
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCORD: AUTOREGRESSIVE CONSTRAINT-
SATISFYING GENERATION FOR COMBINATORIAL
OPTIMIZATION WITH ROUTING AND DYNAMIC ATTEN-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated impressive reasoning capabili-
ties, yet their direct application to NP-hard combinatorial problems (CPs) remains
underexplored. In this work, we systematically investigate the reasoning abilities
of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce
ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial op-
timization with Routing and Dynamic attention. ACCORD features a novel dataset
representation and model architecture that leverage the autoregressive nature of
LLMs to dynamically enforce feasibility constraints, coupled with attention-based
routing to activate problem-specific LoRA modules. We also present the ACCORD-
90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP,
Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate
that our ACCORD model, built on an 8B-parameter Llama backbone, consistently
outperforms standard prompting and input-output methods, even when compared
to much larger LLMs, such as gpt-4. Ablation studies further show that our output
structure enhances solution feasibility. To the best of our knowledge, this is the
first large-scale, end-to-end framework for exploring the applications of LLMs to a
broad spectrum of combinatorial optimization problems.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly established themselves as versatile engines for reason-
ing across a broad spectrum of tasks, encompassing arithmetic, commonsense logic , Thoppilan et al.
(2022), Chowdhery et al. (2023), Brown et al. (2020). Among the prominent strategies enabling such
capabilities is the Chain-of-Thought approach, which allows these models to decompose complex
problems into sequential, interpretable steps Wei et al. (2022b).

Recent efforts have sought to adapt these reasoning techniques to address more advanced optimization
tasks. Combinatorial optimization problems (CPs) are decision-making challenges where the goal is
to select an optimal arrangement or subset from a large, discrete set of possibilities. Classic examples
include the Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and Job Shop
Scheduling Problem (JSSP), which have widespread applications in logistics, manufacturing, and
artificial intelligence Lenstra et al. (1979). Due to their NP-hard nature, even moderately sized
instances possess a combinatorial explosion of potential solutions, rendering brute-force approaches
infeasible. As a result, practical methods typically rely on heuristics or approximation algorithms to
provide near-optimal solutions within reasonable time frames. As NP-hard problems, CPs present
huge obstacles in practical settings Oroojlooyjadid et al. (2020). Presently, the predominant paradigm
in industry relies on metaheuristic algorithms—sophisticated combinations of simple, efficient
heuristics—for solving CPs under various constraints. However, the success of these heuristics
is often highly sensitive to the specific structure and requirements of each problem, necessitating
tailored approaches for optimal results.

At the same time, investigations into leveraging LLMs for combinatorial problem solving have
revealed significant research gaps. While the latest breakthroughs highlight the promise of LLMs in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Knapsack LoRa layers

Binpack LoRa layers

JSSP LoRa layers

FSSP LoRa layers

VRP/TSP LoRa layers

Sample multiple
solutions

Parsing and Feasibility
Check

Final
Solution

Knapsack problem
description in natural

language

Attention based
Dynamic Router

Tokenizer

Attention
Pooling

Positional
Embedder

Classifier
 FFN

Token
Embedder

Base LLM Model

other LoRa layers

other LoRa layers

…

…

Figure 1: Overview of the ACCORD inference pipeline. As an example, a knapsack problem
described in natural language is provided as input, then Attention based Dynamic router5 activates the
corresponding LoRA layer specialized for knapsack tasks. Multiple candidate solutions are generated
via sampling, each checked for feasibility. The best feasible solution is returned as the final output.
Note that the pipeline generalizes to other combinatorial problems in the same manner; knapsack is
shown here for illustration.

diverse reasoning scenarios Abgaryan et al. (2024), Iklassov et al. (2024), Wei et al. (2022a), Zhang
et al. (2022), their full potential in the context of combinatorial optimization remains largely untapped.
Applying LLMs directly to these problems presents unique challenges: LLMs are trained primarily
for natural language generation, not for enforcing strict combinatorial constraints, leading to issues
such as hallucinations (plausible but infeasible solutions) Huang et al. (2022), lack of optimality, and
limited interpretability Valmeekam et al. (2022). Furthermore, the absence of systematic search or
explicit constraint mechanisms means LLM outputs can violate feasibility or fail to improve upon
prior attempts. Recent advances have begun to explore the application of large language models
(LLMs) to combinatorial optimization (CO). Numerous prompting-based approaches have been
tested on CO tasks Yang et al. (2023); Huang et al. (2024); Mittal et al. (2024); Wei et al. (2022b);
Zhou et al. (2022); Madaan et al. (2023); Iklassov et al. (2024), demonstrating progress in solution
quality and constraint handling. However, to date, there has been no comprehensive study evaluating
a unified fine-tuned LLM-based framework for NP-hard CO problems across multiple domains.

In this work, we address this gap by introducing ACCORD (Autoregressive Constraint-satisfying
generation for COmbinatorial optimization with Routing and Dynamic attention), a novel framework
for testing the reasoning capabilities of LLMs on combinatorial optimization problems. Our main
contributions are as follows: (i) We propose the ACCORD90k supervised dataset for TSP, VRP,
Knapsack, FlowShop, JSSP, and BinPacking, employing an ACCORD representation that explicitly
encodes problem constraints by leveraging the autoregressive nature of LLMs;(ii) we develop a model
architecture that leverages attention-based dynamic routing and specialized Low-Rank Adaptation
(LoRA) modules for different CO tasks; (iii) extensive ablation studies demonstrate that our method
achieves lower optimality gaps and higher solution feasibility than both the traditional list-of-lists
representation and state-of-the-art prompting techniques (including GPT-4 with the Code Interpreter
enabled). Notably, it achieves substantial improvement percentage difference in feasibility over the
list-of-list representation, with gains of 24.86% in FlowShop, 7% in JSSP, 4% in Knapsack, and
2% in BinPacking, 10% in VRP and TSP, problems. To the best of our knowledge, this is the first
work to demonstrate large-scale, end-to-end combinatorial problem solving with LLMs, offering new
directions for testing symbolic reasoning and optimization within language models.

2 RELATED WORK

2.1 HEURISTIC AND MACHINE LEARNING APPROACHES ON CO PROBLEMS

Combinatorial optimization has been tackled with both heuristic and exact methods. Simple priority
dispatching rules (PDRs), such as shortest processing time or earliest due date, are computationally
efficient but often yield suboptimal solutions due to their greedy nature Lenstra et al. (1979). Meta-
heuristics (e.g., simulated annealing, tabu search, genetic algorithms) offer improved solution quality,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and exact approaches like the shifting bottleneck procedure Adams et al. (1988), mixed-integer
programming, and constraint programming can find optimal solutions for small instances, though at
high computational cost Roy & Sussmann (1964); Goel et al. (1996). Recently, machine learning,
particularly deep reinforcement learning (RL) and graph neural networks (GNNs) have advanced
combinatorial optimization Zhang et al. (2020a); Khalil et al. (2017); Kool et al. (2019). RL methods
treat scheduling as sequential decision making, learning dispatching policies via environment interac-
tion Zhang et al. (2020a). GNNs encode jobs and machines as nodes, enabling permutation-invariant
representations and, when combined with RL, can model complex dependencies Khalil et al. (2017).
Attention-based and sequence-to-sequence models further enhance performance on tasks like TSP
and VRP, often utilizing iterative refinement Kool et al. (2019).While prior work explores prompting,
search, and task-specific fine-tuning for CO, we focus on a unified, multi-task feasibility-aware
representation paired with dynamic adapter routing.

2.2 LARGE LANGUAGE MODELS IN COMBINATORIAL OPTIMIZATION

The advent of LLMs has introduced new paradigms for CO. Early work explored whether LLMs
could generate solutions through prompting Yang et al. (2023), Huang et al. (2024), Mittal et al.
(2024), Wei et al. (2022b) Zhou et al. (2022), Madaan et al. (2023), Iklassov et al. (2024). Prompting-
based strategies, such as OPRO, involve iterative refinement based on feedback, while methods for
VRP employ self-debugging and verification to enhance feasibility Huang et al. (2024). However,
scalability remains a challenge, as even strong prompting techniques struggle on larger or more
complex instances Mittal et al. (2024). Recent research has explored a variety of prompting strategies
to leverage LLMs for solving combinatorial optimization (CO) problems. The Input-Output (IO)
method presents the LLM with multiple examples of input and corresponding output solution pairs.
The LLM is then prompted to generate an output solution in the same format as the provided
examples. This approach relies on the LLM’s ability to generalize the mapping from input to
output based on observed patterns. In Chain-of-Thought (CoT) prompting, the LLM is guided
to produce a sequence of intermediate reasoning steps, or ”thoughts,” before arriving at the final
answer Wei et al. (2022b). This technique encourages the model to break down complex CO tasks
into structured, stepwise reasoning, improving both transparency and solution quality. Least-to-
Most (LtM) prompting strategy aims to decompose a complex problem into a sequence of simpler
subproblems, solving them incrementally Zhou et al. (2022). Each subproblem builds upon the
solutions of previous ones, enabling the LLM to tackle challenging CO tasks through a series of
manageable steps. Self-Refinement (SR) is an iterative prompting technique wherein the LLM first
generates an initial solution, then provides feedback on its own output, and finally refines the solution
based on this feedback Madaan et al. (2023). The process repeats until a satisfactory solution is
reached. Self-Guiding Exploration for Combinatorial Problems (SGE) autonomously generates
multiple thought trajectories for a given CO task Iklassov et al. (2024). Each trajectory represents
a distinct heuristic approach, inspired by metaheuristics. SGE decomposes these trajectories into
actionable subtasks, executes them sequentially, and refines the results to ensure optimal solutions.
Prompting examples for each type of instance can be found in Appendix B.1. Fine-tuning LLMs for
CO tasks is another active area Abgaryan et al. (2024),Masoud et al. (2024) . Abgaryan et al. (2024)
showed that fine-tuned LLM on job-shop scheduling, demonstrates significant improvements in
solution quality. Similarly, Masoud et al. (2024) applied fine-tuning to TSP instances with promising
but size-limited results. Hybrid methods integrate LLMs into evolutionary or search frameworks,
where the LLM guides genetic operations or receives feedback from constraint solvers to iteratively
improve solutions Liu et al. (2023); Wan et al. (2024); Awasthi et al. (2025). While promising, these
approaches often entail significant computational overhead and still face scaling hurdles.

