
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HARDWARE SCALING TRENDS AND DIMINISHING
RETURNS IN LARGE-SCALE DISTRIBUTED TRAINING

Anonymous authors
Paper under double-blind review

Dramatic increases in the capabilities of neural network models in recent years are driven by scaling
model size, training data, and corresponding computational resources. To develop the exceedingly
large networks required in modern applications, such as large language models (LLMs), model
training is distributed across tens of thousands of hardware accelerators (e.g. GPUs), requiring
orchestration of computation and communication across large computing clusters. In this work,
we demonstrate that careful consideration of hardware configuration and parallelization strategy is
critical for effective (i.e. compute- and cost-efficient) scaling of model size, training data, and total
computation. We conduct an extensive empirical study of the performance of large-scale LLM train-
ing workloads across model size, hardware configurations, and distributed parallelization strategies.
We demonstrate that: (1) beyond certain scales, overhead incurred from certain distributed com-
munication strategies leads parallelization strategies previously thought to be sub-optimal in fact
become preferable; and (2) scaling the total number of accelerators for large model training quickly
yields diminishing returns even when hardware and parallelization strategies are properly optimized,
implying poor marginal performance per additional unit of power or GPU-hour.

1 INTRODUCTION

Empirical compute-optimal scaling laws show that the performance of large neural networks in-
creases jointly with: the model size, volume of training data, and the amount of allocated training
compute (i.e. FLOPs) (Hoffmann et al., 2022a;b; Kaplan et al., 2020; Tay et al., 2023; Porian et al.,
2024). These scaling trends have naturally incentivized rapid increases in model size over the past
decade in pursuit of state-of-the-art performance across a variety of applications in natural language
processing and computer vision (Chowdhery et al., 2023; Zhang et al., 2022; Dehghani et al., 2023).

22 25 28

Number of Nodes
101

102

103

Ti
m

e
(m

s)

Exposed Communication

22 25 28

Number of Nodes

101

1.1 × 101

1.2 × 101

1.3 × 101

1.4 × 101

To
ke

ns
 p

er
 W

at
t

Tokens per Watt

Figure 1: As scale of distributed train-
ing increases, the power efficiency decreases
while the amount of exposed communica-
tion increases.

The increased size of state-of-the-art neural networks,
containing hundreds of billions of parameters, yields
larger computational workloads and memory require-
ments during training. In this regime, the memory re-
quirements from increasing numbers of model parame-
ters and large-batch sizes are often sufficiently large such
that a single model cannot fit inside the memory of a
single GPU accelerator. To leverage the increased pro-
cessing power and memory of additional devices, the
largest workloads necessitate distribution across hundreds
to thousands of hardware accelerators (i.e. GPUs, TPUs).
Training in these settings requires complex parallelization
strategies for distributing data, model parameters, activa-
tions, gradients and optimizer states across accelerators –
discussed in more detail in §2 (Rasley et al., 2020; Shoeybi et al., 2019; Zhao et al., 2023; Li et al.,
2020; Ryabinin et al., 2023).

As the number of devices required for large-scale neural network training has increased, the un-
derlying cost dynamics of communication and computation have changed. Previously, the high
arithmetic intensity of deep learning models meant that most workloads were compute-bound – i.e.
runtime was dominated by component convolutions or matrix multiplications (Jouppi et al., 2017;
Micikevicius et al., 2017). However, in large-scale distributed training parallelization of compute
and synchronization across massive pools of accelerators increases the communication volume be-
tween accelerators and nodes required to synchronize parameters, gradients, and optimizer states.
Limitations on the efficiency of network fabrics and some collective communication algorithms in-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cur a high marginal cost to scale and bound the degree of model sharding, where components of
a single model are distributed across devices. In contrast to traditional high-performance comput-
ing workloads executed on CPU-based architectures, where lower arithmetic intensity and relatively
slow-speed of computation overlapping communication and computation more possible (Lee et al.,
2010; Hill & Marty, 2008; Asanovic et al., 2006; Amdahl, 1967), deep learning training becomes un-
avoidably communication-bound at scale. In this work, we show how this limits the extent to which
model size and parallelization across additional accelerators can be increased while still producing
improvements in overall throughput – due to the additional communication.

In experiments analyzing this trend across hardware platforms, we further show that improvements
in accelerator computation performance have outpaced improvements in memory bandwidth and
network performance, suggesting that communication-boundedness worsens as a function of recent
improvements in hardware efficiency. Together, these factors demonstrate that large scale deep
learning computation suffers from significantly diminishing returns when horizontally scaled across
larger number of devices in massively distributed settings.

While there are stable distributed training recipes that perform well at large scale, their scaling
properties are not yet well characterized. In this work, we contribute the following:

• A large-scale empirical study of distributed training across hardware setups, model sizes, and
parallelism strategies, characterizing the scaling properties of sharded training

• Demonstration of diminishing returns for scaling the number of accelerators for training as
measured by words-per-second throughput, due to increasing communication overhead

• Analysis of real-world cost metrics which shows that the total GPU power draw and available
FLOPS scale linearly with the number of devices, despite diminishing returns in throughput;
resulting in reduced power efficiency (e.g. tokens per watt) and lower hardware utilization (See
Figure 1)

• Evidence that model parallelism yields improved global throughput despite prior work
(Hagemann et al., 2023; Narayanan et al., 2019) and conventional knowledge suggesting that
model parallelism lowers hardware utilization

• A study across hardware generations demonstrating that future improvements in computa-
tional throughput will only marginally improve overall performance absent network fabric ad-
vancements and increased accelerator memory capacity.

2 PRELIMINARIES

2.1 ACCELERATORS AT SCALE

Large neural networks are trained in computing clusters consisting of thousands of interconnected
GPUs characterized by compute power, on-board memory, and interconnects. Several technologies
are used to interconnect GPUs (Recio et al., 2007; Shainer et al., 2011) — each have tradeoffs
between network size, bandwidth, latency, and cost. This results in a hierarchical partitioning of the
network, with communication within groups achieving higher bandwidths or lower latencies than
communication across groups. In Figure 2, we provide an illustration of a sample architecture for a
GPU-node based datacenter cluster.

For example, NVIDIA GPUs that are grouped together within a node (typically with 8 accelerators1)
might be connected via technologies such as NVLink or NVSwitch (Nvidia, 2024), which can pro-
vide an order of magnitude higher bandwidth than the network fabric used to communicate across
nodes. Within the network itself, the topology of the switches can further favor the communication
within certain groups of nodes, such as within racks or “rails.”

