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Dramatic increases in the capabilities of neural network models in recent years are driven by scaling
model size, training data, and corresponding computational resources. To develop the exceedingly
large networks required in modern applications, such as large language models (LLMs), model
training is distributed across tens of thousands of hardware accelerators (e.g. GPUs), requiring
orchestration of computation and communication across large computing clusters. In this work,
we demonstrate that careful consideration of hardware configuration and parallelization strategy is
critical for effective (i.e. compute- and cost-efficient) scaling of model size, training data, and total
computation. We conduct an extensive empirical study of the performance of large-scale LLM train-
ing workloads across model size, hardware configurations, and distributed parallelization strategies.
We demonstrate that: (1) beyond certain scales, overhead incurred from certain distributed com-
munication strategies leads parallelization strategies previously thought to be sub-optimal in fact
become preferable; and (2) scaling the total number of accelerators for large model training quickly
yields diminishing returns even when hardware and parallelization strategies are properly optimized,
implying poor marginal performance per additional unit of power or GPU-hour.

1 INTRODUCTION

Empirical compute-optimal scaling laws show that the performance of large neural networks in-
creases jointly with: the model size, volume of training data, and the amount of allocated training
compute (i.e. FLOPs) (Hoffmann et al., 2022a;b; Kaplan et al., 2020; Tay et al., 2023; Porian et al.,
2024). These scaling trends have naturally incentivized rapid increases in model size over the past
decade in pursuit of state-of-the-art performance across a variety of applications in natural language
processing and computer vision (Chowdhery et al., 2023; Zhang et al., 2022; Dehghani et al., 2023).
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Figure 1: As scale of distributed train-
ing increases, the power efficiency decreases
while the amount of exposed communica-
tion increases.

The increased size of state-of-the-art neural networks,
containing hundreds of billions of parameters, yields
larger computational workloads and memory require-
ments during training. In this regime, the memory re-
quirements from increasing numbers of model parame-
ters and large-batch sizes are often sufficiently large such
that a single model cannot fit inside the memory of a
single GPU accelerator. To leverage the increased pro-
cessing power and memory of additional devices, the
largest workloads necessitate distribution across hundreds
to thousands of hardware accelerators (i.e. GPUs, TPUs).
Training in these settings requires complex parallelization
strategies for distributing data, model parameters, activa-
tions, gradients and optimizer states across accelerators –
discussed in more detail in §2 (Rasley et al., 2020; Shoeybi et al., 2019; Zhao et al., 2023; Li et al.,
2020; Ryabinin et al., 2023).

As the number of devices required for large-scale neural network training has increased, the un-
derlying cost dynamics of communication and computation have changed. Previously, the high
arithmetic intensity of deep learning models meant that most workloads were compute-bound – i.e.
runtime was dominated by component convolutions or matrix multiplications (Jouppi et al., 2017;
Micikevicius et al., 2017). However, in large-scale distributed training parallelization of compute
and synchronization across massive pools of accelerators increases the communication volume be-
tween accelerators and nodes required to synchronize parameters, gradients, and optimizer states.
Limitations on the efficiency of network fabrics and some collective communication algorithms in-
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cur a high marginal cost to scale and bound the degree of model sharding, where components of
a single model are distributed across devices. In contrast to traditional high-performance comput-
ing workloads executed on CPU-based architectures, where lower arithmetic intensity and relatively
slow-speed of computation overlapping communication and computation more possible (Lee et al.,
2010; Hill & Marty, 2008; Asanovic et al., 2006; Amdahl, 1967), deep learning training becomes un-
avoidably communication-bound at scale. In this work, we show how this limits the extent to which
model size and parallelization across additional accelerators can be increased while still producing
improvements in overall throughput – due to the additional communication.

In experiments analyzing this trend across hardware platforms, we further show that improvements
in accelerator computation performance have outpaced improvements in memory bandwidth and
network performance, suggesting that communication-boundedness worsens as a function of recent
improvements in hardware efficiency. Together, these factors demonstrate that large scale deep
learning computation suffers from significantly diminishing returns when horizontally scaled across
larger number of devices in massively distributed settings.

While there are stable distributed training recipes that perform well at large scale, their scaling
properties are not yet well characterized. In this work, we contribute the following:

• A large-scale empirical study of distributed training across hardware setups, model sizes, and
parallelism strategies, characterizing the scaling properties of sharded training

• Demonstration of diminishing returns for scaling the number of accelerators for training as
measured by words-per-second throughput, due to increasing communication overhead

• Analysis of real-world cost metrics which shows that the total GPU power draw and available
FLOPS scale linearly with the number of devices, despite diminishing returns in throughput;
resulting in reduced power efficiency (e.g. tokens per watt) and lower hardware utilization (See
Figure 1)

• Evidence that model parallelism yields improved global throughput despite prior work
(Hagemann et al., 2023; Narayanan et al., 2019) and conventional knowledge suggesting that
model parallelism lowers hardware utilization

• A study across hardware generations demonstrating that future improvements in computa-
tional throughput will only marginally improve overall performance absent network fabric ad-
vancements and increased accelerator memory capacity.