3 PRELIMINARIES: OVERVIEW OF CLASSIC COMBINATORIAL OPTIMIZATION
PROBLEMS

Combinatorial optimization involves searching for the best solution from a finite set of possibilities.
Formally, given a set of feasible solutions S and an objective function f : S → R, the goal is to find

s∗ = argmin
s∈S

f(s)

or, in some cases, to maximize f(s) depending on the problem. Details of each of the formal
definition of each combinatorial optimization task can be found in Appendix A

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Optimality gap (%) comparison for prompting methods using GPT-4 with Code Interpreter
(IO, CoT, SR, LtM, SGE) vs. ACCORD (Llama 8B) on five combinatorial optimization tasks
(Knapsack, Bin Packing, TSP, VRP, JSSP). Gap is defined as (obj−opt)/opt×100%; N/A indicates
no feasible solution. Sizes 5, 8, 12 denote increasing instance scales per task (comparable down
a column, not across tasks). For each (task, size) combination, 50 instances were used, shared
across all methods. For every instance–method pair, a fixed budget of 60 candidate solutions was
generated(under identical sampling setting, temperature=1.0, top p=1, top k=50), and the best one,
based on the lowest gap was selected. Bold values (with an asterisk) mark the best mean gap at each
size. Structured prompting (LtM, SGE) narrows gaps relative to IO/CoT/SR, while ACCORD method
with small Llama 8B model backbone achieves consistently low gaps with high feasibility.

Size Method Knapsack BinPack TSP VRP JSSP

5

IO (GPT-4) 90.1 108.2 100.3 102.0 105.3
CoT (GPT-4) 66.9 78.2 81.2 78.2 79.4
SR (GPT-4) 62.0 77.4 71.6 72.5 71.7

LtM (GPT-4) 21.6 40.0 43.6 40.7 44.1
SGE (GPT-4) 8.1 9.1 8.3 11.9 9.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 3.9* 0.0* 0.6* 1.0* 0.0*

8

IO (GPT-4) 103.5 112.8 116.9 116.3 108.2
CoT (GPT-4) 73.8 85.1 89.0 89.5 85.2
SR (GPT-4) 72.6 86.3 85.6 83.3 78.4

LtM (GPT-4) 26.4 52.7 53.5 54.4 49.8
SGE (GPT-4) 14.9 21.0 15.2 19.7 21.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 7.4* 0.0* 1.8* 1.0* 5.0*

12

IO (GPT-4) 101.5 120.7 121.6 118.5 117.6
CoT (GPT-4) 79.3 93.8 86.8 90.1 89.3
SR (GPT-4) 77.1 82.2 88.6 88.4 87.0

LtM (GPT-4) 35.8 55.4 57.5 59.2 56.0
SGE (GPT-4) 16.8 22.4 16.1 24.0 22.9

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 5.1* 2.6* 2.9* 2.2* 12.4*

4 MAIN METHOD: ACCORD REPRESENTATION FOR FEASIBILITY-AWARE
SOLUTION GENERATION

A core challenge in applying Large Language Models (LLMs) to combinatorial optimization is the
effective encoding of feasibility constraints within the generated solutions. Conventional representa-
tions, such as the “list of lists” format, provide direct encodings of solution sets, which are familiar to
LLMs due to their prevalence in general-purpose data and code corpora(more details of the format are
available in Appendix A.1). However, these representations are static, constraints are only checked af-
ter solution generation, offering limited guidance for incremental feasibility during the autoregressive
decoding process. To address this limitation, we decided to utilize the autoregressive nature of the
LLMs and developed a representation, which is specifically designed to leverage the autoregressive
generation paradigm of LLMs. Unlike the list-based format, our representation decomposes solutions
into a sequence of state transitions, with each step not only specifying the next element of the solution
but also explicitly updating and exposing the relevant feasibility metrics (e.g., cumulative weights,
distances, machine usage, or value). This design allows the model to compute and check constraints
dynamically as each token is generated, closely mimicking the typical reasoning and verification
process of a human solver.

Formal ACCORD representation. Consider a CO problem with decision sequence X =
(x1, . . . , xT), constraints C(X), and objective f(X). An ACCORD serialization is a sequence

S = (s1, . . . , sT), st = (at, ∆t, ut),

where at is the action at step t, ∆t is the incremental update to feasibility state variables, and ut =
g(ut−1, at) is the updated state summary that explicitly encodes (and textually asserts) constraint
satisfaction. Generation factorizes autoregressively:

P (S) =

T∏
t=1

P
(
st | s<t

)
,

and terminates with a special token ⟨END⟩, after which a verifier checks uT |= C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Knapsack (capacity W):

st =
(
item id, (∆v,∆w), (vt−1+∆v, wt−1+∆w ≤ W)

)
.

TSP/VRP:
st =

(
next node, ∆d = dist(nt−1, nt), Dt = Dt−1+∆d

)
.

JSSP:
st =

(
op(j, k), ∆t = pj,k, timeline(Mj,k) updated without overlap

)
.

ACCORD representation embeds constraint satisfaction directly into the generation process. For
instance, in the Knapsack problem, each item addition is accompanied by an explicit update of the
running total value and weight, immediately verifying the capacity constraint at each step:

[[item id, weight, value] -> value: prev v + value =
new v, weight: prev w + weight = new w <= capacity],
...

Similarly, for Bin Packing, the incremental assignment of items to bins is annotated with cumulative
weights, ensuring that no bin exceeds its capacity as the sequence unfolds. Routing problems (VRP,
TSP) and scheduling problems (JSSP) are analogously handled by tracking cumulative distances or
machine times within the autoregressive output stream. Example of each of problem type in ACCORD
representation is available in the Appendix A.1. This approach transforms the constraint satisfaction
problem into a stepwise process, where feasibility checks are interleaved with generation. As a
result, the LLM is naturally guided away from infeasible sequences, as each decision is immediately
contextualized by the current state of the solution.

4.1 DATASET GENERATION

We generated synthetic supervised datasets for several CO problems using Google OR-Tools Google
(2025) as the solver. For each instance, solutions were produced in both the conventional “list of lists”
and ACCORD representations. Roughly 15,000 instances were created per task, using a compute node
with 64 CPUs (Intel® Xeon® Gold 5218 @ 2.30GHz, 16 cores per socket, 2 threads per core, x86 64
architecture, 46-bit physical / 48-bit virtual addressing, 44MiB L3 cache).

TSP & VRP: Instances varied in location count (N ∈ {5, 8, . . . , 100}) and number of vehicles
(V ∈ {1, . . . , 10}), with random coordinates and demands. OR-Tools solved these using the
‘PATH CHEAPEST ARC‘ strategy. Knapsack: Item counts (N ∈ {5, . . . , 100}) and difficulty were
varied, influencing item properties and constraints. Optimal solutions were computed using OR-Tools,
discarding instances that timed out. Bin Packing: Instances varied by item count, weight limits, and
target bin numbers. Bin capacities were set accordingly, and OR-Tools was used to minimize bin
usage under a timeout. JSSP: Job Shop Scheduling instances ranged from 10× 10 to 100× 20 jobs
and machines, with random operation sequences and durations. Solutions minimized makespan using
the CP-SAT solver. FSSP: Permutation Flowshop instances ranged from 5× 1 to 50× 2 and 2× 50,
with random processing times. Solutions were generated with the NEH heuristic Nawaz et al. (1983).
For fine-tuning, a dataset of 15,000 instances was used per task, with 600 out of training distribution
examples reserved for validation.

5 ROUTER ARCHITECTURE

To dynamically activate the appropriate LoRA layers for each combinatorial optimization problem,
we use an attention-based Dynamic Router TextClassifier that selects the relevant LoRA weights
based on the instruction text (see Figure 1). Our model builds on a transformer architecture enhanced
to capture problem-specific features. Each input token xi is embedded with positional information
and normalized as E′ = Dropout(LayerNorm(Etoken(x) +Epos(p))).

The resulting embeddings are projected to the hidden dimension and passed through several trans-
former layers with alternating multi-head attention and feed-forward sublayers, each followed
by layer normalization. Token representations from the final transformer layer are pooled using
attention-based pooling: r =

∑n
i=1 aihi, and passed through a classification head defined by

y = W2 · LayerNorm(GELU(W1r+ b1)) + b2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 8 10 12 15 20 50
Num Items

0

10

20

30

40

50
Av

er
ag

e
Fe

as
ib

ili
ty

 (%
)

2.5%

N
o

da
ta

1.7%

46.7%

26.8%

45.2%

35.7%

9.9%

46.2%

40.4%

42.2%

46.3%

38.9%

47.3%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5 8 10 12 15 20 50
Num Items

0

20

40

60

80

100

120

Av
er

ag
e

G
ap

 (%
)

111.2%

N
o

da
ta

0% 3.3%

6.9%
5.2% 7.0%

0%

15.0% 14.8%
5.5%

1.8%

3.9% 3.9%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0

5

10

15

20

25

30

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

5

10

15

20

25

30

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for FSSP

(a) Flow Shop

5 8 10 12 15 20 50
Num Items

0

5

10

15

20

25

30

35

40

Av
er

ag
e

Fe
as

ib
ili

ty
 (%

)

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

7.7%
8.6%

10.7%

35.7%

8.6%

16.3%
14.6%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5 8 10 12 15 20 50
Num Items

0

2

4

6

8

10

12

14

Av
er

ag
e

G
ap

 (%
)

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

N
o

da
ta

0%

5.0%

0.9%

12.4%

10.5%

4.2%

3.6%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0

5

10

15

20

25

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

5

10

15

20

25

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for JSSP

(b) JSSP

5.0 8.0 12.0 15.0 20.0 50.0
Num Items

0

2

4

6

8

10

12

14

16

Av
er

ag
e

Fe
as

ib
ili

ty
 (%

)

10.7%

11.5%

9.9%

8.9%

6.7%

8.0%

12.7%
13.0%

12.4%

9.0%

6.6%

7.5%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5.0 8.0 12.0 15.0 20.0 50.0
Num Items

0

1

2

3

4

5

Av
er

ag
e

G
ap

 (%
)

