

EXPRESSIVENESS OF MULTI-NEURON CONVEX RELAXATIONS IN NEURAL NETWORK CERTIFICATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Neural network certification methods heavily rely on convex relaxations to pro-
012 vide robustness guarantees. However, these relaxations are often imprecise: even
013 the most accurate single-neuron relaxation is incomplete for general ReLU net-
014 works, a limitation known as the *single-neuron convex barrier*. While multi-
015 neuron relaxations have been heuristically applied to address this issue, two cen-
016 tral questions arise: (i) whether they overcome the convex barrier, and if not, (ii)
017 whether they offer theoretical capabilities beyond those of single-neuron relax-
018 ations. In this work, we present the first rigorous analysis of the expressiveness of
019 multi-neuron relaxations. Perhaps surprisingly, we show that they are inherently
020 incomplete, even when allocated sufficient resources to capture finitely many neu-
021 rons and layers optimally. This result extends the single-neuron barrier to a *uni-
022 versal convex barrier* for neural network certification. On the positive side, we
023 show that completeness can be achieved by either (i) augmenting the network
024 with a polynomial number of carefully designed ReLU neurons or (ii) partitioning
025 the input domain into convex sub-polytopes, thereby distinguishing multi-neuron
026 relaxations from single-neuron ones which are unable to realize the former and
027 have worse partition complexity for the latter. Our findings establish a foundation
028 for multi-neuron relaxations and point to new directions for certified robustness,
029 including training methods tailored to multi-neuron relaxations and verification
030 methods with multi-neuron relaxations as the main subroutine.
031

1 INTRODUCTION

032 Neural networks are vulnerable to adversarial attacks (Szegedy et al., 2014), where a small perturba-
033 tion to the input can lead to misclassification. Adversarial robustness, which measures the robustness
034 of a model with respect to adversarial perturbations, has received much research attention in recent
035 years. However, computing the exact adversarial robustness of a general neural network is coNP-
036 hard (Katz et al., 2017), while adversarial attacks (Carlini & Wagner, 2017; Tramèr et al., 2020) that
037 try to find an adversarial perturbation can only provide a heuristic upper bound on the robustness of
038 the model. To tackle this issue, neural network certification has been proposed to provide robustness
039 guarantees. In the context of robustness certification, the task boils down to providing a numerical
040 bound on the output of a neural network for all possible inputs within a given set. A central property
041 of certification is *completeness*, which requires the method to provide exact bounds for all cases.
042

043 Certification methods based on convex relaxations can provide efficient certification by computing
044 an overapproximation of the feasible output set of a given network, with certain trade-off on the
045 precision (Wong & Kolter, 2018; Singh et al., 2018; Weng et al., 2018; Gehr et al., 2018; Xu et al.,
046 2020). They can also be incorporated in the training process to deliver models that are easy to
047 certify (Shi et al., 2021; Müller et al., 2023; Mao et al., 2023; 2024a; Palma et al., 2023; Balaucă
048 et al., 2024). Due to the central role of convex relaxations in the context of certified robustness, it is
049 crucial to understand their theoretical properties.
050

051 **The Single-Neuron Convex Barrier** Single-neuron relaxations are widely studied due to their
052 popularity and simplicity. However, the single-neuron convex barrier result (Salman et al., 2019;
053 Palma et al., 2021) prevents single-neuron convex relaxations from providing exact bounds for gen-
054 eral ReLU networks. Baader et al. (2024) further show that even the most precise single-neuron

054 relaxation, namely Triangle (Wong & Kolter, 2018), cannot exactly bound any ReLU network en-
 055 coding the “max” function in \mathbb{R}^2 . To overcome this limitation, multi-neuron relaxations have been
 056 proposed (Singh et al., 2018; Müller et al., 2022; Zhang et al., 2022), achieving higher empirical
 057 precision. Yet, their theoretical properties remain largely unexplored. In particular, it is unclear
 058 whether multi-neuron relaxations are able to provably bypass the convex barrier and provide com-
 059 plete certification for general ReLU networks, if given sufficient resources. A key challenge is
 060 that, unlike the single-neuron setting—where proving a barrier only requires exhibiting a concrete
 061 network for which the most precise single-neuron relaxation fails—a multi-neuron relaxation can al-
 062 ways be made more precise by allocating more resources, thus this question cannot be answered via
 063 empirical studies. Moreover, solving multi-neuron relaxations is significantly more computationally
 064 expensive, making empirical exploration of their limits difficult.

065 **This Work: Quantifying the Expressiveness and Completeness of Multi-Neuron Relaxations**

066 In this work, we formalize the notion of multi-neuron relaxations and rigorously investigate their ex-
 067 pressiveness. We address two central questions: (i) whether they overcome the single-neuron convex
 068 barrier, and if not, (ii) whether they offer fundamental advantages over single-neuron relaxations.
 069

070 **Key Contributions**

- 072 • We prove that multi-neuron relaxations are inherently incomplete for general ReLU networks,
 073 even provided with sufficient resources to capture all neurons in each individual layer optimally
 074 ($\S 3$). This incompleteness result is extended to relaxations involving finitely many layers and
 075 networks with non-polynomial activations, e.g., tanh, establishing a universal convex barrier for
 076 neural network certification with convex relaxations ($\S 4$).
- 077 • We prove that with equivalence-preserving network transformations, a layerwise multi-neuron
 078 relaxation can be a complete verifier, which is impossible for any single-neuron relaxation. This
 079 shows that the expressivity of general ReLU networks is preserved under multi-neuron relax-
 080 ations: every continuous piecewise linear function can be encoded by a network that is exactly
 081 bounded by some layerwise multi-neuron relaxation ($\S 5.1$). This stands in sharp contrast to the
 082 impossibility result established for single-neuron relaxations (Baader et al., 2024): in a case
 083 study, we demonstrate that a simple network implementing the “max” function in \mathbb{R}^d can be
 084 exactly bounded by a dimension-independent multi-neuron relaxation far weaker than required
 085 by the general theorem.
- 086 • We analyze the properties of multi-neuron relaxations under convex polytope partitioning and
 087 show that their partition complexity required to achieve complete certification is strictly lower
 088 than that of single-neuron relaxations ($\S 5.2$).
- 089 • We discuss the practical implications of the above theorems, including training strategies tai-
 090 lored to multi-neuron relaxations and verification methods with multi-neuron relaxations as the
 091 main subroutine ($\S 6$).

092 Aside from the prior works mentioned, an extended discussion of related work can be found in $\S A$.

093 2 BACKGROUND

095 2.1 CONVEX RELAXATIONS FOR CERTIFICATION

097 Given a function $f : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ and a compact domain $X \subseteq \mathbb{R}^d$,
 098 we denote the graph of the function $\{(x, f(x)) : x \in X\}$ by $f[X]$.
 099 The certification task boils down to computing the upper and lower
 100 bounds of $f(X) := \{f(x) | x \in X\}$, in order to verify that these
 101 bounds meet certain requirements, e.g., adversarial robustness. To
 102 this end, convex relaxations approximate $f[X]$ by conditioned con-
 103 vex polytopes $S \subseteq \mathbb{R}^{d+d'}$ satisfying $S \supseteq f[X]$, where the condition
 104 depends on the concrete relaxation method. We then take the upper
 105 and lower bounds of S (projected onto $\mathbb{R}^{d'}$) as an over-approximation of the bounds of $f(X)$. We
 106 denote by $\mathcal{C}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(L)})$ a set of affine constraints on the variables $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(L)}$. Its feasible
 107 set is the intersection of the feasible set of each included affine constraint. When context is clear, we
 108 use \mathcal{C} to refer to both the affine constraint set and its feasible set; for two constraint sets \mathcal{C}_1 and \mathcal{C}_2 ,

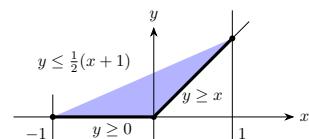


Figure 1: Triangle relaxation of a ReLU with input $x \in [-1, 1]$.

108 we use $\mathcal{C}_1 \wedge \mathcal{C}_2$ to denote the combination of the constraints in \mathcal{C}_1 and \mathcal{C}_2 , i.e., their feasible sets are
 109 intersected. For an affine constraint set $\mathcal{C}(\mathbf{x}, \mathbf{y})$ dependent on \mathbf{x} , we denote by $\pi_{\mathbf{x}}(\mathcal{C})$ the projection
 110 of the feasible set onto the \mathbf{x} -space, which can be computed by, e.g., applying the Fourier-Motzkin
 111 algorithm to remove the variables in \mathcal{C} other than \mathbf{x} . We assume the domain X to be a convex poly-
 112 tope, e.g., L_∞ neighborhoods of a reference point, which is the common practice in certification.
 113 Such convex sets S can be represented by a set of affine constraints $\mathcal{C}(\mathbf{x}, f(\mathbf{x}))$ as well. For exam-
 114 ple, consider the ReLU function $y = \rho(x) = \max(x, 0)$ on the domain $X = [-1, 1]$, represented by
 115 $\mathcal{C}_0 = \{x \geq -1, x \leq 1\}$. One possible convex relaxation is the Triangle relaxation (Wong & Kolter,
 116 2018), represented by the affine constraints $\mathcal{C}_1 = \{y \geq x, y \geq 0, y \leq \frac{1}{2}(x+1)\}$. Figure 1 illustrates
 117 this, where the black thick line represents $f[X]$ and the colored area stands for S . In this example,
 118 $\pi_x(\mathcal{C}_0 \wedge \mathcal{C}_1) = [-1, 1]$ and $\pi_y(\mathcal{C}_0 \wedge \mathcal{C}_1) = [0, 1]$.
 119

120 2.2 RELU NETWORK ANALYSIS WITH LAYERWISE AND CROSS-LAYER CONVEX 121 RELAXATIONS

122 Consider a network¹ $f = W_L \circ \rho \circ \dots \circ \rho \circ W_1$ where W_j are the affine layers for $j \in [L]$ and
 123 ρ is the ReLU function. Denote the input variable by \mathbf{x} , the first layer by $\mathbf{v}^{(1)} := W_1(\mathbf{x})$, the
 124 second layer by $\mathbf{v}^{(2)} := \rho(\mathbf{v}^{(1)})$, and so on². Assume the input convex polytope X is defined by the
 125 affine constraint set $\mathcal{C}_0(\mathbf{x})$. A *layerwise convex relaxation* works as follows. Given the input convex
 126 polytope³ $\mathcal{C}_0(\mathbf{x})$, apply the convex relaxation to the first layer $\mathbf{v}^{(1)} = W_1(\mathbf{x})$ to obtain a set of affine
 127 constraints $\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)})$. Then, based on $\pi_{\mathbf{v}^{(1)}}(\mathcal{C}_0 \wedge \mathcal{C}_1)$, apply it to the second layer $\mathbf{v}^{(2)} = \rho(\mathbf{v}^{(1)})$
 128 to obtain a set of affine constraints $\mathcal{C}_2(\mathbf{v}^{(1)}, \mathbf{v}^{(2)})$. Proceeding by layer by layer, we obtain affine
 129 constraint sets $\mathcal{C}_{j+1}(\mathbf{v}^{(j)}, \mathbf{v}^{(j+1)})$, for $j \in [2L-2]$. All the constraints pertain to a single layer
 130 and no explicit constraint across layers is allowed, e.g., $\mathcal{C}(\mathbf{x}, \mathbf{v}^{(2L-1)})$ would not appear explicitly
 131 in the above procedure. Finally, we combine all constraints to get $\mathcal{C} = \mathcal{C}_0(\mathbf{x}) \wedge \mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)}) \wedge \dots \wedge$
 132 $\mathcal{C}_{2L-1}(\mathbf{v}^{(2L-2)}, \mathbf{v}^{(2L-1)})$, and solve \mathcal{C} to obtain the upper and lower bounds of the output variable
 133 $\mathbf{v}^{(2L-1)}$. These bounds are then used to certify the network.
 134

135 In contrast to layerwise relaxations which consider every layer separately, *cross-layer relaxations*
 136 (Zhang et al., 2022) include constraints involving multiple consecutive layers. Concretely, let $r \in$
 137 \mathbb{N}^+ , for the network f above, a cross- r -layer relaxation processes the first r layers jointly and returns
 138 a set of affine constraints $\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(r)})$. Proceeding again layer by layer, we obtain affine
 139 constraint sets $\mathcal{C}_2(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(1+r)})$, \dots , $\mathcal{C}_{2L-r}(\mathbf{v}^{(2L-r-1)}, \dots, \mathbf{v}^{(2L-1)})$, and the intersection of
 140 all feasible sets is solved to return bounds on $\mathbf{v}^{(2L-1)}$. We denote by \mathcal{P}_r the convex relaxation that
 141 always returns the convex hull of the function graph of every r adjacent layers on an input convex
 142 polytope to the considered layers, which is, by definition, the most precise cross- r -layer convex
 143 relaxation, and likewise denote by \mathcal{P}_1 the most precise layerwise (cross-1-layer) convex relaxation.
 144 In other words, given a feasible set S in the $\mathbf{v}^{(i)}$ space, \mathcal{P}_r returns a constraint set equivalent to the
 145 convex hull of $\{(\mathbf{v}^{(i)}, \dots, \mathbf{v}^{(i+r)}) \mid \mathbf{v}^{(i)} \in S\}$ for all i . All cross- r -layer relaxations cannot be made
 146 more precise than \mathcal{P}_r by definition.