These accelerator characteristics – compute, memory and network – have evolved at different rates
over time based on technical barriers and demand for usage. In turn, neural architectures and soft-
ware systems have been designed to adapt to the limits of the hardware. With the increase in cluster
size driven by larger models and data, communication has often been such a bottleneck, and many
new training algorithms have thus emerged (Shazeer et al., 2017; Fedus et al., 2022).

1NVIDIA’s DGX-1 P100 set early precedent.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GPU-GPU

GPU VRAM.

.

. . .

GPU
Memory

Arithm
etic

Unit . . .

SwitchSwitch

CPU(s)

GPU-CPU Bandwidth
(i.e. PCIe, SXM)

GPU Memory
Bandwidth

Inter-GPU Bandwidth
(within node)

Inter-Node Bandwidth
(between nodes)

Ne
tw

or
k

Ra
il

CPU-GPU

Node-
Node

.

.

.

. . .

Bandwidth, 1 / Latency

Higher

.

.

.

Figure 2: An abbreviated representation of the hierarchy of connections between components of a datacenter
GPU system with multiple 8-GPU nodes connected via a fabric. Connections between components include:
(1) GPU VRAM: memory (VRAM) buses to compute units, (2) CPU-GPU: PCIe or SXM buses from CPU
to GPU, (3) GPU-GPU: GPU-to-GPU connections within a node, and (4) Node-Node: connections between
nodes. Also represented is the relative performance of each of these connections.

2.2 ALGORITHMS FOR DISTRIBUTED TRAINING

Most distributed training schemes optimize for transparency to practitioners, thus preserving the ab-
straction of single-device training, where one instance of a model processes a minibatch of data such
that every input sample interacts with every parameter of the model. A key decision in distributed
training is how to map model and data components onto GPU hardware: via replication or sharding.
Communication between GPUs is required to aggregate values that must interact with each other or
to preserve synchronization between replicas of the same underlying values.

Below, we provide a brief taxonomy of distributed training algorithms. These algorithms are not
mutually exclusive – distribution across multiple “dimensions” can be combined.

Data parallelism (Dean et al., 2012) consists of replicating model parameters (and optimizer states)
across GPUs, but shards input minibatches across devices. After performing local forward and back-
ward passes on their allocated minibatches, GPUs exchange and accumulate their partial gradients,
thus obtaining an identical global gradient and ensuring an identical model update. This communi-
cation pattern is named after the MPI (Walker & Dongarra, 1996) collective AllReduce.

When models grow too large to fit on a single device, methods such as Fully-Sharded Data Paral-
lelism (FSDP) (Xu et al., 2020) and DeepSpeed-Zero (Rasley et al., 2020) shard optimizer states,
gradients, and model parameters across data parallel groups. However, since every input sample
must interact with every parameter, they are required to temporarily re-materialize each parame-
ter on-the-fly on all devices during the forward and backward passes. In contrast to communica-
tion of gradients, which can be performed concurrently with the backward pass before a model
update, “gathering” operations, which are required to gather parameters for the forward pass, de-
lay execution of computation. An inverse operation must be performed to partial gradients during
the backward pass to update parameters. These two MPI primitives are known AllGather and
ReduceScatter.

Model parallelism shards model parameters across GPUs; each shard operates on the same mini-
batch simultaneously. In this setting, activations and their respective gradients are sent across GPUs.

• Tensor Parallelism (Shoeybi et al., 2019; Shazeer et al., 2018) Some layers (e.g. linear) within
models can be sharded along their hidden dimensions, leveraging linear algebra properties to
slice weight matrices in a way that maximizes data locality and allows for mostly independent
computation before a final AllReduce step to re-synchronize activations. As the full set of ac-
tivations are required for computation with the subsequent layer, Tensor Parallelism introduces
blocking communication for synchronization of interemediate activations across model parallel
groups. Sequence parallelism, for instance, is an analog of FSDP’s changes to data parallelism:
instead of replicating activations, they remain sharded and only get gathered and scattered as
needed Li et al. (2023).

• Pipeline Parallelism (Huang et al., 2018; Harlap et al., 2018) Models can also be sharded
along their layerwise depth, with layers being partitioned into “stages” and stored on different
devices; activations are then forwarded from one device to the next while they traverse a model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Bandwidth of AllReduce, which uses a tree al-
gorithm and scales well with number of nodes (i.e.
higher bandwidth).

(b) Bandwidth of AllGather, which uses ring al-
gorithms; scales poorly with the number of nodes (i.e.
lower bandwidth).

Figure 3: Bandwidth measurements in GB per second of NCCL primitives on DGX H100 servers with eight
GPUs per node, connected with InfiniBand, across world sizes from 4 to 512 nodes.

For all devices to be active at once, an input minibatch is split into microbatches which are then
staggered and pipelined according to a schedule. A “bubble” (Hennessy & Patterson, 2017), in
which devices remain idle, reduces the efficiency of pipelining.

Communication-Computation Overlap and Communication Exposure Moving data over net-
works between accelerators utilizes distinct GPU resources unrelated to computation (e.g., dedicated
copy engines, NVLink/NVSwitch) and can execute in parallel with computation. Overlapping com-
munication and computation maximizes distributed training efficiency – it facilitates hiding com-
munication latency, leading to near-perfect scaling. We define communication as exposed when it is
not hidden by simultaneous computation, leaving a GPU’s compute resources under-utilized.

2.3 COMMUNICATION PRIMITIVES AND LIBRARIES

Modern deep learning frameworks (Paszke et al., 2019; Abadi et al., 2015; Bradbury et al., 2018)
leverage specialized collective communications libraries, such as NCCL2 , RCCL3 or XLA4.
These libraries may contain multiple algorithms for each collective communication primitive.
AllReduce being a reduction, has both a “ring” and a “tree” algorithm, the former being
bandwidth-balanced but suffering from latency increasing linearly with the number of devices, and
the latter being suboptimal in bandwidth utilization but logarithmic in latency. AllGather and
ReduceScatter, which are both used in parameter rematerialization for FSDP and DeepSpeed-
Zero, can only use ring algorithms as all buffers must be delivered to all devices – and quickly
become latency-bound as the number of devices increases, as shown in Figure 3.

3 EXPERIMENTAL METHODOLOGY

In the following sections, we investigate the effects of scaling training workloads on computation and
communication volume; and the impact of scale on end-to-end system performance. In particular,
we conduct experiments across: distributed parallelization strategies, numbers of accelerators (i.e.
GPU device world size), hardware generation, model sizes, and input shapes (i.e. context length).
Additional details on hardware and framework configurations are provided in Appendix C.