0% 0%

0.9%

2.7%

1.8%

0%

0% 0%

2.6%

3.9%

4.2%

0%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for BINPACK

(c) BinPack

5 8 10 12 15 20 50
Num Items

0

5

10

15

20

25

Av
er

ag
e

Fe
as

ib
ili

ty
 (%

)

16.5%

23.0%

10.9%

21.6%

15.5%
16.4%

12.6%

20.3%

22.2%

17.7%

18.9%
19.4%

13.5%

15.8%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5 8 10 12 15 20 50
Num Items

0

2

4

6

8

10

12

14

Av
er

ag
e

G
ap

 (%
)

7.0%

11.5%

1.8%

10.7%

3.9% 4.2%

9.9%

3.9%

7.4%

4.2%
5.1%

9.7%

7.3%

8.4%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for KNAPSAK

(d) Knapsack

5 8 10 12 15 20 50
Num Cities

0

5

10

15

20

25

Av
er

ag
e

Fe
as

ib
ili

ty
 (%

)

5.7%

4.6%
4.2%

3.4% 3.0%

2.2%

N
o

da
ta

14.0%

20.5%

18.5%
19.2%

13.1%

6.1%

1.7%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5 8 10 12 15 20 50
Num Cities

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

G
ap

 (%
)

1.2%

4.8%

6.8%

7.9%

9.7%

13.7%

N
o

da
ta

0.6%

1.8% 1.9% 2.9%

4.6%

5.6%

17.7%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0

20

40

60

80

100

120

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for TSP

(e) TSP

5 8 10 12 15 20 50
Num Cities

0

5

10

15

20

25

Av
er

ag
e

Fe
as

ib
ili

ty
 (%

)

5.4%

4.0% 3.9%
3.4% 3.1% 2.7%

N
o

da
ta

16.0%

14.7%

21.6%

18.0%

11.5%

8.3%

1.7%

Feasibility
1B Model
8B Model
1B Model Time
8B Model Time

5 8 10 12 15 20 50
Num Cities

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

G
ap

 (%
)

1.6%

5.7%

6.8%

9.0%

8.7%

12.3%

N
o

da
ta1.0% 1.0%

2.4%
2.2%

4.2%
5.1%

15.6%

Gap
1B Model
8B Model
1B Model Time
8B Model Time

0

20

40

60

80

100

120

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

Feasibility, Gap and Time Comparison for VRP

(f) VRP

Figure 2: This figure illustrates the performance of the Llama 3.1 (8B) and Llama 3.2 (1B) models in
terms of the average gap percentage compared to the OR-Tools solution, where a lower gap indicates
better performance. The left y-axis represents the average gap percentage, while the right y-axis
corresponds to the running time in seconds. Bar plots indicate the average gap. The line plots depict
the average running time per instance size, with the x-axis showing the problem size in terms of the
number of nodes in the graph representation. Instances labeled as ”No Data” indicate that, within a
sampling budget of 60, the model failed to generate any feasible solution.

The pooled vector r enables instruction-based selection of problem-specific LoRA adapters via
the predicted logits y. The router was trained using 1,000 example instances sampled from each
combinatorial optimization task, resulting in a total training set of 6,000 instances. The data was
split into 80% for training, 15% for validation, and 5% for testing. Further training details of the
router network are provided in Appendix B. The impact of the router is analyzed in the ablation study
presented in Appendix B.2.

6 TRAINING DETAILS

We conducted supervised fine-tuning using input-output pairs for two models from Meta: Llama 3.1
8B and Llama 3.2 1B. To minimize memory usage during training, we employed 4-bit quantized
versions of these models and trained each for 2 epochs. For a fair comparison, we fine-tuned

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 8 10 12 15 20 25 30 50
Number of Jobs × Number of Machines

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Fe
as

ib
ili

ty
 (

%
)

fssp_val - Feasibility Comparison (Bar Chart)
List of List
ACCORD

(a) FSSP

5 8 10 12 15 20 25 30 50
Number of Jobs × Number of Machines

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Fe
as

ib
ili

ty
 (

%
)

jssp_val - Feasibility Comparison (Bar Chart)
List of List
ACCORD

(b) JSSP

5 8 12 15 20 50
Number of Items

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Fe
as

ib
ili

ty
 (

%
)

binpack_val - Feasibility Comparison (Bar Chart)
ACCORD
List of List

(c) Bin Packing

5 8 10 12 15 20 25 30 50
Number of Items

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Fe
as

ib
ili

ty
 (

%
)

knapsak_val_ood - Feasibility Comparison (Bar Chart)
List of List
ACCORD

(d) Knapsack

5 8 10 12 15 20 50
Number of Cities

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Fe
as

ib
ili

ty
 (

%
)

tsp_val - Feasibility Comparison (Bar Chart)
List of List
ACCORD

(e) TSP

5 8 10 12 15 20 50
Number of Cities

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Fe
as

ib
ili

ty
 (

%
)

vrp_val - Feasibility Comparison (Bar Chart)
List of List
ACCORD

(f) VRP

Figure 3: Average feasibility comparison with OR-Tools solution across different problem instance
sizes; the higher the feasibility percentage, the better.

each model with the same hyperparameters, varying only the output representation: once using
the list-of-lists format and once using the ACCORD format, while keeping the input and all other
hyperparameters identical. We used Rank-Stabilized Low-Rank Adaptation (RSLoRA) Kalajdzievski
(2023) with a rank of r = 64 and α = 64. We fine tuned for 2 epochs, which required roughly 40
hours and about 30GB of GPU memory on Nvidia RTX A6000 GPU. We limited the context length
of the model to 40k instead of the original 128k, to reduce memory consumption and increase the
speed of fine-tuning. “Context length” refers to the maximum number of tokens (words or subwords)
the model can process at once as input.

6.1 EMPIRICAL COMPARISON WITH LIST-OF-LIST REPRESENTATION

We empirically evaluate the impact of problem representation by fine-tuning Llama 3.1 8B
on both list-of-list and ACCORD formats with identical hyperparameters and input (see Sec-
tion 4.1), using a validation set of 100 out-of-distribution instances for each problem size (n ∈
{5, 8, 10, 12, 15, 20, 25, 30, 50}). The inference pipeline (Fig. 1) employs an Attention-Based Dy-
namic Router (Section 5) to select the appropriate LoRA branch, generating 60 candidate solutions
per instance. Each solution is checked for feasibility, and the best feasible solution, i.e., the one with
the lowest optimality gap is selected as the final output.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Direction-aware optimality gap. Let Jmodel be the objective value of the model’s best feasible
solution and Jopt the baseline/optimal objective. Set γ = +1 for minimization tasks (TSP, VRP, JSSP,
FSSP, Bin Packing) and γ = −1 for maximization tasks (Knapsack).

Gap(%) = 100 γ
Jmodel − Jopt

|Jopt|
. (1)

This yields Gap ≥ 0 when the model is no better than the baseline and Gap = 0 when it matches
it. We additionally report feasibility rate (%) as the fraction of generated candidates that satisfy all
constraints. Our results (Fig. 3) show that, although list-of-list representation is familiar to LLMs,
models trained with this format tend to ignore feasibility constraints, resulting in lower feasibility
rates and higher optimality gaps. In contrast, the ACCORD representation explicitly encodes feasibility
into the output, enabling the LLM to produce a larger proportion of valid and near-optimal solutions,
particularly as the problem size increases. Table 1 further compares our method against various
prompting strategies (see Section 2 for baselines) on both Llama 8B and GPT-4 with code interpreter
enabled. Notably, while GPT-4 can potentially generate and execute solver code, our ACCORDbased
method enables the LLM to generate solutions end-to-end without code execution. Inference using
the SGE method Iklassov et al. (2024) strictly follows the procedure described in the original paper.
Prompt examples for SGE can be found in Appendix Section B.1. For both our approach and all
prompting baselines, 60 samples per instance are generated, and the best result is selected. ACCORD
consistently outperforms prompting strategies across all 6 combinatorial optimization tasks, and
achieves optimal solutions on smaller instances. We also assess the impact of model size on average
gap, feasibility, and inference time (Fig. 2). The 8B model mostly outperforms the 1B model in
feasibility and optimality gap, with only a moderate increase in inference time. For harder instances,
such as JSSP, the 1B model fails to find feasible solutions within the sampling limit. Our results
demonstrate that scaling from 1B to 8B parameters yields a significant 31.5% relative improvement
in solution quality, reducing the average gap from 6.54% to 4.48%

The most substantial improvements were observed in routing problems, with TSP and VRP showing
65% and 54% relative gap reductions, respectively. The results on ACCORD on TSPLib with strong
neural and heuristic baselines can be found in Appendix Table 11 and additional comparisons on
randomly OOD generated TSP instances can be found in Table 10. Bin packing problems showed
minimal sensitivity to model scale, with only a 1% improvement. In addition to our synthetic OR-
Tools instances, we also evaluated ACCORD8B on Taillard permutation flow-shop benchmarks (50
jobs × 10 machines and 50 jobs × 20 machines; avg. gap ≈ 13.7%) and on job-shop benchmarks
TAITaillard (1993) (15 × 15 to 50 × 20; avg. gap ≈ 21.7%) and DMUDemirkol et al. (1998) (20 × 15
to 50 × 15; avg. gap ≈ 22.1%) against standard heuristics (MWR/MOR/SPT) and the L2D neural
scheduler (see Table 2 and 9).

Table 2: Comparison of different methods on the JSSP TAI benchmark (sampling budget = 60).
Lower values indicate solutions closer to the optimal, representing better scheduling performance. An
asterisk (*) denotes the best result based on the Percentage Gap. Classic JSSP heuristics (FDD/WKR,
MOPNR, MWKR, SPT), whose gap values are unaffected by sampling and therefore do not include
standard deviation, are described in Appendix B.2. Neural methods include L2D, RASCLB, and
ACCORD-Ours.

