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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive reasoning capabili-
ties, yet their direct application to NP-hard combinatorial problems (CPs) remains
underexplored. In this work, we systematically investigate the reasoning abilities
of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce
ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial op-
timization with Routing and Dynamic attention. ACCORD features a novel dataset
representation and model architecture that leverage the autoregressive nature of
LLMs to dynamically enforce feasibility constraints, coupled with attention-based
routing to activate problem-specific LoRA modules. We also present the ACCORD-
90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP,
Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate
that our ACCORD model, built on an 8B-parameter Llama backbone, consistently
outperforms standard prompting and input-output methods, even when compared
to much larger LLMs, such as gpt-4. Ablation studies further show that our output
structure enhances solution feasibility. To the best of our knowledge, this is the
first large-scale, end-to-end framework for exploring the applications of LLMs to a
broad spectrum of combinatorial optimization problems.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly established themselves as versatile engines for reason-
ing across a broad spectrum of tasks, encompassing arithmetic, commonsense logic , Thoppilan et al.
(2022), Chowdhery et al. (2023), Brown et al. (2020). Among the prominent strategies enabling such
capabilities is the Chain-of-Thought approach, which allows these models to decompose complex
problems into sequential, interpretable steps Wei et al. (2022b).

Recent efforts have sought to adapt these reasoning techniques to address more advanced optimization
tasks. Combinatorial optimization problems (CPs) are decision-making challenges where the goal is
to select an optimal arrangement or subset from a large, discrete set of possibilities. Classic examples
include the Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and Job Shop
Scheduling Problem (JSSP), which have widespread applications in logistics, manufacturing, and
artificial intelligence Lenstra et al. (1979). Due to their NP-hard nature, even moderately sized
instances possess a combinatorial explosion of potential solutions, rendering brute-force approaches
infeasible. As a result, practical methods typically rely on heuristics or approximation algorithms to
provide near-optimal solutions within reasonable time frames. As NP-hard problems, CPs present
huge obstacles in practical settings Oroojlooyjadid et al. (2020). Presently, the predominant paradigm
in industry relies on metaheuristic algorithms—sophisticated combinations of simple, efficient
heuristics—for solving CPs under various constraints. However, the success of these heuristics
is often highly sensitive to the specific structure and requirements of each problem, necessitating
tailored approaches for optimal results.

At the same time, investigations into leveraging LLMs for combinatorial problem solving have
revealed significant research gaps. While the latest breakthroughs highlight the promise of LLMs in
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Figure 1: Overview of the ACCORD inference pipeline. As an example, a knapsack problem
described in natural language is provided as input, then Attention based Dynamic router5 activates the
corresponding LoRA layer specialized for knapsack tasks. Multiple candidate solutions are generated
via sampling, each checked for feasibility. The best feasible solution is returned as the final output.
Note that the pipeline generalizes to other combinatorial problems in the same manner; knapsack is
shown here for illustration.

diverse reasoning scenarios Abgaryan et al. (2024), Iklassov et al. (2024), Wei et al. (2022a), Zhang
et al. (2022), their full potential in the context of combinatorial optimization remains largely untapped.
Applying LLMs directly to these problems presents unique challenges: LLMs are trained primarily
for natural language generation, not for enforcing strict combinatorial constraints, leading to issues
such as hallucinations (plausible but infeasible solutions) Huang et al. (2022), lack of optimality, and
limited interpretability Valmeekam et al. (2022). Furthermore, the absence of systematic search or
explicit constraint mechanisms means LLM outputs can violate feasibility or fail to improve upon
prior attempts. Recent advances have begun to explore the application of large language models
(LLMs) to combinatorial optimization (CO). Numerous prompting-based approaches have been
tested on CO tasks Yang et al. (2023); Huang et al. (2024); Mittal et al. (2024); Wei et al. (2022b);
Zhou et al. (2022); Madaan et al. (2023); Iklassov et al. (2024), demonstrating progress in solution
quality and constraint handling. However, to date, there has been no comprehensive study evaluating
a unified fine-tuned LLM-based framework for NP-hard CO problems across multiple domains.

In this work, we address this gap by introducing ACCORD (Autoregressive Constraint-satisfying
generation for COmbinatorial optimization with Routing and Dynamic attention), a novel framework
for testing the reasoning capabilities of LLMs on combinatorial optimization problems. Our main
contributions are as follows: (i) We propose the ACCORD90k supervised dataset for TSP, VRP,
Knapsack, FlowShop, JSSP, and BinPacking, employing an ACCORD representation that explicitly
encodes problem constraints by leveraging the autoregressive nature of LLMs;(ii) we develop a model
architecture that leverages attention-based dynamic routing and specialized Low-Rank Adaptation
(LoRA) modules for different CO tasks; (iii) extensive ablation studies demonstrate that our method
achieves lower optimality gaps and higher solution feasibility than both the traditional list-of-lists
representation and state-of-the-art prompting techniques (including GPT-4 with the Code Interpreter
enabled). Notably, it achieves substantial improvement percentage difference in feasibility over the
list-of-list representation, with gains of 24.86% in FlowShop, 7% in JSSP, 4% in Knapsack, and
2% in BinPacking, 10% in VRP and TSP, problems. To the best of our knowledge, this is the first
work to demonstrate large-scale, end-to-end combinatorial problem solving with LLMs, offering new
directions for testing symbolic reasoning and optimization within language models.

2 RELATED WORK

2.1 HEURISTIC AND MACHINE LEARNING APPROACHES ON CO PROBLEMS

Combinatorial optimization has been tackled with both heuristic and exact methods. Simple priority
dispatching rules (PDRs), such as shortest processing time or earliest due date, are computationally
efficient but often yield suboptimal solutions due to their greedy nature Lenstra et al. (1979). Meta-
heuristics (e.g., simulated annealing, tabu search, genetic algorithms) offer improved solution quality,
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and exact approaches like the shifting bottleneck procedure Adams et al. (1988), mixed-integer
programming, and constraint programming can find optimal solutions for small instances, though at
high computational cost Roy & Sussmann (1964); Goel et al. (1996). Recently, machine learning,
particularly deep reinforcement learning (RL) and graph neural networks (GNNs) have advanced
combinatorial optimization Zhang et al. (2020a); Khalil et al. (2017); Kool et al. (2019). RL methods
treat scheduling as sequential decision making, learning dispatching policies via environment interac-
tion Zhang et al. (2020a). GNNs encode jobs and machines as nodes, enabling permutation-invariant
representations and, when combined with RL, can model complex dependencies Khalil et al. (2017).
Attention-based and sequence-to-sequence models further enhance performance on tasks like TSP
and VRP, often utilizing iterative refinement Kool et al. (2019).While prior work explores prompting,
search, and task-specific fine-tuning for CO, we focus on a unified, multi-task feasibility-aware
representation paired with dynamic adapter routing.

2.2 LARGE LANGUAGE MODELS IN COMBINATORIAL OPTIMIZATION

The advent of LLMs has introduced new paradigms for CO. Early work explored whether LLMs
could generate solutions through prompting Yang et al. (2023), Huang et al. (2024), Mittal et al.
(2024), Wei et al. (2022b) Zhou et al. (2022), Madaan et al. (2023), Iklassov et al. (2024). Prompting-
based strategies, such as OPRO, involve iterative refinement based on feedback, while methods for
VRP employ self-debugging and verification to enhance feasibility Huang et al. (2024). However,
scalability remains a challenge, as even strong prompting techniques struggle on larger or more
complex instances Mittal et al. (2024). Recent research has explored a variety of prompting strategies
to leverage LLMs for solving combinatorial optimization (CO) problems. The Input-Output (IO)
method presents the LLM with multiple examples of input and corresponding output solution pairs.
The LLM is then prompted to generate an output solution in the same format as the provided
examples. This approach relies on the LLM’s ability to generalize the mapping from input to
output based on observed patterns. In Chain-of-Thought (CoT) prompting, the LLM is guided
to produce a sequence of intermediate reasoning steps, or ”thoughts,” before arriving at the final
answer Wei et al. (2022b). This technique encourages the model to break down complex CO tasks
into structured, stepwise reasoning, improving both transparency and solution quality. Least-to-
Most (LtM) prompting strategy aims to decompose a complex problem into a sequence of simpler
subproblems, solving them incrementally Zhou et al. (2022). Each subproblem builds upon the
solutions of previous ones, enabling the LLM to tackle challenging CO tasks through a series of
manageable steps. Self-Refinement (SR) is an iterative prompting technique wherein the LLM first
generates an initial solution, then provides feedback on its own output, and finally refines the solution
based on this feedback Madaan et al. (2023). The process repeats until a satisfactory solution is
reached. Self-Guiding Exploration for Combinatorial Problems (SGE) autonomously generates
multiple thought trajectories for a given CO task Iklassov et al. (2024). Each trajectory represents
a distinct heuristic approach, inspired by metaheuristics. SGE decomposes these trajectories into
actionable subtasks, executes them sequentially, and refines the results to ensure optimal solutions.
Prompting examples for each type of instance can be found in Appendix B.1. Fine-tuning LLMs for
CO tasks is another active area Abgaryan et al. (2024),Masoud et al. (2024) . Abgaryan et al. (2024)
showed that fine-tuned LLM on job-shop scheduling, demonstrates significant improvements in
solution quality. Similarly, Masoud et al. (2024) applied fine-tuning to TSP instances with promising
but size-limited results. Hybrid methods integrate LLMs into evolutionary or search frameworks,
where the LLM guides genetic operations or receives feedback from constraint solvers to iteratively
improve solutions Liu et al. (2023); Wan et al. (2024); Awasthi et al. (2025). While promising, these
approaches often entail significant computational overhead and still face scaling hurdles.

