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Abstract

Annotating abusive language content can cause001
psychological harm; yet, most machine learn-002
ing research has prioritized efficacy (i.e., F1003
or accuracy scores) while little research has004
analyzed data efficiency (i.e., how to mini-005
mize annotation requirements). In this paper,006
we use a series of simulated experiments over007
two datasets at varying percentages of abuse008
to demonstrate that transformers-based active009
learning is a promising approach that maintains010
high efficacy but substantially raises efficiency,011
requiring a fraction of labeled data to reach012
equivalent performance to passive training over013
the full dataset.014

1 Introduction015

Online abuse, such as hate and harassment, can016

inflict psychological harm on victims (Gelber and017

McNamara, 2016), disrupts communities (Mohan018

et al., 2017) and even lead to physical attacks019

(Williams et al., 2019). Automated solutions can be020

used to detect abusive content at scale, helping to021

tackle this growing problem (Gillespie, 2020). An022

effective model is one which makes few misclassi-023

fications. Both false positives and negatives create024

a risk of harm: false negatives mean that users are025

not fully protected from abuse while false positives026

could lead to free expression being constrained.027

Models to automatically detect abuse are trained to028

maximize their efficacy using supervised learning029

techniques over datasets consisting of thousands030

of labeled examples. Collecting large amounts of031

social media data is relatively cheap and easy, but032

annotating data is expensive, logistically compli-033

cated and creates a risk of inflicting psychologi-034

cal harm on annotators through vicarious trauma035

(Steiger et al., 2021). An efficient model, which036

achieves high levels of performance with few la-037

beled examples, is thus highly desirable for abusive038

content detection. Two developments have promise039

for efficient training: 1) for model architecture, pre-040
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Figure 1: Transformers-based active learning beats fully-
supervised baseline with 1.5% of the 20,000 examples.

trained transformer models can be fine-tuned on 041

relatively small datasets for specific tasks (Devlin 042

et al., 2018; Qiu et al., 2020); 2) for data acqui- 043

sition, active learning (AL) selects entries for an- 044

notation only if they are ‘informative’ (Lewis and 045

Gale, 1994; Settles, 2009). In this paper, we evalu- 046

ate these developments for building effective and 047

efficient abusive language detection models. 048

Most papers on automated abuse detection use 049

fully supervised learning (see surveys Ayo et al., 050

2020; Vidgen and Derczynski, 2020; Fortuna and 051

Nunes, 2018). Even those using transformers, 052

rarely take advantage of their efficient fine-tuning 053

capabilities (e.g. Mutanga et al., 2020; Elmadany 054

et al., 2020; Safi Samghabadi et al., 2020; Mozafari 055

et al., 2019). Some use alternative data acquisition 056

approaches such as adversarial training (Vidgen 057

et al., 2021; Kirk et al., 2021; Xia et al., 2020) and 058

traditional AL (Bashar and Nayak, 2021; Abidin 059

et al., 2021; Charitidis et al., 2020; Mollas et al., 060

2020; Rahman et al., 2021). To our knowledge, 061

only one paper uses transformers-based AL with 062

an abusive language dataset (Ein-Dor et al., 2020), 063

but the benefit of AL on other classification tasks is 064

clear (Schröder et al., 2021b; Ein-Dor et al., 2020; 065

Yuan et al., 2020). For AL with abusive language, 066

class imbalance is a pressing issue as, although 067

extremely harmful, online abuse is relatively rare 068
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(Rahman et al., 2021; Vidgen et al., 2019). Prior069