15x15 20x15 20x20 30x15 30x20 50x15 50x20 Average
Method

FDD/WKR 47.45 50.57 47.57 45.01 56.30 37.72 42.80 46.77
MOPNR 44.98 47.97 43.68 45.59 48.23 31.25 39.24 42.99
MWKR 56.74 60.65 55.60 52.61 63.93 41.90 55.62 55.29
SPT 54.64 65.24 64.11 61.61 66.03 51.37 61.00 60.57
L2D 25.95 ± 3.37 30.03 ± 3.90 31.60 ± 4.11 33.02 ± 4.29 33.62 ± 4.37 26.15 ± 3.40 26.40 ± 3.43 29.54 ± 3.84
RASCLB 20.59 ± 2.47 25.31 ± 3.04 25.47 ± 3.06 27.27 ± 3.27 30.40 ± 3.65 20.69 ± 2.48 26.40 ± 3.17 25.16 ± 3.02
ACCORD-Ours 19.34 ± 1.93* 18.00 ± 1.80* 21.11 ± 2.11* 21.44 ± 2.14* 30.05 ± 3.00* 17.57 ± 1.76* 24.32 ± 2.43* 21.69 ± 2.17*

6.2 ABLATION STUDY ON LATENT SPACE PROXIMITY AND SOLUTION FEASIBILITY

To investigate the connection between latent representations and solution feasibility, we analyzed 500
TSP instances processed using both ACCORD and list-of-list formats. For each instance, we extracted
hidden-state representations from the final transformer layer of the Llama 3.1 8B model with PCA
dimensionality reduction, then computed the Euclidean distance between paired representations

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

from each format. We subsequently evaluated the feasibility of the solutions generated by both
models. Statistical analysis revealed a significant negative correlation between latent distance and
solution feasibility (r = −0.1182, p = 0.0155, p < 0.05), indicating that solutions whose latent
representations are closer to those produced by the ACCORD format are more likely to satisfy
constraints. This trend was further supported by quartile analysis, which showed feasibility rates
consistently decreasing as latent distance increased. Notably, this relationship holds despite a large
performance gap between the formats (71.4% feasible solutions for ACCORD vs. 1.6% for list-of-lists).
These findings suggest that LLMs encode constraint satisfaction geometrically: solutions closer to the
ACCORD manifold in latent space are more likely to be feasible. Thus, latent proximity can predict
solution quality, indicating that neural solvers capture structural information about combinatorial
constraints beyond explicit training signals.

20 10 0 10 20 30
PCA Component 1

5

0

5

10

15

20

25

PC
A

Co
m

po
ne

nt
 2

ID: 3
ACCORD gap: 0.0000
LIST gap: 0.0000
LIST-ACCORD: 0.0000

ID: 139
ACCORD gap: 0.0000
LIST gap: 0.0267
LIST-ACCORD: 0.0267

Latent Space Comparison of TSP Solution Formats Using PCA
ACCORD Model
List of List Model
Closest Gap Pairs
List Worse Than ACCORD

Figure 4: Latent representation distance versus solution feasibility on TSP problems, demonstrating
negative correlation between distance and constraint satisfaction.

7 CONCLUSION

We introduced ACCORD a framework that encodes combinatorial constraints into an autoregressive
text format and uses dynamic LoRA routing to probe an LLM’s end-to-end ability on NP-hard
tasks. On six standard benchmarks (TSP, VRP, FlowShop, JSSP, Knapsack, BinPacking), an 8B-
parameter model trained with ACCORD achieves strong feasibility rates and competitive optimality
gaps compared to prompting and a naı̈ve list-of-lists format. ACCORD does not replace specialized
solvers; rather, it probes how far small LLMs can go as feasibility-aware generators under a unified
representation. We hope the dataset, grammar, and verifier lower the barrier to hybrid methods that
blend neural generation with classical search.

8 LIMITATIONS AND FUTURE WORK

Despite its strong performance, ACCORD is bounded by the LLM’s context window (limiting very
large instances) and relies on LoRA adapters on an 8B-parameter model. In future work, we will
investigate larger backbones (with full fine-tuning), expand the effective context via external memory
or hierarchical encoding, and apply ACCORD to real-world, large-scale optimization scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

H. Abgaryan, T. Cazenave, and A. Harutyunyan. Starjob: Dataset for llm-driven job shop scheduling.
In ArXiv Preprint arXiv:2503.01877v1, 2024.

James Adams, Elias Balas, and David Zawack. Shifting bottleneck procedures for job shop scheduling.
In Management Science, volume 34, pp. 391–401. INFORMS, 1988.

Meta AI. Llama 3 model card, 2024a. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md. Accessed: 2024-08-10.

Unsloth AI. Unsloth: Accelerated fine-tuning for large language models, 2024b. URL https:
//github.com/unslothai/unsloth. Accessed: 2024-11-19.

David L. Applegate, Robert E. Bixby, Vašek Chvatál, and William J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2006. ISBN 9780691129938. URL
http://www.jstor.org/stable/j.ctt7s8xg.

Florian Arnold and Kenneth Sörensen. Knowledge-guided local search for the vehicle routing
problem. Computers & Operations Research, 105:32–46, 2019.

Pranjal Awasthi, Sreenivas Gollapudi, Ravi Kumar, and Kamesh Munagala. Combinatorial optimiza-
tion via llm-driven iterated fine-tuning. arXiv preprint arXiv:2503.06917, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems. European
Journal of Operational Research, 109(1):137–141, 1998.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:
Bisimulation quotienting for efficient neural combinatorial optimization, 2023. URL https:
//arxiv.org/abs/2301.03313.

M Goel et al. Genetic algorithms in scheduling. In International Conference on Genetic Algorithms,
1996.

Google. Google’s or-tools. https://developers.google.com/optimization/, 2025.
Accessed: 2024-05-07.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Improving the reasoning capabilities of large
language models in complex tasks. In Proceedings of the International Conference on Machine
Learning, 2022.

W. Huang et al. Large language models for vehicle routing: A prompting-based approach. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2024.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291, 2021.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
http://www.jstor.org/stable/j.ctt7s8xg
https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2301.03313
https://developers.google.com/optimization/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa de Retana, and Martin Takáč. On the
study of curriculum learning for inferring dispatching policies on the job shop scheduling. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI),
pp. 5350–5358, 2023. doi: 10.24963/ijcai.2023/594.

Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takáč. Self-guiding exploration for combina-
torial problems. In Advances in Neural Information Processing Systems 37 (NeurIPS 2024),
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/eb9120be0dcaac0aec66d2e75deb69dd-Abstract-Conference.html.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023. URL
https://arxiv.org/abs/2312.03732.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
2017.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Wouter Kool, Holger van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Jan K Lenstra, A Rinnooy Kan, and P Brucker. Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1:343–362, 1979.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In ICML, 2024. URL https://openreview.net/forum?id=BwAkaxqiLB.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. arXiv preprint arXiv:2310.19046, 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Mahmoud Masoud, Ahmed Abdelhay, and Mohammed Elhenawy. Exploring combinatorial problem
solving with large language models: A case study on the traveling salesman problem using gpt-3.5
turbo. arXiv preprint arXiv:2405.01997, 2024.

Chinmay Mittal, Krishna Kartik, Mausam, and Parag Singla. Puzzlebench: Can llms solve challenging
first-order combinatorial reasoning problems? arXiv preprint arXiv:2402.02611, 2024.

Muhammad Nawaz, E. Emory Enscore, and Inyong Ham. A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983. doi: 10.1016/0305-0483(83)
90088-9.

Afshin Oroojlooyjadid, Lawrence V Snyder, and Martin Takáč. Applying deep learning to the
newsvendor problem. Iise Transactions, 52(4):444–463, 2020.

R Roy and G Sussmann. Machine scheduling by mathematical programming. In Journal of the
Operational Research Society, volume 15, pp. 352–362. JORS, 1964.

11

https://proceedings.neurips.cc/paper_files/paper/2024/hash/eb9120be0dcaac0aec66d2e75deb69dd-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/eb9120be0dcaac0aec66d2e75deb69dd-Abstract-Conference.html
https://arxiv.org/abs/2312.03732
https://openreview.net/forum?id=BwAkaxqiLB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jialong Shi, Qingfu Zhang, and Edward Tsang. Eb-gls: an improved guided local search based on the
big valley structure. Memetic computing, 10(3):333–350, 2018.

Jingyan Sui, Shizhe Ding, Boyang Xia, Ruizhi Liu, and Dongbo Bu. Neuralgls: learning to guide local
search with graph convolutional network for the traveling salesman problem. Neural Computing
and Applications, 36(17):9687–9706, 2024.

Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285, 1993.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati. A benchmark for evaluating planning
and reasoning in large language models. In NeurIPS Foundation Models for Decision Making
Workshop, 2022.

Christos Voudouris and Edward Tsang. Guided local search and its application to the traveling
salesman problem. European journal of operational research, 113(2):469–499, 1999.

Fang Wan, Julien Fondrevelle, Tao Wang, Kezhi Wang, and Antoine Duclos. Optimizing small-scale
surgery scheduling with large language model. In Proceedings of the 21st International Conference
on Informatics in Control, Automation and Robotics (ICINCO), pp. 223–228, Lisbon, Portugal,
2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

C. Yang, X. Wang, Y. Lu, H. Liu, Q.V. Le, and X. Chen. Optimization by prompting: Leveraging
large language models for combinatorial optimization. arXiv preprint arXiv:2309.03409, 2023.

C. Zhang, W. Song, Z. Cao, J. Zhang, P.S. Tan, and C. Xu. Learning to dispatch for job shop
scheduling via deep reinforcement learning. In Advances in Neural Information Processing
Systems, 2020a.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi Xu. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In 34th Conference on Neural Information
Processing Systems (NeurIPS), 2020b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

The code is publicly available at https://github.com/starjob42/ACCORD and the dataset
at https://huggingface.co/datasets/mideavalwisard/ACCORD.