147 For a set H , we denote its convex hull by $\text{conv}(H)$. For a compact set $X \subseteq \mathbb{R}^d$, we denote by $\min X$
 148 the d -dimensional vector whose elements are the minimum value of points in X on each coordinate.
 149 For example, $\min[0, 1]^2 = (0, 0)$. Given a relaxation method \mathcal{P} , a network f , and an input set X ,
 150 we denote by $\ell(f, \mathcal{P}, X)$ the vector of lower bounds on each dimension of f computed by \mathcal{P} with
 151 respect to X ; likewise we denote by $u(f, \mathcal{P}, X)$ the upper bounds. In this work, we assume linear
 152 programming is employed to solve the constraint sets generated by the convex relaxation methods,
 153 and it always returns optimal bounds based on the constraints, without indicating the existence or
 154 nonexistence of a feasible point attaining the bounds. A glossary of all notations is detailed in §B.

155 2.3 SINGLE-NEURON AND MULTI-NEURON RELAXATIONS

156 Within the framework of layerwise convex relaxations, the optimal constraint set on an affine layer
 157 $\mathbf{y} = \mathbf{Ax} + \mathbf{b}$ is always $\mathcal{C}(\mathbf{x}, \mathbf{y}) = \{\mathbf{Ax} + \mathbf{b} - \mathbf{y} \leq \mathbf{0}, -\mathbf{Ax} - \mathbf{b} + \mathbf{y} \leq \mathbf{0}\}$, which translates to the
 158

159 ¹Unless explicitly stated otherwise, the term *network* is understood as ReLU neural network.
 160 ²We consider affine transformation and ReLU as separate layers throughout the paper.
 161 ³We always assume the input convex polytope is non-empty.

162 equality $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$. Such constraints introduce no loss of precision, and thus are adopted by most
 163 convex relaxation methods. Concretely, other than IBP, all convex relaxation methods considered
 164 in this paper use the exact constraints on affine layers. The core difference between relaxation
 165 methods is how they handle the ReLU function. Single-neuron relaxation methods process each
 166 ReLU neuron separately and disregard the interdependence between neurons, while multi-neuron
 167 relaxations consider a group of ReLU neurons jointly. For the vector \mathbf{x} , \mathbf{x}_i denotes its i -th entry
 168 and \mathbf{x}_I is the subvector of \mathbf{x} with entries corresponding to the indices in the set I . For the ReLU
 169 layer $\mathbf{y} = \rho(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^d$, the constraint sets computed by single-neuron relaxations are of the
 170 form $\mathcal{C}(\mathbf{x}_i, \mathbf{y}_i)$ with $i \in [d]$. In contrast, multi-neuron relaxations produce constraints of the form
 171 $\mathcal{C}(\mathbf{x}_{I_1}, \mathbf{y}_{I_2})$ with $I_1, I_2 \subseteq [d]$. We only consider multi-neuron relaxations that are at least as precise
 172 as single-neuron relaxations, i.e., for every $i \in [d]$, there exist I_1, I_2 such that $i \in I_1 \cap I_2$.

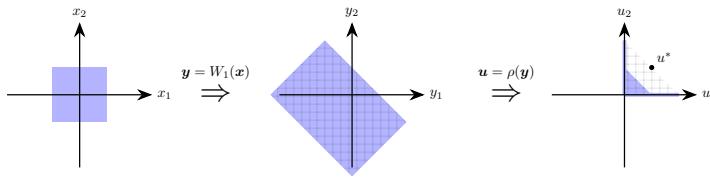
173 Singh et al. (2019a) propose the first multi-neuron relaxation called k -ReLU. For the ReLU layer
 174 $\mathbf{y} = \rho(\mathbf{x})$, it considers at most k unstable neurons jointly—we call neurons that switch their activation
 175 states within the input set as unstable, otherwise we call them stable—and returns $\mathcal{C}(\mathbf{x}_I, \mathbf{y}_I)$,
 176 with $I \subseteq [d], |I| \leq k$. However, k -ReLU is incomplete for general ReLU networks even when
 177 $k = \infty$ (see §3), thus we consider a stronger multi-neuron relaxation which only restricts the
 178 number of output variables in the constraints, allowing $\mathcal{C}(\mathbf{x}, \mathbf{y})$ to be of the form $\mathcal{C}(\mathbf{x}, \mathbf{y}_I)$ with
 179 $I \subseteq [d], |I| \leq k$. Similar tricks are also used in Tjandraatmadja et al. (2020). We denote this special
 180 multi-neuron relaxation as \mathcal{M}_k , and assume it always computes the convex hull of $(\mathbf{x}, \rho(\mathbf{x}_I))$,
 181 while only one index set I is allowed per ReLU layer. We emphasize that \mathcal{M}_k is allowed to consider
 182 unstable and stable neurons together, while k -ReLU only considers unstable neurons and the corresponding
 183 inputs jointly, thus \mathcal{M}_k is more precise even when k -ReLU also computes the convex hull of the considered variables.
 184 Neurons that are not considered by a multi-neuron relaxation are processed by the single-neuron Triangle
 185 relaxation. For ReLU networks of width no more than k , \mathcal{M}_k , as a layerwise relaxation, is equivalent to the most precise layerwise relaxation \mathcal{P}_1 . We note that \mathcal{P}_r
 186 is a multi-neuron relaxation by definition, for every $r \in \mathbb{N}^+$. A toy example is provided in §C to
 187 further illustrate the concepts introduced above. We refer interested readers to Baader et al. (2024)
 188 for a more detailed introduction to concrete single-neuron and multi-neuron relaxation methods.

3 LAYERWISE MULTI-NEURON INCOMPLETENESS

192 In this section, we establish the incompleteness result for layerwise multi-neuron relaxations. We
 193 consider \mathcal{P}_1 , the most precise layerwise multi-neuron relaxation by definition, and show that it is
 194 incomplete, and the relaxation error can be arbitrarily large. This result naturally extends to all
 195 layerwise ReLU network verifiers, as they cannot be more precise than \mathcal{P}_1 .

196 We start with a simple example to demonstrate the idea. Consider the input set $X = [-1, 1]^2$ and the
 197 ReLU network $f = f' \circ \rho \circ W_1$, where $f' = \rho(\mathbf{x}_1 - 1) + \rho(1 - \mathbf{x}_1) + \rho(\mathbf{x}_2 - 1) + \rho(1 - \mathbf{x}_2)$ encodes
 198 the function $f'(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 - 1| + |\mathbf{x}_2 - 1|, \mathbf{x} \in \mathbb{R}^2$, and W_1 is the affine transformation $W_1(\mathbf{x}) :=$
 199 $\begin{pmatrix} -1 & -1.5 \\ -1 & 1.5 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$, for $\mathbf{x} \in \mathbb{R}^2$. Let $\mathbf{u} := \rho(W_1(\mathbf{x}))$. As illustrated in Figure 2, the affine
 200 layer W_1 and the subsequent ReLU transform the input set into the polytope union $U = \{\mathbf{u}_1 \geq 0, \mathbf{u}_2 \geq 0, \mathbf{u}_1 + \mathbf{u}_2 \leq 1\} \cup \{1 \leq \mathbf{u}_1 \leq 2, \mathbf{u}_2 = 0\} \cup \{1 \leq \mathbf{u}_2 \leq 2, \mathbf{u}_1 = 0\}$. The minimal value
 201 of f on X is thus $\min f(X) = \min f'(U) = 1$. However, we will show $\ell(f, \mathcal{P}_1, X) \leq 0$, hence it
 202 is impossible to obtain the exact lower bound. To see this, consider the specific point $\mathbf{u}^* = (1, 1)$.
 203 On one hand, since \mathcal{P}_1 is a sound convex relaxation, the affine constraints obtained on the layer ρ
 204 and W_1 characterize a convex superset of U , thus a superset of the convex hull of U which contains
 205 \mathbf{u}^* . On the other hand, since \mathcal{P}_1 prohibits affine constraints across nonadjacent layers, the affine
 206 constraints induced by the subsequent layers f' cannot remove \mathbf{u}^* from the feasible set (formalized
 207 later in Lemma 3.1). Hence, the returned lower bound satisfies $\ell(f, \mathcal{P}_1, X) \leq f'(\mathbf{u}^*) = 0$.

210 We observe a general phenomenon from the example above: for a ReLU network $f = f_2 \circ f_1$, where
 211 f_1 and f_2 are its subnetworks, if (1) f_1 maps the input set to a set U whose convex hull is its strict
 212 superset, that is, $\text{conv}(U) \setminus U \neq \emptyset$, and (2) the subsequent network f_2 attains its extremal values
 213 at some point $u \in \text{conv}(U) \setminus U$, then a layerwise convex relaxation method *cannot provide* exact
 214 bounds on f for the given input set. This reveals a fundamental limit of layerwise multi-neuron
 215 verifiers: there exist networks for which no verifier can provide exact bounds. In other words, all
 layerwise multi-neuron relaxations are incomplete, regardless of how many neurons in a single layer

216
217
218
219
220
221222 Figure 2: Blue area shows how the input box transforms under W_1 and ReLU; shaded area is the feasible set
223 computed by \mathcal{P}_1 .226 are jointly considered. Further, as we shall show next, the relaxation error can be unbounded. The
227 rest of this section is devoted to formalizing and proving the ideas above.228 We first establish two lemmata characterizing properties of layerwise convex relaxations.
229 Lemma 3.1 below states that affine constraints induced by layerwise convex relaxations on some
230 hidden layer cannot reduce the feasible set on its preceding layers.
231232 **Lemma 3.1.** Let $L \in \mathbb{N}$ and let X be a convex polytope. Consider a ReLU network $f = f_L \circ \dots \circ f_1$.
233 Denote the variable of the j -th hidden layer of f by $\mathbf{v}^{(j)}$, for $j \in [L-1]$, and the variable of the
234 output layer by $\mathbf{v}^{(L)}$. For $1 \leq i < L$, let $\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(i)})$ and $\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(L)})$ be the
235 set of all constraints obtained by applying \mathcal{P}_1 to the first i and L layers of f , respectively. Then,
236 $\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(i)})) = \pi_{\mathbf{v}^{(i)}}(\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(L)}))$.237 The proof is based on the definition of layerwise convex relaxations and is straightforward; we defer
238 it to §E.1. Lemma 3.1 shows that the constraints induced by the deeper-than- i layers do not affect
239 the feasible set of $\mathbf{v}^{(i)}$. Despite the simplicity, this observation leads to Lemma 3.2, which states
240 that the bounds computed by \mathcal{P}_1 cannot be better than splitting the network into two subnetworks at
241 some hidden layer and then computing their convex hulls separately.242 **Lemma 3.2.** Let X be a convex polytope and consider a network $f := f_2 \circ f_1$, where f_1
243 and f_2 are its subnetworks. Then, $\ell(f, \mathcal{P}_1, X) \leq \min(f_2(\text{conv}(f_1(X))))$ and $u(f, \mathcal{P}_1, X) \geq$
244 $\max(f_2(\text{conv}(f_1(X))))$.245 The proof of Lemma 3.2 is as follows: for f_1 , the best approximation that a convex relaxation can
246 attain is the convex hull of the output set of f_1 ; as a consequence of Lemma 3.1, when processing
247 f_2 , \mathcal{P}_1 will take the whole set $\text{conv}(f_1(X))$ into account. Thus, the best bound that \mathcal{P}_1 can achieve
248 is no better than bounding $f_2(\text{conv}(f_1(X)))$. The detailed proof of Lemma 3.2 is deferred to §E.2.249 Now we are ready to show that the layerwise multi-neuron relaxation \mathcal{P}_1 is incomplete.250 **Theorem 3.3.** Let $d \in \mathbb{N}$ and let X be a convex polytope in \mathbb{R}^d . For every $0 < T < \infty$, there
251 exists a ReLU network $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\ell(f, \mathcal{P}_1, X) \leq \min f(X) - T$, and a ReLU network
252 $g : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $u(g, \mathcal{P}_1, X) \geq \max g(X) + T$.253 The proof is deferred to §E.3. Informally, we construct a network f such that the convex hull
254 of the output set of the first subnetwork is a strict superset of the output set, and the subsequent
255 layers attain its extreme values at points outside the reachable set. The construction is similar to
256 the example provided at the beginning of this section. Then, we can scale the weights of the output
257 layer by a large enough constant to make the relaxation error arbitrarily large.258 Theorem 3.3 is an unfortunate result for layerwise multi-neuron relaxations. It shows that every
259 layerwise convex relaxation has a failure case where the relaxation error is arbitrarily large, though
260 calculating them, e.g., \mathcal{P}_1 , is already computationally expensive for large networks.
261263

