. Therefore, the partition com-
plexity is 1.

We remark that there are two steps in the algorithm that might require high computational complex-
ity in practice: (i) the partitioning of a set into convex polytopes, and (ii) the merging of convex
polytopes. The partitioning step is necessary because the output of a ReLU network may not be a
convex polytope, and we need to partition it into smaller convex polytopes to compute the bounds.
The merging step is to merge redundant convex polytopes to reduce the number of subproblems. To
design a practical algorithm with a low running time complexity is beyond the scope of this paper,
and we leave it to the future work.

E DEFERRED PROOFS IN §3

E.1 PROOF OF LEMMA 3.1

We prove Lemma 3.1, restated below for convenience.

Lemma 3.1. Let L € Nand let X be a convex polytope. Consider a ReLU network f = fro---ofj.
Denote the variable of the j-th hidden layer of f by v¥), for j € [L — 1], and the variable of the
output layer by v(%). For 1 < i < L, let Cy(x,v™, ..., v®) and Co(x,v™),... v(F)) be the
set of all constraints obtained by applying P; to the first ¢ and L layers of f, respectively. Then,
Tp (Cr(x, v @) = 70 (Co(x, v D). .. vE))).

Proof. As P does not consider constraints cross nonadjacent layers, C; is in the form of C(«, v(l)) U
(o, o) U UCCD,00) and € = G UCD, 04 D) U U, o). Lt
C3 :=C(vW, v er1)) U C( (L=1) »(1)), Note that the projection 7, (C) is considered by
P as the mput set of the subnetwork flﬂ o ---o fr to instantiate further relaxations for deeper
layers. Since P; is a sound verifier, the constraints C3 must allow the input set, i.e.,

T (C3) 2 Ty (C1)-

15
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Now 7, (C2) is obtained by applying the Fourier-Motzkin algorithm to eliminate all the variables

in Cy = C; N C3 except v(Y). W.Lo.g, assume we eliminate in the following order =, v*, ... v(~1,

vt w(E)| The constraints in C3 remains unchanged as we eliminate «, v!, ..., v~ since
they are not included in Cs. Therefore,

T q(3) (Cz) = Ty(i) (Cl) M Tyi) (Cg).
Hence, i) (C2) = Ty (C1). O

E.2 PROOF OF LEMMA 3.2

We prove Lemma 3.2, restated below for convenience.

Lemma 3.2. Let X be a convex polytope and consider a network f := fy o fi, where f;
and fo are its subnetworks. Then, £(f,P1,X) < min(fa(conv(fi(X)))) and u(f,P1,X) >

max( f2(conv(f(X))))- -

Proof. By the notation in Lemma 3.1,

é(.fvplaX)

min
RET (2) (C2(m,v M) ,0(2))

IN

min f2(v)
ver ) (Ca(z,0M,02))

f2(y)7

min
ver, 1y (Ca(z,0M))

where the last equality follows from Lemma 3.1. Since C; (z, v(!)) is a convex polytope containing
the feasible set of v(!), we have ) (C1 (2, v™)) D conv(f;(X)). Therefore,

0(f,P1,X) < min v
(f.P1, X) ver o BB o) fa(v)
min v
~ veconv(f1(X)) f2( )
= min(fa(conv(f1(X))))-
The proof for the upper bound is similar. O

E.3 PROOF OF THEOREM 3.3

Now we prove Theorem 3.3, restated below for convenience.

Theorem 3.3. Let d € N and let X be a convex polytope in R?. For every 0 < T < oo, there
exists a ReLU network f : RY — R such that £(f,P1, X) < min f(X) — T, and a ReLU network
g : R? — R such that u(g, P1, X) > max g(X) + T

Proof. The proof is done by explicit construction of ReLU networks that satisfies the required prop-
erty.