3 PRELIMINARIES: OVERVIEW OF CLASSIC COMBINATORIAL OPTIMIZATION
PROBLEMS

Combinatorial optimization involves searching for the best solution from a finite set of possibilities.
Formally, given a set of feasible solutions S and an objective function f : S → R, the goal is to find

s∗ = argmin
s∈S

f(s)

or, in some cases, to maximize f(s) depending on the problem. Details of each of the formal
definition of each combinatorial optimization task can be found in Appendix A

3
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Table 1: Optimality gap (%) comparison for prompting methods using GPT-4 with Code Interpreter
(IO, CoT, SR, LtM, SGE) vs. ACCORD (Llama 8B) on five combinatorial optimization tasks
(Knapsack, Bin Packing, TSP, VRP, JSSP). Gap is defined as (obj−opt)/opt×100%; N/A indicates
no feasible solution. Sizes 5, 8, 12 denote increasing instance scales per task (comparable down
a column, not across tasks). For each (task, size) combination, 50 instances were used, shared
across all methods. For every instance–method pair, a fixed budget of 60 candidate solutions was
generated(under identical sampling setting, temperature=1.0, top p=1, top k=50), and the best one,
based on the lowest gap was selected. Bold values (with an asterisk) mark the best mean gap at each
size. Structured prompting (LtM, SGE) narrows gaps relative to IO/CoT/SR, while ACCORD method
with small Llama 8B model backbone achieves consistently low gaps with high feasibility.

Size Method Knapsack BinPack TSP VRP JSSP

5

IO (GPT-4) 90.1 108.2 100.3 102.0 105.3
CoT (GPT-4) 66.9 78.2 81.2 78.2 79.4
SR (GPT-4) 62.0 77.4 71.6 72.5 71.7

LtM (GPT-4) 21.6 40.0 43.6 40.7 44.1
SGE (GPT-4) 8.1 9.1 8.3 11.9 9.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 3.9* 0.0* 0.6* 1.0* 0.0*

8

IO (GPT-4) 103.5 112.8 116.9 116.3 108.2
CoT (GPT-4) 73.8 85.1 89.0 89.5 85.2
SR (GPT-4) 72.6 86.3 85.6 83.3 78.4

LtM (GPT-4) 26.4 52.7 53.5 54.4 49.8
SGE (GPT-4) 14.9 21.0 15.2 19.7 21.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 7.4* 0.0* 1.8* 1.0* 5.0*

12

IO (GPT-4) 101.5 120.7 121.6 118.5 117.6
CoT (GPT-4) 79.3 93.8 86.8 90.1 89.3
SR (GPT-4) 77.1 82.2 88.6 88.4 87.0

LtM (GPT-4) 35.8 55.4 57.5 59.2 56.0
SGE (GPT-4) 16.8 22.4 16.1 24.0 22.9

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 5.1* 2.6* 2.9* 2.2* 12.4*

4 MAIN METHOD: ACCORD REPRESENTATION FOR FEASIBILITY-AWARE
SOLUTION GENERATION

A core challenge in applying Large Language Models (LLMs) to combinatorial optimization is the
effective encoding of feasibility constraints within the generated solutions. Conventional representa-
tions, such as the “list of lists” format, provide direct encodings of solution sets, which are familiar to
LLMs due to their prevalence in general-purpose data and code corpora(more details of the format are
available in Appendix A.1). However, these representations are static, constraints are only checked af-
ter solution generation, offering limited guidance for incremental feasibility during the autoregressive
decoding process. To address this limitation, we decided to utilize the autoregressive nature of the
LLMs and developed a representation, which is specifically designed to leverage the autoregressive
generation paradigm of LLMs. Unlike the list-based format, our representation decomposes solutions
into a sequence of state transitions, with each step not only specifying the next element of the solution
but also explicitly updating and exposing the relevant feasibility metrics (e.g., cumulative weights,
distances, machine usage, or value). This design allows the model to compute and check constraints
dynamically as each token is generated, closely mimicking the typical reasoning and verification
process of a human solver.

Formal ACCORD representation. Consider a CO problem with decision sequence X =
(x1, . . . , xT ), constraints C(X), and objective f(X). An ACCORD serialization is a sequence

S = (s1, . . . , sT ), st = (at, ∆t, ut),

where at is the action at step t, ∆t is the incremental update to feasibility state variables, and ut =
g(ut−1, at) is the updated state summary that explicitly encodes (and textually asserts) constraint
satisfaction. Generation factorizes autoregressively:

P (S) =

T∏
t=1

P
(
st | s<t

)
,

and terminates with a special token ⟨END⟩, after which a verifier checks uT |= C.

4
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Knapsack (capacity W ):

st =
(
item id, (∆v,∆w), (vt−1+∆v, wt−1+∆w ≤ W )

)
.

TSP/VRP:
st =

(
next node, ∆d = dist(nt−1, nt), Dt = Dt−1+∆d

)
.

JSSP:
st =

(
op(j, k), ∆t = pj,k, timeline(Mj,k) updated without overlap

)
.

ACCORD representation embeds constraint satisfaction directly into the generation process. For
instance, in the Knapsack problem, each item addition is accompanied by an explicit update of the
running total value and weight, immediately verifying the capacity constraint at each step:

[[item id, weight, value] -> value: prev v + value =
new v, weight: prev w + weight = new w <= capacity],
...

Similarly, for Bin Packing, the incremental assignment of items to bins is annotated with cumulative
weights, ensuring that no bin exceeds its capacity as the sequence unfolds. Routing problems (VRP,
TSP) and scheduling problems (JSSP) are analogously handled by tracking cumulative distances or
machine times within the autoregressive output stream. Example of each of problem type in ACCORD
representation is available in the Appendix A.1. This approach transforms the constraint satisfaction
problem into a stepwise process, where feasibility checks are interleaved with generation. As a
result, the LLM is naturally guided away from infeasible sequences, as each decision is immediately
contextualized by the current state of the solution.

4.1 DATASET GENERATION

We generated synthetic supervised datasets for several CO problems using Google OR-Tools Google
(2025) as the solver. For each instance, solutions were produced in both the conventional “list of lists”
and ACCORD representations. Roughly 15,000 instances were created per task, using a compute node
with 64 CPUs (Intel® Xeon® Gold 5218 @ 2.30GHz, 16 cores per socket, 2 threads per core, x86 64
architecture, 46-bit physical / 48-bit virtual addressing, 44MiB L3 cache).

TSP & VRP: Instances varied in location count (N ∈ {5, 8, . . . , 100}) and number of vehicles
(V ∈ {1, . . . , 10}), with random coordinates and demands. OR-Tools solved these using the
‘PATH CHEAPEST ARC‘ strategy. Knapsack: Item counts (N ∈ {5, . . . , 100}) and difficulty were
varied, influencing item properties and constraints. Optimal solutions were computed using OR-Tools,
discarding instances that timed out. Bin Packing: Instances varied by item count, weight limits, and
target bin numbers. Bin capacities were set accordingly, and OR-Tools was used to minimize bin
usage under a timeout. JSSP: Job Shop Scheduling instances ranged from 10× 10 to 100× 20 jobs
and machines, with random operation sequences and durations. Solutions minimized makespan using
the CP-SAT solver. FSSP: Permutation Flowshop instances ranged from 5× 1 to 50× 2 and 2× 50,
with random processing times. Solutions were generated with the NEH heuristic Nawaz et al. (1983).
For fine-tuning, a dataset of 15,000 instances was used per task, with 600 out of training distribution
examples reserved for validation.

5 ROUTER ARCHITECTURE

To dynamically activate the appropriate LoRA layers for each combinatorial optimization problem,
we use an attention-based Dynamic Router TextClassifier that selects the relevant LoRA weights
based on the instruction text (see Figure 1). Our model builds on a transformer architecture enhanced
to capture problem-specific features. Each input token xi is embedded with positional information
and normalized as E′ = Dropout(LayerNorm(Etoken(x) +Epos(p))).