4 CROSS-LAYER MULTI-NEURON INCOMPLETENESS

264 For networks of L layers, \mathcal{P}_L can provide exact bounds as it computes the convex hull of the input-
265 output function. Since \mathcal{P}_1 is proven incomplete in §3, the natural question is whether there exists
266 some $r \in \mathbb{N}^+$ for \mathcal{P}_r to be complete. Instead of fixing r to be a constant, we consider this question
267 in its full generality by allowing r to depend on L and ask: does there exist $\alpha \in (0, 1)$ such that
268 $\mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}$ provides exact bounds for all networks with L layers? Our result is rather surprising:

270 no such α exists. This directly implies the incompleteness of \mathcal{P}_r for all $r \in \mathbb{N}^+$. Thus, the commonly
 271 believed “single-neuron” barrier of convex relaxations is actually a misnomer, as it extends to every
 272 multi-neuron convex relaxation, and should be renamed *the universal convex barrier*.
 273

274 The key insight behind our result is that for every fixed $\alpha \in (0, 1)$, the cross-layer relaxation
 275 $\mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}$ shares similar limitations to \mathcal{P}_1 for certain networks. Formally,

276 **Lemma 4.1.** Let $\alpha \in (0, 1)$, $d, d', L_1, L_2 \in \mathbb{N}^+$, and $X \subseteq \mathbb{R}^d$ be a convex polytope. For every
 277 L_1 -layer network $f_1 : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ and L_2 -layer network $f_2 : \mathbb{R}^{d'} \rightarrow \mathbb{R}$, there exist $L > L_1 + L_2$ and
 278 a L -layer network f such that (i) $f(\mathbf{x}) = f_2 \circ f_1(\mathbf{x})$, for $\forall \mathbf{x} \in X$, and (ii) $\ell(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \leq$
 279 $\min f_2(\text{conv}(f_1(X)))$ and $u(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \geq \max f_2(\text{conv}(f_1(X)))$.
 280

281 Lemma 4.1 extends Lemma 3.2 to cross-layer convex relaxations. The idea behind its proof is similar
 282 to the pumping lemma: the original network $f_2 \circ f_1$ is pumped by adding dummy identity layers
 283 between f_1 and f_2 . While cross-layer relaxations allow direct information exchange across layers
 284 to improve bound preciseness, the pumped dummy layers block this information exchange, thereby
 285 disabling the relaxation from providing exact bounds. The formal proof is deferred to §F.1. We note
 286 that, however, only direct information exchange between f_1 and f_2 is blocked by this construction,
 287 and the cross-layer relaxation is free to provide exact bounds for both f_1 and f_2 , which is easily
 288 done by $\mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}$ when $\alpha \rightarrow 1$ for large enough L . This is also the key difference between
 289 layerwise and cross-layer relaxations. Nevertheless, merely blocking this information is sufficient
 290 to make the relaxation incomplete, as shown in Theorem 4.2.
 291

292 **Theorem 4.2.** Let $d \in \mathbb{N}$ and let $X \subset \mathbb{R}^d$ be a convex polytope. For every $\alpha \in (0, 1)$ and
 293 every constant $T > 0$, there exists a network $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\ell(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \leq$
 294 $\min f(X) - T$, and a network $g : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $u(g, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \geq \max g(X) + T$.
 295

296 The proof is based on the construction when proving Theorem 3.3. Specifically, we take the
 297 construction therein and apply Lemma 4.1 to obtain a deeper network that has the same semantics. Then,
 298 since the convex hull and the exact output set of f_1 do not completely overlap, we use a similar
 299 argument as in the proof of Theorem 3.3 to show that the $\mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}$ relaxation is incomplete for
 300 every $\alpha \in (0, 1)$. The formal proof is deferred to §F.2. This result directly extends to $\mathcal{P}_{\max(k, \lfloor \alpha L \rfloor)}$
 301 for every constant $k \in \mathbb{N}^+$.
 302

303 The implication of Theorem 4.2 is daunting: even though $\mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}$ is much more powerful than
 304 every practical convex relaxation algorithm, it is still incomplete, and the bounding error can be
 305 arbitrarily large. This shows a hard threshold in the completeness of cross-layer convex relaxation
 306 verifiers: $\mathcal{P}_{\lfloor \alpha L \rfloor}$ is complete when $\alpha = 1$ and incomplete when $\alpha < 1$.
 307

308 **Beyond the ReLU activation.** While the incompleteness results we established so far are for ReLU
 309 networks, they can be naturally extended to non-polynomial activation functions such as sigmoid
 310 and tanh as follows. Recall that the extension to cross-layer incompleteness (Theorem 4.2) is based
 311 on the pumping construction of Lemma 4.1 which extends to other activations, thus it suffices to
 312 show that layerwise incompleteness extends to non-polynomial activations. The proof relies on two
 313 observations: (i) there exists a network f and an input set X such that $\text{conv}(f(X)) \setminus f(X) \neq \emptyset$, thus
 314 there exists a nonempty open set Δ such that $\Delta \subseteq \text{conv}(f(X)) \setminus f(X)$, and (ii) there exists another
 315 network g such that $g(\text{conv}(f(X)))$ attains its minimum only inside Δ . Given a non-polynomial
 316 activation function, by the universal approximation theorem (Hornik et al., 1989), the network class
 317 is dense in the space of continuous functions, thus the first condition is easy to satisfy. The second
 318 condition can be satisfied by constructing a network that approximates a continuous function that
 319 attains its unique minimum in Δ . With these two core ingredients, the rest of the proof is similar to
 320 that of ReLU networks. We defer the formal statements and proofs to §J. Further, while we focus
 321 on the absolute bounding error in the main text, the relative bounding error can also be shown to be
 322 arbitrarily large; we defer the formal statements and proofs to §I.
 323

324 5 MAKING MULTI-NEURON VERIFIERS COMPLETE

325 We have shown in §3 and §4 that no multi-neuron relaxation can achieve completeness. In this sec-
 326 tion, we study techniques to augment multi-neuron methods into complete verifiers. First, we show
 327 that a layerwise multi-neuron relaxation, specifically \mathcal{P}_1 , can be turned into a complete verifier by an
 328 equivalence-preserving structural transformation, which is impossible for any single-neuron relax-

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823<br

378 Therefore, we have $f = c + d = c + x_2 \geq 0 + x_2 \geq 0$ and $f = c + d = c + x_2 \leq 1 - b + x_2 \leq 1$.
 379 Thus, \mathcal{M}_1 returns the exact upper and lower bounds. We remark that k -ReLU, equivalent to the
 380 Triangle relaxation in this case for every $k \geq 1$ since there is only one unstable neuron, induces on
 381 node c the constraint set $\{c \geq 0, c \geq a, c \leq 0.5a + 0.5\}$. The resulting upper bound is 1.5, which is
 382 inexact, consistent to Baader et al. (2024).

383 Based on the 2-D case, we extend the result to \mathbb{R}^d . Indeed, we can rewrite “max” in a nested
 384 form according to $\max(x_1, x_2, \dots, x_d) = \max(\max(x_1, x_2), \dots, x_d)$. By the previous argument,
 385 a multi-neuron relaxation can bound $u = \max(x_1, x_2)$ exactly. Note that u has no interdependency
 386 with x_3, \dots, x_d , thus we can repeat the procedure above for $\max(u, x_3, \dots, x_d)$. By induction on
 387 d , a multi-neuron relaxation, namely \mathcal{M}_1 , can bound the output of a ReLU network expressing the
 388 “max” function in \mathbb{R}^d exactly.

390 5.2 COMPLETENESS VIA CONVEX POLYTOPE PARTITIONING

391 In this section, we discuss how to achieve completeness for general networks (without transformation)
 392 by partitioning the input set into convex sub-polytopes.

393 Branch-and-bound (BaB) is currently the most effective complete verifier. It progressively divides
 394 the current problem into subproblems, solves each subproblem recursively, and combines the results
 395 to yield the bounds. With a similar strategy—we call it polytope partitioning— \mathcal{P}_1 can be turned into
 396 a complete verifier. The idea is to partition the input set of every layer into smaller convex polytopes
 397 so that \mathcal{P}_1 exactly bounds each of them. The exact bounds of the original input set can then be
 398 obtained by aggregating bounds of the smaller polytopes. An algorithm is provided in §D.

399 We first prove completeness, i.e., polytope partitioning enables \mathcal{P}_1 to calculate exact bounds.

400 **Proposition 5.3.** Let $L \in \mathbb{N}$ and $d_0, d_1, \dots, d_{L+1} \in \mathbb{N}^+$. Consider an input set $X \subset \mathbb{R}^{d_0}$ and
 401 a network $f = W_{L+1} \circ \rho \circ \dots \circ \rho \circ W_1$, where $W_j : \mathbb{R}^{d_{j-1}} \rightarrow \mathbb{R}^{d_j}$ are the associated affine
 402 transformations for $j \in [L+1]$. Denote the subnetworks of f by $f_j := W_{j+1} \circ \rho \circ \dots \circ \rho \circ W_1$,
 403 for $j \in [L]$. Assume $H_1, \dots, H_\nu \subseteq X$ such that H_1, \dots, H_ν are convex polytopes, $f(X) =$
 404 $f(H_1) \cup \dots \cup f(H_\nu)$, and $f_j(H_k)$ is a convex polytope for all $j \in [L]$ and $k \in [\nu]$, then

$$\min f(X) = \min_{k \in [\nu]} \ell(f, \mathcal{P}_1, H_k) \quad \max f(X) = \max_{k \in [\nu]} u(f, \mathcal{P}_1, H_k)$$

405 Proposition 5.3 states that when we partition the input set into a finite collection of convex polytopes,
 406 such that each polytope remains as a convex polytope through the subsequent layers, then \mathcal{P}_1 can re-
 407 turn exact bounds on the input set. The proof of Proposition 5.3 (c.f. §G.2) is based on investigating
 408 how affine and ReLU layers transform polytopes. Essentially, an affine transformation converts an
 409 input convex polytope into a convex polytope in the output space, and the ReLU function transforms
 410 a convex polytope into a union of convex polytopes. See Figure 4 for a visualization. We note that
 411 the conditions in Proposition 5.3 are not only sufficient, but also necessary: if there is a sub-polytope
 412 that is no longer a convex polytope after some layer, then the convex hull of the output set of that
 413 layer on this sub-polytope is strictly larger than the actual feasible set. From the discussion in §3,
 414 we have already known \mathcal{P}_1 cannot return exact bounds for general networks when this occurs.

415 A key question with partitioning is: what is the complexity of partitioning, that is, the number
 416 of subproblems to be solved? In particular, how does it compare with BaB when single-neuron
 417 relaxations are used for bounding? Before answering this question, we first formally define the
 418 (worst-case) partition complexity.

419 **Definition 5.4.** Let \mathcal{P} be a complete certification method, f a network, and X an input set. Define
 420 the partition complexity of \mathcal{P} on f for X , denoted by $\#\text{Partition}(\mathcal{P}, f, X)$, to be the maximum
 421 number of subproblems \mathcal{P} needs to solve to compute the exact bounds of f on X .

422 **Definition 5.5.** Let f be a ReLU network with k ReLU neurons, and X be an input set. For $x \in X$,
 423 the activation pattern of f at x is defined as the binary vector $\mathbf{a} \in \{-1, 1\}^k$ such that $\mathbf{a}_i = 1$ if the
 424 i -th ReLU neuron is activated at x , and $\mathbf{a}_i = -1$ otherwise. Denote the number of distinct activation
 425 patterns of f on X by $\mathcal{A}(f, X)$.

426 **Examples.** BaB with DEEPPOLY (Singh et al., 2019b) as the bounding method has partition
 427 complexity equal to $\mathcal{A}(f, X)$, since enumerating all possible activation patterns is both sufficient and
 428 necessary for exact bounds. BaB with IBP (Gowal et al., 2018) as the bounding method has infinite

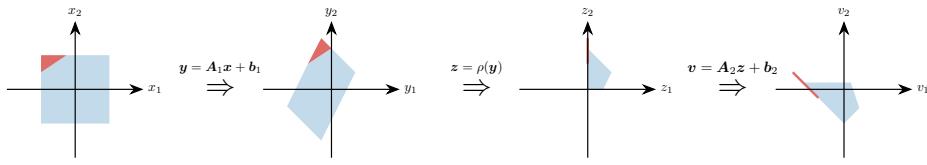


Figure 4: A partion of the input set where every part remains as a convex polytope through the layers.

partition complexity for the network $x_1 + \rho(x_2 - x_1)$, which encodes the “max” function on $[0, 1]^2$. To see this, assume there exists a finite partition of the input set such that IBP returns exact bounds with this partition. Taking the right-upper partition, we can always find a subset of it in the form $B = [p, 1] \times [q, 1]$ for some $p, q < 1$. Then, the IBP upper bound for $x_2 - x_1$ on B is $1 - p$, the IBP upper bound for $\rho(x_2 - x_1)$ is $1 - p$, and the IBP upper bound for x_1 is 1. Therefore, the IBP upper bound for f on B is at least $2 - p$, which is inexact compared to the exact upper bound 1.

In the following, we compare the partition complexity of BaB, when single-neuron relaxations and multi-neuron relaxations are used for bounding, respectively, showing that they are separated by $\mathcal{A}(f, X)$. This result holds for every single-neuron and multi-neuron relaxation in general, and does not require any assumption on the network or input set.