2 PRELIMINARIES

2.1 ACCELERATORS AT SCALE

Large neural networks are trained in computing clusters consisting of thousands of interconnected
GPUs characterized by compute power, on-board memory, and interconnects. Several technologies
are used to interconnect GPUs (Recio et al., 2007; Shainer et al., 2011) — each have tradeoffs
between network size, bandwidth, latency, and cost. This results in a hierarchical partitioning of the
network, with communication within groups achieving higher bandwidths or lower latencies than
communication across groups. In Figure 2, we provide an illustration of a sample architecture for a
GPU-node based datacenter cluster.

For example, NVIDIA GPUs that are grouped together within a node (typically with 8 accelerators1)
might be connected via technologies such as NVLink or NVSwitch (Nvidia, 2024), which can pro-
vide an order of magnitude higher bandwidth than the network fabric used to communicate across
nodes. Within the network itself, the topology of the switches can further favor the communication
within certain groups of nodes, such as within racks or “rails.”

These accelerator characteristics – compute, memory and network – have evolved at different rates
over time based on technical barriers and demand for usage. In turn, neural architectures and soft-
ware systems have been designed to adapt to the limits of the hardware. With the increase in cluster
size driven by larger models and data, communication has often been such a bottleneck, and many
new training algorithms have thus emerged (Shazeer et al., 2017; Fedus et al., 2022).

1NVIDIA’s DGX-1 P100 set early precedent.
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Figure 2: An abbreviated representation of the hierarchy of connections between components of a datacenter
GPU system with multiple 8-GPU nodes connected via a fabric. Connections between components include:
(1) GPU VRAM: memory (VRAM) buses to compute units, (2) CPU-GPU: PCIe or SXM buses from CPU
to GPU, (3) GPU-GPU: GPU-to-GPU connections within a node, and (4) Node-Node: connections between
nodes. Also represented is the relative performance of each of these connections.

2.2 ALGORITHMS FOR DISTRIBUTED TRAINING

Most distributed training schemes optimize for transparency to practitioners, thus preserving the ab-
straction of single-device training, where one instance of a model processes a minibatch of data such
that every input sample interacts with every parameter of the model. A key decision in distributed
training is how to map model and data components onto GPU hardware: via replication or sharding.
Communication between GPUs is required to aggregate values that must interact with each other or
to preserve synchronization between replicas of the same underlying values.

Below, we provide a brief taxonomy of distributed training algorithms. These algorithms are not
mutually exclusive – distribution across multiple “dimensions” can be combined.

Data parallelism (Dean et al., 2012) consists of replicating model parameters (and optimizer states)
across GPUs, but shards input minibatches across devices. After performing local forward and back-
ward passes on their allocated minibatches, GPUs exchange and accumulate their partial gradients,
thus obtaining an identical global gradient and ensuring an identical model update. This communi-
cation pattern is named after the MPI (Walker & Dongarra, 1996) collective AllReduce.

When models grow too large to fit on a single device, methods such as Fully-Sharded Data Paral-
lelism (FSDP) (Xu et al., 2020) and DeepSpeed-Zero (Rasley et al., 2020) shard optimizer states,
gradients, and model parameters across data parallel groups. However, since every input sample
must interact with every parameter, they are required to temporarily re-materialize each parame-
ter on-the-fly on all devices during the forward and backward passes. In contrast to communica-
tion of gradients, which can be performed concurrently with the backward pass before a model
update, “gathering” operations, which are required to gather parameters for the forward pass, de-
lay execution of computation. An inverse operation must be performed to partial gradients during
the backward pass to update parameters. These two MPI primitives are known AllGather and
ReduceScatter.

Model parallelism shards model parameters across GPUs; each shard operates on the same mini-
batch simultaneously. In this setting, activations and their respective gradients are sent across GPUs.

• Tensor Parallelism (Shoeybi et al., 2019; Shazeer et al., 2018) Some layers (e.g. linear) within
models can be sharded along their hidden dimensions, leveraging linear algebra properties to
slice weight matrices in a way that maximizes data locality and allows for mostly independent
computation before a final AllReduce step to re-synchronize activations. As the full set of ac-
tivations are required for computation with the subsequent layer, Tensor Parallelism introduces
blocking communication for synchronization of interemediate activations across model parallel
groups. Sequence parallelism, for instance, is an analog of FSDP’s changes to data parallelism:
instead of replicating activations, they remain sharded and only get gathered and scattered as
needed Li et al. (2023).