The resulting embeddings are projected to the hidden dimension and passed through several trans-
former layers with alternating multi-head attention and feed-forward sublayers, each followed
by layer normalization. Token representations from the final transformer layer are pooled using
attention-based pooling: r =

∑n
i=1 aihi, and passed through a classification head defined by

y = W2 · LayerNorm(GELU(W1r+ b1)) + b2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 8 10 12 15 20 50
Num Items

0

10

20

30

40

50
Av

er
ag

e 
Fe

as
ib

ili
ty

 (%
)

2.5%

N
o 

da
ta

1.7%

46.7%

26.8%

45.2%

35.7%

9.9%

46.2%

40.4%

42.2%

46.3%

38.9%

47.3%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5 8 10 12 15 20 50
Num Items

0

20

40

60

80

100

120

Av
er

ag
e 

G
ap

 (%
)

111.2%

N
o 

da
ta

0% 3.3%

6.9%
5.2% 7.0%

0%

15.0% 14.8%
5.5%

1.8%

3.9% 3.9%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0

5

10

15

20

25

30

Av
er

ag
e 

Ti
m

e 
(s

ec
on

ds
)

0

5

10

15

20

25

30

Av
er

ag
e 

Ti
m

e 
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for FSSP

(a) Flow Shop
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(d) Knapsack
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(f) VRP

Figure 2: This figure illustrates the performance of the Llama 3.1 (8B) and Llama 3.2 (1B) models in
terms of the average gap percentage compared to the OR-Tools solution, where a lower gap indicates
better performance. The left y-axis represents the average gap percentage, while the right y-axis
corresponds to the running time in seconds. Bar plots indicate the average gap. The line plots depict
the average running time per instance size, with the x-axis showing the problem size in terms of the
number of nodes in the graph representation. Instances labeled as ”No Data” indicate that, within a
sampling budget of 60, the model failed to generate any feasible solution.

The pooled vector r enables instruction-based selection of problem-specific LoRA adapters via
the predicted logits y. The router was trained using 1,000 example instances sampled from each
combinatorial optimization task, resulting in a total training set of 6,000 instances. The data was
split into 80% for training, 15% for validation, and 5% for testing. Further training details of the
router network are provided in Appendix B. The impact of the router is analyzed in the ablation study
presented in Appendix B.2.

6 TRAINING DETAILS

We conducted supervised fine-tuning using input-output pairs for two models from Meta: Llama 3.1
8B and Llama 3.2 1B. To minimize memory usage during training, we employed 4-bit quantized
versions of these models and trained each for 2 epochs. For a fair comparison, we fine-tuned
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Figure 3: Average feasibility comparison with OR-Tools solution across different problem instance
sizes; the higher the feasibility percentage, the better.

each model with the same hyperparameters, varying only the output representation: once using
the list-of-lists format and once using the ACCORD format, while keeping the input and all other
hyperparameters identical. We used Rank-Stabilized Low-Rank Adaptation (RSLoRA) Kalajdzievski
(2023) with a rank of r = 64 and α = 64. We fine tuned for 2 epochs, which required roughly 40
hours and about 30GB of GPU memory on Nvidia RTX A6000 GPU. We limited the context length
of the model to 40k instead of the original 128k, to reduce memory consumption and increase the
speed of fine-tuning. “Context length” refers to the maximum number of tokens (words or subwords)
the model can process at once as input.

6.1 EMPIRICAL COMPARISON WITH LIST-OF-LIST REPRESENTATION

We empirically evaluate the impact of problem representation by fine-tuning Llama 3.1 8B
on both list-of-list and ACCORD formats with identical hyperparameters and input (see Sec-
tion 4.1), using a validation set of 100 out-of-distribution instances for each problem size (n ∈
{5, 8, 10, 12, 15, 20, 25, 30, 50}). The inference pipeline (Fig. 1) employs an Attention-Based Dy-
namic Router (Section 5) to select the appropriate LoRA branch, generating 60 candidate solutions
per instance. Each solution is checked for feasibility, and the best feasible solution, i.e., the one with
the lowest optimality gap is selected as the final output.
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Direction-aware optimality gap. Let Jmodel be the objective value of the model’s best feasible
solution and Jopt the baseline/optimal objective. Set γ = +1 for minimization tasks (TSP, VRP, JSSP,
FSSP, Bin Packing) and γ = −1 for maximization tasks (Knapsack).

Gap(%) = 100 γ
Jmodel − Jopt

|Jopt|
. (1)

This yields Gap ≥ 0 when the model is no better than the baseline and Gap = 0 when it matches
it. We additionally report feasibility rate (%) as the fraction of generated candidates that satisfy all
constraints. Our results (Fig. 3) show that, although list-of-list representation is familiar to LLMs,
models trained with this format tend to ignore feasibility constraints, resulting in lower feasibility
rates and higher optimality gaps. In contrast, the ACCORD representation explicitly encodes feasibility
into the output, enabling the LLM to produce a larger proportion of valid and near-optimal solutions,
particularly as the problem size increases. Table 1 further compares our method against various
prompting strategies (see Section 2 for baselines) on both Llama 8B and GPT-4 with code interpreter
enabled. Notably, while GPT-4 can potentially generate and execute solver code, our ACCORDbased
method enables the LLM to generate solutions end-to-end without code execution. Inference using
the SGE method Iklassov et al. (2024) strictly follows the procedure described in the original paper.
Prompt examples for SGE can be found in Appendix Section B.1. For both our approach and all
prompting baselines, 60 samples per instance are generated, and the best result is selected. ACCORD
consistently outperforms prompting strategies across all 6 combinatorial optimization tasks, and
achieves optimal solutions on smaller instances. We also assess the impact of model size on average
gap, feasibility, and inference time (Fig. 2). The 8B model mostly outperforms the 1B model in
feasibility and optimality gap, with only a moderate increase in inference time. For harder instances,
such as JSSP, the 1B model fails to find feasible solutions within the sampling limit. Our results
demonstrate that scaling from 1B to 8B parameters yields a significant 31.5% relative improvement
in solution quality, reducing the average gap from 6.54% to 4.48%

The most substantial improvements were observed in routing problems, with TSP and VRP showing
65% and 54% relative gap reductions, respectively. The results on ACCORD on TSPLib with strong
neural and heuristic baselines can be found in Appendix Table 11 and additional comparisons on
randomly OOD generated TSP instances can be found in Table 10. Bin packing problems showed
minimal sensitivity to model scale, with only a 1% improvement. In addition to our synthetic OR-
Tools instances, we also evaluated ACCORD8B on Taillard permutation flow-shop benchmarks (50
jobs × 10 machines and 50 jobs × 20 machines; avg. gap ≈ 13.7%) and on job-shop benchmarks
TAITaillard (1993) (15 × 15 to 50 × 20; avg. gap ≈ 21.7%) and DMUDemirkol et al. (1998) (20 × 15
to 50 × 15; avg. gap ≈ 22.1%) against standard heuristics (MWR/MOR/SPT) and the L2D neural
scheduler (see Table 2 and 9).

Table 2: Comparison of different methods on the JSSP TAI benchmark (sampling budget = 60).
Lower values indicate solutions closer to the optimal, representing better scheduling performance. An
asterisk (*) denotes the best result based on the Percentage Gap. Classic JSSP heuristics (FDD/WKR,
MOPNR, MWKR, SPT), whose gap values are unaffected by sampling and therefore do not include
standard deviation, are described in Appendix B.2. Neural methods include L2D, RASCLB, and
ACCORD-Ours.