Proposition 5.6. Let \mathcal{S} be some single-neuron relaxation and \mathcal{M} be some multi-neuron relaxation. For every ReLU network f and every input set X , $\#\text{Partition}(\text{BaB}(\mathcal{M}), f, X) \leq \mathcal{A}(f, X) \leq \#\text{Partition}(\text{BaB}(\mathcal{S}), f, X)$.

For BaB, enumerating all possible activation patterns is necessary to obtain exact bounds even with the most precise single-neuron bounding algorithm. In contrast, Proposition 5.6 states that the activation pattern provides an upper bound on the polytope partition complexity. The proof is deferred to §G.2. Although Proposition 5.6 establishes a clear separation on partition complexity between BaB with single-neuron relaxations and multi-neuron relaxations, the upper bound can be quite conservative for powerful multi-neuron relaxations such as \mathcal{P}_1 . We show this with a concrete example in §H, in which \mathcal{P}_1 with polytope partition has *exponentially smaller time complexity* than BaB with DEEPPOLY.

6 DISCUSSION

We established a universal convex barrier, essentially ruling out the possibility of complete verifiers based solely on any convex relaxation. This implies that convex relaxations should only be applied as a subroutine in a complete verification method, such as BaB. All existing BaB methods apply single-neuron relaxations for bounding the subproblems. However, our results suggest that subproblem bounding with multi-neuron relaxations has strictly lower partition complexity. This indicates potential interest in applying efficient multi-neuron relaxations to bound the subproblems during BaB. In addition, existing efforts on training certified models focus on single-neuron relaxations, despite the fact that none of the single-neuron relaxations can provide exact bounds for any networks encoding complex functions. In contrast, results established in §5.1 suggest that certified training with multi-neuron relaxations may be more effective, as they can provide exact bounds for every continuous piecewise linear function encoded by some networks. We leave the further investigation of practical algorithms to future work.

7 CONCLUSION

We conducted the first in-depth study on the expressiveness of multi-neuron convex relaxations. We extended the established single-neuron convex barrier to a *universal convex barrier* for multi-neuron relaxations, showing that they are inherently incomplete regardless of the resources allocated. On the positive side, we showed that completeness can be achieved by multi-neuron relaxations when augmented with equivalency-preserving network transformations or convex polytope partitioning, and established clear separations between multi-neuron and single-neuron relaxations in both cases. Our findings lay a solid foundation for multi-neuron relaxations and point to new directions for certified robustness.

486 REFERENCES
487

488 Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
489 mixed-integer programming formulations for trained neural networks. *Math. Program.*, 183(1):
490 3–39, 2020.

491 Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
492 networks with rectified linear units. *Proc. of ICLR*, 2018.

493

494 Maximilian Baader, Matthew Mirman, and Martin T. Vechev. Universal approximation with certified
495 networks. In *Proc. of ICLR*, 2020.

496

497 Maximilian Baader, Mark Niklas Mueller, Yuhao Mao, and Martin Vechev. Expressivity of reLU-
498 networks under convex relaxations. In *Proc. ICLR*, 2024.

499

500 Stefan Balaucă, Mark Niklas Müller, Yuhao Mao, Maximilian Baader, Marc Fischer, and Martin
501 Vechev. Overcoming the paradox of certified training with gaussian smoothing, 2024.

502 Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
503 Branch and bound for piecewise linear neural network verification. *J. Mach. Learn. Res.*, 21,
504 2020.

505 Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In
506 *2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22–26, 2017*,
507 2017. doi: 10.1109/SP.2017.49.

508

509 Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, and Martin T. Vechev. Complete verification
510 via multi-neuron relaxation guided branch-and-bound. In *Proc. of ICLR*, 2022.

511

512 Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
513 T. Vechev. AI2: safety and robustness certification of neural networks with abstract interpreta-
514 tion. In *2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018*,
515 *San Francisco, California, USA*, 2018. doi: 10.1109/SP.2018.00058.

516 Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
517 sato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of interval
518 bound propagation for training verifiably robust models. *ArXiv preprint*, abs/1810.12715, 2018.

519

520 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
521 universal approximators. *Neural Networks*, 2(5):359–366, 1989. ISSN 0893-6080. doi:
522 [https://doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8).

523 Joey Huchette, Gonzalo Muñoz, Thiago Serra, and Calvin Tsay. When deep learning meets polyhe-
524 dral theory: A survey. *CoRR*, abs/2305.00241, 2023.

525

526 Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
527 efficient SMT solver for verifying deep neural networks. *ArXiv preprint*, abs/1702.01135, 2017.

528

529 Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Connecting certified and
530 adversarial training. In *Proc. of NeurIPS*, 2023.

531

532 Yuhao Mao, Stefan Balaucă, and Martin T. Vechev. CTBENCH: A library and benchmark for
533 certified training. *CoRR*, abs/2406.04848, 2024a.

534

535 Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Understanding certified
536 training with interval bound propagation. In *Proc. of ICLR*, 2024b.

537

538 Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
539 provably robust neural networks. In *Proc. of ICML*, volume 80, 2018.

540

541 Matthew Mirman, Maximilian Baader, and Martin T. Vechev. The fundamental limits of neural
542 networks for interval certified robustness. *Trans. Mach. Learn. Res.*, 2022, 2022.

540 Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin T. Vechev.
 541 PRIMA: general and precise neural network certification via scalable convex hull approximations.
 542 *Proc. ACM Program. Lang.*, 6(POPL), 2022. doi: 10.1145/3498704.

543 Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. Certified training: Small
 544 boxes are all you need. In *Proc. of ICLR*, 2023.

545 Alessandro De Palma, Harkirat S. Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
 546 Scaling the convex barrier with active sets. In *Proc. of ICLR*, 2021.

547 Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M. Pawan Kumar, Robert Stanforth,
 548 and Alessio Lomuscio. Expressive losses for verified robustness via convex combinations. *CoRR*,
 549 abs/2305.13991, 2023. doi: 10.48550/arXiv.2305.13991.

550 Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
 551 barrier to tight robustness verification of neural networks. In *Proc. of NeurIPS*, 2019.

552 Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified robust
 553 training with short warmup. In *Proc. of NeurIPS*, 2021.

554 Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network
 555 verification with branch-and-bound for general nonlinearities. *CoRR*, abs/2405.21063, 2024. doi:
 556 10.48550/ARXIV.2405.21063. URL <https://doi.org/10.48550/arXiv.2405.21063>.

557 Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast and
 558 effective robustness certification. In *Proc. of NeurIPS*, 2018.

559 Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. Beyond the single
 560 neuron convex barrier for neural network certification. In *Proc. of NeurIPS*, 2019a.

561 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain for
 562 certifying neural networks. *Proc. ACM Program. Lang.*, 3(POPL), 2019b. doi: 10.1145/3290354.

563 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
 564 and Rob Fergus. Intriguing properties of neural networks. In *Proc. of ICLR*, 2014.

565 Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and Juan Pablo
 566 Vielma. The convex relaxation barrier, revisited: Tightened single-neuron relaxations for neural
 567 network verification. In *Proc. of NeurIPS*, 2020.

568 Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
 569 integer programming. In *Proc. of ICLR*, 2019.

570 Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
 571 adversarial example defenses. In *Proc. of NeurIPS*, 2020.

572 Calvin Tsay, Jan Kronqvist, Alexander Thebel, and Ruth Misener. Partition-based formulations for
 573 mixed-integer optimization of trained relu neural networks. In *NeurIPS*, pp. 3068–3080, 2021.

574 Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. Interval universal approximation
 575 for neural networks. *Proc. ACM Program. Lang.*, 6(POPL), 2022. doi: 10.1145/3498675.

576 Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S.
 577 Boning, and Inderjit S. Dhillon. Towards fast computation of certified robustness for relu net-
 578 works. In *Proc. of ICML*, volume 80, 2018.

579 Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
 580 adversarial polytope. In *Proc. of ICML*, volume 80, 2018.

581 Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
 582 defenses. In *Proc. of NeurIPS*, 2018.

583 Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
 584 Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
 585 robustness and beyond. In *Proc. of NeurIPS*, 2020.

594 Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
595 and complete: Enabling complete neural network verification with rapid and massively parallel
596 incomplete verifiers. In *Proc. of ICLR*, 2021.

597

598 Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
599 network robustness certification with general activation functions. In *Proc. of NeurIPS*, 2018.

600 Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
601 General cutting planes for bound-propagation-based neural network verification. *ArXiv preprint*,
602 abs/2208.05740, 2022.

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A RELATED WORK
649

650 **Neural Network Certification** Existing methods for neural network certification can be cate-
651 gorized into complete and incomplete methods. Complete methods commonly rely on solving a
652 mixed-integer program (Tjeng et al., 2019; Anderson et al., 2020; Tjandraatmadja et al., 2020; Tsay
653 et al., 2021) to provide exact bounds for the output of a network. The state-of-the-art complete
654 method (Zhang et al., 2022; Shi et al., 2024; Xu et al., 2021; Ferrari et al., 2022) is based on solving
655 the mixed integer program with branch-and-bound (Bunel et al., 2020) on the integer variables.
656 These methods are naturally computationally expensive and do not scale well. Incomplete methods,
657 on the other hand, provide sound but inexact bounds, based on convex relaxations of the feasible
658 output set of a network. Xu et al. (2020) characterizes widely-recognized single-neuron convex re-
659 laxations (Mirman et al., 2018; Wong et al., 2018; Zhang et al., 2018; Singh et al., 2019b) by their
660 induced affine constraints, where the bounds are yielded by efficient but not necessarily optimal
661 solvers. However, Salman et al. (2019) empirically identify a single-neuron convex barrier, prevent-
662 ing single-neuron relaxations from providing exact bounds for general ReLU networks, even with
663 costly optimal solvers. To bypass this barrier, multi-neuron relaxations (Singh et al., 2018; Zhang
664 et al., 2022; Müller et al., 2022) have been proposed and achieved higher precision empirically.
665

666 **Multi-neuron Relaxations in Practice** To bypass the single-neuron barrier, multi-neuron relax-
667 ations (Singh et al., 2018; Zhang et al., 2022; Müller et al., 2022) have been proposed, achieving
668 higher precision empirically. In particular, Singh et al. (2019a) and Müller et al. (2022) are looser
669 versions of \mathcal{P}_1 discussed in this paper; Zhang et al. (2022) is a looser version of \mathcal{P}_L . Ferrari et al.
670 (2022) combine multi-neuron relaxations with BaB and find that applying multi-neuron relaxations
671 before BaB yields a superior overall performance. These practical applications motivate us to rigorously
672 study the fundamental limit of multi-neuron relaxations. Furthermore, the certified training
673 community (Müller et al., 2023; Mao et al., 2023; 2024a) has already employed multi-neuron re-
674 laxations in verification, but not yet in training. This also motivates us to explore the possibility of
675 combining multi-neuron with certified training.
676

677 **Certification with Convex Relaxations** Existing work on the certification with convex relaxations
678 focuses on the expressiveness of single-neuron relaxations. We distinguish three convex relaxation
679 methods typically considered by theoretical work: Interval Bound Propagation (IBP) (Mirman et al.,
680 2018; Gowal et al., 2018), which ignores the interdependency between neurons and use intervals
681 $\{[a, b] \mid a, b \in \mathbb{R}\}$ for relaxation; Triangle relaxation (Wong & Kolter, 2018), which approximates
682 the ReLU function by a triangle in the input-output space; and multi-neuron relaxations (Singh et al.,
683 2018; Zhang et al., 2022; Müller et al., 2022) which considers a group of ReLU neurons jointly in a
684 single affine constraint. On the positive side, Baader et al. (2020) show the universal approximation
685 theorem for certified models, stating that for every continuous piecewise linear function $f : \mathbb{R}^n \rightarrow \mathbb{R}$
686 and every $\epsilon > 0$, there exists a ReLU network that approximates f , for which IBP provides bounds
687 within error ϵ . This result is generalized to other activations by Wang et al. (2022). However,
688 Mirman et al. (2022) shows that there exists a continuous piecewise linear function for which IBP
689 analysis of every finite ReLU network encoding this function provides inexact bounds. Further, Mao
690 et al. (2024b) shows that a strong regularization on the parameter signs is required for IBP to provide
691 good bounds. Beyond IBP, Baader et al. (2024) show that even Triangle, the most precise single-
692 neuron relaxation, cannot exactly bound any ReLU network that encodes the “max” function in \mathbb{R}^2 ,
693 although it is provably more expressive than IBP in \mathbb{R} . While Baader et al. (2024) also shows that
694 every ReLU network with a single hidden layer can be exactly bounded by multi-neuron relaxations
695 with sufficient budget, the theoretical properties of multi-neuron relaxations in the certification of
696 general ReLU networks remain unknown. We remark that this review is not exhaustive, especially
697 regarding convex relaxations beyond neural network certification, and refer readers to Huchette
698 et al. (2023) for a more comprehensive survey on MILP formulations, polyhedral geometry and
699 expressiveness of ReLU networks.
700

698 B NOTATION
699

700 We use lowercase boldface letters to denote vectors and uppercase boldface letters to denote
701 matrices. For the vector \mathbf{x} , \mathbf{x}_i denotes its i -th entry and \mathbf{x}_I is the subvector of \mathbf{x} with entries cor-
702 responding to the indices in the set I . I_N is the $N \times N$ identity matrix and $\mathbf{1}_N$ and $\mathbf{0}_N$ denotes
703

702
 703
 $\mathcal{C}_s(a, c) = \left\{ \begin{bmatrix} a - c \\ c - \frac{1}{2}(a + 1) \end{bmatrix} \leq 0 \right\}$
 704
 705

 706
 $\mathcal{C}_m(a, b, c, d) = \mathcal{C}_s(a, c) \cap \mathcal{C}_s(b, d) \cap \left\{ \begin{bmatrix} c - d \\ a - b \end{bmatrix} = 0 \right\}$
 707

Figure 5: Visualization of the single-neuron and multi-neuron relaxations for a network encoding $f(x) = 0$.