Model Architectures We conduct our investigation focusing on the Llama-2 architecture of
decoder-only transformers (Dubey et al., 2024; Touvron et al., 2023), as a representative architec-
ture for state-of-the-art neural large language models. We utilize the AdamW optimizer (Loshchilov
& Hutter, 2019; Kingma & Ba, 2015) and train on examples with a context length of 4096 and
tokenized with a vocabulary of 32K; with data sampled from Wikipedia and StackExchange.

2https://github.com/NVIDIA/nccl
3https://github.com/ROCm/rccl
4https://github.com/openxla/xla

4

https://github.com/NVIDIA/nccl
https://github.com/ROCm/rccl
https://github.com/openxla/xla

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We primarily investigate training models at the 7B parameter scale, and conduct additional experi-
ments on the effects of architecture scaling at 1B, 7B, 13B, and 70B parameters.

Hardware Configuration We evaluate distributed training on datacenter clusters containing 8-
GPU NVIDIA DGX nodes from the Ampere (80GB A100) and Hopper (80GB H100) architectures.
Intra-node GPU communication is occcurs via fully connected second and third generation NVLink
with NVSwitch, respectively. Inter-node communication occurs over an Infiniband fabric with 200
GB/s and 400 GB/s per-node bandwidth, respectively. We conduct our primary experiments on
hardware scales between 1 and 32 eight-GPU nodes, with additional experiments up to 256 nodes,
or 2,048 GPUs – to simulate scales for modern pretraining.

Parallelization Strategies We explore the space of parallelization strategies used to distribute
the training workload across GPU nodes. We examine data, tensor, and pipeline parallelization
strategies (colloquially known as 3D parallelism as described by Shoeybi et al. (2019); Rasley et al.
(2020) and used in Dubey et al. (2024); BigScience Workshop (2022)). To address the necessary
memory overhead of training large models, models are trained with Fully-Sharded Data Parallelism
without additional parameter resharding during the forward pass (i.e. FSDP, Zhao et al. (2023)) as
is used in Llama-3.1 training.

We examine a range of group sizes for tensor and pipeline parallel strategies for model parallelism
as described in Section 2, ranging from group sizes of 1 (i.e. single GPU training with no paral-
lelization) up to group sizes of 16 (i.e. requiring parallelism groups across multiple nodes).

Performance Metrics To understand both the effects of hardware and model scaling on end-to-
end global and local per-device performance hardware utilization, we examine the following variety
of performance and efficiency indicators:

• Throughput is the rate at which examples are processed. We compute the estimated per-device
words per second (WPS) and the global words per second across all devices.

• Computational and communication load can be measured as the total execution time for CUDA
and NCCL kernels, respectively. We calculate the total computation and communication load
by aggregating and flattening CUDA and NCCL kernels from PyTorch execution traces.

• Communication efficiency can be measured as the extent to which communication kernels are
exposed or overlapped with concurrent computation.

• Hardware utilization can be measured as the number of floating point operations per second
(FLOPS); alternatively, as Model FLOPS Utilization (MFU, Chowdhery et al. (2023)) which is
the observed FLOPS as a percentage of the hardware’s theoretical maximum.

• Power utilization can be measured as the per-GPU power draw, and estimated as the power
utilization across all devices. We measure the average power draw with NVML5.

We compute these metrics over 60 training iterations; discarding the first 10 iterations to allow for
GPU memory allocations and stabilization of performance during the initial training iterations, and
aggregate metrics for the last 50 iterations.

4 EFFECTS OF SCALING: PARALLELIZATION, HARDWARE, & MODEL SIZE

In this section, we examine the effects of scaling neural network architecture sizes, their underlying
hardware platform (i.e. number of GPU devices), and the parallelization strategies used to distribute
model training onto said hardware platforms.

4.1 SCALING DATA PARALLELISM

In Figure 4, we examine the effects of scaling data parallel training across increasing numbers of
accelerators from 8 GPUs up to 2048 GPUs. In this setting, each device carries a data parallel replica
and trains Llama-7B model with a constant local batch size of 2. As expected, increasing the number
of devices yields increases in overall global throughput as the global batch size increases.

5https://developer.nvidia.com/management-library-nvml

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

20 21 22 23 24 25 26 27 28

Number of Nodes

10

11

12

13

14

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

20 21 22 23 24 25 26 27 28

Number of Nodes
0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

M
FU

Hardware Utilization

20 21 22 23 24 25 26 27 28

Number of Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

W
or

ds
 p

er
 S

ec
on

d

1e7 Global Throughput
Ideal Hardware Scaling
Scaling with Data Parallelism

20 21 22 23 24 25 26 27 28

Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e(
m

s)

Compute Time
Exposed Comms
NCCL Kernels
CUDA Kernels

Figure 4: In FSDP training of Llama-7B, scaling the number of nodes and data parallel replicasreduces hard-
ware utilization and power efficiency; due to increasing exposed communication derived from increases in the
size of communication kernels relative to fixed size computation kernels. Global throughput observes sub-
linear scaling despite approximately linear increases in the total power utilization with number of nodes. “Ideal
Hardware Scaling” corresponds to expected throughput should introduction of additional accelerators produce
linear increases in throughput.

At small scales, when training using a limited number of devices, the cost of collective communi-
cation kernels is low relative to the cost of computation – and non-blocking communication from
FSDP can be hidden by executing data transfer and computation operations concurrently.

However, as discussed in Section 2 and in Figure 3, increasing degree of data parallelism also
incurs the cost of larger collective communication operations needed to materialize parameters
via AllGather during the forward pass and to update gradients during the backward pass via
ReduceScatter. As observed in Figure 4, we observe that the execution time for NCCL commu-
nication kernels and volume of exposed communication scales with the number of compute nodes;
matching the expected behavior observed for the communication collectives seen in Figure 3b.

While the communication volume scales with node count, the per-device CUDA computation ker-
nels execution time remains constant and is dominated by communication. As a result, the exposed
communication is unavoidable at scale and the hardware utilization decreases as there is insufficient
computation to saturate the GPUs while waiting for the execution of larger communication kernels –
this results in reductions the marginal speedup of global throughput and decreased local throughput
as the number of devices increases.

These observations are contrary to conventional wisdom which often assumes AllGather and
ReduceScatter operations are non-blocking operations that can be overlaid with computation;
and data parallelism can be introduced with limited additional costs. Instead, we observe that a
majority of communication becomes exposed at large-scales resulting in long periods of GPUs re-
maining idle.