15x15 20x15 20x20 30x15 30x20 50x15 50x20 Average
Method

FDD/WKR 47.45 50.57 47.57 45.01 56.30 37.72 42.80 46.77
MOPNR 44.98 47.97 43.68 45.59 48.23 31.25 39.24 42.99
MWKR 56.74 60.65 55.60 52.61 63.93 41.90 55.62 55.29
SPT 54.64 65.24 64.11 61.61 66.03 51.37 61.00 60.57
L2D 25.95 ± 3.37 30.03 ± 3.90 31.60 ± 4.11 33.02 ± 4.29 33.62 ± 4.37 26.15 ± 3.40 26.40 ± 3.43 29.54 ± 3.84
RASCLB 20.59 ± 2.47 25.31 ± 3.04 25.47 ± 3.06 27.27 ± 3.27 30.40 ± 3.65 20.69 ± 2.48 26.40 ± 3.17 25.16 ± 3.02
ACCORD-Ours 19.34 ± 1.93* 18.00 ± 1.80* 21.11 ± 2.11* 21.44 ± 2.14* 30.05 ± 3.00* 17.57 ± 1.76* 24.32 ± 2.43* 21.69 ± 2.17*

6.2 ABLATION STUDY ON LATENT SPACE PROXIMITY AND SOLUTION FEASIBILITY

To investigate the connection between latent representations and solution feasibility, we analyzed 500
TSP instances processed using both ACCORD and list-of-list formats. For each instance, we extracted
hidden-state representations from the final transformer layer of the Llama 3.1 8B model with PCA
dimensionality reduction, then computed the Euclidean distance between paired representations

8
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from each format. We subsequently evaluated the feasibility of the solutions generated by both
models. Statistical analysis revealed a significant negative correlation between latent distance and
solution feasibility (r = −0.1182, p = 0.0155, p < 0.05), indicating that solutions whose latent
representations are closer to those produced by the ACCORD format are more likely to satisfy
constraints. This trend was further supported by quartile analysis, which showed feasibility rates
consistently decreasing as latent distance increased. Notably, this relationship holds despite a large
performance gap between the formats (71.4% feasible solutions for ACCORD vs. 1.6% for list-of-lists).
These findings suggest that LLMs encode constraint satisfaction geometrically: solutions closer to the
ACCORD manifold in latent space are more likely to be feasible. Thus, latent proximity can predict
solution quality, indicating that neural solvers capture structural information about combinatorial
constraints beyond explicit training signals.
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Figure 4: Latent representation distance versus solution feasibility on TSP problems, demonstrating
negative correlation between distance and constraint satisfaction.

7 CONCLUSION

We introduced ACCORD a framework that encodes combinatorial constraints into an autoregressive
text format and uses dynamic LoRA routing to probe an LLM’s end-to-end ability on NP-hard
tasks. On six standard benchmarks (TSP, VRP, FlowShop, JSSP, Knapsack, BinPacking), an 8B-
parameter model trained with ACCORD achieves strong feasibility rates and competitive optimality
gaps compared to prompting and a naı̈ve list-of-lists format. ACCORD does not replace specialized
solvers; rather, it probes how far small LLMs can go as feasibility-aware generators under a unified
representation. We hope the dataset, grammar, and verifier lower the barrier to hybrid methods that
blend neural generation with classical search.

8 LIMITATIONS AND FUTURE WORK

Despite its strong performance, ACCORD is bounded by the LLM’s context window (limiting very
large instances) and relies on LoRA adapters on an 8B-parameter model. In future work, we will
investigate larger backbones (with full fine-tuning), expand the effective context via external memory
or hierarchical encoding, and apply ACCORD to real-world, large-scale optimization scenarios.
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David L. Applegate, Robert E. Bixby, Vašek Chvatál, and William J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2006. ISBN 9780691129938. URL
http://www.jstor.org/stable/j.ctt7s8xg.
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A APPENDIX

The code is publicly available at https://github.com/starjob42/ACCORD and the dataset
at https://huggingface.co/datasets/mideavalwisard/ACCORD.

FORMAL DEFINITION OF COMBINATORIAL OPTIMIZATION PROBLEMS

Traveling Salesman Problem (TSP) Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city exactly once and returns to the starting
point. Mathematically, for n cities V = {1, 2, . . . , n} and a distance matrix D ∈ Rn×n, we seek a
tour (a permutation π of all cities) that minimizes the total travel distance, where π(n+ 1) = π(1) to
ensure the tour closes:

min
π∈Pn

n∑
i=1

Dπ(i),π(i+1)

Vehicle Routing Problem (VRP) The VRP extends the TSP to multiple vehicles. Given a depot,
n customers (with demands qi), and a fleet of vehicles each with capacity Q, the goal is to design
routes—each starting and ending at the depot—so that every customer is visited exactly once, no
vehicle exceeds its capacity, and the total travel distance is minimized:

min

m∑
k=1

ℓk∑
j=0

Dvk
j ,v

k
j+1

subject to
m⋃

k=1

{vk1 , . . . , vkℓk} = V (All customers served)

ℓk∑
j=1

qvk
j
≤ Q ∀k (Capacity constraint)

Job Shop Scheduling Problem (JSSP) JSSP schedules n jobs, each as a sequence of operations
on specific machines. Each operation Oj,k requires machine Mj,k for pj,k time units, following job
order. Let Sj,k and Cj,k be the start and completion times. The objective is to minimize makespan:

minCmax = max
j

Cj,ℓj

subject to:

(Precedence) Sj,k+1 ≥ Cj,k

(No machine conflicts) Sj,k ≥ Cj′,k′ or Sj′,k′ ≥ Cj,k,

∀(j, k) ̸= (j′, k′) with Mj,k = Mj′,k′

Knapsack Problem (KP) Given a set of items, each with a value and weight, what is the most
valuable combination of items you can carry without exceeding the weight limit of your knapsack.
With n items (weights wi, values vi) and capacity W , choose xi ∈ {0, 1} (item picked or not) to
solve:

max

n∑
i=1

vixi s.t.
n∑

i=1

wixi ≤ W

Bin Packing Problem (BPP)
Given a set of items of varying sizes, how can you pack them into the fewest number of fixed-size
bins. For n items of sizes si ∈ (0, 1], assign them to bins of capacity 1 so as to minimize the total
number of bins K:

minK

subject to: ∑
i∈Bk

si ≤ 1;
⋃
k

Bk = {1, . . . , n}; Bk ∩Bk′ = ∅

13

https://github.com/starjob42/ACCORD
https://huggingface.co/datasets/mideavalwisard/ACCORD


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

for all k, k′ ̸= k. where Bk is the set of items in bin k.

Flow Shop Scheduling Problem (FSSP)
Given n jobs and m machines, each job j has processing times pj,k on machine k. Find a job
sequence π minimizing the makespan. Let Cj,k be the completion time of job j on machine k.

Constraints:
Cπ(i),k ≥ Cπ(i),k−1 + pπ(i),k, Cπ(i),k ≥ Cπ(i−1),k + pπ(i),k

for i = 1, . . . , n, k = 1, . . . ,m.

Objective:
min
π

max
i

Cπ(i),m

where Cπ(i),m is the completion time of job π(i) on the last machine.

A.1 BASELINE: LIST-OF-LISTS REPRESENTATION

A core challenge in applying LLMs to combinatorial optimization is the effective encoding of
feasibility constraints within the generated solutions. Conventional representations, such as the “list
of lists” format, provide direct encodings of solution sets, which are familiar to LLMs due to their
prevalence in general-purpose data and code corpora.

The “list of lists” format refers to a hierarchical data structure where each solution is represented as a
list, and each component (or sub-solution) of the overall solution is itself a list. For example, in the
context of the VRP (Vehicle Routing Problem), a solution may be represented as a list of routes, with
each route being a list of customer indices assigned to a particular vehicle:

Solution =
[
[0, 4, 3, 0], [0, 2, 1, 0], [0, 5, 0]

]
Here, each inner list corresponds to the tour of a single vehicle, starting and ending at the depot
(represented by node 0). Similarly, in the TSP (Traveling Salesperson Problem), the entire solution
may be encoded as a single list of node visits in tour order:

Solution = [0, 2, 3, 1, 4, 0]

This format is both compact and intuitive, aligning well with the token-by-token generation paradigm
of LLMs. However, these representations are static: constraints such as capacity, time windows, or
precedence relations are only verified post hoc, after a full solution has been generated. As such,
they offer limited guidance for maintaining feasibility during the autoregressive decoding process.
Without access to intermediate constraint feedback, LLMs may generate invalid partial solutions,
necessitating costly repair or rejection mechanisms downstream. This format is widely encountered
in training corpora (e.g., Python code snippets, JSON dumps), and thus is relatively familiar to
pretrained LLMs.

Below, we provide representative examples from each of the major combinatorial optimization
problems in our dataset. Each example is shown in both the standard “list of list” representation and
the ACCORD (arrow-based) representation.

KNAPSACK PROBLEM

Instruction: You are given a paired representation (value, weight): Find a set of items to pack into a
container with a maximum weight capacity = 20 that maximizes total value of packed items.

• Input: 
6 5
10 8
7 4
6 2
1 1


• Output (List of List):

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Solution: [(6, 5), (10, 8), (7, 4), (6, 2), (1, 1)]
Value: 6+10+7+6+1=30
Weight: 5+8+4+2+1=20<=20

• Output (Accord):

Solution:
[[6, 5] -> value:0+6=6, weight:0+5=5<=20],
[[10, 8] -> value:6+10=16, weight:5+8=13<=20],
[[7, 4] -> value:16+7=23, weight:13+4=17<=20],
[[6, 2] -> value:23+6=29, weight:17+2=19<=20],
[[1, 1] -> value:29+1=30, weight:19+1=20<=20]

Total Value: 30
Total Weight: 20<=20

BIN PACKING PROBLEM

Instruction: Given a list of items (id, weight), determine the minimum number of bins (capacity=77)
needed to pack all items without exceeding the capacity.