710
 711 the N -dimensional column vector with all entries equal to 1 and 0, respectively. e_i is the column
 712 vector with the i -th element taking value 1 and all other elements 0. For $\mathbf{1}$ and $\mathbf{0}$ without subscript,
 713 we understand them to be vectors of appropriate dimensions according to the context. For matrices
 714 $\mathbf{A}_1, \dots, \mathbf{A}_n$, we designate the block-diagonal matrix with diagonal element-matrices $\mathbf{A}_1, \dots, \mathbf{A}_n$,
 715 by $\text{diag}(\mathbf{A}_1, \dots, \mathbf{A}_n)$.

716 For a set H , we denote the convex hull of H by $\text{conv } H$. We represent the ReLU function as
 717 $\rho(\mathbf{x}) = \max(\mathbf{x}, \mathbf{0})$. For two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$, $\mathbf{a} \leq \mathbf{b}$ denotes elementwise inequality.

718 The real set is denoted by \mathbb{R} , the natural numbers by \mathbb{N} , the positive integers by \mathbb{N}^+ , and the d -
 719 dimensional real space by \mathbb{R}^d . For a set S , $|S|$ denotes the cardinality of S , which is the number of
 720 elements in S . Given $r \in \mathbb{N}^+$, $[r]$ denotes the set $\{1, 2, \dots, r\}$. For a function f and input domain
 721 X , we use $f(X)$ to denote its range $\{f(\mathbf{x}) \mid \mathbf{x} \in X\}$ and $f[X]$ to denote its image $\{(\mathbf{x}, f(\mathbf{x})) \mid$
 722 $\mathbf{x} \in X\}$.

723 We use $\mathcal{C}(\mathbf{x})$ to denote a set of affine constraints on \mathbf{x} , i.e., $\mathcal{C} = \{\mathbf{A}\mathbf{x} + \mathbf{b} \leq \mathbf{0}\}$ for some matrix
 724 \mathbf{A} and some vector \mathbf{b} . For two sets of constraints $\mathcal{C}_1(\mathbf{x}) = \{\mathbf{A}^{(1)}\mathbf{x} + \mathbf{b}^{(1)} \leq \mathbf{0}\}$ and $\mathcal{C}_2(\mathbf{x}) =$
 725 $\{\mathbf{A}^{(2)}\mathbf{x} + \mathbf{b}^{(2)} \leq \mathbf{0}\}$, $\mathcal{C}_1 \wedge \mathcal{C}_2 = \{\mathbf{A}^{(1)}\mathbf{x} + \mathbf{b}^{(1)} \leq \mathbf{0} \wedge \mathbf{A}^{(2)}\mathbf{x} + \mathbf{b}^{(2)} \leq \mathbf{0}\}$ denotes a combination
 726 of the two sets of constraints, i.e., their feasible sets are intersected.

727 Given a set $H = \{(\mathbf{x}, \mathbf{y}) \mid (\mathbf{x}, \mathbf{y}) \in H\}$, we denote the projection of H onto the \mathbf{x} -space by
 728 $\pi_{\mathbf{x}}(H) = \{\mathbf{x} \mid \exists \mathbf{y} : (\mathbf{x}, \mathbf{y}) \in H\}$ and the projection onto the \mathbf{y} -space by $\pi_{\mathbf{y}}(H) = \{\mathbf{y} \mid \exists \mathbf{x} :$
 729 $(\mathbf{x}, \mathbf{y}) \in H\}$. For a feasible set \mathcal{C} defined by the constraint set $\mathcal{C}(\mathbf{x}, \mathbf{y})$, $\pi_{\mathbf{x}}(\mathcal{C})$ is the set of values of
 730 \mathbf{x} that satisfy the constraints in \mathcal{C} .

731 For a function $f : \mathbb{R}^{d_{\text{in}}} \rightarrow \mathbb{R}$, an input convex polytope $X \in \mathbb{R}^{d_{\text{in}}}$ and a convex relaxation \mathcal{P} ,
 732 the lower bound of f on X under \mathcal{P} is denoted by $\ell(f, \mathcal{P}, X)$ and the upper bound is denoted by
 733 $u(f, \mathcal{P}, X)$. Concretely, let $\mathcal{C}(\mathcal{P})$ be the constraint set induced by \mathcal{P} and $v \in \mathbb{R}$ be the output
 734 variable, then $\ell(f, \mathcal{P}, X) = \min \pi_v(\mathcal{C}(\mathcal{P}))$ and $u(f, \mathcal{P}, X) = \max \pi_v(\mathcal{C}(\mathcal{P}))$.

735 We call neurons that switch their activation states within the input set as unstable, otherwise call it
 736 stable.

739 C EXAMPLE ILLUSTRATION

740 This section contains a toy example to illustrate the concepts we introduced, namely the ReLU
 741 network $\rho(x) - \rho(x)$ encoding the zero function $f(x) = 0$ with input $x \in [-1, 1]$. This network
 742 is visualized in Figure 5. The affine constraints are as follows: (i) for the input convex polytope,
 743 we have $\{x \geq -1, x \leq 1\}$; (ii) for affine layers, we have $\{a = x, b = x, f = c - d\}$; (iii) for the
 744 ReLU layer, a single neuron relaxation (Triangle) will have $\mathcal{C}_s(a, c) \wedge \mathcal{C}_s(b, d)$, and a multi-neuron
 745 relaxation (\mathcal{M}_2) will have $\mathcal{C}_m(a, b, c, d)$. In this case, a multi-neuron relaxation successfully solves
 746 that the upper bound and lower bound of f are zero, while a single-neuron relaxation solves an
 747 inexact upper bound 1 and an inexact lower bound -1 .

751 D PSEUDO-ALGORITHM FOR POLYTOPE PARTITION

752 In this section, we present a pseudo-algorithm for the polytope partition in §5.2. It serves as a high-
 753 level description of the polytope partitioning algorithm. The actual implementation in practice may
 754 vary depending on the specific problem and the desired performance.

Algorithm 1 Polytope Partition

```

756
757 Input: network  $f$ , input convex polytope  $X$ 
758 Output:  $u = \max_{x \in X} f(x)$  and  $\ell = \min_{x \in X} f(x)$ 
759 Initialize  $H \leftarrow \{(X, X)\}$ 
760 for each layer  $f_j$  in  $f$  do
761   Initialize with a convex polytope collection  $H' = \emptyset$ 
762   for each pair  $(H_k, S_k) \in H$  do
763     Compute the output of  $f_j$  on  $S_k$ , denoted by  $f_j(S_k)$ 
764     if  $f_j(S_k)$  is a convex polytope then
765       Add  $(H_k, f_j(S_k))$  to  $H'$ 
766     else
767       Decompose  $(H_k, S_k)$  into  $\nu$  convex polytopes  $H_{k_1}, \dots, H_{k_\nu}$  and the images
768        $S_{k_1}, \dots, S_{k_\nu}$ , such that  $f_j(S_{k_i})$  is a convex polytope for  $i = 1, \dots, \nu$ , where  $\nu$  should be as
769       small as possible
770       Add  $(H_{k_i}, f_j(S_{k_i}))$  to  $H'$  for  $i = 1, \dots, \nu$ 
771     end if
772   end for
773   Set  $H = H'$ 
774 end for
775 Initialize  $\ell = +\infty$  and  $u = -\infty$ 
776 for each convex polytope  $H_k \in H$  do
777   Update  $\ell = \min(\ell, \ell(f, \mathcal{P}_1, H_k))$ 
778   Update  $u = \max(u, u(f, \mathcal{P}_1, H_k))$ 
779 end for
return  $u$  and  $\ell$ 

```

780

781 **Example.** Running Algorithm 1 on the “max” example in §5.1, the input box $[0, 1]^d$ is always
 782 mapped to a convex polytope as it passes through the network layers. Therefore, the partition com-
 783 plexity is 1.

784

785 We remark that there are two steps in the algorithm that might require high computational complex-
 786 ity in practice: (i) the partitioning of a set into convex polytopes, and (ii) the merging of convex
 787 polytopes. The partitioning step is necessary because the output of a ReLU network may not be a
 788 convex polytope, and we need to partition it into smaller convex polytopes to compute the bounds.
 789 The merging step is to merge redundant convex polytopes to reduce the number of subproblems. To
 790 design a practical algorithm with a low running time complexity is beyond the scope of this paper,
 791 and we leave it to the future work.

792

E DEFERRED PROOFS IN §3

E.1 PROOF OF LEMMA 3.1

793 We prove Lemma 3.1, restated below for convenience.

794 **Lemma 3.1.** Let $L \in \mathbb{N}$ and let X be a convex polytope. Consider a ReLU network $f = f_L \circ \dots \circ f_1$.
 795 Denote the variable of the j -th hidden layer of f by $\mathbf{v}^{(j)}$, for $j \in [L - 1]$, and the variable of the
 796 output layer by $\mathbf{v}^{(L)}$. For $1 \leq i < L$, let $\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(i)})$ and $\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(L)})$ be the
 797 set of all constraints obtained by applying \mathcal{P}_1 to the first i and L layers of f , respectively. Then,
 798 $\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(i)})) = \pi_{\mathbf{v}^{(i)}}(\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(L)}))$.

800

801 **Proof.** As \mathcal{P} does not consider constraints cross nonadjacent layers, \mathcal{C}_1 is in the form of $\mathcal{C}(\mathbf{x}, \mathbf{v}^{(1)}) \cup$
 802 $\mathcal{C}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}) \cup \dots \cup \mathcal{C}(\mathbf{v}^{(i-1)}, \mathbf{v}^{(i)})$ and $\mathcal{C}_2 = \mathcal{C}_1 \cup \mathcal{C}(\mathbf{v}^{(i)}, \mathbf{v}^{(i+1)}) \cup \dots \cup \mathcal{C}(\mathbf{v}^{(L-1)}, \mathbf{v}^{(L)})$. Let
 803 $\mathcal{C}_3 := \mathcal{C}(\mathbf{v}^{(i)}, \mathbf{v}^{(i+1)}) \cup \dots \cup \mathcal{C}(\mathbf{v}^{(L-1)}, \mathbf{v}^{(L)})$. Note that the projection $\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_1)$ is considered by
 804 \mathcal{P}_1 as the input set of the subnetwork $f_{i+1} \circ \dots \circ f_L$ to instantiate further relaxations for deeper
 805 layers. Since \mathcal{P}_1 is a sound verifier, the constraints \mathcal{C}_3 must allow the input set, i.e.,
 806
 807
 808
 809

$$\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_3) \supseteq \pi_{\mathbf{v}^{(i)}}(\mathcal{C}_1).$$

Now $\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_2)$ is obtained by applying the Fourier-Motzkin algorithm to eliminate all the variables in $\mathcal{C}_2 = \mathcal{C}_1 \cap \mathcal{C}_3$ except $\mathbf{v}^{(i)}$. W.l.o.g, assume we eliminate in the following order $\mathbf{x}, \mathbf{v}^1, \dots, \mathbf{v}^{(i-1)}, \mathbf{v}^{(i+1)}, \dots, \mathbf{v}^{(L)}$. The constraints in \mathcal{C}_3 remains unchanged as we eliminate $\mathbf{x}, \mathbf{v}^1, \dots, \mathbf{v}^{(i-1)}$, since they are not included in \mathcal{C}_3 . Therefore,

$$\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_2) = \pi_{\mathbf{v}^{(i)}}(\mathcal{C}_1) \cap \pi_{\mathbf{v}^{(i)}}(\mathcal{C}_3).$$

Hence, $\pi_{\mathbf{v}^{(i)}}(\mathcal{C}_2) = \pi_{\mathbf{v}^{(i)}}(\mathcal{C}_1)$. \square

E.2 PROOF OF LEMMA 3.2

We prove Lemma 3.2, restated below for convenience.

Lemma 3.2. Let X be a convex polytope and consider a network $f := f_2 \circ f_1$, where f_1 and f_2 are its subnetworks. Then, $\ell(f, \mathcal{P}_1, X) \leq \min(f_2(\text{conv}(f_1(X))))$ and $u(f, \mathcal{P}_1, X) \geq \max(f_2(\text{conv}(f_1(X))))$.