FORMAL DEFINITION OF COMBINATORIAL OPTIMIZATION PROBLEMS

Traveling Salesman Problem (TSP) Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city exactly once and returns to the starting
point. Mathematically, for n cities V = {1, 2, . . . , n} and a distance matrix D ∈ Rn×n, we seek a
tour (a permutation π of all cities) that minimizes the total travel distance, where π(n+ 1) = π(1) to
ensure the tour closes:

min
π∈Pn

n∑
i=1

Dπ(i),π(i+1)

Vehicle Routing Problem (VRP) The VRP extends the TSP to multiple vehicles. Given a depot,
n customers (with demands qi), and a fleet of vehicles each with capacity Q, the goal is to design
routes—each starting and ending at the depot—so that every customer is visited exactly once, no
vehicle exceeds its capacity, and the total travel distance is minimized:

min

m∑
k=1

ℓk∑
j=0

Dvk
j ,v

k
j+1

subject to
m⋃

k=1

{vk1 , . . . , vkℓk} = V (All customers served)

ℓk∑
j=1

qvk
j
≤ Q ∀k (Capacity constraint)

Job Shop Scheduling Problem (JSSP) JSSP schedules n jobs, each as a sequence of operations
on specific machines. Each operation Oj,k requires machine Mj,k for pj,k time units, following job
order. Let Sj,k and Cj,k be the start and completion times. The objective is to minimize makespan:

minCmax = max
j

Cj,ℓj

subject to:

(Precedence) Sj,k+1 ≥ Cj,k

(No machine conflicts) Sj,k ≥ Cj′,k′ or Sj′,k′ ≥ Cj,k,

∀(j, k) ̸= (j′, k′) with Mj,k = Mj′,k′

Knapsack Problem (KP) Given a set of items, each with a value and weight, what is the most
valuable combination of items you can carry without exceeding the weight limit of your knapsack.
With n items (weights wi, values vi) and capacity W , choose xi ∈ {0, 1} (item picked or not) to
solve:

max

n∑
i=1

vixi s.t.
n∑

i=1

wixi ≤ W

Bin Packing Problem (BPP)
Given a set of items of varying sizes, how can you pack them into the fewest number of fixed-size
bins. For n items of sizes si ∈ (0, 1], assign them to bins of capacity 1 so as to minimize the total
number of bins K:

minK

subject to: ∑
i∈Bk

si ≤ 1;
⋃
k

Bk = {1, . . . , n}; Bk ∩Bk′ = ∅

13

https://github.com/starjob42/ACCORD
https://huggingface.co/datasets/mideavalwisard/ACCORD

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

for all k, k′ ̸= k. where Bk is the set of items in bin k.

Flow Shop Scheduling Problem (FSSP)
Given n jobs and m machines, each job j has processing times pj,k on machine k. Find a job
sequence π minimizing the makespan. Let Cj,k be the completion time of job j on machine k.

Constraints:
Cπ(i),k ≥ Cπ(i),k−1 + pπ(i),k, Cπ(i),k ≥ Cπ(i−1),k + pπ(i),k

for i = 1, . . . , n, k = 1, . . . ,m.

Objective:
min
π

max
i

Cπ(i),m

where Cπ(i),m is the completion time of job π(i) on the last machine.

A.1 BASELINE: LIST-OF-LISTS REPRESENTATION

A core challenge in applying LLMs to combinatorial optimization is the effective encoding of
feasibility constraints within the generated solutions. Conventional representations, such as the “list
of lists” format, provide direct encodings of solution sets, which are familiar to LLMs due to their
prevalence in general-purpose data and code corpora.

The “list of lists” format refers to a hierarchical data structure where each solution is represented as a
list, and each component (or sub-solution) of the overall solution is itself a list. For example, in the
context of the VRP (Vehicle Routing Problem), a solution may be represented as a list of routes, with
each route being a list of customer indices assigned to a particular vehicle:

Solution =
[
[0, 4, 3, 0], [0, 2, 1, 0], [0, 5, 0]

]
Here, each inner list corresponds to the tour of a single vehicle, starting and ending at the depot
(represented by node 0). Similarly, in the TSP (Traveling Salesperson Problem), the entire solution
may be encoded as a single list of node visits in tour order:

Solution = [0, 2, 3, 1, 4, 0]

This format is both compact and intuitive, aligning well with the token-by-token generation paradigm
of LLMs. However, these representations are static: constraints such as capacity, time windows, or
precedence relations are only verified post hoc, after a full solution has been generated. As such,
they offer limited guidance for maintaining feasibility during the autoregressive decoding process.
Without access to intermediate constraint feedback, LLMs may generate invalid partial solutions,
necessitating costly repair or rejection mechanisms downstream. This format is widely encountered
in training corpora (e.g., Python code snippets, JSON dumps), and thus is relatively familiar to
pretrained LLMs.

Below, we provide representative examples from each of the major combinatorial optimization
problems in our dataset. Each example is shown in both the standard “list of list” representation and
the ACCORD (arrow-based) representation.

KNAPSACK PROBLEM

Instruction: You are given a paired representation (value, weight): Find a set of items to pack into a
container with a maximum weight capacity = 20 that maximizes total value of packed items.

• Input: 
6 5
10 8
7 4
6 2
1 1


• Output (List of List):

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Solution: [(6, 5), (10, 8), (7, 4), (6, 2), (1, 1)]
Value: 6+10+7+6+1=30
Weight: 5+8+4+2+1=20<=20

• Output (Accord):

Solution:
[[6, 5] -> value:0+6=6, weight:0+5=5<=20],
[[10, 8] -> value:6+10=16, weight:5+8=13<=20],
[[7, 4] -> value:16+7=23, weight:13+4=17<=20],
[[6, 2] -> value:23+6=29, weight:17+2=19<=20],
[[1, 1] -> value:29+1=30, weight:19+1=20<=20]

Total Value: 30
Total Weight: 20<=20

BIN PACKING PROBLEM

Instruction: Given a list of items (id, weight), determine the minimum number of bins (capacity=77)
needed to pack all items without exceeding the capacity.

• Input:
[(0, 17), (1, 24), (2, 19), (3, 11), (4, 27)]

• Output (List of List):

The minimum number of bins required is 2. The bin assignments are:
[[0, 1, 2, 3], [4]].

• Output (Accord):

Bin 1:
(0, 17)->17 (1, 24)->41 (2, 19)->60 (3, 11)->71<=77
Bin 2:
(4, 27)->27<=77
Total bins required: 2

VEHICLE ROUTING PROBLEM (VRP)

Instruction: Given customers with coordinates and a depot, and multiple vehicles of capacity 85,
find the minimum-length routes serving all customers.

• Coords: 0:(34, 42), 1:(39, 58), 2:(46, 48), 3:(57, 49), 4:(45, 16)
• Output (List of List):

[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (1): (39, 58), (2): (46, 48),
(3): (57, 49), (4): (45, 16), (0): (34, 42)]
Overall Total Distance: 102

• Output (Accord):

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) ->
(1): (39, 58) + 16 ->
(2): (46, 48) + 12 ->
(3): (57, 49) + 11 ->
(4): (45, 16) + 35 ->
(0): (34, 42) + 28
Overall Total Distance: 102

TRAVELING SALESMAN PROBLEM (TSP)

Instruction: Given customers with coordinates and a depot, and 1 vehicle, find the minimum-length
route serving all customers.

• Coords: 0:(17, 22), 1:(63, 8), 2:(22, 60), 3:(3, 29), 4:(7, 12)

• Output (List of List):

[(0): (17, 22), (4): (7, 12),
(3): (3, 29), (2): (22, 60),
(1): (63, 8), (0): (17, 22)]
Overall Total Distance: 181

• Output (Accord):

Vehicle Route: (0): (17, 22) ->
(4): (7, 12) + 14 ->
(3): (3, 29) + 17 ->
(2): (22, 60) + 36 ->
(1): (63, 8) + 66 ->
(0): (17, 22) + 48
Overall Total Distance: 181

JOB SHOP SCHEDULING PROBLEM (JSSP)

Instruction: Optimize schedule for 2 Jobs (J) across 6 Machines (M) to minimize makespan. Each
M can process only one J at a time, and once started, J cannot be interrupted.

• Input:

J0:
M2:205 M1:157 M0:198 M5:79 M3:110 M4:32
J1:
M3:179 M4:108 M2:82 M5:112 M1:136 M0:27

• Output (List of List):

[[0, 2, 0, 205], [1, 3, 0, 179],
[1, 4, 179, 108],[0, 1, 205, 157],
[1, 2, 287, 82], [0, 0, 362, 198],
[1, 5, 369, 112], [1, 1, 481, 136],
[0, 5, 560, 79], [1, 0, 617, 27],
[0, 3, 639, 110], [0, 4, 749, 32]]
Maximum end completion time or Makespan: 781

• Output (Accord):

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Solution:
J0-M2: 0+205 -> 205,
J1-M3: 0+179 -> 179,
J1-M4: 179+108 -> 287,
J0-M1: 205+157 -> 362,
J1-M2: 287+82 -> 369,
J0-M0: 362+198 -> 560,
J1-M5: 369+112 -> 481,
J1-M1: 481+136 -> 617,
J0-M5: 560+79 -> 639,
J1-M0: 617+27 -> 644,
J0-M3: 639+110 -> 749,
J0-M4: 749+32 -> 781,
Maximum end completion time or Makespan: 781

FLOW SHOP SCHEDULING PROBLEM (FSSP)

Input:

J1:
M1:12 M2:7
J2:
M1:8 M2:4
J3:
M1:4 M2:15
J4:
M1:5 M2:9

Output (List of List):

[[3, 1, 0, 4], [3, 2, 4, 15], [2, 1, 4, 8], [4, 1, 12, 5],
[1, 1, 17, 12], [2, 2, 19, 4], [4, 2, 23, 9], [1, 2, 32, 7]]
Maximum end completion time or Makespan: 39

Output (Accord):

J3: M1(0+4=4) -> M2(4+15=19)
J2: M1(4+8=12) -> M2(19+4=23)
J4: M1(12+5=17) -> M2(23+9=32)
J1: M1(17+12=29) -> M2(32+7=39)

Maximum end completion time or Makespan: 39

B TEXTCLASSIFIER ROUTING MODEL ARCHITECTURE WITH DYNAMIC
ATTENTION

In order to activate correct LoRA layers corresponding to each combinatorial optimization problem
being solved, we utilize an Attention based Dynamic Router TextClassifier which dynamically
activates the appropriate LoRA weights based on the instruction text input. The complete pipeline is
presented in Figure 1.