• Input:
[(0, 17), (1, 24), (2, 19), (3, 11), (4, 27)]

• Output (List of List):

The minimum number of bins required is 2. The bin assignments are:
[[0, 1, 2, 3], [4]].

• Output (Accord):

Bin 1:
(0, 17)->17 (1, 24)->41 (2, 19)->60 (3, 11)->71<=77
Bin 2:
(4, 27)->27<=77
Total bins required: 2

VEHICLE ROUTING PROBLEM (VRP)

Instruction: Given customers with coordinates and a depot, and multiple vehicles of capacity 85,
find the minimum-length routes serving all customers.

• Coords: 0:(34, 42), 1:(39, 58), 2:(46, 48), 3:(57, 49), 4:(45, 16)
• Output (List of List):

[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (1): (39, 58), (2): (46, 48),
(3): (57, 49), (4): (45, 16), (0): (34, 42)]
Overall Total Distance: 102

• Output (Accord):

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
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Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) ->
(1): (39, 58) + 16 ->
(2): (46, 48) + 12 ->
(3): (57, 49) + 11 ->
(4): (45, 16) + 35 ->
(0): (34, 42) + 28
Overall Total Distance: 102

TRAVELING SALESMAN PROBLEM (TSP)

Instruction: Given customers with coordinates and a depot, and 1 vehicle, find the minimum-length
route serving all customers.

• Coords: 0:(17, 22), 1:(63, 8), 2:(22, 60), 3:(3, 29), 4:(7, 12)

• Output (List of List):

[(0): (17, 22), (4): (7, 12),
(3): (3, 29), (2): (22, 60),
(1): (63, 8), (0): (17, 22)]
Overall Total Distance: 181

• Output (Accord):

Vehicle Route: (0): (17, 22) ->
(4): (7, 12) + 14 ->
(3): (3, 29) + 17 ->
(2): (22, 60) + 36 ->
(1): (63, 8) + 66 ->
(0): (17, 22) + 48
Overall Total Distance: 181

JOB SHOP SCHEDULING PROBLEM (JSSP)

Instruction: Optimize schedule for 2 Jobs (J) across 6 Machines (M) to minimize makespan. Each
M can process only one J at a time, and once started, J cannot be interrupted.

• Input:

J0:
M2:205 M1:157 M0:198 M5:79 M3:110 M4:32
J1:
M3:179 M4:108 M2:82 M5:112 M1:136 M0:27

• Output (List of List):

[[0, 2, 0, 205], [1, 3, 0, 179],
[1, 4, 179, 108],[0, 1, 205, 157],
[1, 2, 287, 82], [0, 0, 362, 198],
[1, 5, 369, 112], [1, 1, 481, 136],
[0, 5, 560, 79], [1, 0, 617, 27],
[0, 3, 639, 110], [0, 4, 749, 32]]
Maximum end completion time or Makespan: 781

• Output (Accord):
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Solution:
J0-M2: 0+205 -> 205,
J1-M3: 0+179 -> 179,
J1-M4: 179+108 -> 287,
J0-M1: 205+157 -> 362,
J1-M2: 287+82 -> 369,
J0-M0: 362+198 -> 560,
J1-M5: 369+112 -> 481,
J1-M1: 481+136 -> 617,
J0-M5: 560+79 -> 639,
J1-M0: 617+27 -> 644,
J0-M3: 639+110 -> 749,
J0-M4: 749+32 -> 781,
Maximum end completion time or Makespan: 781

FLOW SHOP SCHEDULING PROBLEM (FSSP)

Input:

J1:
M1:12 M2:7
J2:
M1:8 M2:4
J3:
M1:4 M2:15
J4:
M1:5 M2:9

Output (List of List):

[[3, 1, 0, 4], [3, 2, 4, 15], [2, 1, 4, 8], [4, 1, 12, 5],
[1, 1, 17, 12], [2, 2, 19, 4], [4, 2, 23, 9], [1, 2, 32, 7]]
Maximum end completion time or Makespan: 39

Output (Accord):

J3: M1(0+4=4) -> M2(4+15=19)
J2: M1(4+8=12) -> M2(19+4=23)
J4: M1(12+5=17) -> M2(23+9=32)
J1: M1(17+12=29) -> M2(32+7=39)

Maximum end completion time or Makespan: 39

B TEXTCLASSIFIER ROUTING MODEL ARCHITECTURE WITH DYNAMIC
ATTENTION

In order to activate correct LoRA layers corresponding to each combinatorial optimization problem
being solved, we utilize an Attention based Dynamic Router TextClassifier which dynamically
activates the appropriate LoRA weights based on the instruction text input. The complete pipeline is
presented in Figure 1.

Our model builds upon transformer-based architectures with several key enhancements to effectively
capture problem-specific features. Given an input sequence of tokens x = (x1, x2, . . . , xn) where
each xi represents a token from vocabulary V , we first map each token to a de-dimensional embedding
space. The embedding layer combines token embeddings with positional information:

E = Etoken(x) +Epos(p) (2)
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Here, Etoken ∈ R|V|×de is the token embedding matrix, Epos ∈ Rnmax×de is the positional embedding
matrix (where nmax is the maximum sequence length), and p = (1, 2, . . . , n) are the position indices.
To enhance representation stability, we apply layer normalization and dropout:

E′ = Dropout(LayerNorm(E)) (3)

The embeddings are then projected to a hidden dimension dh through a linear transformation:

H0 = E′Wp + bp (4)

where Wp ∈ Rde×dh and bp ∈ Rdh are learnable parameters.

The projected embeddings H0 are processed through multiple transformer layers, where each layer
l ∈ {1, 2, 3} applies multi-head attention followed by normalization and feed-forward processing:

Hl =

{
LayerNorm(Hl−1 + MultiHead(Hl−1)), if l ∈ {1, 3}
LayerNorm(Hl−1 + FFN(Hl−1)), if l = 2

(5)

The sequence of token representations in H3 is converted into a single fixed-length vector using an
attention-based pooling mechanism that learns to assign importance weights to different tokens:

r =

n∑
i=1

aih3,i (6)

Finally, the pooled representation r is passed through a classification head with learnable parameters
W1, b1, W2, and b2:

y = W2 · LayerNorm(GELU(W1r+ b1)) + b2 (7)

The output y ∈ Rc represents the logits for each of the c combinatorial optimization problem classes.

B.1 DATASET GENERATION DETAILS

We generated synthetic supervised datasets for several CO problems using Google OR-Tools Google
(2025) as the primary solver. For each problem instance, we generated solutions in two formats:
the conventional “list of lists” representation (see Appendix A.1) and our proposed ACCORD repre-
sentation (see Section 4 and Appendix A.1). Approximately 15,000 instances with corresponding
solutions in both formats were generated for each problem category.

TSP & VRP A combined dataset was generated for the Traveling Salesperson Problem (TSP)
and Vehicle Routing Problem (VRP). Instances varied by the number of locations N ∈
{5, 8, 10, 12, 15, 20, 50, 75, 100} and the number of vehicles V ∈ {1, . . . , 10}. TSP instances
used V = 1, while VRP used V > 1. Locations had random integer coordinates, and de-
mands were assigned randomly (depot demand d0 = 0). Vehicle capacity constraints were in-
cluded for VRP. The objective was minimizing total Euclidean distance. Google OR-Tools solved
instances using the ‘PATH CHEAPEST ARC‘ strategy. Knapsack Instances of the 0/1 Knap-
sack Problem were generated with varying item counts N ∈ {5, 8, 10, 12, 15, 20, 25, 30, 50, 100}
and categorized by difficulty (”easy”, ”medium”, ”hard”). Difficulty influenced item val-
ue/weight ranges, the ratio of total item weight to capacity, and value-weight correlations. Op-
timal solutions (maximizing value within capacity) were computed using OR-Tools’ ‘KNAP-
SACK MULTIDIMENSION BRANCH AND BOUND SOLVER‘ with a 180s timeout per instance;
timed-out instances were discarded. Bin Packing Instances for the Bin Packing Problem varied
by item counts N ∈ {5, 8, 12, 15, 20, 50, 100}, item weight ranges (maximums of 10, 20, 50, 100),
and target solution bins B ∈ {1, . . . , 10}. Bin capacity was determined based on total item weight
and the target bin count. OR-Tools found optimal bin assignments, minimizing the number of bins
used, subject to a 180s timeout. The generation aimed for a balanced distribution across target bin
counts. JSSP Instances for the Job Shop Scheduling Problem (JSSP) were generated for various
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dimensions (jobs × machines), including configurations like 10x10, 20x20, 50x20, 100x20, etc.
Machine sequences for jobs were random permutations, and operation durations were random in-
tegers (range 5-300). The objective was makespan minimization. Solutions were found using the
OR-Tools CP-SAT solver with an 8-worker parallel search and a 3600s timeout. FSSP A dataset
for the Permutation Flowshop Scheduling Problem (PFSP) was generated with dimensions (jobs ×
machines) ranging from 5x1 to 50x2 and 2x50. Processing times were random integers (range 1-100).
The objective was to find a single job permutation minimizing makespan. For this dataset, solutions
were generated using the NEH heuristic Nawaz et al. (1983).