Proof. By the notation in Lemma 3.1,

$$\begin{aligned} \ell(f, \mathcal{P}_1, X) &= \min_{\mu \in \pi_{\mathbf{v}^{(2)}}(\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}, \mathbf{v}^{(2)}))} \mu \\ &\leq \min_{\nu \in \pi_{\mathbf{v}^{(1)}}(\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}, \mathbf{v}^{(2)}))} f_2(\nu) \\ &= \min_{\nu \in \pi_{\mathbf{v}^{(1)}}(\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}))} f_2(\nu), \end{aligned}$$

where the last equality follows from Lemma 3.1. Since $\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)})$ is a convex polytope containing the feasible set of $\mathbf{v}^{(1)}$, we have $\pi_{\mathbf{v}^{(1)}}(\mathcal{C}_1(\mathbf{x}, \mathbf{v}^{(1)})) \supseteq \text{conv}(f_1(X))$. Therefore,

$$\begin{aligned} \ell(f, \mathcal{P}_1, X) &\leq \min_{\nu \in \pi_{\mathbf{v}^{(1)}}(\mathcal{C}_2(\mathbf{x}, \mathbf{v}^{(1)}))} f_2(\nu) \\ &\leq \min_{\nu \in \text{conv}(f_1(X))} f_2(\nu) \\ &= \min(f_2(\text{conv}(f_1(X)))). \end{aligned}$$

The proof for the upper bound is similar. \square

E.3 PROOF OF THEOREM 3.3

Now we prove Theorem 3.3, restated below for convenience.

Theorem 3.3. Let $d \in \mathbb{N}$ and let X be a convex polytope in \mathbb{R}^d . For every $0 < T < \infty$, there exists a ReLU network $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\ell(f, \mathcal{P}_1, X) \leq \min f(X) - T$, and a ReLU network $g : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $u(g, \mathcal{P}_1, X) \geq \max g(X) + T$.

Proof. The proof is done by explicit construction of ReLU networks that satisfies the required property.

When $d = 1$, assume $X = [a, b] \subseteq \mathbb{R}$, where $a \neq b$. Let $W_0(x) = 2\frac{x-a}{b-a} - 1$, $W_1(x) = (x+1, x)$, and $f'(\mathbf{x}) = 2T|\mathbf{x}_1 - 1| + 2T|\mathbf{x}_2 - 0.5| = 2T\rho(\mathbf{x}_1 - 1) + 2T\rho(1 - \mathbf{x}_1) + 2T\rho(\mathbf{x}_2 - 0.5) + 2T\rho(0.5 - \mathbf{x}_2)$, for $\mathbf{x} \in \mathbb{R}^2$. We construct the network as $f = f' \circ \rho \circ W_1 \circ W_0$. Since $\rho \circ W_1 \circ W_0(a) = (0, 0)$ and $\rho \circ W_1 \circ W_0(b) = (2, 1)$, $\text{conv}(\rho \circ W_1 \circ W_0([a, b])) \supseteq \{(2t, t) \mid t \in [0, 1]\}$. Thus, $\min f'(\text{conv}(\rho \circ W_1 \circ W_0([a, b]))) = 0$. Therefore, by Lemma 3.2, $\ell \leq \min f'(\text{conv}(\rho \circ W_1 \circ W_0([a, b]))) = 0$. However, the ground-truth minimum is T . Likewise, we can construct a ReLU network such that applying any convex relaxation cannot provide the precise upper bound, by simply negating f' to be $f'(\mathbf{x}) = -2T|\mathbf{x}_1 - 1| - 2T|\mathbf{x}_2 - 0.5|$.

Now assume $d \geq 2$. We assume X does not degenerate, i.e., X cannot be embedded in a lower-dimensional space; otherwise, we can simply project X to a lower-dimensional space with a single affine layer and set d to a smaller value. Now, we define the first affine layer to be the projection layer $\pi(\mathbf{x}) = \mathbf{x}_1$, which simply projects a point to its first dimension. For every non-degenerate X ,

864 $\pi(X)$ is a nonempty interval in \mathbb{R} . We then construct a ReLU network as $f = f' \circ \rho \circ W_1 \circ W_0 \circ \pi$.
 865 By the analysis above, $\ell \leq \min f'(\text{conv}(\rho \circ W_1 \circ W_0([a, b]))) - T$.
 866

□

869 F DEFERRED PROOFS IN §4

870 F.1 PROOF OF LEMMA 4.1

873 Now we prove Lemma 4.1, restated below for convenience.

874 **Lemma 4.1.** Let $\alpha \in (0, 1)$, $d, d', L_1, L_2 \in \mathbb{N}^+$, and $X \subseteq \mathbb{R}^d$ be a convex polytope. For every
 875 L_1 -layer network $f_1 : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ and L_2 -layer network $f_2 : \mathbb{R}^{d'} \rightarrow \mathbb{R}$, there exist $L > L_1 + L_2$ and
 876 a L -layer network f such that (i) $f(\mathbf{x}) = f_2 \circ f_1(\mathbf{x})$, for $\forall \mathbf{x} \in X$, and (ii) $\ell(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \leq$
 877 $\min f_2(\text{conv}(f_1(X)))$ and $u(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \geq \max f_2(\text{conv}(f_1(X)))$.
 878

879 *Proof.* Intuitively, the proof is done by blocking direct information passing from f_1 to f_2 through
 880 adding dummy layers. Let $r = \max(1, \lfloor \alpha L \rfloor)$ and take

$$882 L = \lceil \max\left(\frac{1}{\alpha}, \frac{L_1 + L_2 + 1}{1 - \alpha}\right) \rceil \quad (1)$$

884 We construct the network f by pumping $f_2 \circ f_1$ through adding identity layers between f_2 and
 885 f_1 , thus the name pumping lemma. Concretely, let $f = f_2 \circ I_d \circ \underbrace{\cdots \circ I_d}_{(L-L_1-L_2) \text{ times}} \circ f_1$, where $I_{d'}$ is the
 886

887 identify function in $\mathbb{R}^{d'}$. Take . Thus, $L - L_1 - L_2 \geq k + 1$. Denote the input variable by
 888 $\mathbf{v}^{(0)}$ and the variables on the i -th layer of f by $\mathbf{v}^{(i)}$. By definition, \mathcal{P}_k computes all constraints of
 889 the form $\mathcal{C}(\mathbf{v}^{(i)}, \dots, \mathbf{v}^{(i+k)})$ for $i = 0, \dots, L - k$. By the identity layer construction, we know
 890 $\mathbf{v}^{(L_1)} = \mathbf{v}^{(L_1+1)} = \dots = \mathbf{v}^{(L-L_2)}$. By (1), $L - L_1 - L_2 \geq k + 1$, which means the constraints
 891 induced by \mathcal{P}_r are can be reduced to constraints of the form $\mathcal{C}(\mathbf{v}^{(i)}, \dots, \mathbf{v}^{(\min(i+r, L_1))})$, for $i =$
 892 $0, \dots, L_1$, and $\mathcal{C}(\mathbf{v}^{(\max(j-r, L-L_2))}, \dots, \mathbf{v}^{(j)})$, for $j = L - L_2, \dots, L$. For brevity, we slightly
 893 abuse notation and denote by $\mathcal{C}(\mathcal{P}_k)$ the union of all constraints induced by \mathcal{P}_k , denote by \mathcal{C}_1 the
 894 union of constraint sets of the form $\mathcal{C}(\mathbf{v}^{(i)}, \dots, \mathbf{v}^{(\min(i+k, L_1))})$ for $i = 0, \dots, L_1$, and denote by
 895 \mathcal{C}_2 the union of constraint sets of the form $\mathcal{C}(\mathbf{v}^{(\max(j-k, L-L_2))}, \dots, \mathbf{v}^{(j)})$ for $j = L - L_2, \dots, L$.
 896 Thus, $\pi_{\mathbf{v}^{(L-L_2)}}(\mathcal{C}(\mathcal{P}_k)) = \pi_{\mathbf{v}^{(L_1)}}(\mathcal{C}(\mathcal{P}_k)) = \pi_{\mathbf{v}^{(L_1)}}(\mathcal{C}_1)$. Since $\text{conv}(f_1(X)) \subseteq \pi_{\mathbf{v}^{(L_1)}}(\mathcal{C}_1)$,
 897

$$898 \ell(f, \mathcal{P}_k, X) \leq \min f_2(\pi_{\mathbf{v}^{(L-L_2)}}(\mathcal{C}(\mathcal{P}_k))) \\ 899 = \min f_2(\pi_{\mathbf{v}^{(L_1)}}(\mathcal{C}_1)) \\ 900 \leq \min f_2(\text{conv}(f_1(X))),$$

901 and

$$903 u(f, \mathcal{P}_k, X) \geq \max f_2(\pi_{\mathbf{v}^{(L-L_2)}}(\mathcal{C}(\mathcal{P}_k))) \\ 904 = \max f_2(\pi_{\mathbf{v}^{(L_1)}}(\mathcal{C}_1)) \\ 905 \geq \max f_2(\text{conv}(f_1(X))).$$

□

909 F.2 PROOF OF THEOREM 4.2

911 Now we prove Theorem 4.2, restated below for convenience.

912 **Theorem 4.2.** Let $d \in \mathbb{N}$ and let $X \subset \mathbb{R}^d$ be a convex polytope. For every $\alpha \in (0, 1)$ and
 913 every constant $T > 0$, there exists a network $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\ell(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \leq$
 914 $\min f(X) - T$, and a network $g : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $u(g, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \geq \max g(X) + T$.
 915

916 *Proof.* We reuse the construction in the proof of Theorem 3.3, augmented by Lemma 4.1. In the
 917 proof of Theorem 3.3, we constructed a feedforward network $\hat{f} := f' \circ \rho \circ W_3 \circ W_2 \circ W_1 \circ \pi$.

918 Let $f_1 := \rho \circ W_3 \circ W_2 \circ W_1 \circ \pi$ and $f_2 := f'$. By Lemma 4.1, for some $L \in \mathbb{N}$, there exists an L -layer network f such that $f = f_2 \circ f_1$ everywhere on X and $\ell(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \leq \min f_2(\text{conv}(f_1(X))) \leq \min\{\hat{f}(x) : x \in X\} - T = \min\{f(x) : x \in X\} - T$ and $u(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \geq \max f_2(\text{conv}(f_1(X))) \geq \max\{\hat{f}(x) : x \in X\} + T = \max\{f(x) : x \in X\} + T$. \square

G DEFERRED PROOFS IN §5

G.1 PROOF OF THEOREM 5.1 AND COROLLARY 5.2

We present a technical lemma before proving Theorem 5.1.

Lemma G.1. Let H be a compact set in \mathbb{R}^d . Then, for every $i \in [d]$, $\min_{\mathbf{x} \in H} \mathbf{x}_i = \min_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i$ and $\max_{\mathbf{x} \in H} \mathbf{x}_i = \max_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i$.

Proof. We only show the equality for minimum values. The proof for maximum values is likewise.

Fix an arbitrary $i \in [d]$. Since $H \subseteq \text{conv } H$, we have

$$\min_{\mathbf{x} \in H} \mathbf{x}_i \geq \min_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i. \quad (2)$$

Since the convex hull of a compact set is closed, $\exists \mathbf{v}^* \in \text{conv } H$ such that $\min_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i = \mathbf{v}_i^*$. Furthermore, $\exists \mathbf{x}^*, \mathbf{y}^* \in H$ and $t \in [0, 1]$, such that $\mathbf{v}^* = t\mathbf{x}^* + (1-t)\mathbf{y}^*$. Without loss of generality, assume $\mathbf{x}_i^* \leq \mathbf{y}_i^*$. But $\mathbf{x}_i^* \leq t\mathbf{x}_i^* + (1-t)\mathbf{y}_i^* = \mathbf{v}_i^* = \min_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i$. Therefore $\min_{\mathbf{x} \in H} \mathbf{x}_i \leq \mathbf{x}_i^* \leq \min_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i$. Combining with (2) gives $\min_{\mathbf{x} \in H} \mathbf{x}_i = \min_{\mathbf{v} \in \text{conv } H} \mathbf{v}_i$. \square

Now we prove Theorem 5.1, restated below for convenience.

Theorem 5.1. For $d, d' \in \mathbb{N}^+$, let $f : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ be a network and let $X \subseteq \mathbb{R}^d$ be a convex polytope. There exists a network $g : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ satisfying $g = f$ on X , such that $\ell(g, \mathcal{P}_1, X) = \min f(X)$ and $u(g, \mathcal{P}_1, X) = \max f(X)$.

Proof. We construct the network g based on f as follows. First replicate the structure and weights of f verbatim. Then add d extra neurons in every hidden layer of g to make copies of the input neurons. This can be achieved based on the equality $\rho(t-u) + u = t$, for $t \geq u$ and $t, u \in \mathbb{R}$. See Figure 6 for illustration. By construction, g represents the same function as f on X .