• Pipeline Parallelism (Huang et al., 2018; Harlap et al., 2018) Models can also be sharded
along their layerwise depth, with layers being partitioned into “stages” and stored on different
devices; activations are then forwarded from one device to the next while they traverse a model.
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(a) Bandwidth of AllReduce, which uses a tree al-
gorithm and scales well with number of nodes (i.e.
higher bandwidth).

(b) Bandwidth of AllGather, which uses ring al-
gorithms; scales poorly with the number of nodes (i.e.
lower bandwidth).

Figure 3: Bandwidth measurements in GB per second of NCCL primitives on DGX H100 servers with eight
GPUs per node, connected with InfiniBand, across world sizes from 4 to 512 nodes.

For all devices to be active at once, an input minibatch is split into microbatches which are then
staggered and pipelined according to a schedule. A “bubble” (Hennessy & Patterson, 2017), in
which devices remain idle, reduces the efficiency of pipelining.

Communication-Computation Overlap and Communication Exposure Moving data over net-
works between accelerators utilizes distinct GPU resources unrelated to computation (e.g., dedicated
copy engines, NVLink/NVSwitch) and can execute in parallel with computation. Overlapping com-
munication and computation maximizes distributed training efficiency – it facilitates hiding com-
munication latency, leading to near-perfect scaling. We define communication as exposed when it is
not hidden by simultaneous computation, leaving a GPU’s compute resources under-utilized.

2.3 COMMUNICATION PRIMITIVES AND LIBRARIES

Modern deep learning frameworks (Paszke et al., 2019; Abadi et al., 2015; Bradbury et al., 2018)
leverage specialized collective communications libraries, such as NCCL2 , RCCL3 or XLA4.
These libraries may contain multiple algorithms for each collective communication primitive.
AllReduce being a reduction, has both a “ring” and a “tree” algorithm, the former being
bandwidth-balanced but suffering from latency increasing linearly with the number of devices, and
the latter being suboptimal in bandwidth utilization but logarithmic in latency. AllGather and
ReduceScatter, which are both used in parameter rematerialization for FSDP and DeepSpeed-
Zero, can only use ring algorithms as all buffers must be delivered to all devices – and quickly
become latency-bound as the number of devices increases, as shown in Figure 3.

3 EXPERIMENTAL METHODOLOGY

In the following sections, we investigate the effects of scaling training workloads on computation and
communication volume; and the impact of scale on end-to-end system performance. In particular,
we conduct experiments across: distributed parallelization strategies, numbers of accelerators (i.e.
GPU device world size), hardware generation, model sizes, and input shapes (i.e. context length).
Additional details on hardware and framework configurations are provided in Appendix C.

Model Architectures We conduct our investigation focusing on the Llama-2 architecture of
decoder-only transformers (Dubey et al., 2024; Touvron et al., 2023), as a representative architec-
ture for state-of-the-art neural large language models. We utilize the AdamW optimizer (Loshchilov
& Hutter, 2019; Kingma & Ba, 2015) and train on examples with a context length of 4096 and
tokenized with a vocabulary of 32K; with data sampled from Wikipedia and StackExchange.

2https://github.com/NVIDIA/nccl
3https://github.com/ROCm/rccl
4https://github.com/openxla/xla
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We primarily investigate training models at the 7B parameter scale, and conduct additional experi-
ments on the effects of architecture scaling at 1B, 7B, 13B, and 70B parameters.

Hardware Configuration We evaluate distributed training on datacenter clusters containing 8-
GPU NVIDIA DGX nodes from the Ampere (80GB A100) and Hopper (80GB H100) architectures.
Intra-node GPU communication is occcurs via fully connected second and third generation NVLink
with NVSwitch, respectively. Inter-node communication occurs over an Infiniband fabric with 200
GB/s and 400 GB/s per-node bandwidth, respectively. We conduct our primary experiments on
hardware scales between 1 and 32 eight-GPU nodes, with additional experiments up to 256 nodes,
or 2,048 GPUs – to simulate scales for modern pretraining.

Parallelization Strategies We explore the space of parallelization strategies used to distribute
the training workload across GPU nodes. We examine data, tensor, and pipeline parallelization
strategies (colloquially known as 3D parallelism as described by Shoeybi et al. (2019); Rasley et al.
(2020) and used in Dubey et al. (2024); BigScience Workshop (2022)). To address the necessary
memory overhead of training large models, models are trained with Fully-Sharded Data Parallelism
without additional parameter resharding during the forward pass (i.e. FSDP, Zhao et al. (2023)) as
is used in Llama-3.1 training.

We examine a range of group sizes for tensor and pipeline parallel strategies for model parallelism
as described in Section 2, ranging from group sizes of 1 (i.e. single GPU training with no paral-
lelization) up to group sizes of 16 (i.e. requiring parallelism groups across multiple nodes).