When d = 1, assume X = [a,b] C R, where a # b. Let Wy(x) = 2§=2 — 1, Wi(z) = (z + 1,2),
and f'(z) = 2Tz —1|+2T @2 —0.5| = 2Tp(x1 —1)+2Tp(1— 1) +2T p(x2—0.5)+2Tp(0.5—
x>), for £ € R2. We construct the network as f = f’opoW;0Wj. Since poW10Wy(a) = (0, 0) and
po Wi oWy(b) = (2,1), conv(po Wy o Wy([a,b])) 2 {(2t,t) | t € [0, 1]}. Thus, min f/(conv(po
W1 o Wy([a,b]))) = 0. Therefore, by Lemma 3.2, £ < min f/(conv(p o Wy o Wy([a,b]))) = 0.
However, the ground-truth minimum is 7'. Likewise, we can construct a ReLU network such that
applying any convex relaxation cannot provide the precise upper bound, by simply negating f” to be
f'(x) = =2T|x1 — 1| — 2T |x2 — 0.5].

Now assume d > 2. We assume X does not degenerate, i.e., X cannot be embedded in a lower-
dimensional space; otherwise, we can simply project X to a lower-dimensional space with a single
affine layer and set d to a smaller value. Now, we define the first affine layer to be the projection
layer 7r(x) = 1, which simply projects a point to its first dimension. For every non-degenerate X,
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m(X) is a nonempty interval in R. We then construct a ReLU network as f = f o poWj o Wyom.
By the analysis above, £ < min f/(conv(p o W1 o Wy([a,b]))) — T.

O

F DEFERRED PROOFS IN §4

F.1 PROOF OF LEMMA 4.1

Now we prove Lemma 4.1, restated below for convenience.

Lemma 4.1. Let o € (0,1),d,d’, Ly, Ly € N*, and X C R? be a convex polytope. For every
L;-layer network f; : R — RY" and Lo-layer network f5 : RY — R, there exist L > Ly + L and
a L-layer network f such that (i) f(x) = fa o fi(x), for V& € X, and (ii) £(f, Pmax(1,[aL]) X) <
min fa(conv(f1(X))) and u(f, Pmax(1,|aL ) X) = max fo(conv(f1(X))).

Proof. Intuitively, the proof is done by blocking direct information passing from f; to fo through
adding dummy layers. Let » = max(1, |«L]) and take

1 Li+Ly+1

L= fmax(a, )] (1)

-«
We construct the network f by pumping f5 o f; through adding identity layers between f, and
f1, thus the name pumping lemma. Concretely, let f = fo 0 Ijo0---0 I of;, where Iy is the
—_——
(L—Lq—L>) times
identify function in RY. Take . Thus, L — Ly — Ly > k + 1. Denote the input variable by
v(®) and the variables on the i-th layer of f by v(*). By definition, P, computes all constrains of

the form C(v®, ..., v**) fori = 0,...,L — k. By the identity layer construction, we know
vl = ot — = y(L=L2) By (1), L — Ly — Ly > k + 1, which means the constraints
induced by P, are can be reduced to constraints of the form C(v(®), ... p™nG+rL))) for j =

0,...,Ly, and C(v(maxG—nL=L2)  4)) for j = L — Lo,..., L. For brevity, we slightly
abuse notation and denote by C(Py) the union of all constraints induced by Py, denote by C; the
union of constraint sets of the form C(v(i), e ,v(mi“(”k>L1))) fori = 0,...,L;, and denote by
C; the union of constraint sets of the form C(v(max(U—kL=L2)) " 4()) for j = L — Lo, ..., L.
Thus, -1, (C(Pk)) = Tyz1) (C(Pr)) = Tyz1) (C1). Since conv(f1(X)) C myy) (C1),

0(f, Pe, X) < min fo(my1-25) (C(Pr)))
= min f2 (7Tv<L1) (Cl))
< min fo(conv(f1(X))),

and
u(f, Pr, X) > max fo(m,w—1) (C(Pk)))

= max fo(m, iy (C1))
> max fa(conv(fi(X))).

F.2 PROOF OF THEOREM 4.2

Now we prove Theorem 4.2, restated below for convenience.