work only tests datasets at their given class im-070

balances, and has not disentangled how class im-071

balance and data features affect the utility of, and072

design choices needed for, efficient AL.073

The class imbalance in real-world settings is074

unchangeable; so, we use two labeled abusive075

language datasets and artificially-rebalance each076

dataset at varying percentages of abuse. Practition-077

ers have to make numerous decisions in the AL078

process such as the classifier and query strategy079

used. To assess how these design choices affect080

the utility of AL for abuse detection, we present081

a series of simulated experiments.1 We measure082

efficacy using the F1 score as well as efficiency us-083

ing the number of examples needed to reach 90%084

of supervised learning performance over the full085

dataset. We find that more data is not always better086

and can actually be worse. For all class imbalances087

and for both a BERT-based model and a SVM, AL088

achieves high performance with only a few hundred089

examples. AL over 3% of a 20k dataset can even090

surpass the F1 of a model passively trained over091

the full dataset by more than 5 percentage points092

(Fig. 1).093

2 Methods094

2.1 Active Learning Set-Up095

AL typically consists of four components: 1) a096

classification model, 2) pools of unlabeled data U097

and labeled data L, 3) a query strategy for iden-098

tifying data to be labeled, and 4) an oracle (e.g.,099

human annotators) to label the data. First, seed100

examples are taken from U and sent to the oracle101

for labeling. These examples are used to initialize102

the classification model. This is referred to as a103

‘cold start’. Second, batches of examples are itera-104

tively sampled from the remaining unlabeled pool,105

using a query strategy to estimate their ‘informa-106

tiveness’. Each queried batch is labeled and added107

to L. Finally, the classifier is re-trained over L.2108

2.2 Dataset Selection and Processing109

For feasibility, we use existing labeled datasets110

but withhold the labels until the model requests111

their annotation. This allows us to reproduce the112

process of cold-start and batch selection without113

labeling new data. We surveyed publicly available,114

1Code and experimental results available at [Github URL].
2We train from scratch to avoid overfitting to previous

iterations (Ein-Dor et al., 2020; Hu et al., 2018).

Table 1: Summary of source datasets (in gray) and their
artificially rebalanced versions.

Train† Test∗

Dataset Imbalance abuse non-abuse abuse non-abuse

wiki 12% 10,834 81,852 2,756 20,422
wiki50 50% 10,000 10,000 2,500 2,500
wiki10 10% 2,000 18,000 500 4,500
wiki5 5% 1,000 19,000 250 4,750

tweets 32% 28,955 61,041 3,160 6,840
tweets50 50% 10,000 10,000 2,500 2,500
tweets10 10% 2,000 18,000 500 4,500
tweets5 5% 1,000 19,000 250 4,750

Notes: † Train is used as the unlabeled pool (n = 20,000)
∗ Test is used for held-out evaluation (n = 5,000)

annotated datasets for abusive language detection.3 115

Of these, two datasets were sufficiently large and 116

contained enough abusive instances to facilitate our 117

experimental approach. The wiki dataset (Wulczyn 118

et al., 2017) contains comments from Wikipedia 119

editors, labeled for whether they contain personal 120

attacks. A pre-defined test set is given; so, we take 121

our test instances from this set. The tweets (Founta 122

et al., 2018) dataset contains tweets which have 123

been assigned to one of four classes. We binarize 124

by combining the abusive and hate speech classes 125

(=1) and the normal and spam classes (=0). A pre- 126

defined test set is not available so we set aside 10% 127

of the data for testing that is never used for training. 128

To disentangle the merits of AL across class 129

imbalances, we construct three new datasets for 130

both wiki and tweets that have different class dis- 131

tributions: 50% abuse, 10% abuse and 5% abuse. 132

This creates 6 datasets in total (see Tab. 1). To 133

ensure we have sufficient positive instances for all 134

imbalances, we assume that the unlabeled pool has 135

20,000 examples.4 Our AL strategies iterate over 136

2,000 examples as we find in prior experiments that 137

further iterations did not affect performance.5 138

2.3 Evaluation 139

As a baseline, we use the passive supervised macro- 140

F1 score over the full dataset of 20,000 (F120k). 141

For each AL strategy, we measure efficiency on the 142

held-out test set as the number of examples needed 143

to surpass 90% of F120k, which we call N90.6 For 144

3https://hatespeechdata.com
4The wiki dataset has 10,834 abusive entries; so, at 50%

abuse, the upper limit on a rebalanced pool is 21,668.
5AL experiments are implemented in Python using the

small-text library (Schröder et al., 2021a)
6To fairly compare models, we calculate N90 relative to

best F120k (achieved by dBERT in all cases).
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efficacy, we use the maximum F1 score achieved145

by each AL strategy, which we call F1AL.146

2.4 Experimental Parameters147

Table 2: The best AL parameters and performance for
each classifier (transformers vs SVM).