Performance Metrics To understand both the effects of hardware and model scaling on end-to-
end global and local per-device performance hardware utilization, we examine the following variety
of performance and efficiency indicators:

• Throughput is the rate at which examples are processed. We compute the estimated per-device
words per second (WPS) and the global words per second across all devices.

• Computational and communication load can be measured as the total execution time for CUDA
and NCCL kernels, respectively. We calculate the total computation and communication load
by aggregating and flattening CUDA and NCCL kernels from PyTorch execution traces.

• Communication efficiency can be measured as the extent to which communication kernels are
exposed or overlapped with concurrent computation.

• Hardware utilization can be measured as the number of floating point operations per second
(FLOPS); alternatively, as Model FLOPS Utilization (MFU, Chowdhery et al. (2023)) which is
the observed FLOPS as a percentage of the hardware’s theoretical maximum.

• Power utilization can be measured as the per-GPU power draw, and estimated as the power
utilization across all devices. We measure the average power draw with NVML5.

We compute these metrics over 60 training iterations; discarding the first 10 iterations to allow for
GPU memory allocations and stabilization of performance during the initial training iterations, and
aggregate metrics for the last 50 iterations.

4 EFFECTS OF SCALING: PARALLELIZATION, HARDWARE, & MODEL SIZE

In this section, we examine the effects of scaling neural network architecture sizes, their underlying
hardware platform (i.e. number of GPU devices), and the parallelization strategies used to distribute
model training onto said hardware platforms.

4.1 SCALING DATA PARALLELISM

In Figure 4, we examine the effects of scaling data parallel training across increasing numbers of
accelerators from 8 GPUs up to 2048 GPUs. In this setting, each device carries a data parallel replica
and trains Llama-7B model with a constant local batch size of 2. As expected, increasing the number
of devices yields increases in overall global throughput as the global batch size increases.

5https://developer.nvidia.com/management-library-nvml
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Figure 4: In FSDP training of Llama-7B, scaling the number of nodes and data parallel replicasreduces hard-
ware utilization and power efficiency; due to increasing exposed communication derived from increases in the
size of communication kernels relative to fixed size computation kernels. Global throughput observes sub-
linear scaling despite approximately linear increases in the total power utilization with number of nodes. “Ideal
Hardware Scaling” corresponds to expected throughput should introduction of additional accelerators produce
linear increases in throughput.

At small scales, when training using a limited number of devices, the cost of collective communi-
cation kernels is low relative to the cost of computation – and non-blocking communication from
FSDP can be hidden by executing data transfer and computation operations concurrently.

However, as discussed in Section 2 and in Figure 3, increasing degree of data parallelism also
incurs the cost of larger collective communication operations needed to materialize parameters
via AllGather during the forward pass and to update gradients during the backward pass via
ReduceScatter. As observed in Figure 4, we observe that the execution time for NCCL commu-
nication kernels and volume of exposed communication scales with the number of compute nodes;
matching the expected behavior observed for the communication collectives seen in Figure 3b.

While the communication volume scales with node count, the per-device CUDA computation ker-
nels execution time remains constant and is dominated by communication. As a result, the exposed
communication is unavoidable at scale and the hardware utilization decreases as there is insufficient
computation to saturate the GPUs while waiting for the execution of larger communication kernels –
this results in reductions the marginal speedup of global throughput and decreased local throughput
as the number of devices increases.

These observations are contrary to conventional wisdom which often assumes AllGather and
ReduceScatter operations are non-blocking operations that can be overlaid with computation;
and data parallelism can be introduced with limited additional costs. Instead, we observe that a
majority of communication becomes exposed at large-scales resulting in long periods of GPUs re-
maining idle.

While the per-device throughput scales sublinearly with the number of devices, the total power
utilization scales approximately linearly resulting in substantially worse real-world efficiency in
GPU-hours and energy impact (i.e. fewer tokens processed per watt). When scaling from 128 to
2048 GPUs, the observed TFLOPS and words-per-second throughput decrease by 37.22% due to
reduced hardware utilization from exposed communication. Despite operating at lower arithmetic
intensity, the per-GPU power draw is roughly constant regardless of the arithmetic intensity – only
decreasing by 5.87% from 658W to 620W. As a result, the overall power efficiency of the system
likewise decreases with hardware scale as seen in Figure 4.
4.2 SCALING MODEL PARALLELISM

Model parallelism is commonly used as a technique to reduce the memory pressure of very large
models which cannot fit in a single GPU device by sharding individual layers across multiple devices
Dubey et al. (2024); Zhang et al. (2022); Team et al. (2023).

Furthermore, model parallelism provides the additional benefit of reducing the sizes of the data
parallel groups; as separate data parallel replicas are maintained for each model parallel group (i.e.
data parallel collectives are executed over world sizes of Number of Devices

Total Degree of Model Parallelism , rather than over
the Total Number of Devices) – where Total Degree of Model Parallelism is the product of Tensor
and Pipeline parallelism group sizes.