While the per-device throughput scales sublinearly with the number of devices, the total power
utilization scales approximately linearly resulting in substantially worse real-world efficiency in
GPU-hours and energy impact (i.e. fewer tokens processed per watt). When scaling from 128 to
2048 GPUs, the observed TFLOPS and words-per-second throughput decrease by 37.22% due to
reduced hardware utilization from exposed communication. Despite operating at lower arithmetic
intensity, the per-GPU power draw is roughly constant regardless of the arithmetic intensity – only
decreasing by 5.87% from 658W to 620W. As a result, the overall power efficiency of the system
likewise decreases with hardware scale as seen in Figure 4.
4.2 SCALING MODEL PARALLELISM

Model parallelism is commonly used as a technique to reduce the memory pressure of very large
models which cannot fit in a single GPU device by sharding individual layers across multiple devices
Dubey et al. (2024); Zhang et al. (2022); Team et al. (2023).

Furthermore, model parallelism provides the additional benefit of reducing the sizes of the data
parallel groups; as separate data parallel replicas are maintained for each model parallel group (i.e.
data parallel collectives are executed over world sizes of Number of Devices

Total Degree of Model Parallelism , rather than over
the Total Number of Devices) – where Total Degree of Model Parallelism is the product of Tensor
and Pipeline parallelism group sizes.

As such, we observe in Figure 5 that small degrees of total model parallelism (i.e. model or
pipeline parallel degrees of 2 or 4) yields reductions in the amount of exposed communication, as the
AllGather and ReduceScatter operations are applied over a smaller data parallel groups and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

20 21 22 23 24

Total Parallelism
7

8

9

10

11

12

13

14

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

Effective Model Parallelism
Data Parallel Baseline

20 21 22 23 24

Total Parallelism

0.15

0.20

0.25

0.30

0.35

0.40

M
FU

Hardware Utilization

20 21 22 23 24

Total Parallelism

500

1000

1500

2000

2500

Ex
po

se
d

Co
m

m
s (

m
s)

Exposed Communication

27 28 29 210 211

Exposed Comms (ms)

4000

5000

6000

7000

8000

9000

W
or

ds
 p

er
 S

ec
on

d

Exposed Comm vs. Throughput

Figure 5: In model parallel training of Llama-7B with a fixed global batch size (512) and fixed number
of accelerators (256 GPUs), there exist model parallel strategies that increase training throughput, hardware
utilization, and power efficiency by reducing the total exposed communication; which is strongly negatively
correlated with throughput.

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Local Throughtput

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Exposed Communications

0

500

1000

1500

2000

2500

3000

3500

W
PS

0

500

1000

1500

2000

2500

Ti
m

e
(m

s)

(a) Model Parallelism on A100

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Local Throughput

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Exposed Communications

0

2000

4000

6000

8000

W
PS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(m

s)

(b) Model Parallelism on H100

Figure 6: Model Parallelism Improves Throughput. Increasing degree of either tensor and pipeline model par-
allelism yields improved throughput and less exposed communications compared to the data parallel baseline
(i.e. Tensor and Pipeline Parallel Size of 1).
the AllReduce operations introduced by Tensor Parallelism exhibit better scaling properties. This
is contrary to previous work which often suggests that model parallelism approaches yield lower
hardware utilization relative to data parallel baselines (Hagemann et al., 2023; Narayanan et al.,
2019) due to the increased total number of communication operations and introduces blocking com-
munication operations to synchronize partial sums of activations required for model parallelization.

We find that there exist effective non-trivial model parallel strategies that: reduce exposed commu-
nication, increase hardware utilization and power efficiency. In Figure 6, we find that both tensor
and pipeline parallelism exhibit this behavior, in which model parallelism reduces the exposed com-
munication volume and increases word-per-second throughput performance improves relative to the
data parallel baseline when utilizing model parallelisms to reduce communication overhead. In Ap-
pendix D, we find that as hardware utilization decreases due to low arithmetic intensity or large
collective communications, the amount of viable model parallelism strategies increases.

Notably, there is a limit to the extent to which model parallelism reduces exposed communication
and improves throughput – as the AllReduce kernels required for Tensor Parallelism and bubbles
introduced by pipeline parallelism grow with the degree of model parallelism. These communication
costs become especially large when the parallelism occurs over multiple nodes as it much rely on
slower internode fabric (e.g. InfiniBand, see Figure 2) for communication – as noted in Figure 6,
where there is substantial increases in exposed communication for tensor and pipeline parallelism
strategies which are sharded at larger than 8 devices (i.e. across multiple nodes).

4.3 SCALING THE HARDWARE WORLD SIZE

In Section 4.1, we examined the effects of scaling a constant per-device workload across multiple
hardware world sizes by increasing the number of devices while maintaining a fixed local batch size,
which results in an increased global batch size as the number of devices scale.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

By contrast, we examine the effects of using model parallelism to train workloads with a fixed
global batch size while varying the hardware world size, which results in decreasing effective local
per-device batch sizes as the number of devices increases. This is representative of industry settings
where excess compute resources are allocated for a single training run; and there is a desire to
minimize the time to complete a training run as opposed to maximizing the hardware utilization.

21 22 23 24 25

Number of Nodes

8

9

10

11

12

13

14

To
ke

ns
 p

er
 W

at
t

Power Efficiency

21 22 23 24 25

Number of Nodes

0.15

0.20

0.25

0.30

0.35

0.40

M
FU

Hardware Utilization

21 22 23 24 25

Number of Nodes

0.5

1.0

1.5

2.0

2.5

Gl
ob

al
 W

PS

1e6 Global Throughput
Ideal Hardware Scaling
Scaling with Model Parallel

21 22 23 24 25

Number of Nodes
0

100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

Execution Time
Exposed Comms
NCCL Kernels
CUDA Kernels

Figure 7: Training with Fixed Global Batch Size Over Increasing Number of Nodes. We select the optimal
parallelization strategy as determined by the experimental results displayed in Figure 5 for configurations of 2,
4, 8, 16, and 32 H100 nodes to train with global batch size of 32. Even with optimal parallelization strategies,
local throughput and hardware utilization declines with world size.

In Figure 7, we show that when training with a fixed global batch of 32 across 2 to 32 nodes –
allocation of additional devices yields diminishing returns in global throughput and reduced local
hardware utilization. To distribute a fixed workload across more devices, it is necessary to introduce
excess degrees of model parallelism which results in insufficient amounts of computation being
allocated to each accelerator which we observe as reduced execution time for CUDA kernels. At
sufficiently large scales, excess parallelism causes previously compute-bound workloads to become
communication bound and reductions in hardware utilization, which we observe over in decreases
in MFU of 40% when training with 2 nodes to less than 15% with 32 nodes.