Best AL Combinations∗ Metrics
Dataset Classifier Seed Cold Batch Query F120k

† F1AL N90

wiki50 dBERT 20 Random 50 LC 0.920 0.922 170
SVM 20 Random 50 LC 0.875 0.838 1520

wiki10 dBERT 20 Heuristic 50 LC 0.859 0.866 170
SVM 20 Heuristic 50 LC 0.809 0.810 320

wiki5 dBERT 20 Heuristic 50 LC 0.807 0.855 220
SVM 20 Heuristic 50 LC 0.785 0.780 170

tweets50 dBERT 20 Random 50 LC 0.939 0.939 170
SVM 20 Random 50 LC 0.931 0.926 220

tweets10 dBERT 20 Heuristic 50 LC 0.904 0.902 220
SVM 20 Random 50 LC 0.893 0.901 170

tweets5 dBERT 200 Heuristic 50 LC 0.844 0.856 300
SVM 20 Heuristic 50 LC 0.825 0.830 170

Notes: † global metric from passive training over the full dataset
∗ calculated by averaging the rank performance on F1AL, N90

For each artificially-rebalanced dataset (x6), we148

vary 5 experimental parameters giving a total of149

432 unique experimental runs, each of which we150

repeat with 3 random seeds and average. Tab. 2151

shows the best parameters for each dataset and each152

classifier. We now briefly explain the experimental153

variables.7 For clarity, we focus on wiki, and evalu-154

ate experimental parameters for transformers-based155

AL. Results for tweets are similar.156

Seed and Batch Size We test two choices for the157

size of the seed used in the cold start (20, 200),158

and three choices for batch size (50, 100, 500). We159

find AL is more efficient with smaller seeds and160

batch sizes. The F1 score achieved with a seed of161

20 and 4 AL iterations of 50 (|L| = 220) exceeds162

that reached with a seed of 200 and 0 iterations163

(|L| = 200) by 55pp for wiki50, 4pp for wiki10,164

and 10pp for wiki5. Batch sizes of 100 and 500 are165

less efficient than 50, with 700–1,100 and 150–200166

more examples needed for N90, respectively.167

Cold Start We evaluate two choices to select the168

examples for the seed. (1) Random: Seed exam-169

ples are randomly selected. This could result in170

no abusive content being sampled with imbalanced171

data. (2) Heuristics: Seed examples are selected172

using keywords (n = 652), taken from the abu-173

sive language literature (ElSherief et al., 2018a,b;174

Gabriel, 2018; Davidson et al., 2017).8 For wiki50,175

random- and heuristics-based initialization achieve176

7See Appendix C for additional detail. In each figure, we
present the mean run (line) and standard deviation (shaded).

8See Appendix B for details of keyword sampling.