As such, we observe in Figure 5 that small degrees of total model parallelism (i.e. model or
pipeline parallel degrees of 2 or 4) yields reductions in the amount of exposed communication, as the
AllGather and ReduceScatter operations are applied over a smaller data parallel groups and
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Figure 5: In model parallel training of Llama-7B with a fixed global batch size (512) and fixed number
of accelerators (256 GPUs), there exist model parallel strategies that increase training throughput, hardware
utilization, and power efficiency by reducing the total exposed communication; which is strongly negatively
correlated with throughput.
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(b) Model Parallelism on H100

Figure 6: Model Parallelism Improves Throughput. Increasing degree of either tensor and pipeline model par-
allelism yields improved throughput and less exposed communications compared to the data parallel baseline
(i.e. Tensor and Pipeline Parallel Size of 1).
the AllReduce operations introduced by Tensor Parallelism exhibit better scaling properties. This
is contrary to previous work which often suggests that model parallelism approaches yield lower
hardware utilization relative to data parallel baselines (Hagemann et al., 2023; Narayanan et al.,
2019) due to the increased total number of communication operations and introduces blocking com-
munication operations to synchronize partial sums of activations required for model parallelization.

We find that there exist effective non-trivial model parallel strategies that: reduce exposed commu-
nication, increase hardware utilization and power efficiency. In Figure 6, we find that both tensor
and pipeline parallelism exhibit this behavior, in which model parallelism reduces the exposed com-
munication volume and increases word-per-second throughput performance improves relative to the
data parallel baseline when utilizing model parallelisms to reduce communication overhead. In Ap-
pendix D, we find that as hardware utilization decreases due to low arithmetic intensity or large
collective communications, the amount of viable model parallelism strategies increases.

Notably, there is a limit to the extent to which model parallelism reduces exposed communication
and improves throughput – as the AllReduce kernels required for Tensor Parallelism and bubbles
introduced by pipeline parallelism grow with the degree of model parallelism. These communication
costs become especially large when the parallelism occurs over multiple nodes as it much rely on
slower internode fabric (e.g. InfiniBand, see Figure 2) for communication – as noted in Figure 6,
where there is substantial increases in exposed communication for tensor and pipeline parallelism
strategies which are sharded at larger than 8 devices (i.e. across multiple nodes).

4.3 SCALING THE HARDWARE WORLD SIZE

In Section 4.1, we examined the effects of scaling a constant per-device workload across multiple
hardware world sizes by increasing the number of devices while maintaining a fixed local batch size,
which results in an increased global batch size as the number of devices scale.

7
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By contrast, we examine the effects of using model parallelism to train workloads with a fixed
global batch size while varying the hardware world size, which results in decreasing effective local
per-device batch sizes as the number of devices increases. This is representative of industry settings
where excess compute resources are allocated for a single training run; and there is a desire to
minimize the time to complete a training run as opposed to maximizing the hardware utilization.
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Figure 7: Training with Fixed Global Batch Size Over Increasing Number of Nodes. We select the optimal
parallelization strategy as determined by the experimental results displayed in Figure 5 for configurations of 2,
4, 8, 16, and 32 H100 nodes to train with global batch size of 32. Even with optimal parallelization strategies,
local throughput and hardware utilization declines with world size.

In Figure 7, we show that when training with a fixed global batch of 32 across 2 to 32 nodes –
allocation of additional devices yields diminishing returns in global throughput and reduced local
hardware utilization. To distribute a fixed workload across more devices, it is necessary to introduce
excess degrees of model parallelism which results in insufficient amounts of computation being
allocated to each accelerator which we observe as reduced execution time for CUDA kernels. At
sufficiently large scales, excess parallelism causes previously compute-bound workloads to become
communication bound and reductions in hardware utilization, which we observe over in decreases
in MFU of 40% when training with 2 nodes to less than 15% with 32 nodes.

Additionally, we find that these trends persist at pretraining scale with limited marginal returns for
increasing the number of hardware accelerators when training both LLAMA-7B and 70B models in
Appendix E. We observe that increasing the number of devices from 512 to 2048 GPUs improves
global throughput and decreases the per-device MFU local hardware utilization by more than 30%.

4.4 SCALING THE HARDWARE GENERATION

In Figure 6, we examine the effects of scaling the hardware speed with comparisons between A100
and H100 clusters. In both cases, there exist model parallelism configurations which both increase
the overall throughput and reduce the amount of exposed communication relative to data parallel
baselines (i.e. total model parallelism equal to one).
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Figure 8: Communication and Computa-
tion Both Scale with Model Size. As com-
putation load increases with model size, so
does the total and exposed communication.
At all model scales, model parallelism can
be used to reduce exposed communication.