Theorem 4.2. Let d € N and let X C R? be a convex polytope. For every a € (0,1) and
every constant 7' > 0, there exists a network f : R? — R such that ¢(f, P, max(1,[aL]), X) <

min f(X) — T, and a network g : R? — R such that u(g, Prmax(1,|aL ), X) = max g(X) +T.

Proof. We reuse the construction in the proof of Theorem 3.3, augmented by Lemma 4.1. In the
proof of Theorem 3.3, we constructed a feedforward network f := f' o po W30 Wy 0o Wi o .

17
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Let fi ;= poWsoWyo Wi omand fy := f/. By Lemma 4.1, for some L € N, there ex-
ists an L-layer network f such that f = f; o f; everywhere on X and £(f, Pmax(1,|aL]); X) <
min fo(conv(f1(X))) < min{f(z) : 2 € X} =T = min{f(z) : = € X} — T and
u(f,PmaX(LLaLD,X) > max fa(conv(f1(X))) > max{f(z) : x € X} + T = max{f(x) :
reX}+T. O

G DEFERRED PROOFS IN §5

G.1 PROOF OF THEOREM 5.1 AND COROLLARY 5.2

We present a technical lemma before proving Theorem 5.1.

Lemma G.1. Let H be a compact set in R%. Then, for every i € [d], mingey &; = Minyeccony & Vi
and maXgecH 5 = MaXycconv H Vi-

Proof. We only show the equality for minimum values. The proof for maximum values is likewise.
Fix an arbitrary ¢ € [d]. Since H C conv H, we have

minx; > min ;. 2)

xcH vEconv H
Since the convex hull of a compact set is closed, Jv* € conv H such that min,econv 7 Vi = v;.
Furthermore, 3z*,y* € H and t € [0,1], such that v* = tx* + (1 — t)y*. Without loss of
generality, assume z} < yf. But ] < ta} + (1 — t)y] = v} = minyecconv 7 v;. Therefore
Mingey T; < ;] < Milgyecony & Vi- Combining with (2) gives mingec g ©; = Minyeccony i Vi. U

Now we prove Theorem 5.1, restated below for convenience.

Theorem 5.1. Ford,d’ € N*,let f : RY — R? be a network and let X C R¢ be a convex polytope.

There exists a network g : R% — R? satisfying ¢ = f on X, such that ¢(g,P;, X) = min f(X)
and u(g, Py, X) = max f(X).

Proof. We construct the network g based on f as follows. First replicate the structure and weights
of f verbatim. Then add d extra neurons in every hidden layer of g to make copies of the input
neurons. This can be achieved based on the equality p(t — u) +u = t, fort > wand t,u € R. See
Figure 6 for illustration. By construction, g represents the same function as f on X.

Now we prove P; returns precise bounds for g on X. Assume g has L layers. Denote the variables of
the i-th hidden layer by v), j = 1, ..., L — 1, and the output layer by (%), By definition of Py, the
system of constraints generated by P includes all affine constraints in the form of C(v(*~—1 v(£)),
given those passed from the (L — 1)-th layer. Since v(“~1) contains z as a part, P; computes the
convex hull of g(). Furthermore, by Lemma G.1, the bounds of the convex hull of the compact set
g(X) characterizes exact upper and lower bounds of g(X ). Therefore, P; returns precise bounds of
gon X.

O

We proceed to prove Corollary 5.2, restated below for convenience.

Corollary 5.2. For d € N*, let f : R — R be a continuous piecewise linear function, and let
X C R? be a convex polytope. There exists a network g : R? — R satisfying ¢ = f on X, such
that £(g, P1, X) = min f(X) and u(g, P1, X) = max f(X).