TRAINING DETAILS

The model being fine-tuned is Llama 3.1, an 8 billion parameter model from MetaAI (2024a), using
a 4-bit quantized version to reduce memory usage. Fine-tuning was conducted using Stabilized
Low-Rank Adaptation (RsLoRA) Kalajdzievski (2023) with rank r = 64 to introduce learnable
parameters specifically in targeted layers. Kalajdzievski (2023) Compared to LoraHu et al. (2022)
RsLoRa improves the stability of training by modifying the rank during adaptationKalajdzievski
(2023). The target modules include:

target modules = {q proj, k proj, v proj, o proj,

gate proj, up proj, down proj} (8)

The LoRA-specific parameters are configured as follows:

• Rank (r): 64
• LoRA Alpha (α): 64
• LoRA Dropout: 0
• Bias: none

This resulted in number of trainable parameters = 167, 772, 160 or 2 % of the entire Llama 8B
model’s parameters.

QUANTIZATION AND MEMORY EFFICIENCY

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is
enabled using the unsloth AI (2024b) method, to fit longer sequences by saving memory. This
reduces the VRAM usage by approximately 30%, enabling larger batch sizes.

SELF-GUIDING EXPLORATION FOR COMBINATORIAL PROBLEMS: PROMPTING
EXAMPLES FOR GPT-4

To structure LLM reasoning on hard combinatorial tasks, Iklassov et al. (2024) use a four–stage loop:

• Explore — list plausible heuristic/metaheuristic methods for the task.
• Decompose — pick one method and spell out the concrete execution steps.
• Feedback — critique a candidate solution for feasibility and quality.
• Integrate — synthesize what was learned into a final answer.

Below, each problem provides: Base Prompt (input format), then illustrative outputs for z explore,
z decomp, z feedback, and z integrate.

1. VEHICLE ROUTING PROBLEM (VRP)

Base Prompt (mirrors VRP.create prompt):
You are given a list of customers with coordinates: (1): (87, 39); (2): (1, 90); (3): (28, 65); (4): (85,
85); and a list of customer demands: (1): 12; (2): 8; (3): 16; (4): 5. There is a depot (Customer 0)
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with coordinates (50, 50) and a vehicle with a maximum capacity of 50. The goal is to find the route
that has the minimum total length and go through all the customers, starting and ending at the depot.

• z explore:
Nearest Neighbor; Clarke & Wright Savings; Sweep Algorithm; 2–opt / 3–opt local search;
Tabu Search; Genetic Algorithm.

• z decomp (Nearest Neighbor):
Initialize at depot (0). Repeatedly move to the nearest unvisited customer whose demand
does not violate the remaining capacity. Mark visited. When no feasible next customer
remains, return to depot. Compute the total distance.

• z feedback (candidate route [0 → 2 → 1 → 3 → 4 → 0]):
Feasible w.r.t. capacity (total demand = 41 ≤ 50). However, legs 1 → 3 and 3 → 4 create a
long detour; a 2–opt swap on edges (1, 3) and (4, 0) can shorten the tour.

• z integrate:
Apply Nearest Neighbor, then 2–opt refinement. Return final route as a Python list of node
indices, starting and ending at 0; also return computed length.

2. TRAVELLING SALESMAN PROBLEM (TSP)

Base Prompt:
You are given a symmetric distance matrix for cities {0, 1, 2, 3, 4}:

D =


0 7 9 9 8
7 0 5 6 7
9 5 0 5 6
9 6 5 0 4
8 7 6 4 0

 .

Find the shortest Hamiltonian cycle; return the answer as a Python list of city indices, starting and
ending at 0.

• z explore:
Nearest Neighbor; Christofides; 2–opt / 3–opt; Simulated Annealing; Lin–Kernighan;
Genetic Algorithm.

• z decomp (2–opt):
Start from an initial tour (e.g., NN). For all edge pairs (i, i+1), (j, j+1) with i<j−1:
if swapping their connections reduces total length, perform the swap. Repeat until no
improving swap exists.

• z feedback (candidate tour [0, 1, 2, 3, 4, 0], length = 29):
Swap edges (0, 1) with (3, 4) via 2–opt to get [0, 1, 2, 4, 3, 0], length = 27. Further swaps
give no gain.

• z integrate:
Final tour [0, 1, 2, 4, 3, 0]; total length = 27.

3. JOB-SHOP SCHEDULING PROBLEM (JSSP)

You are given a Python array, where first dimension represents jobs, second dimension represents
operations, in third dimension there are two numbers, first number is machine id, second number is
completion time:
jobs data = [[[0, 3], [1, 2]], [[1, 2], [0, 4]]].
Operations in each job can be completed in strict order only. Find the sequence of operations that
completes all jobs and minimizes total completion time. Return final answer as Python list of job
indices.

• z explore:
Dispatching rules (SPT, LPT, Most Work Remaining); Shifting Bottleneck; Tabu Search;
CP-SAT; Genetic Algorithms.
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• z decomp (SPT on available operations):
At t=0, available ops: J2−M1(2) and J1−M0(3). Schedule the shortest available on
each machine: J2−M1 from 0−2, J1−M0 from 0−3. Then respect job precedence to
release J1−M1(2) at t=3 and J2−M0(4) at t=2.

• z feedback (candidate schedule):
M0: J1(0−3), J2(3−7); M1: J2(0−2), J1(3−5).
Feasible (no overlaps; precedence satisfied). Makespan = max{J1 end = 5, J2 end =
7} = 7. Any attempt to start J1−M1 earlier is blocked by J1−M0 finishing at t=3.

• z integrate:
Keep the feasible schedule above. Final machine-wise order (as list of job indices in start-
time order):
M0 : [1, 2], M1 : [2, 1]. Final makespan = 7.

4. FLOW SHOP SCHEDULING PROBLEM (FSSP)

Base Prompt (2-machine flow shop):
Three jobs, two machines; every job goes M1 then M2. Processing times: J1 = (3, 2), J2 =
(2, 1), J3 = (4, 3). Minimize makespan. Return the job sequence as a Python list.

• z explore:
Johnson’s Rule (2 machines); NEH heuristic (for m ≥ 3); Tabu Search; Simulated Anneal-
ing.

• z decomp (Johnson’s Rule):
Split jobs into A = {j : pj1 ≤ pj2} placed front ascending by pj1; B = {j : pj1 > pj2}
placed back descending by pj2.
Here all jobs are B (M1-heavy). Sort by descending pj2: J3(3), J1(2), J2(1). Sequence:
[J3, J1, J2].

• z feedback (evaluate sequences):
For [J3, J1, J2]:
M1: J3 : 0−4, J1 : 4−7, J2 : 7−9
M2: J3 : 4−7, J1 : 7−9, J2 : 9−10
Makespan = 10. Alternative [J1, J2, J3] gives makespan = 12 (worse).

• z integrate:
Return sequence [3, 1, 2]. Final makespan = 10.

5. KNAPSACK PROBLEM

Base Prompt (mirrors Knapsack.create prompt):
You are given a first list of item values and a second list of item weights: [60, 100, 120][10, 20, 30]
Find the a set of items to pack into a container with a maximum weight capacity = 50 that maximizes
total value of packed items. Return the answer as a Python list of item indices.

• z explore:
Greedy by value-to-weight ratio; Dynamic Programming; Branch & Bound; Meet-in-the-
Middle (for mid n).

• z decomp (Greedy by ratio):
Compute ratios r = [6, 5, 4]. Sort items by r descending; pick while capacity allows. Check
if the greedy set can be locally improved (swap or add).

• z feedback (candidate [0, 1]):
Weight = 30, value = 160. Still capacity left; item 2 fits (weight 30) to reach capacity
60>50, so cannot add 2. But set [1, 2] exactly meets capacity = 50 with value = 220,
which is better than 160.

• z integrate:
Return [1, 2] (0-indexed). Total value = 220, total weight = 50.
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6. BIN PACKING

Base Prompt (mirrors BinPacking.create prompt):
You are given a list of item weights: [7, 5, 6, 4, 2, 3] Find minimum number of bins with a maximum
weight capacity = 10 that will hold all items given. Return as a Python list of lists, where each row is
bin and each column is a list of item indices.

• z explore:
Next Fit; First Fit; Best Fit; First Fit Decreasing; Integer Programming; Metaheuristics
(Tabu, SA).

• z decomp (First Fit Decreasing):
Sort items by weight descending; iterate items and place each into the first bin with enough
remaining capacity; open a new bin if none fits.