When comparing the distributed training performance of
the previous generation A100 to the faster H100 hardware
when using the optimal parallelization strategy for each
platform, the MFU hardware utilization decreases from
59.67% to 40.77% The reduction in hardware utiliza-
tion can be attributed to increases in percent of exposed
communication (+12.83%) that emerge due to asymmet-
ric improvements in communication and computation
speeds. While improvements are made to both the com-
munication bandwidth and computation speed between
the A100 and H100 architectures, the extent to which
training is communication bound increases further with
hardware generation as improvements to computation
speed results in shorter computational kernels which in-
creases the difficulty in overlapping hardware which out-
paces the rate at which data transfer improves (See Table
1). In Appendix F, we conduct additional experiments on a V100 cluster in which we similarly find
that highest throughput is achieved with model parallelism.
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4.5 SCALING THE MODEL ARCHITECTURE

We examine the effects of scaling the size of the neural network architectures across 1B, 7B, 13B,
and 70B parameters. One might assume that increases in model parameterization solely increases the
size of computation while leaving communication unaffected. However, as the number of parameters
in a model scale, the volume of communication required for parameter materialization and gradient
scattering increases jointly with the size of the computational operations (i.e. matrix operations
with larger hidden dimensions). In Figure 8, we consider the optimal model parallelism strategy for
each model architecture by sweeping viable tensor and pipeline parallel configurations and observe
that the volume of exposed communication likewise increases with model size, resulting in lower
hardware utilization as models scale.

Additionally, we find that across architecture scales there exist model parallelism strategies beyond
the data parallel baseline or the minimal degree of model parallelism (for the 70B parameter model
that does not fit on a single GPU) that reduce the volume of exposed communication for all model
sizes; and yield higher hardware utilization and throughput.

4.6 SCALING THE COMPUTE WORKLOAD
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Figure 9: Increased sequence lengths yields larger compute kernels which better overlap with NCCL commu-
nication kernels, resulting in lower exposed communication, higher hardware utilization and power efficiency.

Finally, we examine the effects of varying the context length in Figure 9. When there is available
local GPU memory, increasing the sequence length increases the computational workload allocated
to each device without increasing the communication load, yielding improved the throughput, har-
wdare utilization and power efficiency. However, for a fixed world size, reparameterization of the
training process in this manner is often not feasible as alterations to the per-batch sequence length
affect the training dynamics predicted by computation-architecture scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022a).

5 TRENDS IN SCALING AND IMPLICATIONS

Computation

Scales with model size

Limit defined by 
GPU memory

Communication

Scales with world size

Soft practical limit 
defined by network fabric

Computation hides communication

Computation

Communication
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Execution Timeline for Tensor, Layer, or Batch (Forward or Backward)

Figure 10: Two distinct training setups and their corresponding concurrent computation and communication
streams, executing in parallel. In (A), model size is large relative to world size; computation per-device hides
communication cost and scaling the number of devices incurs no cost. In (B), model size is small relative to
world size. Communication is not hidden by computation and is exposed; scaling of world size incurs overhead
and gives poor marginal gains in training throughput.
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Not all FLOPs are equal. Existing compute-optimal scaling laws (Hoffmann et al., 2022a; Tay
et al., 2023; Dehghani et al.) and workload performance measures are based predominantly on
FLOPs or metrics derived therefrom. These fail to take into consideration underlying massively
parallelized distributed hardware which requires communication to execute these workload. Local
arithmetic throughput per-accelerator does not translate into end-to-end performance due to bound-
ing factors in other hardware components such as network fabric. Integrating holistic information
about hardware into scaling practice is essential given that collective communication dominates ex-
ecution time at scale; scaling laws should be both compute and communication optimal.

Communication-Computation Dynamics Change at Scale. In distributed training over large-
world sizes, the scaling properties of collective communication primitives leads to increased ex-
posed communication and communication-boundedness – which motivates the use of alternative
parallelization strategies beyond traditional data parallelism (see Figures 3, 5, 6). This motivates the
need for development of parallelization strategies sensitive to the marginal communication costs of
increasing world size.

Additional scale only marginally improves throughput. Capability and capacity tradeoffs at
scale for a fixed global batch size lead to declining marginal improvements — Figures 4 and 7 show
emergent upper bounds in the effectiveness of scale as related to model size. If the pace of increases
in model size slows — additional scale will do little to improve throughput given fixed recipes,
further removing the incentive to scale up without algorithmic modifications.

Training one large model is less power-per-token efficient than training many smaller ones.
Given aforementioned ceilings in scale, algorithmic paradigms which train ensembles of multiple
smaller models will continue to proliferate, with hardware scaling serving growing the number of
models in the ensemble. Communication and computation must jointly improve to alleviate bottle-
necks for large model training. The current imbalance in rates of improvement of communication
and computation constrains new hardware’s utility. Figure 1 demonstrates that while power utiliza-
tion increases linearly, hardware utilization and global throughput both increase sublinearly.