Proof. For a continuous piecewise linear function f : R? — R, by Theorem 2.1 of Arora et al.
(2018), there exists a ReLU network ¢’ : R — R satisfying

f(x)=¢'(x), xR (3)
By Theorem 5.1, there exists another ReLU network g : R? — R satisfying

9(z) =g'(z), zeX, “)
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Figure 6: Top: the network f. Bottom: the network g. Labels on the edges are the associated weights.

and
(g, P1,X) =ming'(X)
u(g, P1, X) = max g'(X).
Combining (3) and (4), we get

and

£(g,P1,X) = min f(
u(g, P1,X) = max f(X).

G.2 PROOF OF PROPOSITION 5.3 AND PROPOSITION 5.6

‘We start with a technical lemma.

Lemma G.2. Let L € NT. Consider a network f = fr, o--- o fi, where f; is either an affine
transformation or the ReLU function for j € [L], and an input convex polytope X. Denote by
fU) = fjo---ofi, for j € [L], the subnetworks of f. Assume f()(X) is a convex polytope,
V4 € [L]. Then, £(f,P1,X) = min f(X) and u(f, P1, X) = max f(X).

Proof. Denote the variable of the first hidden by v1). By definition, 7P; computes the convex hull of
the function graph (x,v") = f(z)), therefore the convex hull of the feasible set of v(1). Since the
convex hull of a convex set is the set itself, P; can precisely computes the feasible set of v(1). Simply
progagate by the layers and take into account the assumption that (/) (X) is a convex polytope, for
all j € [L], we get that P; exactly bounds the network output on X. O

We proceed to prove Proposition 5.3, restated below for convenience.

Proposition 5.3. Let L € N and do,d1,...,dr11 € NT. Consider an input set X C R and
anetwork f = Wrii0po---0po Wy, where W; : R%-1 — R9% are the associated affine
transformations for j € [L + 1]. Denote the subnetworks of f by f; := W1 0po---0po Wy,
for j € [L]. Assume Hy,...,H, C X such that Hy,...,H, are convex polytopes, f(X) =
f(Hy)U---U f(H,), and f;(Hy) is a convex polytope for all j € [L] and k € [v], then

mlnf(X):lgnlln]E(f7,P1>Hk) maxf(X):km?}?u(ﬁPth)
elv elv

Proof. By Lemma G.2, P; returns precise bounds for f on Hy, for all k € [v]. Since the output set
f(X) is the union of f(H;) for all k € [v], the theorem follows. O

We now prove Proposition 5.6, restated below for convenience.
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Proposition 5.6. Let S be some single-neuron relaxation and M be some multi-neuron relax-
ation. For every ReLU network f and every input set X, #Partition(BaB(M), f, X) < A(f, X) <
#Partition(BaB(S), f, X).

Proof. We first prove #Partition(BaB(M), f, X) < A(f,X). Assume a network f has v :=
A(f, X) distinct activation patterns on X. Notice that M always returns a constraint set that is
at least as tight as DEEPPOLY, thus a same partition process as BaB(DEEPPOLY) allows BaB(M)
to compute exact bounds. Recall that BaB(DEEPPOLY) has partition complexity equal to » on X,
therefore BaB(M) also has partition complexity at most v on X.

Now we prove A(f, X) < #Partition(BaB(S), f, X). It suffices to show the inequality for the
tightest single-neuron relaxation, i.e., the triangle relaxation, denoted by BaB(A). Given a general
subproblem to bound, the only guarantee for A to return exact bounds is that there is no unstable
neuron in the subproblem. Therefore, if BaB(A) has partition complexity equal to K on X, then
there are at most K subproblems with no unstable neuron. Thus, A(f, X) < K. O

H AN EXAMPLE OF THE BENEFIT OF POLYTOPE PARTITION

For the network encoding max(z1,...,24) in §5.1, first note that it has 24—1 distinct activation
patterns on [0, 1]%. We show that BaB requires 2?~! branching to return precise bounds. Let y; =
max(z1,...,x;), fori € [d — 1], where y; = x;. The i-th unstable neuron can then be rewritten
as p(y; — x;4+1), e.g., for node ¢ in Figure 3 which is the first unstable neuron, it can be rewritten
as p(y1 — x2). After a branching on it, this node plus ;1 becomes either x; 1 when ;11 > y;,
or y; when x;; < y;. Therefore, this branching makes two subproblems, which are essentially the
(d — 1)-dimension “max” function. This directly implies that neither of the two subproblems can
be precisely bounded by any single-neuron relaxation, thus the branching will not stop. Repeating
this, BaB enumerates all 2?~! branches, confirming the lower bound established in Proposition 5.6.
In contrast, P; has partition complexity 1 as shown in §5.1, leading to an exponential reduction.