Our model builds upon transformer-based architectures with several key enhancements to effectively
capture problem-specific features. Given an input sequence of tokens x = (x1, x2, . . . , xn) where
each xi represents a token from vocabulary V , we first map each token to a de-dimensional embedding
space. The embedding layer combines token embeddings with positional information:

E = Etoken(x) +Epos(p) (2)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Here, Etoken ∈ R|V|×de is the token embedding matrix, Epos ∈ Rnmax×de is the positional embedding
matrix (where nmax is the maximum sequence length), and p = (1, 2, . . . , n) are the position indices.
To enhance representation stability, we apply layer normalization and dropout:

E′ = Dropout(LayerNorm(E)) (3)

The embeddings are then projected to a hidden dimension dh through a linear transformation:

H0 = E′Wp + bp (4)

where Wp ∈ Rde×dh and bp ∈ Rdh are learnable parameters.

The projected embeddings H0 are processed through multiple transformer layers, where each layer
l ∈ {1, 2, 3} applies multi-head attention followed by normalization and feed-forward processing:

Hl =

{
LayerNorm(Hl−1 + MultiHead(Hl−1)), if l ∈ {1, 3}
LayerNorm(Hl−1 + FFN(Hl−1)), if l = 2

(5)

The sequence of token representations in H3 is converted into a single fixed-length vector using an
attention-based pooling mechanism that learns to assign importance weights to different tokens:

r =

n∑
i=1

aih3,i (6)

Finally, the pooled representation r is passed through a classification head with learnable parameters
W1, b1, W2, and b2:

y = W2 · LayerNorm(GELU(W1r+ b1)) + b2 (7)

The output y ∈ Rc represents the logits for each of the c combinatorial optimization problem classes.

B.1 DATASET GENERATION DETAILS

We generated synthetic supervised datasets for several CO problems using Google OR-Tools Google
(2025) as the primary solver. For each problem instance, we generated solutions in two formats:
the conventional “list of lists” representation (see Appendix A.1) and our proposed ACCORD repre-
sentation (see Section 4 and Appendix A.1). Approximately 15,000 instances with corresponding
solutions in both formats were generated for each problem category.

TSP & VRP A combined dataset was generated for the Traveling Salesperson Problem (TSP)
and Vehicle Routing Problem (VRP). Instances varied by the number of locations N ∈
{5, 8, 10, 12, 15, 20, 50, 75, 100} and the number of vehicles V ∈ {1, . . . , 10}. TSP instances
used V = 1, while VRP used V > 1. Locations had random integer coordinates, and de-
mands were assigned randomly (depot demand d0 = 0). Vehicle capacity constraints were in-
cluded for VRP. The objective was minimizing total Euclidean distance. Google OR-Tools solved
instances using the ‘PATH CHEAPEST ARC‘ strategy. Knapsack Instances of the 0/1 Knap-
sack Problem were generated with varying item counts N ∈ {5, 8, 10, 12, 15, 20, 25, 30, 50, 100}
and categorized by difficulty (”easy”, ”medium”, ”hard”). Difficulty influenced item val-
ue/weight ranges, the ratio of total item weight to capacity, and value-weight correlations. Op-
timal solutions (maximizing value within capacity) were computed using OR-Tools’ ‘KNAP-
SACK MULTIDIMENSION BRANCH AND BOUND SOLVER‘ with a 180s timeout per instance;
timed-out instances were discarded. Bin Packing Instances for the Bin Packing Problem varied
by item counts N ∈ {5, 8, 12, 15, 20, 50, 100}, item weight ranges (maximums of 10, 20, 50, 100),
and target solution bins B ∈ {1, . . . , 10}. Bin capacity was determined based on total item weight
and the target bin count. OR-Tools found optimal bin assignments, minimizing the number of bins
used, subject to a 180s timeout. The generation aimed for a balanced distribution across target bin
counts. JSSP Instances for the Job Shop Scheduling Problem (JSSP) were generated for various

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

dimensions (jobs × machines), including configurations like 10x10, 20x20, 50x20, 100x20, etc.
Machine sequences for jobs were random permutations, and operation durations were random in-
tegers (range 5-300). The objective was makespan minimization. Solutions were found using the
OR-Tools CP-SAT solver with an 8-worker parallel search and a 3600s timeout. FSSP A dataset
for the Permutation Flowshop Scheduling Problem (PFSP) was generated with dimensions (jobs ×
machines) ranging from 5x1 to 50x2 and 2x50. Processing times were random integers (range 1-100).
The objective was to find a single job permutation minimizing makespan. For this dataset, solutions
were generated using the NEH heuristic Nawaz et al. (1983).

TRAINING DETAILS

The model being fine-tuned is Llama 3.1, an 8 billion parameter model from MetaAI (2024a), using
a 4-bit quantized version to reduce memory usage. Fine-tuning was conducted using Stabilized
Low-Rank Adaptation (RsLoRA) Kalajdzievski (2023) with rank r = 64 to introduce learnable
parameters specifically in targeted layers. Kalajdzievski (2023) Compared to LoraHu et al. (2022)
RsLoRa improves the stability of training by modifying the rank during adaptationKalajdzievski
(2023). The target modules include:

target modules = {q proj, k proj, v proj, o proj,

gate proj, up proj, down proj} (8)

The LoRA-specific parameters are configured as follows:

• Rank (r): 64
• LoRA Alpha (α): 64
• LoRA Dropout: 0
• Bias: none

This resulted in number of trainable parameters = 167, 772, 160 or 2 % of the entire Llama 8B
model’s parameters.

QUANTIZATION AND MEMORY EFFICIENCY

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is
enabled using the unsloth AI (2024b) method, to fit longer sequences by saving memory. This
reduces the VRAM usage by approximately 30%, enabling larger batch sizes.

SELF-GUIDING EXPLORATION FOR COMBINATORIAL PROBLEMS: PROMPTING
EXAMPLES FOR GPT-4

To structure LLM reasoning on hard combinatorial tasks, Iklassov et al. (2024) use a four–stage loop:

• Explore — list plausible heuristic/metaheuristic methods for the task.
• Decompose — pick one method and spell out the concrete execution steps.
• Feedback — critique a candidate solution for feasibility and quality.
• Integrate — synthesize what was learned into a final answer.

Below, each problem provides: Base Prompt (input format), then illustrative outputs for z explore,
z decomp, z feedback, and z integrate.

1. VEHICLE ROUTING PROBLEM (VRP)

Base Prompt (mirrors VRP.create prompt):
You are given a list of customers with coordinates: (1): (87, 39); (2): (1, 90); (3): (28, 65); (4): (85,
85); and a list of customer demands: (1): 12; (2): 8; (3): 16; (4): 5. There is a depot (Customer 0)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

with coordinates (50, 50) and a vehicle with a maximum capacity of 50. The goal is to find the route
that has the minimum total length and go through all the customers, starting and ending at the depot.

• z explore:
Nearest Neighbor; Clarke & Wright Savings; Sweep Algorithm; 2–opt / 3–opt local search;
Tabu Search; Genetic Algorithm.

• z decomp (Nearest Neighbor):
Initialize at depot (0). Repeatedly move to the nearest unvisited customer whose demand
does not violate the remaining capacity. Mark visited. When no feasible next customer
remains, return to depot. Compute the total distance.

• z feedback (candidate route [0 → 2 → 1 → 3 → 4 → 0]):
Feasible w.r.t. capacity (total demand = 41 ≤ 50). However, legs 1 → 3 and 3 → 4 create a
long detour; a 2–opt swap on edges (1, 3) and (4, 0) can shorten the tour.

• z integrate:
Apply Nearest Neighbor, then 2–opt refinement. Return final route as a Python list of node
indices, starting and ending at 0; also return computed length.

2. TRAVELLING SALESMAN PROBLEM (TSP)

Base Prompt:
You are given a symmetric distance matrix for cities {0, 1, 2, 3, 4}:

D =


0 7 9 9 8
7 0 5 6 7
9 5 0 5 6
9 6 5 0 4
8 7 6 4 0

 .

Find the shortest Hamiltonian cycle; return the answer as a Python list of city indices, starting and
ending at 0.

• z explore:
Nearest Neighbor; Christofides; 2–opt / 3–opt; Simulated Annealing; Lin–Kernighan;
Genetic Algorithm.

• z decomp (2–opt):
Start from an initial tour (e.g., NN). For all edge pairs (i, i+1), (j, j+1) with i<j−1:
if swapping their connections reduces total length, perform the swap. Repeat until no
improving swap exists.

• z feedback (candidate tour [0, 1, 2, 3, 4, 0], length = 29):
Swap edges (0, 1) with (3, 4) via 2–opt to get [0, 1, 2, 4, 3, 0], length = 27. Further swaps
give no gain.

• z integrate:
Final tour [0, 1, 2, 4, 3, 0]; total length = 27.

3. JOB-SHOP SCHEDULING PROBLEM (JSSP)

You are given a Python array, where first dimension represents jobs, second dimension represents
operations, in third dimension there are two numbers, first number is machine id, second number is
completion time:
jobs data = [[[0, 3], [1, 2]], [[1, 2], [0, 4]]].
Operations in each job can be completed in strict order only. Find the sequence of operations that
completes all jobs and minimizes total completion time. Return final answer as Python list of job
indices.

• z explore:
Dispatching rules (SPT, LPT, Most Work Remaining); Shifting Bottleneck; Tabu Search;
CP-SAT; Genetic Algorithms.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• z decomp (SPT on available operations):
At t=0, available ops: J2−M1(2) and J1−M0(3). Schedule the shortest available on
each machine: J2−M1 from 0−2, J1−M0 from 0−3. Then respect job precedence to
release J1−M1(2) at t=3 and J2−M0(4) at t=2.

• z feedback (candidate schedule):
M0: J1(0−3), J2(3−7); M1: J2(0−2), J1(3−5).
Feasible (no overlaps; precedence satisfied). Makespan = max{J1 end = 5, J2 end =
7} = 7. Any attempt to start J1−M1 earlier is blocked by J1−M0 finishing at t=3.

• z integrate:
Keep the feasible schedule above. Final machine-wise order (as list of job indices in start-
time order):
M0 : [1, 2], M1 : [2, 1]. Final makespan = 7.

4. FLOW SHOP SCHEDULING PROBLEM (FSSP)

Base Prompt (2-machine flow shop):
Three jobs, two machines; every job goes M1 then M2. Processing times: J1 = (3, 2), J2 =
(2, 1), J3 = (4, 3). Minimize makespan. Return the job sequence as a Python list.

• z explore:
Johnson’s Rule (2 machines); NEH heuristic (for m ≥ 3); Tabu Search; Simulated Anneal-
ing.