Additionally, we find that these trends persist at pretraining scale with limited marginal returns for
increasing the number of hardware accelerators when training both LLAMA-7B and 70B models in
Appendix E. We observe that increasing the number of devices from 512 to 2048 GPUs improves
global throughput and decreases the per-device MFU local hardware utilization by more than 30%.

4.4 SCALING THE HARDWARE GENERATION

In Figure 6, we examine the effects of scaling the hardware speed with comparisons between A100
and H100 clusters. In both cases, there exist model parallelism configurations which both increase
the overall throughput and reduce the amount of exposed communication relative to data parallel
baselines (i.e. total model parallelism equal to one).

231 232 233 234 235 236

Num Parameters
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(m

s)

Execution Time and Model Size
NCCL Communication Kernels
CUDA Computation Kernels
Exposed Comm: Minimal MP
Exposed Comm: Optimal MP

Figure 8: Communication and Computa-
tion Both Scale with Model Size. As com-
putation load increases with model size, so
does the total and exposed communication.
At all model scales, model parallelism can
be used to reduce exposed communication.

When comparing the distributed training performance of
the previous generation A100 to the faster H100 hardware
when using the optimal parallelization strategy for each
platform, the MFU hardware utilization decreases from
59.67% to 40.77% The reduction in hardware utiliza-
tion can be attributed to increases in percent of exposed
communication (+12.83%) that emerge due to asymmet-
ric improvements in communication and computation
speeds. While improvements are made to both the com-
munication bandwidth and computation speed between
the A100 and H100 architectures, the extent to which
training is communication bound increases further with
hardware generation as improvements to computation
speed results in shorter computational kernels which in-
creases the difficulty in overlapping hardware which out-
paces the rate at which data transfer improves (See Table
1). In Appendix F, we conduct additional experiments on a V100 cluster in which we similarly find
that highest throughput is achieved with model parallelism.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.5 SCALING THE MODEL ARCHITECTURE

We examine the effects of scaling the size of the neural network architectures across 1B, 7B, 13B,
and 70B parameters. One might assume that increases in model parameterization solely increases the
size of computation while leaving communication unaffected. However, as the number of parameters
in a model scale, the volume of communication required for parameter materialization and gradient
scattering increases jointly with the size of the computational operations (i.e. matrix operations
with larger hidden dimensions). In Figure 8, we consider the optimal model parallelism strategy for
each model architecture by sweeping viable tensor and pipeline parallel configurations and observe
that the volume of exposed communication likewise increases with model size, resulting in lower
hardware utilization as models scale.

Additionally, we find that across architecture scales there exist model parallelism strategies beyond
the data parallel baseline or the minimal degree of model parallelism (for the 70B parameter model
that does not fit on a single GPU) that reduce the volume of exposed communication for all model
sizes; and yield higher hardware utilization and throughput.

4.6 SCALING THE COMPUTE WORKLOAD

210 211 212 213

Sequence Length

7

8

9

10

11

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

210 211 212 213

Sequence Length

0.10

0.15

0.20

0.25

0.30

0.35

M
FU

Hardware Utilization

210 211 212 213

Sequence Length
2000

3000

4000

5000

6000

7000

8000

W
or

ds
 p

er
 S

ec
on

d

Local Throughput

210 211 212 213

Sequence Length
100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

Execution Time
NCCL Kernels
CUDA Kernels
Exposed Comms

Figure 9: Increased sequence lengths yields larger compute kernels which better overlap with NCCL commu-
nication kernels, resulting in lower exposed communication, higher hardware utilization and power efficiency.

Finally, we examine the effects of varying the context length in Figure 9. When there is available
local GPU memory, increasing the sequence length increases the computational workload allocated
to each device without increasing the communication load, yielding improved the throughput, har-
wdare utilization and power efficiency. However, for a fixed world size, reparameterization of the
training process in this manner is often not feasible as alterations to the per-batch sequence length
affect the training dynamics predicted by computation-architecture scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022a).

5 TRENDS IN SCALING AND IMPLICATIONS

Computation

Scales with model size

Limit defined by
GPU memory

Communication

Scales with world size

Soft practical limit
defined by network fabric

Computation hides communication

Computation

Communication

Exposed
communication

Computation stream

Communication stream

(A) Model size is large
relative to world size

(B) Model size is small
relative to world size

Diminishing scaling returns

Positive scaling returns

Execution Timeline for Tensor, Layer, or Batch (Forward or Backward)

Figure 10: Two distinct training setups and their corresponding concurrent computation and communication
streams, executing in parallel. In (A), model size is large relative to world size; computation per-device hides
communication cost and scaling the number of devices incurs no cost. In (B), model size is small relative to
world size. Communication is not hidden by computation and is exposed; scaling of world size incurs overhead
and gives poor marginal gains in training throughput.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Not all FLOPs are equal. Existing compute-optimal scaling laws (Hoffmann et al., 2022a; Tay
et al., 2023; Dehghani et al.) and workload performance measures are based predominantly on
FLOPs or metrics derived therefrom. These fail to take into consideration underlying massively
parallelized distributed hardware which requires communication to execute these workload. Local
arithmetic throughput per-accelerator does not translate into end-to-end performance due to bound-
ing factors in other hardware components such as network fabric. Integrating holistic information
about hardware into scaling practice is essential given that collective communication dominates ex-
ecution time at scale; scaling laws should be both compute and communication optimal.

Communication-Computation Dynamics Change at Scale. In distributed training over large-
world sizes, the scaling properties of collective communication primitives leads to increased ex-
posed communication and communication-boundedness – which motivates the use of alternative
parallelization strategies beyond traditional data parallelism (see Figures 3, 5, 6). This motivates the
need for development of parallelization strategies sensitive to the marginal communication costs of
increasing world size.

Additional scale only marginally improves throughput. Capability and capacity tradeoffs at
scale for a fixed global batch size lead to declining marginal improvements — Figures 4 and 7 show
emergent upper bounds in the effectiveness of scale as related to model size. If the pace of increases
in model size slows — additional scale will do little to improve throughput given fixed recipes,
further removing the incentive to scale up without algorithmic modifications.

Training one large model is less power-per-token efficient than training many smaller ones.
Given aforementioned ceilings in scale, algorithmic paradigms which train ensembles of multiple
smaller models will continue to proliferate, with hardware scaling serving growing the number of
models in the ensemble. Communication and computation must jointly improve to alleviate bottle-
necks for large model training. The current imbalance in rates of improvement of communication
and computation constrains new hardware’s utility. Figure 1 demonstrates that while power utiliza-
tion increases linearly, hardware utilization and global throughput both increase sublinearly.