Regarding the runtime, note that the number of constraints introduced by P; grows linearly with d,
while the number of branching grows exponentially with d for BaB with DeepPoly. Thus, for this
example, the runtime of P; grows polynomially with d, while that of BaB with DeepPoly grows
exponentially with d.

I RELATIVE BOUNDING ERROR

Theorem 3.3 and Theorem 4.2 state that the absolute bounding error by layerwise and cross-layer
relaxations can be arbitrarily large. In this section, we look at the relative bounding error, namely
the ratio between the length of the bounding interval and that of the exact interval. We shall show
that the relative bounding error can be arbitrarily large as well. First, for P;, we shall prove the
following statement.

Theorem L.1. Let d € N and let X € R be a convex polytope. For all T > 0, there exist a ReLU
network f : RY — R, such that
u(f, P, X) — €(f, P1, X)

max(F(X)) —min(f(X)) ~ ©

Proof. Without loss of generality, we prove the case when T > 1; otherwise, we can simply take
the threshold as max(1,T) in the proof. Further, let X = [—1, 1]; otherwise, we can first project
X to one of its non-empty dimensions and scale the projected set by a single affine layer, without
changing the output range of any subsequent network and the bounds computed by P;.

Let the ReLU network f; = p o Wy, where W1 is the affine transformation W1 (x) := ( 11> x +

(1)> , for x € R?. The function f; maps X into the set {x € R? : z; € [0,1],z2 = —z1 + 1} U

{x eR?:x; =0,1 < xy <2}, whose convex hull is {zy < —2z1 + 2,21 > 0,22 > —x1 + 1}.
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Now consider the function h(x) = x2(x2 + 21 — 1), which is constantly zero on the set f1(X). We
have that
min(h(conv(f1(X)))) =0, d:=max(h(conv(f1(X)))) > 0.

Scaling h by 27'/§ gives

min(%h(conv(fl (X)))) =0, max(?h(conv(fl (X)))) =2T.

By the universal approximation (Arora et al., 2018), there exist a ReLU network f5 satisfying

2T 1
sup |fo = 5-hl < 5

conv(f1(X))
Therefore, - 1 1
min(fz 0 f1)(X) = min(“-ho f1)(X) - 5 = —3.
max(fz o f1)(X) < max(%h o f)(X)+ = = %,
and o o
min f3(conv(f; (X)) < min(=h(eonv(f (X)) + 5 = 5.
max fo(conv(f1(X))) > max(%h(conv(fl(X)))) — % —9oT — %

Taking f = f2 o f1, by Lemma 3.2 we know that
w(f,P1,X) — £(f,P1,X) > max fa(conv(f;(X))) — min fo(conv(f1(X))) > 2T -1
and
max(fz o f1)(X) — min(fz 0 f1)(X) < 1.
Hence,

u(fvplyX) _e(fvple)

max(f(X)) —min(f(X) ~ - 7T

O

We proceed to show that the relative bounding error established above for P; extends to all cross-
layer relaxations. Just as in §4, we do not consider specific P, for some fixed r € N, but rather
directly look at the fully general case Prax(1,|oz|) Where the cross-layer is allowed to depend on
the network depth L. Formally, we shall show

Theorem L.2. Let d € N and let X € R? be a convex polytope. For all T > 0, there exist a ReLU
network f : RY — R of depth L, such that
u(fa /Pmax(l,LaLj)v X) - g(f7 Pmax(l, laL])> X)

max(f(X)) — min(f(X)) > T

Proof. Without loss of generality, we prove the case when T > 1; otherwise, we can simply take
the threshold as max(1, T) in the proof.