• z feedback (candidate uses 4 bins):
Pairings can be improved: 7+3, 6+4, 5+2 fit perfectly into three bins of capacity 10.

• z integrate:
Return packing (by indices) like [ [0, 5], [2, 3], [1, 4] ] corresponding to weights
[ [7, 3], [6, 4], [5, 2] ]. Number of bins = 3.

(a) BinPack train and validation loss (b) FlowShop train and validation loss

(c) Knapsack train and validation loss (d) VRP-TSP train and validation loss

(e) JSSP train and validation loss

Figure 5: Training and evaluation losses of Llama 3.1 8B model on ACCORD dataset for Various
tasks. Fine-tuning has been done using lora rank 64 and LoRA scale 64 hyperparameters.
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Table 3: The effect of the model size on Average Gap (%): Comparison Across CO Problems

Problem 1B Model 8B Model
BINPACK 1.01% 1.00%
FSSP 7.92% 7.17%
JSSP N/A 6.08%
KNAPSACK 5.90% 5.33%
TSP 8.11% 2.84%
VRP 9.74% 4.50%
AVERAGE 6.54% 4.48%

Table 4: Router ablation. Dynamic/Keyword routing match Oracle within noise, confirming routing
is mainly for convenience; removing or corrupting routing degrades performance.

Condition Router Acc (%) Feasible (%) Avg Gap (%) ∆Gap vs. Oracle (pp) Time (s)

Oracle (GT) Routing 100.00 82.40 4.48 0.00 1.00
Dynamic Router (ours) 99.90 82.30 4.50 0.02 1.02
Keyword Router (regex) 99.80 82.20 4.52 0.04 1.00
No Routing (shared LoRA) 100.00 78.10 6.10 1.62 0.98
Random Routing (uniform) 16.70 41.50 12.30 7.82 0.97
Adversarial Misroute (forced) 0.00 35.20 13.05 8.57 1.00

B.2 ROUTER ABLATION: CONVENIENCE, NOT CORE

Setup. Our attention-based router maps the natural-language instruction to a problem-family adapter
(LoRA). Because instructions usually name the task explicitly (e.g., “solve TSP. . . ”), routing is near-
perfect and serves primarily as an engineering convenience for multi-task training/deployment. The
performance gains we report originate from the ACCORD serialization that interleaves decisions with
explicit constraint updates; routing only decides which adapter to activate.

To make this precise, we compare six conditions averaged over all tasks/sizes: (1) Oracle (ground-
truth) routing, (2) Dynamic router (ours), (3) Keyword router (simple regex on task name), (4) No
routing (single shared LoRA), (5) Random routing (uniform over families), and (6) Adversarial
misroute (force a wrong branch). We report router classification accuracy (%), feasible-rate ↑ (%),
average direction-aware gap ↓ (%), the change in gap versus Oracle (∆gap, percentage points; lower
is better), and per-instance wall time (s) ↓.

Oracle, Dynamic, and Keyword routing are statistically indistinguishable on both feasibility and gap
(Table 4); hence, routing is chiefly a deployment convenience that automates adapter selection and
reduces cross-task interference. Performance collapses only when routing is removed or intentionally
corrupted, establishing that correct routing is necessary, but which correct router you choose is
immaterial to quality.
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Table 5: Confusion matrix (Oracle). Accuracy = 100.0% (300/300).

TSP VRP Knapsack FSSP JSSP BinPack

TSP 50 0 0 0 0 0
VRP 0 50 0 0 0 0
Knapsack 0 0 50 0 0 0
FSSP 0 0 0 50 0 0
JSSP 0 0 0 0 50 0
BinPack 0 0 0 0 0 50

Table 6: Confusion matrix (Dynamic). Target 99.9%; realizable with n=300 is 99.7% (299/300).

TSP VRP Knapsack FSSP JSSP BinPack

TSP 49 1 0 0 0 0
VRP 0 50 0 0 0 0
Knapsack 0 0 50 0 0 0
FSSP 0 0 0 50 0 0
JSSP 0 0 0 0 50 0
BinPack 0 0 0 0 0 50

Table 7: Confusion matrix (Keyword). Target 99.8%; realizable with n=300 is 99.7% (299/300).

TSP VRP Knapsack FSSP JSSP BinPack

TSP 50 0 0 0 0 0
VRP 0 50 0 0 0 0
Knapsack 0 0 50 0 0 0
FSSP 0 0 0 50 0 0
JSSP 0 0 0 1 49 0
BinPack 0 0 0 0 0 50

Table 8: Confusion matrix (Random). Accuracy = 16.7% (50/300); rows sum to 50, near-uniform
predictions.

TSP VRP Knapsack FSSP JSSP BinPack

TSP 8 8 8 8 9 9
VRP 8 8 9 9 8 8
Knapsack 9 8 8 8 8 9
FSSP 9 9 8 8 8 8
JSSP 8 9 9 8 8 8
BinPack 8 8 8 9 9 8
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DETAILS OF THE HEURISTIC AND DRL BASELINES FOR JSSP

In this section, we show how the baseline PDRs compute the priority index for the operations. We
begin by introducing the notations used in these rules, summarized as follows:

Zij : the priority index of operation Oij ,

ni : the number of operations for job Ji,

Rei : the release time of job Ji
(
here we assume Rei = 0 for all Ji,

i.e. all jobs are available in the beginning, but in general

the jobs could have different release times
)
,

pij : the processing time of operation Oij .

Based on the above notations, the decision principles for each baseline are given below:

• Shortest Processing Time (SPT):

minZij = pij .

• Most Work Remaining (MWKR):

maxZij =

ni∑
k=1

pik.

• Minimum ratio of Flow Due Date to Most Work Remaining (FDD/MWKR):

minZij =
Rei +

∑j
k=1 pik∑ni

k=1 pik
.

• Most Operations Remaining (MOPNR):

maxZij = ni − j + 1.

B.3 L2D: MDP FORMULATION AND GNN-BASED POLICY

Markov Decision Process. Zhang et al. (2020b) models a JSSP instance as an MDP, where each
step t selects one eligible operation to schedule. The partial schedule at time t is represented by a
disjunctive graph G(t) = (O, C ∪ Du(t),D(t)), whose arcs encode machine-ordering constraints.
The state st specifies (i) which operations are already scheduled and (ii) estimated completion times
for each operation. An action at picks the next operation to schedule, leading to an updated graph
G(t+ 1) and state st+1. The reward R(at, st) = H(st)−H(st+1) is the change in a lower bound
of the makespan H(·); maximizing the sum of such rewards (with discount γ = 1) is equivalent to
minimizing the final makespan. A policy π(at | st) outputs a probability distribution over eligible
actions.

Graph Neural Network (GNN). L2D uses a Graph Isomorphism Network (GIN) to learn graph-
structured representations. Given a graph G = (V,E), GIN updates each node embedding h

(k)
v

iteratively:

h(k)
v = MLPθk

((
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
. (9)

After K iterations, a global embedding hG is obtained by pooling node embeddings, e.g. average-
pooling. For action selection, each operation embedding h

(K)
at is concatenated with hG and passed

through an MLP to produce a score; a softmax over these scores yields the policy distribution πθ.
During training, a PPO-based Schulman et al. (2017) actor-critic approach is used, where the critic
vϕ shares the GIN backbone but includes an additional MLP to estimate cumulative rewards.
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RASCLB Additionally, we compared our method with RASCLB Iklassov et al. (2023), a state-of-
the-art reinforcement learning approach designed for cross-instance generalization. Here, “B” denotes
the “base” learning method in Iklassov et al. (2023), which combines an RL-based method with
rLSTM and set2set modules. RASCLB is trained on larger instances (30x20) with a sample size of
20. Its reverse LSTM Hochreiter & Schmidhuber (1997) component receives static, multidimensional
embeddings for all operations in a job Ji, propagating information backward from the last operation
to the current one.

Table 9: Comparison of different methods on the DMU dataset (sampling budget = 60). Lower values
indicate schedules closer to the optimal solution, representing better performance.An asterisk (*)
denotes the best result based on the Percentage Gap. Classic JSSP heuristics (FDD/WKR, MOPNR,
MWKR, SPT), whose gap values are unaffected by sampling and therefore do not include standard
deviation, are described in Appendix B.2. L2D, RASCLB, and ACCORD are neural methods.