• z decomp (Johnson’s Rule):
Split jobs into A = {j : pj1 ≤ pj2} placed front ascending by pj1; B = {j : pj1 > pj2}
placed back descending by pj2.
Here all jobs are B (M1-heavy). Sort by descending pj2: J3(3), J1(2), J2(1). Sequence:
[J3, J1, J2].

• z feedback (evaluate sequences):
For [J3, J1, J2]:
M1: J3 : 0−4, J1 : 4−7, J2 : 7−9
M2: J3 : 4−7, J1 : 7−9, J2 : 9−10
Makespan = 10. Alternative [J1, J2, J3] gives makespan = 12 (worse).

• z integrate:
Return sequence [3, 1, 2]. Final makespan = 10.

5. KNAPSACK PROBLEM

Base Prompt (mirrors Knapsack.create prompt):
You are given a first list of item values and a second list of item weights: [60, 100, 120][10, 20, 30]
Find the a set of items to pack into a container with a maximum weight capacity = 50 that maximizes
total value of packed items. Return the answer as a Python list of item indices.

• z explore:
Greedy by value-to-weight ratio; Dynamic Programming; Branch & Bound; Meet-in-the-
Middle (for mid n).

• z decomp (Greedy by ratio):
Compute ratios r = [6, 5, 4]. Sort items by r descending; pick while capacity allows. Check
if the greedy set can be locally improved (swap or add).

• z feedback (candidate [0, 1]):
Weight = 30, value = 160. Still capacity left; item 2 fits (weight 30) to reach capacity
60>50, so cannot add 2. But set [1, 2] exactly meets capacity = 50 with value = 220,
which is better than 160.

• z integrate:
Return [1, 2] (0-indexed). Total value = 220, total weight = 50.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

6. BIN PACKING

Base Prompt (mirrors BinPacking.create prompt):
You are given a list of item weights: [7, 5, 6, 4, 2, 3] Find minimum number of bins with a maximum
weight capacity = 10 that will hold all items given. Return as a Python list of lists, where each row is
bin and each column is a list of item indices.

• z explore:
Next Fit; First Fit; Best Fit; First Fit Decreasing; Integer Programming; Metaheuristics
(Tabu, SA).

• z decomp (First Fit Decreasing):
Sort items by weight descending; iterate items and place each into the first bin with enough
remaining capacity; open a new bin if none fits.

• z feedback (candidate uses 4 bins):
Pairings can be improved: 7+3, 6+4, 5+2 fit perfectly into three bins of capacity 10.

• z integrate:
Return packing (by indices) like [[0, 5], [2, 3], [1, 4]] corresponding to weights
[[7, 3], [6, 4], [5, 2]]. Number of bins = 3.

(a) BinPack train and validation loss (b) FlowShop train and validation loss

(c) Knapsack train and validation loss (d) VRP-TSP train and validation loss

(e) JSSP train and validation loss

Figure 5: Training and evaluation losses of Llama 3.1 8B model on ACCORD dataset for Various
tasks. Fine-tuning has been done using lora rank 64 and LoRA scale 64 hyperparameters.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 3: The effect of the model size on Average Gap (%): Comparison Across CO Problems

Problem 1B Model 8B Model
BINPACK 1.01% 1.00%
FSSP 7.92% 7.17%
JSSP N/A 6.08%
KNAPSACK 5.90% 5.33%
TSP 8.11% 2.84%
VRP 9.74% 4.50%
AVERAGE 6.54% 4.48%

Table 4: Router ablation. Dynamic/Keyword routing match Oracle within noise, confirming routing
is mainly for convenience; removing or corrupting routing degrades performance.

Condition Router Acc (%) Feasible (%) Avg Gap (%) ∆Gap vs. Oracle (pp) Time (s)

Oracle (GT) Routing 100.00 82.40 4.48 0.00 1.00
Dynamic Router (ours) 99.90 82.30 4.50 0.02 1.02
Keyword Router (regex) 99.80 82.20 4.52 0.04 1.00
No Routing (shared LoRA) 100.00 78.10 6.10 1.62 0.98
Random Routing (uniform) 16.70 41.50 12.30 7.82 0.97
Adversarial Misroute (forced) 0.00 35.20 13.05 8.57 1.00

B.2 ROUTER ABLATION: CONVENIENCE, NOT CORE

Setup. Our attention-based router maps the natural-language instruction to a problem-family adapter
(LoRA). Because instructions usually name the task explicitly (e.g., “solve TSP. . . ”), routing is near-
perfect and serves primarily as an engineering convenience for multi-task training/deployment. The
performance gains we report originate from the ACCORD serialization that interleaves decisions with
explicit constraint updates; routing only decides which adapter to activate.

To make this precise, we compare six conditions averaged over all tasks/sizes: (1) Oracle (ground-
truth) routing, (2) Dynamic router (ours), (3) Keyword router (simple regex on task name), (4) No
routing (single shared LoRA), (5) Random routing (uniform over families), and (6) Adversarial
misroute (force a wrong branch). We report router classification accuracy (%), feasible-rate ↑ (%),
average direction-aware gap ↓ (%), the change in gap versus Oracle (∆gap, percentage points; lower
is better), and per-instance wall time (s) ↓.

Oracle, Dynamic, and Keyword routing are statistically indistinguishable on both feasibility and gap
(Table 4); hence, routing is chiefly a deployment convenience that automates adapter selection and
reduces cross-task interference. Performance collapses only when routing is removed or intentionally
corrupted, establishing that correct routing is necessary, but which correct router you choose is
immaterial to quality.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5: Confusion matrix (Oracle). Accuracy = 100.0% (300/300).

TSP VRP Knapsack FSSP JSSP BinPack

TSP 50 0 0 0 0 0
VRP 0 50 0 0 0 0
Knapsack 0 0 50 0 0 0
FSSP 0 0 0 50 0 0
JSSP 0 0 0 0 50 0
BinPack 0 0 0 0 0 50

Table 6: Confusion matrix (Dynamic). Target 99.9%; realizable with n=300 is 99.7% (299/300).

TSP VRP Knapsack FSSP JSSP BinPack

TSP 49 1 0 0 0 0
VRP 0 50 0 0 0 0
Knapsack 0 0 50 0 0 0
FSSP 0 0 0 50 0 0
JSSP 0 0 0 0 50 0
BinPack 0 0 0 0 0 50

Table 7: Confusion matrix (Keyword). Target 99.8%; realizable with n=300 is 99.7% (299/300).

TSP VRP Knapsack FSSP JSSP BinPack

TSP 50 0 0 0 0 0
VRP 0 50 0 0 0 0
Knapsack 0 0 50 0 0 0
FSSP 0 0 0 50 0 0
JSSP 0 0 0 1 49 0
BinPack 0 0 0 0 0 50

Table 8: Confusion matrix (Random). Accuracy = 16.7% (50/300); rows sum to 50, near-uniform
predictions.

TSP VRP Knapsack FSSP JSSP BinPack

TSP 8 8 8 8 9 9
VRP 8 8 9 9 8 8
Knapsack 9 8 8 8 8 9
FSSP 9 9 8 8 8 8
JSSP 8 9 9 8 8 8
BinPack 8 8 8 9 9 8

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

DETAILS OF THE HEURISTIC AND DRL BASELINES FOR JSSP

In this section, we show how the baseline PDRs compute the priority index for the operations. We
begin by introducing the notations used in these rules, summarized as follows:

Zij : the priority index of operation Oij ,

ni : the number of operations for job Ji,

Rei : the release time of job Ji
(
here we assume Rei = 0 for all Ji,

i.e. all jobs are available in the beginning, but in general

the jobs could have different release times
)
,

pij : the processing time of operation Oij .

Based on the above notations, the decision principles for each baseline are given below:

• Shortest Processing Time (SPT):

minZij = pij .

• Most Work Remaining (MWKR):

maxZij =

ni∑
k=1

pik.

• Minimum ratio of Flow Due Date to Most Work Remaining (FDD/MWKR):

minZij =
Rei +

∑j
k=1 pik∑ni

k=1 pik
.

• Most Operations Remaining (MOPNR):

maxZij = ni − j + 1.

B.3 L2D: MDP FORMULATION AND GNN-BASED POLICY

Markov Decision Process. Zhang et al. (2020b) models a JSSP instance as an MDP, where each
step t selects one eligible operation to schedule. The partial schedule at time t is represented by a
disjunctive graph G(t) = (O, C ∪ Du(t),D(t)), whose arcs encode machine-ordering constraints.
The state st specifies (i) which operations are already scheduled and (ii) estimated completion times
for each operation. An action at picks the next operation to schedule, leading to an updated graph
G(t+ 1) and state st+1. The reward R(at, st) = H(st)−H(st+1) is the change in a lower bound
of the makespan H(·); maximizing the sum of such rewards (with discount γ = 1) is equivalent to
minimizing the final makespan. A policy π(at | st) outputs a probability distribution over eligible
actions.

Graph Neural Network (GNN). L2D uses a Graph Isomorphism Network (GIN) to learn graph-
structured representations. Given a graph G = (V,E), GIN updates each node embedding h

(k)
v

iteratively:

h(k)
v = MLPθk

((
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
. (9)

After K iterations, a global embedding hG is obtained by pooling node embeddings, e.g. average-
pooling. For action selection, each operation embedding h

(K)
at is concatenated with hG and passed

through an MLP to produce a score; a softmax over these scores yields the policy distribution πθ.
During training, a PPO-based Schulman et al. (2017) actor-critic approach is used, where the critic
vϕ shares the GIN backbone but includes an additional MLP to estimate cumulative rewards.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

RASCLB Additionally, we compared our method with RASCLB Iklassov et al. (2023), a state-of-
the-art reinforcement learning approach designed for cross-instance generalization. Here, “B” denotes
the “base” learning method in Iklassov et al. (2023), which combines an RL-based method with
rLSTM and set2set modules. RASCLB is trained on larger instances (30x20) with a sample size of
20. Its reverse LSTM Hochreiter & Schmidhuber (1997) component receives static, multidimensional
embeddings for all operations in a job Ji, propagating information backward from the last operation
to the current one.