equivalent N90. However, with a seed of 20, a 177

third of randomly-initialized experiments fail on 178

wiki10 and all experiments fail for wiki5. This 179

shows that when the data is imbalanced, a random 180

seed is sub-optimal because both class labels are 181

not observed. 182

Classifier and Query Strategy For transformers- 183

based AL, we use distil-roBERTa (dBERT), which 184

is computationally efficient and performs compet- 185

itively to larger transformer models (Sanh et al., 186

2019; Schröder et al., 2021b). As a baseline for tra- 187

ditional AL without pre-trained models, we use a 188

linear support vector machine (SVM). Appendix A 189

presents details of model training. In conjunction 190

with these models, we present the impact of Least- 191

Confidence (LC), an active data acquisition strategy 192

that selects items close to the decision boundary 193

(Lewis and Gale, 1994).9 For comparison, we ran- 194

domly sample items from the unlabeled pool at 195

each iteration. When training over the full dataset, 196

dBERT always outperforms SVM, models have 197

worse performance on more imbalanced datasets, 198

and wiki is harder to predict than tweets (Tab. 2). In 199

all cases, LeastConfidence outperforms the random 200

baseline, and the gain is larger for higher imbal- 201

ances: for wiki10 and wiki5, N90 is lower by 150 202

and 100 examples, respectively. 203

3 Results 204

Efficiency For each dataset, we find active strate- 205

gies that need just 170 examples (0.8% of the full 206

dataset) to reach 90% of passive supervised learn- 207

ing performance (see Tab. 2). 208

Efficacy AL can even outperform passive learn- 209

ing. For all but one dataset (tweets10), dBERT 210

with LeastConfidence achieves a higher F1 score 211

over just 2,000 examples than passive supervised 212

training over the whole dataset (F1AL ≥ F120k in 213

Tab. 2). For wiki5, it achieves 5pp higher (Fig. 1). 214

The Effect of Pre-Training We find AL makes 215

more of a contribution to an SVM than to dBERT, 216

shown by the larger gap to the random baseline 217

(Fig. 2). With its extensive pre-training, dBERT 218

achieves high performance on few examples, even 219

if randomly selected. Nonetheless, for high im- 220

balances, an AL component still enhances dBERT 221

performance above the random baseline, requiring 222

9We test further strategies: GreedyCoreSet (Sener and
Savarese, 2017) and EmbeddingKMeans (Yuan et al., 2020),
but LeastConfidence outperformed them (see Appendix C).
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150 and 100 fewer examples for N90, and achiev-223

ing 2pp and 4pp higher F1 score, for wiki5 and224

wiki10 respectively.225

Train Distribution To assess why active learn-226

ing is more impactful with imbalanced data, we227

evaluate the imbalance of the labeled pool at each228

iteration (Fig. 3). In all class imbalances, the ran-229

dom baseline tends to the dataset distribution as ex-230

pected. For imbalanced data, the LeastConfidence231

strategy actively selects abusive examples from the232

pool and tends toward a balanced distribution.233

Out-of-domain Testing Our results show an AL234

strategy with just 1.5% of the dataset can reach,235

and even surpass, the F1 score of passive train-236

ing on the full dataset. This raises a risk that the237

models are overfitting and may not generalize. We238

take the models trained on each of the three class239

imbalances for wiki and test them on their equiv-240

alent tweets datasets, and vice versa. As with in-241
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Figure 4: Cross-dataset generalization (dBERT).

domain results, models trained on wiki and applied 242

to tweets reach F120k within a few iterations. The 243

gap between LeastConfidence and the random base- 244

line is even larger for out-of-domain evaluation ver- 245

sus in-domain (Fig. 4). This suggests that AL does 246

not result in overfitting. A similar pattern is ob- 247

served for all datasets, including training on tweets 248

and applying to wiki (see Appendix D). 249

4 Discussion 250

Coupling pre-trained transformers with AL can 251

create models that require significantly fewer ex- 252

amples to reach equivalent performance to passive 253

training over the full dataset. Note that by train- 254

ing a new transformer model from scratch in each 255

iteration, AL likely has a larger environmental foot- 256

print (Bender et al., 2021). Traditional AL (SVM) 257

remains a competitive strategy, especially for the 258

tweets dataset at higher imbalances, suggesting ac- 259

tive data acquisition can substantially assist simpler 260

model architectures. 261

Our findings are subject to some limitations: 1) 262

we evaluate against two datasets with pre-existing 263

labels. The wiki dataset samples banned comments 264

and tweets samples with keywords and sentiment 265

analysis. This reduces the linguistic diversity of 266

the data, potentially making the task easier to learn 267

in fewer examples; 2) we only use two models to 268

represent transformers- and traditional AL; so, it is 269

unclear whether a larger transformers model (e.g. 270

BERT) or a simpler ML model (e.g., logistic regres- 271

sion) would reproduce similar results. Future work 272

is needed to verify these findings against more di- 273

verse datasets and alternative model architectures. 274

Our key finding is that more data is not always 275

better and in the scenarios we tested, it can be 276

worse. These results show that more attention 277

needs to be paid to how data is acquired; the current 278

paradigm might be needlessly expensive and place 279

annotators at unneeded risk of harm. 280
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We use two English-language datasets which were 476

curated for the task of automated abuse detection 477

(Wulczyn et al., 2017; Founta et al., 2018). The 478

wiki dataset can be downloaded from https: 479

//github.com/ewulczyn/wiki-detox 480

and is licensed under Apache License, Version 481

2.0. The tweets dataset can be downloaded 482

with tweet ids from https://github.com/ 483

ENCASEH2020/hatespeech-twitter. 484

These datasets cover two different domains: 485

Wikipedia and Twitter. Each dataset is cleaned by 486

removing extra white space, dropping duplicates 487

and converting usernames, URLs and emoji to 488

special tokens. 489

We fine-tune distil-roBERTa using the 490

transformers integration with the 491

small-text python package (Wolf et al., 492

2019; Schröder et al., 2021a). distil-roBERTa has 493

six layers, 768 hidden units, and 82M parameters. 494

We encode input texts using the distil-roBERTa 495

tokenizer, with added special tokens for usernames, 496
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Table 3: The effect of varied keyword density thresholds
on F1, precision, false positive rate (FPR) and false
negative rate (FNR).