Improvements in networking within nodes improves scale-out performance. Inter-node band-
width is lower as a result of constraints around network fabrics. While improving fabrics may
improve performance, increasing node size – that is, building nodes with more accelerators with
fast, local interconnects – also increases the total amount of memory and thus the upper bound for
degrees of model parallelism. NVIDIA’s GB-2006 features the first increase in NVLink-connected
node-size since the DGX-1 P100 in 2017, from 8 to 72 accelerators, with a total of 1 TB of in-
terconnected GPU memory per node. Speedups in inter-node bandwidth and larger collections of
high-speed GPU memory will alleviate communication boundedness at large scales.

Performance benchmarking fails to extrapolate across scales and hardware generations. As
a result of how collective communication primitives for modern parallelism strategies scale, conven-
tional metrics for measuring performance in distributed settings, such as total FLOPS or throughput
on smaller scale systems, cannot be extrapolated from small to large-scale without properly account-
ing for communication dynamics.

6 CONCLUSION

In this work, we examine the effects of scaling: parallelization strategies, model architectures, and
hardware platforms. We show that communication boundedness worsens at scale and with newer
hardware generations, and are persistent across model sizes. Additionally, we show that these trends
lead to the emergence of viable parallelism alternatives for distributing deep learning training work-
loads. Finally, we show that these trends culminate in significant diminishing returns on training
performance with respect to real-world resources of power and throughput.

6NVIDIA GB-200 Datasheet
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A RELATED WORK

Performance Analysis of Deep Learning Systems. Deep learning poses a unique workload dif-
ferent from traditional high-performance computing settings – with complexity arising from: mem-
ory availability and hierarchy; and variable speeds of computation and communication. Prior re-
search has explored the performance properties of individual accelerators (Wang et al., 2020),com-
mon workloads (Hsia et al., 2023; Ardalani et al., 2024), and efficient methods for maximizing
hardware utilization of these workloads (Hagemann et al., 2023).

Concurrently, several benchmarks have been developed to provide canonical workloads and incen-
tivize efficiency improvements (Mattson et al., 2020; Reddi et al., 2020; Peng et al., 2023). These
evaluation suites often only measure the overall end-to-end system performance of standard training
and inference recipes (i.e. throughput or wallclock training time) Williams et al. (2009); abstracting
away the underlying system. In our work, we seek to examine the joint scaling effects on these
downstream performance and system-level utilization metrics as we vary these components (i.e.
hardware, model architecture, and parallelization) together.

Scaling Properties of Deep Learning. Previous work investigating the scaling properties of neu-
ral network training has largely studied the effects of varying the data volume, training compute
budget, and model architecture (Hoffmann et al., 2022a; Kaplan et al., 2020; Tay et al., 2023; Po-
rian et al., 2024). These works primarily examine the impact of these factors on the pretraining
loss and downstream finetuning performance of the model with respect to the theoretical amount of
computational resources allocated (i.e. number of FLOPs).

However, these analyses assume that workload performance scales directly with the amount of com-
putation regardless of the underlying hardware platform and frameworks. In practice, theoretical
measures (i.e. FLOPs) are known to be imprecise representations of end-to-end real-world per-
formance (e.g. latency, throughput) due to performance bounds that emerge from management of
the computational graph, data transfer, and communication bottlenecks (Dehghani et al.; Fernandez
et al.) – or as we show due to communication boundedness.

Additionally, as the scale of deep learning systems has grown, their efficiency has emerged as a
serious concern with commensurate scaling in the environmental, financial, and computational re-
sources required to execute such workloads (Wu et al., 2022; Schwartz et al., 2020; Patterson et al.,
2022; Luccioni et al., 2024a;b; Strubell et al., 2019; Wu et al., 2024).

B LIMITATIONS AND FUTURE WORK

In this work, we consider a set of common data and model parallelization techniques for distributing
training of neural networks. However, there are additional methods for workload parallelization and
memory footprint reduction such as DeepSpeed Zero (Rasley et al., 2020), parallelization of loss
computation, and other forms of optimized kernel implementations.
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In our investigation across computing platforms, we primarily consider variations in the speed of
compute (i.e. GPU generation). In future work, we plan to demonstrate the consistency of the
observed trends across settings with variable speeds of communication (i.e. varying speed of intern-
ode fabric by comparing InfiniBand interconnects with common alternatives such as RDMA over
Converged Ethernet, RoCE).

Additionally, our work is focuses on the training of neural networks based on the Transformer neural
network architecture and GPU hardware accelerators. Although we expect our findings to be consis-
tent across other model architectures and hardware platforms, we reserve that examination as areas
for future work. Likewise, we focus our investigations on GPUs as it is the most commonly used
and easily available hardware accelerator. We expect that similar trends and tradeoffs between com-
munication and computation would occur for alternative hardware accelerator architectures such as
TPUs, IPUs, etc.; however we leave exploration of these settings for future study.