Improvements in networking within nodes improves scale-out performance. Inter-node band-
width is lower as a result of constraints around network fabrics. While improving fabrics may
improve performance, increasing node size – that is, building nodes with more accelerators with
fast, local interconnects – also increases the total amount of memory and thus the upper bound for
degrees of model parallelism. NVIDIA’s GB-2006 features the first increase in NVLink-connected
node-size since the DGX-1 P100 in 2017, from 8 to 72 accelerators, with a total of 1 TB of in-
terconnected GPU memory per node. Speedups in inter-node bandwidth and larger collections of
high-speed GPU memory will alleviate communication boundedness at large scales.

Performance benchmarking fails to extrapolate across scales and hardware generations. As
a result of how collective communication primitives for modern parallelism strategies scale, conven-
tional metrics for measuring performance in distributed settings, such as total FLOPS or throughput
on smaller scale systems, cannot be extrapolated from small to large-scale without properly account-
ing for communication dynamics.

6 CONCLUSION

In this work, we examine the effects of scaling: parallelization strategies, model architectures, and
hardware platforms. We show that communication boundedness worsens at scale and with newer
hardware generations, and are persistent across model sizes. Additionally, we show that these trends
lead to the emergence of viable parallelism alternatives for distributing deep learning training work-
loads. Finally, we show that these trends culminate in significant diminishing returns on training
performance with respect to real-world resources of power and throughput.

6NVIDIA GB-200 Datasheet

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow, Large-scale machine learning on
heterogeneous systems, November 2015.

Gene M Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pp. 483–
485, 1967.

Newsha Ardalani, Saptadeep Pal, and Puneet Gupta. Deepflow: A cross-stack pathfinding frame-
work for distributed ai systems. ACM Transactions on Design Automation of Electronic Systems,
29(2):1–20, 2024.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
et al. The landscape of parallel computing research: A view from berkeley. 2006.

BigScience Workshop. BLOOM (revision 4ab0472), 2022. URL https://huggingface.co/
bigscience/bloom.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas Beyer, and Ashish Vaswani. The efficiency mis-
nomer. In International Conference on Learning Representations.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Jared Fernandez, Jacob Kahn, Clara Na, Yonatan Bisk, and Emma Strubell. The framework tax:
Disparities between inference efficiency in nlp research and deployment. In The 2023 Conference
on Empirical Methods in Natural Language Processing.

11

https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johannes Hagemann, Samuel Weinbach, Konstantin Dobler, Maximilian Schall, and Gerard
de Melo. Efficient parallelization layouts for large-scale distributed model training. arXiv preprint
arXiv:2311.05610, 2023.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training, 2018.
URL https://arxiv.org/abs/1806.03377.

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Morgan
kaufmann, 2017.

Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer, 41(7):33–38,
2008.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35:30016–30030, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016–30030, 2022b.

Samuel Hsia, Alicia Golden, Bilge Acun, Newsha Ardalani, Zachary DeVito, Gu-Yeon Wei, David
Brooks, and Carole-Jean Wu. Mad max beyond single-node: Enabling large machine learning
model acceleration on distributed systems. ArXiv, abs/2310.02784, 2023. URL https://
api.semanticscholar.org/CorpusID:263622052.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and
Z. Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism. In Neu-
ral Information Processing Systems, 2018. URL https://api.semanticscholar.org/
CorpusID:53670168.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D Nguyen,
Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, et al. Debunking
the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu. In Pro-
ceedings of the 37th annual international symposium on Computer architecture, pp. 451–460,
2010.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable trans-
former modelling library. https://github.com/facebookresearch/xformers,
2022.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed. Proceedings
of the VLDB Endowment, 13:3005 – 3018, 2020. URL https://api.semanticscholar.
org/CorpusID:220250008.

12

https://arxiv.org/abs/1806.03377
https://api.semanticscholar.org/CorpusID:263622052
https://api.semanticscholar.org/CorpusID:263622052
https://api.semanticscholar.org/CorpusID:53670168
https://api.semanticscholar.org/CorpusID:53670168
https://github.com/facebookresearch/xformers
https://api.semanticscholar.org/CorpusID:220250008
https://api.semanticscholar.org/CorpusID:220250008

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
Long sequence training from system perspective. In The 61st Annual Meeting Of The Association
For Computational Linguistics, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Sasha Luccioni, Boris Gamazaychikov, Sara Hooker, Régis Pierrard, Emma Strubell, Yacine Jernite,
and Carole-Jean Wu. Light bulbs have energy ratings—so why can’t ai chatbots? Nature, 632
(8026):736–738, 2024a.

Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
cost of ai deployment? In The 2024 ACM Conference on Fairness, Accountability, and Trans-
parency, pp. 85–99, 2024b.

Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos, David Kanter,
Paulius Micikevicius, David Patterson, Guenther Schmuelling, Hanlin Tang, et al. Mlperf: An
industry standard benchmark suite for machine learning performance. IEEE Micro, 40(2):8–16,
2020.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei A. Zaharia. Pipedream: generalized pipeline par-
allelism for dnn training. Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, 2019. URL https://api.semanticscholar.org/CorpusID:202488191.

Nvidia. Nvlink & nvswitch for advanced multi-gpu communication. https://www.nvidia.
com/en-us/data-center/nvlink/, 2024. [Accessed 30-09-2024].

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David R So, Maud Texier, and Jeff Dean. The carbon footprint of machine
learning training will plateau, then shrink. Computer, 55(7):18–28, 2022.

Hao Peng, Qingqing Cao, Jesse Dodge, Matthew E Peters, Jared Fernandez, Tom Sherborne, Kyle
Lo, Sam Skjonsberg, Emma Strubell, Darrell Plessas, et al. Efficiency pentathlon: A standardized
arena for efficiency evaluation. arXiv preprint arXiv:2307.09701, 2023.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. arXiv preprint arXiv:2406.19146,
2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505–3506, 2020.

Renato Recio, Bernard Metzler, Paul Culley, Jeff Hilland, and Dave Garcia. A remote direct memory
access protocol specification. Technical report, 2007.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-
Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, et al. Mlperf
inference benchmark. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 446–459. IEEE, 2020.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://api.semanticscholar.org/CorpusID:202488191
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Train-
ing large models can be surprisingly communication-efficient. In International Conference on
Machine Learning, pp. 29416–29440. PMLR, 2023.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54–63, 2020.

Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu, Michael Kagan, Christian R Trott, Greg Scantlen, and
Paul S Crozier. The development of mellanox/nvidia gpudirect over infiniband—a new model for
gpu to gpu communications. Computer Science-Research and Development, 26:267–273, 2011.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and
Blake Hechtman. Mesh-tensorflow: Deep learning for supercomputers, 2018. URL https:
//arxiv.org/abs/1811.02084.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. ArXiv, abs/1909.08053, 2019. URL https://api.semanticscholar.org/
CorpusID:202660670.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1355. URL
https://aclanthology.org/P19-1355.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q. Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
E9dH0BP5VW.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosa-
ian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig,
Fengqi Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish Gupta.
CUTLASS, January 2023. URL https://github.com/NVIDIA/cutlass.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

David W Walker and Jack J Dongarra. Mpi: a standard message passing interface. Supercomputer,
12:56–68, 1996.

Yu Wang, Gu-Yeon Wei, and David Brooks. A systematic methodology for analysis of deep learning
hardware and software platforms. Proceedings of Machine Learning and Systems, 2:30–43, 2020.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental impli-
cations, challenges and opportunities. Proceedings of Machine Learning and Systems, 4:795–813,
2022.

14

https://arxiv.org/abs/1811.02084
https://arxiv.org/abs/1811.02084
https://api.semanticscholar.org/CorpusID:202660670
https://api.semanticscholar.org/CorpusID:202660670
https://aclanthology.org/P19-1355
https://openreview.net/forum?id=E9dH0BP5VW
https://openreview.net/forum?id=E9dH0BP5VW
https://github.com/NVIDIA/cutlass

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Carole-Jean Wu, Bilge Acun, Ramya Raghavendra, and Kim Hazelwood. Beyond efficiency: Scal-
ing ai sustainably. IEEE Micro, 2024.

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Hongjun Choi, Blake Hechtman, and Shibo Wang.
Automatic cross-replica sharding of weight update in data-parallel training. arXiv preprint
arXiv:2004.13336, 2020.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo, Chien chin Huang, Min Xu, Less
Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, and Shen Li. Pytorch fsdp: Experiences on scal-
ing fully sharded data parallel. Proc. VLDB Endow., 16:3848–3860, 2023. URL https:
//api.semanticscholar.org/CorpusID:258297871.

A RELATED WORK

Performance Analysis of Deep Learning Systems. Deep learning poses a unique workload dif-
ferent from traditional high-performance computing settings – with complexity arising from: mem-
ory availability and hierarchy; and variable speeds of computation and communication. Prior re-
search has explored the performance properties of individual accelerators (Wang et al., 2020),com-
mon workloads (Hsia et al., 2023; Ardalani et al., 2024), and efficient methods for maximizing
hardware utilization of these workloads (Hagemann et al., 2023).

Concurrently, several benchmarks have been developed to provide canonical workloads and incen-
tivize efficiency improvements (Mattson et al., 2020; Reddi et al., 2020; Peng et al., 2023). These
evaluation suites often only measure the overall end-to-end system performance of standard training
and inference recipes (i.e. throughput or wallclock training time) Williams et al. (2009); abstracting
away the underlying system. In our work, we seek to examine the joint scaling effects on these
downstream performance and system-level utilization metrics as we vary these components (i.e.
hardware, model architecture, and parallelization) together.

Scaling Properties of Deep Learning. Previous work investigating the scaling properties of neu-
ral network training has largely studied the effects of varying the data volume, training compute
budget, and model architecture (Hoffmann et al., 2022a; Kaplan et al., 2020; Tay et al., 2023; Po-
rian et al., 2024). These works primarily examine the impact of these factors on the pretraining
loss and downstream finetuning performance of the model with respect to the theoretical amount of
computational resources allocated (i.e. number of FLOPs).

However, these analyses assume that workload performance scales directly with the amount of com-
putation regardless of the underlying hardware platform and frameworks. In practice, theoretical
measures (i.e. FLOPs) are known to be imprecise representations of end-to-end real-world per-
formance (e.g. latency, throughput) due to performance bounds that emerge from management of
the computational graph, data transfer, and communication bottlenecks (Dehghani et al.; Fernandez
et al.) – or as we show due to communication boundedness.

Additionally, as the scale of deep learning systems has grown, their efficiency has emerged as a
serious concern with commensurate scaling in the environmental, financial, and computational re-
sources required to execute such workloads (Wu et al., 2022; Schwartz et al., 2020; Patterson et al.,
2022; Luccioni et al., 2024a;b; Strubell et al., 2019; Wu et al., 2024).

B LIMITATIONS AND FUTURE WORK

In this work, we consider a set of common data and model parallelization techniques for distributing
training of neural networks. However, there are additional methods for workload parallelization and
memory footprint reduction such as DeepSpeed Zero (Rasley et al., 2020), parallelization of loss
computation, and other forms of optimized kernel implementations.

15

https://api.semanticscholar.org/CorpusID:258297871
https://api.semanticscholar.org/CorpusID:258297871

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In our investigation across computing platforms, we primarily consider variations in the speed of
compute (i.e. GPU generation). In future work, we plan to demonstrate the consistency of the
observed trends across settings with variable speeds of communication (i.e. varying speed of intern-
ode fabric by comparing InfiniBand interconnects with common alternatives such as RDMA over
Converged Ethernet, RoCE).

Additionally, our work is focuses on the training of neural networks based on the Transformer neural
network architecture and GPU hardware accelerators. Although we expect our findings to be consis-
tent across other model architectures and hardware platforms, we reserve that examination as areas
for future work. Likewise, we focus our investigations on GPUs as it is the most commonly used
and easily available hardware accelerator. We expect that similar trends and tradeoffs between com-
munication and computation would occur for alternative hardware accelerator architectures such as
TPUs, IPUs, etc.; however we leave exploration of these settings for future study.

C SOFTWARE AND HARDWARE DETAILS

Training is conducted in bfloat16 precision with a Megatron-inspired framework and further
optimizations provided by FlashAttention-2 (Dao) and xFormers (Lefaudeux et al., 2022). For our
primary experiments, we trained models using PyTorch 2.3.1 built with CUDA 12.1, with attention
implementation provided by XFormers 0.27.

In supplementary experiments with V100 GPUs in Appendix F, models are trained in fp16 with
loss rescaling and CUTLASS (Thakkar et al., 2023) attention kernels on Volta hardware – due to
limited hardware support on older Volta hardware. Nodes within the V100 cluster consist of 8-GPU
setups connected with first-generation NVLink in a Hybrid Cube Mesh (HCM) topology.