K F1 FPR FNR
wiki

1.0% 76.0% 2.7% 52.8%
5.0% 69.0% 0.5% 71.8%

10.0% 91.0% 0.1% 87.4%
25.0% 49.0% 0.0% 98.4%

Tweets
1.0% 85.0% 4.5% 29.6%
5.0% 80.0% 2.9% 42.7%

10.0% 83.0% 0.9% 76.4%
25.0% 75.0% 0.2% 98.5%

URLs and emoji. All models were trained for 3497

epochs with early stopping based on the validation498

set loss, a learning rate 2e − 5 and a weighted499

Adam optimizer. All other hyperparameters500

are set to their small-text defaults. In each501

active learning iteration, we use 10% of each502

labeled batch for validation. As a baseline to503

transformers-based AL, we use a support vector504

machine with no pre-training which we implement505

with sklearn. To encode a vector representation506

of input texts, we use a TD-IDF transformation fit507

to the training dataset.508

All experiments were run on the JADE-2 cluster509

using one NVIDIA Tesla V100 GPU per experi-510

ment. For transformer-models, it took on average511

1.5 hours to run each experiment. For SVM, it took512

less than a minute to run each experiment and these513

can be easily be run on a CPU. We repeat each ex-514

periment three times using three seeds to initialize515

a pseudo-random number generator.516

B Sampling with Keywords517

We use a heuristic to weakly label examples from518

the unlabeled pool to be selected for the initial519

seed. Keywords are a commonly-used approach520

(Ein-Dor et al., 2020, e.g. see) and searching for521

text matches is computationally efficient over a522

large pool of unlabeled examples. However, the523

keyword heuristic only approximates the true label524

and can introduce biases due to non-abusive use525

of offense and profanities. In our data, we rely on526

a keyword density measure (K) which equals the527

number of keyword matches over the total tokens528

in a text instance. We then experiment with var-529

ied thresholds of K ∈ [1%, 5%, 10%, 25%] for530

a weak label of abusive text. A higher threshold531

reduces false positives but also decreases true posi-532

tives. We find a threshold of 5% best balances these533

directional effects (see Tab. 3). Making predictions 534

using a keyword heuristic with 5% cut-off achieves 535

an F1-score relative to the true labels of 69% for 536

wiki and 80% for tweets. Using this threshold, 537

examples are expected to be abusive if the percent- 538

age of keywords in token tokens exceeds 5% (see 539

Appendix B). We then sample equal numbers of 540

expected abusive and non-abusive examples from 541

the pool and reveal their true labels. 542

C Additional Experimental Analysis 543

In Fig. 5, we present the learning curve and com- 544

parisons of each experimental variable for both 545

datasets and classifiers to supplement the results 546

discussed in the main paper. For completeness, 547

we make all our experimental results available in 548

a csv file at [GITHUB URL]. In each panel of 549

Fig. 5, we vary one parameter whilst holding all 550

others fixed. This allows us to evaluate the impact 551

of one variable, ceteris paribus. Namely, the ref- 552

erence values are seed size of 20, a cold strategy 553

of heuristics-based sampling, a batch size of 50, 554

and a query strategy of LeastConfidence. In addi- 555

tional to the query strategies discussed in the main 556

paper, we evaluate two further strategies coupled 557

with dBERT: 1) GreedyCoreSet is a data-based di- 558

versity strategy which selects items representative 559

of the full set (Sener and Savarese, 2017) and 2) 560

EmbeddingKMeans is a data-based diversity strat- 561

egy which uses a dense embedding representation 562

(such as BERT embeddings) to cluster and sample 563

from the nearest neighbors of the k centroids (Yuan 564

et al., 2020). On our datasets, these two strategies 565

are high performing in terms of the maximum F1 566

score they achieve over 2,000 examples, but take 567

longer to learn and are less efficient than Least 568

Confidence. 569