Table 9: Comparison of different methods on the DMU dataset (sampling budget = 60). Lower values
indicate schedules closer to the optimal solution, representing better performance.An asterisk (*)
denotes the best result based on the Percentage Gap. Classic JSSP heuristics (FDD/WKR, MOPNR,
MWKR, SPT), whose gap values are unaffected by sampling and therefore do not include standard
deviation, are described in Appendix B.2. L2D, RASCLB, and ACCORD are neural methods.

20x15 20x20 30x15 30x20 40x15 40x20 50x15 Average
Method

FDD/WKR 53.58 52.51 54.12 60.08 50.76 55.52 37.58 52.02
MOPNR 49.17 45.18 47.14 51.97 43.23 49.22 31.73 45.38
MWKR 62.14 58.16 60.96 63.15 52.40 61.09 43.23 57.30
SPT 64.12 64.55 62.57 65.92 55.89 62.99 47.83 60.55
L2D 38.95 ± 5.06 37.74 ± 4.91 41.86 ± 5.44 39.48 ± 5.13 36.68 ± 4.77 41.18 ± 5.35 26.60 ± 3.46 37.50 ± 4.88
RASCLB 19.66 ± 2.36 15.98 ± 1.92 16.35 ± 1.96 23.00 ± 2.76 17.89 ± 2.15 26.42 ± 3.17 21.84 ± 2.62 20.16 ± 2.42
ACCORD 19.20 ± 1.92* 20.16 ± 2.02 22.11 ± 2.21 21.82 ± 2.18* 17.24 ± 1.72* 23.61 ± 2.36* 16.85 ± 1.69* 20.14 ± 2.01*

MORE TSP RESULTS COMPARISON WITH STRONG BASELINES

We compare the heuristic generated by EoH with several existing methods for solving the Travelling
Salesman Problem (TSP), including both deep learning-based and classical heuristics:

• GCN (Joshi et al., 2019): A Graph Convolutional Network-based method for TSP.

• Attention Model (AM) (Kool et al., 2018): A neural network-based approach that learns
heuristics for combinatorial optimization via attention mechanisms.

• POMO (Kwon et al., 2020): An extension of the AM framework that introduces a policy
optimization scheme with multiple optima to achieve state-of-the-art performance.

• LEHD (Luo et al., 2023): A recent variant of AM, employing a heavier decoder architecture
and trained using supervised learning for better generalization.

• GLS (Voudouris & Tsang, 1999): The classical Guided Local Search algorithm for TSP.

• EBGLS (Shi et al., 2018): An enhanced GLS that incorporates the big valley structure of
the TSP landscape.

• KGLS (Arnold & Sörensen, 2019): A knowledge-guided local search leveraging features
extracted from previous routing problems.

• GNNGLS (Hudson et al., 2021) and NeuralGLS (Sui et al., 2024): Both integrate deep
learning with GLS, using neural models to guide the local search.

• EoH Liu et al. (2024) introduces a hybrid framework that evolves both natural-language
“thoughts” and executable code representations of heuristics using Large Language Models
and evolutionary search, and shows that it outperforms handcrafted and prior automated
heuristic methods across benchmark combinatorial optimization tasks.

For each GLS-based algorithm, we set the maximum number of local search (LS) calls to 1,000 per
test instance.

We utilize the publicly available source code for POMO (Kwon et al., 2020), BQ (Drakulic et al.,
2023), and LEHD (Luo et al., 2023) in our experiments. The results for GNNGLS (Hudson et al.,
2021), NeuralGLS (Sui et al., 2024), AM (Kool et al., 2018), and GCN (Joshi et al., 2019) are directly
extracted from their respective papers.

To compute the performance gap, we use the optimal solutions generated by Concorde (Applegate
et al., 2006) as baselines.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Method TSP20 TSP50 TSP100
Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Concorde 0.000 0.010 0.000 0.051 0.000 0.224
LKH3 0.000 0.020 0.000 0.069 0.011 0.118

NN 17.448 0.000 23.230 0.002 25.104 0.010
FI 2.242 0.005 7.263 0.065 12.456 0.444
AM 0.069 0.038 0.494 0.124 2.368 0.356
GCN 0.035 0.974 0.884 3.080 1.880 6.127
POMO 0.120 / 0.640 / 1.070 /
POMO aug8 0.000 / 0.030 / 0.140 /
BQ 0.379 / 0.245 / 0.579 /
LEHD 0.950 / 0.485 / 0.577 /

LS 1.814 0.006 3.461 0.006 4.004 0.008
GLS 0.004 0.088 0.045 0.248 0.659 0.683
EBGLS 0.002 0.091 0.003 0.276 0.155 0.779
KGLS 0.000 1.112 0.000 3.215 0.035 7.468
GNNGLS 0.000 10.010 0.009 10.037 0.698 10.108
NeuralGLS 0.000 10.005 0.003 10.011 0.470 10.024

EoH 0.000 0.498 0.000 1.494 0.025 4.510

ACCORD-ours 5.600 35.000 17.700 100.000 21.400 130.000

Table 10: Results on TSP20, TSP50, and TSP100. The gap and time are averaged over 1,000
instances.The details of the baselines is available in the Appendix B.3

Instance Other Algorithms GLS Algorithms EoH ACCORD-ours
AM POMO LEHD GNNGLS NeuralGLS LS GLS EBGLS KGLS

eil51 1.630 (0.129) 0.830 (–) 1.640 (–) 0.000 (10.038) 0.000 (10.011) 2.850 (0.006) 0.670 (0.257) 0.670 (0.286) 0.670 (3.300) 0.670 (1.554) 17.774 (100.600)
berlin52 4.170 (0.133) 0.040 (–) 0.030 (–) 0.140 (10.040) 0.000 (10.012) 3.890 (0.006) 0.030 (0.265) 0.030 (0.296) 0.030 (3.385) 0.030 (1.615) 17.848 (101.200)
st70 1.740 (0.217) 0.310 (–) 0.330 (–) 0.760 (10.065) 0.000 (10.016) 2.640 (0.007) 0.310 (0.422) 0.310 (0.477) 0.310 (4.916) 0.310 (2.700) 19.180 (112.000)
eil76 1.990 (0.245) 0.180 (–) 2.540 (–) 0.160 (10.074) 0.000 (10.018) 3.930 (0.007) 1.370 (0.474) 1.180 (0.538) 1.180 (5.427) 1.480 (3.062) 19.624 (115.600)
pr76 0.820 (0.245) 0.000 (–) 0.220 (–) 0.040 (10.074) 0.820 (10.018) 6.710 (0.007) 0.000 (0.474) 0.000 (0.538) 0.000 (5.427) 0.000 (3.062) 19.624 (115.600)
rat99 2.650 (0.351) 2.390 (–) 1.100 (–) 0.550 (10.107) 0.720 (10.024) 6.580 (0.008) 1.550 (0.674) 0.740 (0.769) 0.680 (7.383) 0.680 (4.450) 21.332 (129.400)
kroA100 4.020 (0.356) 0.410 (–) 0.120 (–) 0.730 (10.108) 0.030 (10.024) 3.000 (0.008) 0.020 (0.683) 0.020 (0.779) 0.060 (7.468) 0.020 (4.510) 21.400 (130.000)
kroB100 5.140 (0.356) 0.320 (–) 0.260 (–) 0.150 (10.108) 0.880 (10.024) 0.580 (0.008) 0.230 (0.683) 0.000 (0.779) 0.250 (7.468) 0.000 (4.510) 21.400 (130.000)
kroC100 0.970 (0.356) 0.180 (–) 0.320 (–) 1.570 (10.108) 1.770 (10.024) 4.700 (0.008) 0.500 (0.683) 0.010 (0.779) 0.010 (7.468) 0.010 (4.510) 21.400 (130.000)
kroD100 2.720 (0.356) 0.840 (–) 0.380 (–) 0.570 (10.108) 0.000 (10.024) 5.670 (0.008) 0.000 (0.683) 0.200 (0.779) 0.000 (7.468) 0.000 (4.510) 21.400 (130.000)
kroE100 1.470 (0.356) 0.450 (–) 0.430 (–) 1.220 (10.108) 1.050 (10.024) 4.640 (0.008) 0.490 (0.683) 0.000 (0.779) 0.070 (7.468) 0.140 (4.510) 21.400 (130.000)
rd100 3.410 (0.356) 0.010 (–) 0.010 (–) 0.460 (10.108) 0.000 (10.024) 1.270 (0.008) 0.010 (0.683) 0.010 (0.779) 0.020 (7.468) 0.010 (4.510) 21.400 (130.000)

Average (≤100) 2.56 (0.288) 0.50 (–) 0.61 (–) 0.53 (10.087) 0.44 (10.020) 3.87 (0.007) 0.43 (0.555) 0.26 (0.631) 0.27 (6.220) 0.28 (3.625) 20.31 (121.200)

Table 11: Results on TSPLib instances with size ≤ 100. Cells show gap% (time in s). no time report
is indicated by “–”.

We consider three problem sizes: 20, 50, and 100 cities. For each size, 1,000 instances are randomly
generated by sampling coordinates uniformly from the unit square [0, 1]2.

Table 11 presents the average performance of each heuristic in terms of the solution quality (gap
from Concorde) and average runtime. Note that POMO, BQ, and LEHD run in parallel on GPUs, so
per-instance runtime is not reported for these methods.

It is evident from Table 11 that the EoH heuristic consistently achieves the best performance.

In addition to synthetic instances, we also evaluate the methods on 29 standard TSPLib instances. As
shown in Table 11, the GLS variant designed by EoH outperforms all other approaches, including
hand-crafted heuristics, in terms of the average performance gap on these benchmarks.

27

	Introduction
	Related Work
	Heuristic and Machine Learning Approaches on CO problems
	Large Language Models in Combinatorial Optimization

	Preliminaries: Overview of Classic Combinatorial Optimization Problems
	Main Method: Accord Representation for Feasibility-Aware Solution Generation
	Dataset Generation

	Router Architecture
	Training Details
	Empirical Comparison with List-of-List Representation
	Ablation Study on Latent Space Proximity and Solution Feasibility

	Conclusion
	Limitations and Future Work
	Appendix
	Baseline: List-of-Lists Representation

	TextClassifier Routing model architecture with Dynamic Attention
	Dataset Generation Details
	Router Ablation: Convenience, Not Core
	L2D: MDP Formulation and GNN-Based Policy