We compute the runtime of communication and computation kernels by using PerfettoSQL to query
Kineto profiles extracted by the PyTorch profiler, which is built on top of NVidia CUPTI to identify
relevant NCCL and CUDA kernels, respectively. containing both the CPU and CUDA operations. In
Table 1, we provide additional details on the hardware platforms used for running our experiments.

V100 7 A100 8 H100 9

Tensor Core BF16 FLOPS 125 TFLOPS 312 TFLOPS 990 TFLOPS
GPU HBM 900 GB/s 2 TB/s 3.35 TB/s
NVLink (GPU to GPU Comm) 300 GB/s 600 GB/s 900 GB/s
Internode InfiniBand (Node to Node) 100 GB/s 200 GB/s 400 GB/s

Table 1: Nvidia Reported DGX-Node Specifications by Generation.

D ADDITIONAL EXPERIMENTS: MODEL PARALLELISM IN ALTERNATE
SETTINGS

We extend the experiments from Section 4.2, in which we examine the effectiveness of model paral-
lelism via Tensor and Pipeline parallelism across other hardware settings and computational work-
loads. In the analysis in §4.2, we consider the setting in which LLama-7B is being trained on 32
DGX H100-80GB nodes with a batch size of 2 – yielding relatively high hardware utilization (MFU)
and memory utilization (¿60GB).

Additionally, we consider the effects of model parallelism in settings with lower hardware utiliza-
tion, due to either: (1) smaller per-device workloads as determined by reduced effective local batch
sizes (Figure 11a); or (2) larger communication loads from training in a increasingly distributed
hardware settings (Figure 11b). In both regimes, there are a larger number of viable model paral-
lelism strategies.

7NVIDIA DGX-1 (V100) Whitepaper
8NVIDIA DGX A100 Whitepaper
9NVIDIA DGX H100 Whitepaper

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

20 21 22 23 24 25

Total Parallelism
5

6

7

8

9

10

11

12

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

Effective Model Parallelism
Data Parallel Baseline

20 21 22 23 24 25

Total Parallelism

0.10

0.15

0.20

0.25

0.30

M
FU

Hardware Utilization

20 21 22 23 24 25

Total Parallelism

500

1000

1500

2000

2500

3000

3500

Ex
po

se
d

Co
m

m
s (

m
s)

Exposed Communication

28 29 210 211 212

Exposed Comms (ms)

2000

3000

4000

5000

6000

7000

W
or

ds
 p

er
 S

ec
on

d

Exposed Comm vs. Throughput

(a) Training Llama-7B with an effective local batch size of 1 on 32 DGX-H100 nodes.

20 21 22 23 24 25

Total Parallelism

6

8

10

12

14

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

Effective Model Parallelism
Data Parallel Baseline

20 21 22 23 24 25

Total Parallelism

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
FU

Hardware Utilization

20 21 22 23 24 25

Total Parallelism

500

1000

1500

2000

2500

3000

3500

4000

Ex
po

se
d

Co
m

m
s (

m
s)

Exposed Communication

29 210 211 212

Exposed Comms (ms)

2000

3000

4000

5000

6000

7000

8000

9000

W
or

ds
 p

er
 S

ec
on

d

Exposed Comm vs. Throughput

(b) Training Llama-7B with an effective local batch size of 2 on 256 DGX-H100 nodes.
Figure 11: In regimes that are low in arithmetic intensity or communication bounded, there exist many viable
strategies for model parallelism that: alleviate communication boundedness, increase power efficiency and
hardware utilization.

E ADDITIONAL EXPERIMENTS: FIXED GLOBAL BATCH SIZE AT
PRETRAINING SCALE

We extend the experiments from Section 4, in which we increase the allocation of hardware acceler-
ators to a fixed computational workload with a constant global batch size – i.e. increasing the degree
of parallelism across more accelerators without increasing the local effective batch size.

(a) Performance Metrics of Llama-70B Training on 512, 1024, and 2048 GPUs.

(b) Performance Metrics of Llama-7B Training on 512, 1024, and 2048 GPUs.

Figure 12: At pretraining scale, both Llama-7B and 70B observe regressions in hardware utilization and per-
device local throughput as the number of devices is increased for a fixed computational workload.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 2 4 8 16
Pipeline Parallel Size

1

M
od

el
 P

ar
al

le
l S

ize

V100: Local Throughput

1 2 4 8 16
Pipeline Parallel Size

1

M
od

el
 P

ar
al

le
l S

ize

Exposed Communication

0

200

400

600

800

W
PS

0

1

2

3

4

5

6

Ti
m

e
(m

icr
os

ec
on

ds
)

1e6

Figure 13: Throughput and Exposed Communication for Model Parallelization Strategies on V100.

F ADDITIONAL EXPERIMENTS: PREVIOUS GENERATION V100 HARDWARE

In addition to our primary experiments in Section 4.2, we conduct additional experiments using older
V100 GPUs from the Volta architecture training a Llama-7B model with an effective local batch size
of 1 on 32 nodes. We observe similar trends in which small degrees of model parallelism improve
overall throughput at scale. However, due to lack of additional optimized kernels (e.g. CUTLASS
vs FlashAttention kernels) and Ampere hardware optimizations, we observe that the transition to
Ampere A100 GPUs in fact improves overall hardware utilization.

G EFFECTS OF SCALING WORLD SIZE ON MEMORY UTILIZATION

Figure 14: Increasing the data parallel
world size reduces local per-GPU mem-
ory utilization, but reductions diminish
with scale.

In fully-sharded data parallelism (FSDP), increasing the
number of data parallel instances decreases the mem-
ory utilization per-GPU as parameters and gradients are
sharded over additional data parallel instances. However,
the memory savings diminish with device world size.

18

	Introduction
	Preliminaries
	Accelerators at Scale
	Algorithms for Distributed Training
	Communication Primitives and Libraries

	Experimental Methodology
	Effects of Scaling: Parallelization, Hardware, & Model Size
	Scaling Data Parallelism
	Scaling Model Parallelism
	Scaling the Hardware World Size
	Scaling the Hardware Generation
	Scaling the Model Architecture
	Scaling the Compute Workload

	Trends in Scaling and Implications
	Conclusion
	Related Work
	Limitations and Future Work
	Software and Hardware Details
	Additional Experiments: Model Parallelism in Alternate Settings
	Additional Experiments: Fixed Global Batch Size at Pretraining Scale
	Additional Experiments: Previous Generation V100 Hardware
	Effects of Scaling World Size on Memory Utilization