C SOFTWARE AND HARDWARE DETAILS

Training is conducted in bfloat16 precision with a Megatron-inspired framework and further
optimizations provided by FlashAttention-2 (Dao) and xFormers (Lefaudeux et al., 2022). For our
primary experiments, we trained models using PyTorch 2.3.1 built with CUDA 12.1, with attention
implementation provided by XFormers 0.27.

In supplementary experiments with V100 GPUs in Appendix F, models are trained in fp16 with
loss rescaling and CUTLASS (Thakkar et al., 2023) attention kernels on Volta hardware – due to
limited hardware support on older Volta hardware. Nodes within the V100 cluster consist of 8-GPU
setups connected with first-generation NVLink in a Hybrid Cube Mesh (HCM) topology.

We compute the runtime of communication and computation kernels by using PerfettoSQL to query
Kineto profiles extracted by the PyTorch profiler, which is built on top of NVidia CUPTI to identify
relevant NCCL and CUDA kernels, respectively. containing both the CPU and CUDA operations. In
Table 1, we provide additional details on the hardware platforms used for running our experiments.

V100 7 A100 8 H100 9

Tensor Core BF16 FLOPS 125 TFLOPS 312 TFLOPS 990 TFLOPS
GPU HBM 900 GB/s 2 TB/s 3.35 TB/s
NVLink (GPU to GPU Comm) 300 GB/s 600 GB/s 900 GB/s
Internode InfiniBand (Node to Node) 100 GB/s 200 GB/s 400 GB/s

Table 1: Nvidia Reported DGX-Node Specifications by Generation.

D ADDITIONAL EXPERIMENTS: MODEL PARALLELISM IN ALTERNATE
SETTINGS

We extend the experiments from Section 4.2, in which we examine the effectiveness of model paral-
lelism via Tensor and Pipeline parallelism across other hardware settings and computational work-
loads. In the analysis in §4.2, we consider the setting in which LLama-7B is being trained on 32
DGX H100-80GB nodes with a batch size of 2 – yielding relatively high hardware utilization (MFU)
and memory utilization (¿60GB).

Additionally, we consider the effects of model parallelism in settings with lower hardware utiliza-
tion, due to either: (1) smaller per-device workloads as determined by reduced effective local batch
sizes (Figure 11a); or (2) larger communication loads from training in a increasingly distributed
hardware settings (Figure 11b). In both regimes, there are a larger number of viable model paral-
lelism strategies.

7NVIDIA DGX-1 (V100) Whitepaper
8NVIDIA DGX A100 Whitepaper
9NVIDIA DGX H100 Whitepaper
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(a) Training Llama-7B with an effective local batch size of 1 on 32 DGX-H100 nodes.
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(b) Training Llama-7B with an effective local batch size of 2 on 256 DGX-H100 nodes.
Figure 11: In regimes that are low in arithmetic intensity or communication bounded, there exist many viable
strategies for model parallelism that: alleviate communication boundedness, increase power efficiency and
hardware utilization.

E ADDITIONAL EXPERIMENTS: FIXED GLOBAL BATCH SIZE AT
PRETRAINING SCALE

We extend the experiments from Section 4, in which we increase the allocation of hardware acceler-
ators to a fixed computational workload with a constant global batch size – i.e. increasing the degree
of parallelism across more accelerators without increasing the local effective batch size.

(a) Performance Metrics of Llama-70B Training on 512, 1024, and 2048 GPUs.

(b) Performance Metrics of Llama-7B Training on 512, 1024, and 2048 GPUs.

Figure 12: At pretraining scale, both Llama-7B and 70B observe regressions in hardware utilization and per-
device local throughput as the number of devices is increased for a fixed computational workload.
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Figure 13: Throughput and Exposed Communication for Model Parallelization Strategies on V100.

F ADDITIONAL EXPERIMENTS: PREVIOUS GENERATION V100 HARDWARE

In addition to our primary experiments in Section 4.2, we conduct additional experiments using older
V100 GPUs from the Volta architecture training a Llama-7B model with an effective local batch size
of 1 on 32 nodes. We observe similar trends in which small degrees of model parallelism improve
overall throughput at scale. However, due to lack of additional optimized kernels (e.g. CUTLASS
vs FlashAttention kernels) and Ampere hardware optimizations, we observe that the transition to
Ampere A100 GPUs in fact improves overall hardware utilization.

G EFFECTS OF SCALING WORLD SIZE ON MEMORY UTILIZATION

Figure 14: Increasing the data parallel
world size reduces local per-GPU mem-
ory utilization, but reductions diminish
with scale.

In fully-sharded data parallelism (FSDP), increasing the
number of data parallel instances decreases the mem-
ory utilization per-GPU as parameters and gradients are
sharded over additional data parallel instances. However,
the memory savings diminish with device world size.
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