Now we prove \mathcal{P}_1 returns precise bounds for g on X . Assume g has L layers. Denote the variables of the i -th hidden layer by $\mathbf{v}^{(j)}$, $j = 1, \dots, L-1$, and the output layer by $\mathbf{v}^{(L)}$. By definition of \mathcal{P}_1 , the system of constraints generated by \mathcal{P}_1 includes all affine constraints in the form of $\mathcal{C}(\mathbf{v}^{(L-1)}, \mathbf{v}^{(L)})$, given those passed from the $(L-1)$ -th layer. Since $\mathbf{v}^{(L-1)}$ contains \mathbf{x} as a part, \mathcal{P}_1 computes the convex hull of $g(\mathbf{x})$. Furthermore, by Lemma G.1, the bounds of the convex hull of the compact set $g(X)$ characterizes exact upper and lower bounds of $g(X)$. Therefore, \mathcal{P}_1 returns precise bounds of g on X . \square

We proceed to prove Corollary 5.2, restated below for convenience.

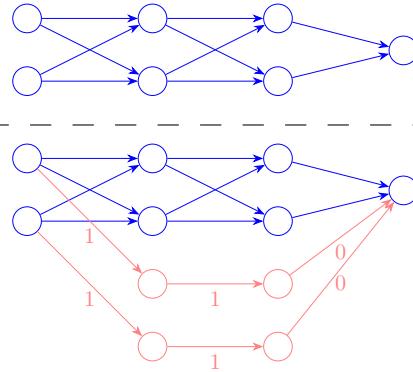
Corollary 5.2. For $d \in \mathbb{N}^+$, let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a continuous piecewise linear function, and let $X \subseteq \mathbb{R}^d$ be a convex polytope. There exists a network $g : \mathbb{R}^d \rightarrow \mathbb{R}$ satisfying $g = f$ on X , such that $\ell(g, \mathcal{P}_1, X) = \min f(X)$ and $u(g, \mathcal{P}_1, X) = \max f(X)$.

Proof. For a continuous piecewise linear function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, by Theorem 2.1 of Arora et al. (2018), there exists a ReLU network $g' : \mathbb{R}^d \rightarrow \mathbb{R}$ satisfying

$$f(\mathbf{x}) = g'(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d. \quad (3)$$

By Theorem 5.1, there exists another ReLU network $g : \mathbb{R}^d \rightarrow \mathbb{R}$ satisfying

$$g(\mathbf{x}) = g'(\mathbf{x}), \quad \mathbf{x} \in X, \quad (4)$$

Figure 6: Top: the network f . Bottom: the network g . Labels on the edges are the associated weights.

and

$$\ell(g, \mathcal{P}_1, X) = \min g'(X)$$

$$u(g, \mathcal{P}_1, X) = \max g'(X).$$

Combining (3) and (4), we get

$$g(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in X,$$

and

$$\ell(g, \mathcal{P}_1, X) = \min f(X)$$

$$u(g, \mathcal{P}_1, X) = \max f(X).$$

□

G.2 PROOF OF PROPOSITION 5.3 AND PROPOSITION 5.6

We start with a technical lemma.

Lemma G.2. Let $L \in \mathbb{N}^+$. Consider a network $f = f_L \circ \dots \circ f_1$, where f_j is either an affine transformation or the ReLU function for $j \in [L]$, and an input convex polytope X . Denote by $f^{(j)} := f_j \circ \dots \circ f_1$, for $j \in [L]$, the subnetworks of f . Assume $f^{(j)}(X)$ is a convex polytope, $\forall j \in [L]$. Then, $\ell(f, \mathcal{P}_1, X) = \min f(X)$ and $u(f, \mathcal{P}_1, X) = \max f(X)$.

Proof. Denote the variable of the first hidden by $\mathbf{v}^{(1)}$. By definition, \mathcal{P}_1 computes the convex hull of the function graph $(\mathbf{x}, \mathbf{v}^{(1)} = f_1(\mathbf{x}))$, therefore the convex hull of the feasible set of $\mathbf{v}^{(1)}$. Since the convex hull of a convex set is the set itself, \mathcal{P}_1 can precisely computes the feasible set of $\mathbf{v}^{(1)}$. Simply propagate by the layers and take into account the assumption that $f^{(j)}(X)$ is a convex polytope, for all $j \in [L]$, we get that \mathcal{P}_1 exactly bounds the network output on X . □

We proceed to prove Proposition 5.3, restated below for convenience.

Proposition 5.3. Let $L \in \mathbb{N}$ and $d_0, d_1, \dots, d_{L+1} \in \mathbb{N}^+$. Consider an input set $X \subset \mathbb{R}^{d_0}$ and a network $f = W_{L+1} \circ \rho \circ \dots \circ \rho \circ W_1$, where $W_j : \mathbb{R}^{d_{j-1}} \rightarrow \mathbb{R}^{d_j}$ are the associated affine transformations for $j \in [L+1]$. Denote the subnetworks of f by $f_j := W_{j+1} \circ \rho \circ \dots \circ \rho \circ W_1$, for $j \in [L]$. Assume $H_1, \dots, H_\nu \subseteq X$ such that H_1, \dots, H_ν are convex polytopes, $f(X) = f(H_1) \cup \dots \cup f(H_\nu)$, and $f_j(H_k)$ is a convex polytope for all $j \in [L]$ and $k \in [\nu]$, then

$$\min f(X) = \min_{k \in [\nu]} \ell(f, \mathcal{P}_1, H_k) \quad \max f(X) = \max_{k \in [\nu]} u(f, \mathcal{P}_1, H_k)$$

Proof. By Lemma G.2, \mathcal{P}_1 returns precise bounds for f on H_k for all $k \in [\nu]$. Since the output set $f(X)$ is the union of $f(H_i)$ for all $k \in [\nu]$, the theorem follows. □

We now prove Proposition 5.6, restated below for convenience.

1026 **Proposition 5.6.** Let \mathcal{S} be some single-neuron relaxation and \mathcal{M} be some multi-neuron relax-
 1027 ation. For every ReLU network f and every input set X , $\#\text{Partition}(\text{BaB}(\mathcal{M}), f, X) \leq \mathcal{A}(f, X) \leq$
 1028 $\#\text{Partition}(\text{BaB}(\mathcal{S}), f, X)$.

1029
 1030 *Proof.* We first prove $\#\text{Partition}(\text{BaB}(\mathcal{M}), f, X) \leq \mathcal{A}(f, X)$. Assume a network f has $\nu :=$
 1031 $\mathcal{A}(f, X)$ distinct activation patterns on X . Notice that \mathcal{M} always returns a constraint set that is
 1032 at least as tight as DEEPPOLY, thus a same partition process as BaB(DEEPPOLY) allows BaB(\mathcal{M})
 1033 to compute exact bounds. Recall that BaB(DEEPPOLY) has partition complexity equal to ν on X ,
 1034 therefore BaB(\mathcal{M}) also has partition complexity at most ν on X .

1035 Now we prove $\mathcal{A}(f, X) \leq \#\text{Partition}(\text{BaB}(\mathcal{S}), f, X)$. It suffices to show the inequality for the
 1036 tightest single-neuron relaxation, i.e., the triangle relaxation, denoted by BaB(Δ). Given a general
 1037 subproblem to bound, the only guarantee for Δ to return exact bounds is that there is no unstable
 1038 neuron in the subproblem. Therefore, if BaB(Δ) has partition complexity equal to K on X , then
 1039 there are at most K subproblems with no unstable neuron. Thus, $\mathcal{A}(f, X) \leq K$. \square
 1040

1041 H AN EXAMPLE OF THE BENEFIT OF POLYTOPE PARTITION

1042 For the network encoding $\max(x_1, \dots, x_d)$ in §5.1, first note that it has 2^{d-1} distinct activation
 1043 patterns on $[0, 1]^d$. We show that BaB requires 2^{d-1} branching to return precise bounds. Let $y_i =$
 1044 $\max(x_1, \dots, x_i)$, for $i \in [d-1]$, where $y_1 = x_1$. The i -th unstable neuron can then be rewritten
 1045 as $\rho(y_i - x_{i+1})$, e.g., for node c in Figure 3 which is the first unstable neuron, it can be rewritten
 1046 as $\rho(y_1 - x_2)$. After a branching on it, this node plus x_{i+1} becomes either x_{i+1} when $x_{i+1} \geq y_i$,
 1047 or y_i when $x_{i+1} < y_i$. Therefore, this branching makes two subproblems, which are essentially the
 1048 $(d-1)$ -dimension “max” function. This directly implies that neither of the two subproblems can
 1049 be precisely bounded by any single-neuron relaxation, thus the branching will not stop. Repeating
 1050 this, BaB enumerates all 2^{d-1} branches, confirming the lower bound established in Proposition 5.6.
 1051 In contrast, \mathcal{P}_1 has partition complexity 1 as shown in §5.1, leading to an exponential reduction.

1052 Regarding the runtime, note that the number of constraints introduced by \mathcal{P}_1 grows linearly with d ,
 1053 while the number of branching grows exponentially with d for BaB with DeepPoly. Thus, for this
 1054 example, the runtime of \mathcal{P}_1 grows polynomially with d , while that of BaB with DeepPoly grows
 1055 exponentially with d .
 1056

1057 I RELATIVE BOUNDING ERROR

1058 Theorem 3.3 and Theorem 4.2 state that the absolute bounding error by layerwise and cross-layer
 1059 relaxations can be arbitrarily large. In this section, we look at the relative bounding error, namely
 1060 the ratio between the length of the bounding interval and that of the exact interval. We shall show
 1061 that the relative bounding error can be arbitrarily large as well. First, for \mathcal{P}_1 , we shall prove the
 1062 following statement.

1063 **Theorem I.1.** Let $d \in \mathbb{N}$ and let $X \in \mathbb{R}^d$ be a convex polytope. For all $T > 0$, there exist a ReLU
 1064 network $f : \mathbb{R}^d \rightarrow \mathbb{R}$, such that

$$1065 \frac{u(f, \mathcal{P}_1, X) - \ell(f, \mathcal{P}_1, X)}{\max(f(X)) - \min(f(X))} > T$$

1066 *Proof.* Without loss of generality, we prove the case when $T > 1$; otherwise, we can simply take
 1067 the threshold as $\max(1, T)$ in the proof. Further, let $X = [-1, 1]$; otherwise, we can first project
 1068 X to one of its non-empty dimensions and scale the projected set by a single affine layer, without
 1069 changing the output range of any subsequent network and the bounds computed by \mathcal{P}_1 .
 1070

1071 Let the ReLU network $f_1 = \rho \circ W_1$, where W_1 is the affine transformation $W_1(\mathbf{x}) := \begin{pmatrix} 1 \\ -1 \end{pmatrix} \mathbf{x} +$
 1072 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, for $\mathbf{x} \in \mathbb{R}^2$. The function f_1 maps X into the set $\{\mathbf{x} \in \mathbb{R}^2 : x_1 \in [0, 1], x_2 = -x_1 + 1\} \cup$
 1073 $\{\mathbf{x} \in \mathbb{R}^2 : x_1 = 0, 1 \leq x_2 \leq 2\}$, whose convex hull is $\{x_2 \leq -2x_1 + 2, x_1 \geq 0, x_2 \geq -x_1 + 1\}$.
 1074

1080 Now consider the function $h(\mathbf{x}) = \mathbf{x}_2(\mathbf{x}_2 + \mathbf{x}_1 - 1)$, which is constantly zero on the set $f_1(X)$. We
 1081 have that

$$1082 \min(h(\text{conv}(f_1(X)))) = 0, \quad \delta := \max(h(\text{conv}(f_1(X)))) > 0.$$

1083 Scaling h by $2T/\delta$ gives

$$1085 \min\left(\frac{2T}{\delta}h(\text{conv}(f_1(X)))\right) = 0, \quad \max\left(\frac{2T}{\delta}h(\text{conv}(f_1(X)))\right) = 2T.$$

1087 By the universal approximation (Arora et al., 2018), there exist a ReLU network f_2 satisfying

$$1089 \sup_{\text{conv}(f_1(X))} |f_2 - \frac{2T}{\delta}h| \leq \frac{1}{2}$$

1092 Therefore,

$$1093 \min(f_2 \circ f_1)(X) \geq \min\left(\frac{2T}{\delta}h \circ f_1\right)(X) - \frac{1}{2} = -\frac{1}{2},$$

$$1095 \max(f_2 \circ f_1)(X) \leq \max\left(\frac{2T}{\delta}h \circ f_1\right)(X) + \frac{1}{2} = \frac{1}{2},$$

1097 and

$$1098 \min f_2(\text{conv}(f_1(X))) \leq \min\left(\frac{2T}{\delta}h(\text{conv}(f_1(X)))\right) + \frac{1}{2} = \frac{1}{2},$$

$$1100 \max f_2(\text{conv}(f_1(X))) \geq \max\left(\frac{2T}{\delta}h(\text{conv}(f_1(X)))\right) - \frac{1}{2} = 2T - \frac{1}{2}.$$

1102 Taking $f = f_2 \circ f_1$, by Lemma 3.2 we know that

$$1103 u(f, \mathcal{P}_1, X) - \ell(f, \mathcal{P}_1, X) \geq \max f_2(\text{conv}(f_1(X))) - \min f_2(\text{conv}(f_1(X))) \geq 2T - 1$$

1104 and

$$1106 \max(f_2 \circ f_1)(X) - \min(f_2 \circ f_1)(X) \leq 1.$$

1107 Hence,

$$1108 \frac{u(f, \mathcal{P}_1, X) - \ell(f, \mathcal{P}_1, X)}{\max(f(X)) - \min(f(X))} \geq 2T - 1 > T.$$

1110 \square

1112 We proceed to show that the relative bounding error established above for \mathcal{P}_1 extends to all cross-
 1113 layer relaxations. Just as in §4, we do not consider specific \mathcal{P}_r for some fixed $r \in \mathbb{N}$, but rather
 1114 directly look at the fully general case $\mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}$ where the cross-layer is allowed to depend on
 1115 the network depth L . Formally, we shall show

1116 **Theorem I.2.** Let $d \in \mathbb{N}$ and let $X \in \mathbb{R}^d$ be a convex polytope. For all $T > 0$, there exist a ReLU
 1117 network $f : \mathbb{R}^d \rightarrow \mathbb{R}$ of depth L , such that

$$1119 \frac{u(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) - \ell(f, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X)}{\max(f(X)) - \min(f(X))} > T.$$

1121 *Proof.* Without loss of generality, we prove the case when $T > 1$; otherwise, we can simply take
 1122 the threshold as $\max(1, T)$ in the proof.