We reuse the construction in the proof of Theorem I.1 and augment it by Lemma 4.1. Specifically,
in the proof of Theorem 1.1, we constructed a ReLU network f = f5 o f; satisfying

max(f(X)) — min(f(X)) < 1.

and
max fo(conv(f1(X)))(X) — min fy(conv(fi(X))) > 2T — 1

Now by Lemma 4.1, for some L € N, there exist an L-layer network f such that f = f everywhere
on X and .
u(fa Pmax(l, laL])s X) > max f2 (COHV(fl (X)))>

E(f’ Pmax(l,l_aLj)7X) < min fQ(COHV(fl(X)))'
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Therefore,
(f Pmax 1,laL])> ) - Z(f Pmax 1,laL])> )
> max fa(conv(f1(X))) — min fa(conv(f1(X)))
> 2T — 1.
Hence
u(fa Pmax(l,LaLj)v ) (f x(1,laL])> X)

max(f (X)) - (f( )
- u(fv ,PmaX(LI_aLjﬁX) - é(fv ,PmaX(LI_aLjﬁX)
max(f(X)) — min(f(X))

>T.

J  EXTENSION TO NON-POLYNOMIAL ACTIVATION FUNCTIONS

In this section, we extend the negative results, namely Theorem 3.3 and Theorem 4.2, established for
ReLU neural networks in §3 and §4 to networks with general non-polynomial activation functions.
The key insight is that by universal approximation with non-polynomial activation functions, we can
always construct a network that approximates the construction for ReLU networks with arbitrary
precision.

We start by introducing necessary notations. Let H and H' be two sets in R?. Then, we define the
Hausdorff distance (induced by the £5 norm) between H and H' as

D(H,H') :== max{sup inf ||x — yl|2, sup inf ||z — )
(H, 1) = ma{sup inf 12—y, sup inf 2y}
We will use two properties of the Hausdorff distance. First, D(H, H') satisfies the triangle inequality
(we omit the proof since it is a standard result), i.e., for any three sets H1, Ho, H3 in R?, we have
D(H,,Hs3) < D(Hy,Hs) + D(Hs, H3).
Second, H — conv(H) is 1-Lipschitz with respect to the Hausdorff distance, stated as follows.
Lemma J.1. For any two sets Hy, Hs in R?, we have
D(conv(Hy),conv(Hz)) < D(Hy, Hs).
Proof. We prove that SUp,ccony (1) Ifyeconv (i) |2 — yll2 < D(Hi, Hz); the other side can be

proven by symmetry.

Fix an arbitrary © € conv(H;). By definition of convex hull, there exist k € N*, \; > 0 for
i € [k] with Zle Ai =1, and o, € Hy fori € [k] such that ¢ = Zle Aix;. By definition of
Hausdorff distance, for each ¢ € [k], there exists y; € Hj such that ||@; — y;||2 < D(Hy, Hs). Let
y= Zle A;y;. Then, by Jensen’s inequality and note that || - || is convex, we have

Hw—wb—HEZA = i)l

anwi—yinQ

@

(Hl,Hg).

This implies that infyccony () |2 — y||2 < D(H, Hs). Since x is arbitrary, we finalize the
proof. O
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Now we are ready to present the extended version of Theorem 3.3 for non-polynomial activation
functions. We will show that for any non-polynomial activation o, there exists a sub-network f{
and an input polytope X such that conv(f¢ (X)) is a strict superset of f7(X). Further, for the
function fa(z;c) := (z — ¢)? where the point ¢ € conv(f{ (X)) \ f{(X), there exists a network
1 approximating fo on conv(f{ (X)) with arbitrary precision. Combining these two results, we
can construct a network f7 = f§ o f7 such that the bounding error by any layerwise relaxation is
arbitrarily large.