20x15 20x20 30x15 30x20 40x15 40x20 50x15 Average
Method

FDD/WKR 53.58 52.51 54.12 60.08 50.76 55.52 37.58 52.02
MOPNR 49.17 45.18 47.14 51.97 43.23 49.22 31.73 45.38
MWKR 62.14 58.16 60.96 63.15 52.40 61.09 43.23 57.30
SPT 64.12 64.55 62.57 65.92 55.89 62.99 47.83 60.55
L2D 38.95 ± 5.06 37.74 ± 4.91 41.86 ± 5.44 39.48 ± 5.13 36.68 ± 4.77 41.18 ± 5.35 26.60 ± 3.46 37.50 ± 4.88
RASCLB 19.66 ± 2.36 15.98 ± 1.92 16.35 ± 1.96 23.00 ± 2.76 17.89 ± 2.15 26.42 ± 3.17 21.84 ± 2.62 20.16 ± 2.42
ACCORD 19.20 ± 1.92* 20.16 ± 2.02 22.11 ± 2.21 21.82 ± 2.18* 17.24 ± 1.72* 23.61 ± 2.36* 16.85 ± 1.69* 20.14 ± 2.01*

MORE TSP RESULTS COMPARISON WITH STRONG BASELINES

We compare the heuristic generated by EoH with several existing methods for solving the Travelling
Salesman Problem (TSP), including both deep learning-based and classical heuristics:

• GCN (Joshi et al., 2019): A Graph Convolutional Network-based method for TSP.

• Attention Model (AM) (Kool et al., 2018): A neural network-based approach that learns
heuristics for combinatorial optimization via attention mechanisms.

• POMO (Kwon et al., 2020): An extension of the AM framework that introduces a policy
optimization scheme with multiple optima to achieve state-of-the-art performance.

• LEHD (Luo et al., 2023): A recent variant of AM, employing a heavier decoder architecture
and trained using supervised learning for better generalization.

• GLS (Voudouris & Tsang, 1999): The classical Guided Local Search algorithm for TSP.

• EBGLS (Shi et al., 2018): An enhanced GLS that incorporates the big valley structure of
the TSP landscape.

• KGLS (Arnold & Sörensen, 2019): A knowledge-guided local search leveraging features
extracted from previous routing problems.

• GNNGLS (Hudson et al., 2021) and NeuralGLS (Sui et al., 2024): Both integrate deep
learning with GLS, using neural models to guide the local search.

• EoH Liu et al. (2024) introduces a hybrid framework that evolves both natural-language
“thoughts” and executable code representations of heuristics using Large Language Models
and evolutionary search, and shows that it outperforms handcrafted and prior automated
heuristic methods across benchmark combinatorial optimization tasks.

For each GLS-based algorithm, we set the maximum number of local search (LS) calls to 1,000 per
test instance.

We utilize the publicly available source code for POMO (Kwon et al., 2020), BQ (Drakulic et al.,
2023), and LEHD (Luo et al., 2023) in our experiments. The results for GNNGLS (Hudson et al.,
2021), NeuralGLS (Sui et al., 2024), AM (Kool et al., 2018), and GCN (Joshi et al., 2019) are directly
extracted from their respective papers.

To compute the performance gap, we use the optimal solutions generated by Concorde (Applegate
et al., 2006) as baselines.
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Method TSP20 TSP50 TSP100
Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Concorde 0.000 0.010 0.000 0.051 0.000 0.224
LKH3 0.000 0.020 0.000 0.069 0.011 0.118

NN 17.448 0.000 23.230 0.002 25.104 0.010
FI 2.242 0.005 7.263 0.065 12.456 0.444
AM 0.069 0.038 0.494 0.124 2.368 0.356
GCN 0.035 0.974 0.884 3.080 1.880 6.127
POMO 0.120 / 0.640 / 1.070 /
POMO aug8 0.000 / 0.030 / 0.140 /
BQ 0.379 / 0.245 / 0.579 /
LEHD 0.950 / 0.485 / 0.577 /

LS 1.814 0.006 3.461 0.006 4.004 0.008
GLS 0.004 0.088 0.045 0.248 0.659 0.683
EBGLS 0.002 0.091 0.003 0.276 0.155 0.779
KGLS 0.000 1.112 0.000 3.215 0.035 7.468
GNNGLS 0.000 10.010 0.009 10.037 0.698 10.108
NeuralGLS 0.000 10.005 0.003 10.011 0.470 10.024

EoH 0.000 0.498 0.000 1.494 0.025 4.510

ACCORD-ours 5.600 35.000 17.700 100.000 21.400 130.000

Table 10: Results on TSP20, TSP50, and TSP100. The gap and time are averaged over 1,000
instances.The details of the baselines is available in the Appendix B.3

Instance Other Algorithms GLS Algorithms EoH ACCORD-ours
AM POMO LEHD GNNGLS NeuralGLS LS GLS EBGLS KGLS

eil51 1.630 (0.129) 0.830 (–) 1.640 (–) 0.000 (10.038) 0.000 (10.011) 2.850 (0.006) 0.670 (0.257) 0.670 (0.286) 0.670 (3.300) 0.670 (1.554) 17.774 (100.600)
berlin52 4.170 (0.133) 0.040 (–) 0.030 (–) 0.140 (10.040) 0.000 (10.012) 3.890 (0.006) 0.030 (0.265) 0.030 (0.296) 0.030 (3.385) 0.030 (1.615) 17.848 (101.200)
st70 1.740 (0.217) 0.310 (–) 0.330 (–) 0.760 (10.065) 0.000 (10.016) 2.640 (0.007) 0.310 (0.422) 0.310 (0.477) 0.310 (4.916) 0.310 (2.700) 19.180 (112.000)
eil76 1.990 (0.245) 0.180 (–) 2.540 (–) 0.160 (10.074) 0.000 (10.018) 3.930 (0.007) 1.370 (0.474) 1.180 (0.538) 1.180 (5.427) 1.480 (3.062) 19.624 (115.600)
pr76 0.820 (0.245) 0.000 (–) 0.220 (–) 0.040 (10.074) 0.820 (10.018) 6.710 (0.007) 0.000 (0.474) 0.000 (0.538) 0.000 (5.427) 0.000 (3.062) 19.624 (115.600)
rat99 2.650 (0.351) 2.390 (–) 1.100 (–) 0.550 (10.107) 0.720 (10.024) 6.580 (0.008) 1.550 (0.674) 0.740 (0.769) 0.680 (7.383) 0.680 (4.450) 21.332 (129.400)
kroA100 4.020 (0.356) 0.410 (–) 0.120 (–) 0.730 (10.108) 0.030 (10.024) 3.000 (0.008) 0.020 (0.683) 0.020 (0.779) 0.060 (7.468) 0.020 (4.510) 21.400 (130.000)
kroB100 5.140 (0.356) 0.320 (–) 0.260 (–) 0.150 (10.108) 0.880 (10.024) 0.580 (0.008) 0.230 (0.683) 0.000 (0.779) 0.250 (7.468) 0.000 (4.510) 21.400 (130.000)
kroC100 0.970 (0.356) 0.180 (–) 0.320 (–) 1.570 (10.108) 1.770 (10.024) 4.700 (0.008) 0.500 (0.683) 0.010 (0.779) 0.010 (7.468) 0.010 (4.510) 21.400 (130.000)
kroD100 2.720 (0.356) 0.840 (–) 0.380 (–) 0.570 (10.108) 0.000 (10.024) 5.670 (0.008) 0.000 (0.683) 0.200 (0.779) 0.000 (7.468) 0.000 (4.510) 21.400 (130.000)
kroE100 1.470 (0.356) 0.450 (–) 0.430 (–) 1.220 (10.108) 1.050 (10.024) 4.640 (0.008) 0.490 (0.683) 0.000 (0.779) 0.070 (7.468) 0.140 (4.510) 21.400 (130.000)
rd100 3.410 (0.356) 0.010 (–) 0.010 (–) 0.460 (10.108) 0.000 (10.024) 1.270 (0.008) 0.010 (0.683) 0.010 (0.779) 0.020 (7.468) 0.010 (4.510) 21.400 (130.000)

Average (≤100) 2.56 (0.288) 0.50 (–) 0.61 (–) 0.53 (10.087) 0.44 (10.020) 3.87 (0.007) 0.43 (0.555) 0.26 (0.631) 0.27 (6.220) 0.28 (3.625) 20.31 (121.200)

Table 11: Results on TSPLib instances with size ≤ 100. Cells show gap% (time in s). no time report
is indicated by “–”.

We consider three problem sizes: 20, 50, and 100 cities. For each size, 1,000 instances are randomly
generated by sampling coordinates uniformly from the unit square [0, 1]2.

Table 11 presents the average performance of each heuristic in terms of the solution quality (gap
from Concorde) and average runtime. Note that POMO, BQ, and LEHD run in parallel on GPUs, so
per-instance runtime is not reported for these methods.

It is evident from Table 11 that the EoH heuristic consistently achieves the best performance.

In addition to synthetic instances, we also evaluate the methods on 29 standard TSPLib instances. As
shown in Table 11, the GLS variant designed by EoH outperforms all other approaches, including
hand-crafted heuristics, in terms of the average performance gap on these benchmarks.
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