1124 We reuse the construction in the proof of Theorem I.1 and augment it by Lemma 4.1. Specifically,
 1125 in the proof of Theorem I.1, we constructed a ReLU network $f = f_2 \circ f_1$ satisfying

$$1126 \max(f(X)) - \min(f(X)) \leq 1.$$

1128 and

$$1129 \max f_2(\text{conv}(f_1(X)))(X) - \min f_2(\text{conv}(f_1(X)))(X) \geq 2T - 1$$

1130 Now by Lemma 4.1, for some $L \in \mathbb{N}$, there exist an L -layer network \hat{f} such that $\hat{f} = f$ everywhere
 1131 on X and

$$1132 u(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \geq \max f_2(\text{conv}(f_1(X))),$$

$$1133 \ell(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \leq \min f_2(\text{conv}(f_1(X))).$$

1134 Therefore,
 1135

$$\begin{aligned} & u(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) - \ell(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) \\ & \geq \max f_2(\text{conv}(f_1(X))) - \min f_2(\text{conv}(f_1(X))) \\ & \geq 2T - 1. \end{aligned}$$

1140 Hence

$$\begin{aligned} & \frac{u(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) - \ell(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X)}{\max(\hat{f}(X)) - \min(\hat{f}(X))} \\ & = \frac{u(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X) - \ell(\hat{f}, \mathcal{P}_{\max(1, \lfloor \alpha L \rfloor)}, X)}{\max(f(X)) - \min(f(X))} \\ & > T. \end{aligned}$$

1148 \square
 1149
 1150

J EXTENSION TO NON-POLYNOMIAL ACTIVATION FUNCTIONS

1153 In this section, we extend the negative results, namely Theorem 3.3 and Theorem 4.2, established for
 1154 ReLU neural networks in §3 and §4 to networks with general non-polynomial activation functions.
 1155 The key insight is that by universal approximation with non-polynomial activation functions, we can
 1156 always construct a network that approximates the construction for ReLU networks with arbitrary
 1157 precision.

1158 We start by introducing necessary notations. Let H and H' be two sets in \mathbb{R}^d . Then, we define the
 1159 Hausdorff distance (induced by the ℓ_2 norm) between H and H' as

$$D(H, H') := \max \left\{ \sup_{\mathbf{x} \in H} \inf_{\mathbf{y} \in H'} \|\mathbf{x} - \mathbf{y}\|_2, \sup_{\mathbf{y} \in H'} \inf_{\mathbf{x} \in H} \|\mathbf{x} - \mathbf{y}\|_2 \right\}.$$

1163 We will use two properties of the Hausdorff distance. First, $D(H, H')$ satisfies the triangle inequality
 1164 (we omit the proof since it is a standard result), i.e., for any three sets H_1, H_2, H_3 in \mathbb{R}^d , we have

$$D(H_1, H_3) \leq D(H_1, H_2) + D(H_2, H_3).$$

1167 Second, $H \rightarrow \text{conv}(H)$ is 1-Lipschitz with respect to the Hausdorff distance, stated as follows.

1168 **Lemma J.1.** For any two sets H_1, H_2 in \mathbb{R}^d , we have

$$D(\text{conv}(H_1), \text{conv}(H_2)) \leq D(H_1, H_2).$$

1172 *Proof.* We prove that $\sup_{\mathbf{x} \in \text{conv}(H_1)} \inf_{\mathbf{y} \in \text{conv}(H_2)} \|\mathbf{x} - \mathbf{y}\|_2 \leq D(H_1, H_2)$; the other side can be
 1173 proven by symmetry.

1174 Fix an arbitrary $\mathbf{x} \in \text{conv}(H_1)$. By definition of convex hull, there exist $k \in \mathbb{N}^+$, $\lambda_i \geq 0$ for
 1175 $i \in [k]$ with $\sum_{i=1}^k \lambda_i = 1$, and $\mathbf{x}_i \in H_1$ for $i \in [k]$ such that $\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i$. By definition of
 1176 Hausdorff distance, for each $i \in [k]$, there exists $\mathbf{y}_i \in H_2$ such that $\|\mathbf{x}_i - \mathbf{y}_i\|_2 \leq D(H_1, H_2)$. Let
 1177 $\mathbf{y} = \sum_{i=1}^k \lambda_i \mathbf{y}_i$. Then, by Jensen's inequality and note that $\|\cdot\|_2$ is convex, we have

$$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|_2 &= \left\| \sum_{i=1}^k \lambda_i (\mathbf{x}_i - \mathbf{y}_i) \right\|_2 \\ &\leq \sum_{i=1}^k \lambda_i \|\mathbf{x}_i - \mathbf{y}_i\|_2 \\ &\leq D(H_1, H_2). \end{aligned}$$

1187 This implies that $\inf_{\mathbf{y} \in \text{conv}(H_2)} \|\mathbf{x} - \mathbf{y}\|_2 \leq D(H_1, H_2)$. Since \mathbf{x} is arbitrary, we finalize the
 1188 proof. \square

Now we are ready to present the extended version of Theorem 3.3 for non-polynomial activation functions. We will show that for any non-polynomial activation σ , there exists a sub-network f_1^σ and an input polytope X such that $\text{conv}(f_1^\sigma(X))$ is a strict superset of $f_1^\sigma(X)$. Further, for the function $f_2(x; c) := (x - c)^2$ where the point $c \in \text{conv}(f_1^\sigma(X)) \setminus f_1^\sigma(X)$, there exists a network f_2^σ approximating f_2 on $\text{conv}(f_1^\sigma(X))$ with arbitrary precision. Combining these two results, we can construct a network $f^\sigma = f_2^\sigma \circ f_1^\sigma$ such that the bounding error by any layerwise relaxation is arbitrarily large.

Proposition J.2. Let $d \in \mathbb{N}$, $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ be a non-polynomial activation function and $X \in \mathbb{R}^d$ be a convex polytope. Then, there exists a network f^σ , such that the $\text{conv}(f^\sigma(X))$ is a strict superset of $f^\sigma(X)$.

Proof. Let f_1 be some function where $\text{conv}(f_1(X)) \setminus f_1(X)$ is non-empty, e.g., the function constructed in the proof of Theorem 3.3. By universal approximation, there exists a network f_1^σ such that

$$\sup_X \|f_1^\sigma - f_1\|_2 \leq \epsilon,$$

for some $\epsilon > 0$ to be specified later. Let $H := f_1(X)$ and $H' := f_1^\sigma(X)$. This means

$$D(H, H') \leq \epsilon.$$

Let $\Delta := D(\text{conv}(H), H)$. Since $\text{conv}(H) \setminus H$ is non-empty, we have $\Delta > 0$. By triangle inequality and Lemma J.1, we have

$$\begin{aligned} D(\text{conv}(H), H) &\leq D(\text{conv}(H), \text{conv}(H')) + D(\text{conv}(H'), H') + D(H', H) \\ &\leq 2D(H, H') + D(\text{conv}(H'), H') \\ &\leq 2\epsilon + D(\text{conv}(H'), H'). \end{aligned}$$

Thus, taking $\epsilon = \Delta/4$, we have

$$\begin{aligned} D(\text{conv}(H'), H') &\geq D(\text{conv}(H), H) - 2\epsilon \\ &= \frac{\Delta}{2} > 0. \end{aligned}$$

This implies that $\text{conv}(H') \setminus H'$ is non-empty, finalizing the proof. \square

Theorem J.3. Let $d \in \mathbb{N}$, $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ be a non-polynomial activation function and $X \in \mathbb{R}^d$ be a convex polytope. For every constant $T > 0$, there exists a network $f^\sigma : \mathbb{R}^d \rightarrow \mathbb{R}$, such that $\ell(f^\sigma, \mathcal{P}_1, X) \leq \min f^\sigma(X) - T$ and $u(f^\sigma, \mathcal{P}_1, X) \geq \max f^\sigma(X) + T$.

Proof. We only prove the lower bound case; the upper bound case can be proven similarly.

By Proposition J.2, there exists a network f_1^σ and an input polytope X , such that $\text{conv}(f_1^\sigma(X))$ is a strict superset of $f_1^\sigma(X)$. Let $\mathbf{c} \in \text{conv}(f_1^\sigma(X)) \setminus f_1^\sigma(X)$ such that $\delta := \min_{\mathbf{h} \in f_1^\sigma(X)} \|\mathbf{h} - \mathbf{c}\|_2 > 0$. Let $f_2(\mathbf{h}) := \|\mathbf{h} - \mathbf{c}\|_2$. Thus, we have

$$\min_{\mathbf{h} \in f_1^\sigma(X)} f_2(\mathbf{h}) = \delta, \quad \min_{\mathbf{h} \in \text{conv}(f_1^\sigma(X))} f_2(\mathbf{h}) = 0.$$

By universal approximation, there exists a network f_2^σ such that

$$\sup_{\text{conv}(f_1^\sigma(X))} |f_2^\sigma - \frac{2T}{\delta} f_2| \leq \epsilon,$$

for some $\epsilon > 0$ to be specified later. Let $f^\sigma := f_2^\sigma \circ f_1^\sigma$. Then, we have

$$\min f^\sigma(X) \geq \min_{\mathbf{h} \in f_1^\sigma(X)} \frac{2T}{\delta} f_2(\mathbf{h}) - \epsilon = 2T - \epsilon,$$

$$\ell(f^\sigma, \mathcal{P}_1, X) \leq \min_{\mathbf{h} \in \text{conv}(f_1^\sigma(X))} \frac{2T}{\delta} f_2(\mathbf{h}) + \epsilon = \epsilon.$$

Thus, we have

$$\ell(f^\sigma, \mathcal{P}_1, X) - \min f^\sigma(X) \leq -2T + 2\epsilon.$$

Let $\epsilon = T/2$, we finalize the proof. \square

We proceed to extend the result to cross-layer relaxations. The proof is similar to that of Theorem 4.2, where we construct dummy layers to increase the network depth without changing the network output on X . The only difference is that now an identity layer might not be constructed exactly, but needs to be approximated.

Theorem J.4. Let $d \in \mathbb{N}$ and let $X \in \mathbb{R}^d$ be a convex polytope. For every $\alpha \in (0, 1)$ and every constant $T > 0$, there exists a network $f \in \mathcal{N}^\sigma$ of depth L , $f : \mathbb{R}^d \rightarrow \mathbb{R}$, such that $\ell(f, \mathcal{P}_{\max(1, \alpha L)}, X) \leq \min f(X) - T$ and $u(f, \mathcal{P}_{\max(1, \alpha L)}, X) \geq \max f(X) + T$.

Proof. The proof directly follows that of Theorem 4.2, as long as we can construct identity layers with arbitrary precision. By universal approximation, for any $\epsilon > 0$, there exists a network f_{id}^σ such that

$$\sup_{x \in \pi_i(X) + [-\delta, \delta]} \|f_{\text{id}}^\sigma(x) - x\| \leq \epsilon,$$

for $i \in [d]$ where $\pi_i(X)$ is the projection of X onto its i -th dimension. By concatenating d such networks in width, we constructed a network $\hat{f}_{\text{id}}^\sigma$ such that

$$\sup_{\mathbf{x} \in X + [-\delta, \delta]^d} \|\hat{f}_{\text{id}}^\sigma(\mathbf{x}) - \mathbf{x}\|_\infty \leq \epsilon,$$

and the every output neuron only depends on independent input neurons. Let $\epsilon_k := \frac{\epsilon}{2k^2}$ and $\delta_k := \epsilon$ for the k -th pseudo identity layer. Thus, by triangle inequality, the error introduced by m such layers is bounded by $\sum_{k=1}^m \epsilon_k \leq \sum_{k=1}^m \frac{\epsilon}{2k^2} < \epsilon$ for any $m \in \mathbb{N}^+$. Therefore, by following the same construction in the proof of Theorem 4.2 and taking into account the ϵ approximation error introduced by the pseudo identity layers, we can finalize the proof similar to Theorem J.3.

□

K LLM USAGE

LLMs (GPT-5) were used to polish the writing of the paper, and were not used for any other purpose.