Proposition J.2. Letd € N, o : R — R be a non-polynomial activation function and X € R¢ be a
convex polytope. Then, there exists a network f7, such that the conv(f? (X)) is a strict superset of

f7(X).

Proof. Let f; be some function where conv(f1(X)) \ f1(X) is non-empty, e.g., the function con-
structed in the proof of Theorem 3.3. By universal approximation, there exists a network f{ such
that

sup [|f7 = fill2 <€,
X
for some ¢ > 0 to be specified later. Let H := f;(X) and H' := f{(X). This means
D(H,H') < .

Let A := D(conv(H), H). Since conv(H) \ H is non-empty, we have A > 0. By triangle
inequality and Lemma J.1, we have

D(conv(H), H) < D(conv(H),conv(H")) + D(conv(H"), H') + D(H', H)
<2D(H,H') + D(conv(H'),H')
< 2¢+ D(conv(H'), H").
Thus, taking e = A /4, we have
D(conv(H'), H") > D(conv(H), H) — 2¢

This implies that conv(H’) \ H’ is non-empty, finalizing the proof. O

Theorem J.3. Letd € N, o : R — R be a non-polynomial activation function and X € R? be
a convex polytope. For every constant 7' > 0, there exists a network f° : R¢ — R, such that
(f7,P1,X) <min f°(X) — T and u(f?,P1,X) > max f7(X)+T.

Proof. We only prove the lower bound case; the upper bound case can be proven similarly.

By Proposition J.2, there exists a network f{ and an input polytope X, such that conv(f{ (X)) is a
strict superset of f7(X). Let ¢ € conv(f{ (X)) \ f7(X) such that § := minpe jo (x) R —cll2 > 0.
Let fo(h) := ||h — ¢||2. Thus, we have

min h) =94, min h)=0
hef(X) f2( ) f‘LEcomv(f{’(X))f2< )

By universal approximation, there exists a network fJ such that

, 2T
sup |ff = S fal <

conv(f7 (X))
for some € > 0 to be specified later. Let f? := fJ o f{. Then, we have
2T
min f7(X) > —fa(h) —e=2T —¢,

>  min
hefe(X) 6

2T
0f7, P, X) < m

i —fa(h =
*heconvl?f(X)) 1) 2(h) +e=c

Thus, we have
L(f7, P, X) —min f7(X) < —2T + 2e.
Let e = T'/2, we finalize the proof. O
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We proceed to extend the result to cross-layer relaxations. The proof is similar to that of Theo-
rem 4.2, where we construct dummy layers to increase the network depth without changing the
network output on X. The only difference is that now an identity layer might not be constructed
exactly, but needs to be approximated.

Theorem J.4. Let d € N and let X € R? be a convex polytope. For every a € (0,1) and
every constant 7' > 0, there exists a network f € N of depth L, f : RY — R, such that
e(fa Pmax(l,aL)a X) < mlnf(X) — T and u<f7 Pmax(l,aL)7 X) > maXf(X) +T.

Proof. The proof directly follows that of Theorem 4.2, as long as we can construct identity layers
with arbitrary precision. By universal approximation, for any € > 0, there exists a network f such
that

sup [fia(z) —zf| <e,
z€m; (X)+[—9,6]

for ¢ € [d] where 7;(X) is the projection of X onto its i-th dimension. By concatenating d such
networks in width, we constructed a network f7 such that

sup | fia(e) —allw < e
reX+[—6,0]¢

and the every output neuron only depends on independent input neurons. Let € := 577 and 0y, := ¢
for the k-th pseudo identity layer. Thus, by triangle inequality, the error introduced by m such
layers is bounded by >~ ; e < D", 557 < € for any m € NT. Therefore, by following the
same construction in the proof of Theorem 4.2 and taking into account the € approximation error
introduced by the pseudo identity layers, we can finalize the proof similar to Theorem J.3.

O

K LLM USAGE

LLMs (GPT-5) were used to polish the writing of the paper, and were not used for any other purpose.
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