D Generalizability of Performance 570

In the main paper, we present the results of a model 571

trained on wiki5, and evaluated on tweets5. In 572

Fig. 6, we demonstrate the equivalent results for 573

all class imbalances and both datasets. In general, 574

tweets is harder to predict than wiki, so see a larger 575

change in performance when training on tweets 576

and evaluating on wiki. For 50% and 10% abuse, 577

performance is similar across test sets. For 5% 578

abuse, there is a larger difference especially for the 579

random baseline. However, in all cases, the perfor- 580

mance of the LeastConfidence strategy generalizes 581

well to out-of-domain testing. 582

7



wiki dataset

tweets dataset
SL-20k 20 200

N examples

0.25
0.5

0.75
1

M
ac

ro
 F

1

dBERT
50% Abuse

N examples

M
ac

ro
 F

1

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

M
ac

ro
 F

1

dBERT
10% Abuse

N examples

M
ac

ro
 F

1

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

M
ac

ro
 F

1

dBERT
5% Abuse

500 1000
N examples

M
ac

ro
 F

1
SVM

5% Abuse

N examples

0.25
0.5

0.75
1

dBERT
50% Abuse

N examples

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

dBERT
10% Abuse

N examples

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

dBERT
5% Abuse

500 1000
N examples

SVM
5% Abuse

(a) Seed Size

wiki dataset

tweets dataset
SL-20k Heuristics Random

N examples

0.25
0.5

0.75
1

M
ac

ro
 F

1

dBERT
50% Abuse

N examples

M
ac

ro
 F

1

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

M
ac

ro
 F

1

dBERT
10% Abuse

N examples

M
ac

ro
 F

1

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

M
ac

ro
 F

1

dBERT
5% Abuse

500 1000
N examples

M
ac

ro
 F

1

SVM
5% Abuse

N examples

0.25
0.5

0.75
1

dBERT
50% Abuse

N examples

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

dBERT
10% Abuse

N examples

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

dBERT
5% Abuse

500 1000
N examples

SVM
5% Abuse

(b) Cold Strategy

wiki dataset

tweets dataset
SL-20k 50 100 500

N examples

0.25
0.5

0.75
1

M
ac

ro
 F

1

dBERT
50% Abuse

N examples

M
ac

ro
 F

1

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

M
ac

ro
 F

1

dBERT
10% Abuse

N examples

M
ac

ro
 F

1

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

M
ac

ro
 F

1

dBERT
5% Abuse

500 1000
N examples

M
ac

ro
 F

1

SVM
5% Abuse

N examples

0.25
0.5

0.75
1

dBERT
50% Abuse

N examples

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

dBERT
10% Abuse

N examples

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

dBERT
5% Abuse

500 1000
N examples

SVM
5% Abuse

(c) Batch Size

wiki dataset

tweets dataset
SL-20k EmbKMeans GCoreset LeastConf Random

N examples

0.25
0.5

0.75
1

M
ac

ro
 F

1

dBERT
50% Abuse

N examples

M
ac

ro
 F

1

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

M
ac

ro
 F

1

dBERT
10% Abuse

N examples

M
ac

ro
 F

1

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

M
ac

ro
 F

1

dBERT
5% Abuse

500 1000
N examples

M
ac

ro
 F

1

SVM
5% Abuse

N examples

0.25
0.5

0.75
1

dBERT
50% Abuse

N examples

SVM
50% Abuse

N examples
1/0

0.25
0.5

0.75
1/0

dBERT
10% Abuse

N examples

SVM
10% Abuse

0 500 1000/0
N examples

0
0.25

0.5
0.75

dBERT
5% Abuse

500 1000
N examples

SVM
5% Abuse

(d) Query Strategy

Figure 5: Learning curves per dataset-class imbalance pair showing the effect of isolated experimental variables on
traditional (SVM) and transformers-based (dBERT) active learning.
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(b) Models trained on 10% abuse
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Figure 6: For each class imbalance, we train a distil-roBERTa model on wiki and evaluate it on the tweets dataset,
and vice versa. In each panel, we show a model’s own test set performance alongside performance on the cross test
set to assess generalizability.
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