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Abstract

We study the problem of inferring heterogeneous treatment effects from time-to-
event data. While both the related problems of (i) estimating treatment effects for
binary or continuous outcomes and (ii) predicting survival outcomes have been well
studied in the recent machine learning literature, their combination – albeit of high
practical relevance – has received considerably less attention. With the ultimate goal
of reliably estimating the effects of treatments on instantaneous risk and survival
probabilities, we focus on the problem of learning (discrete-time) treatment-specific
conditional hazard functions. We find that unique challenges arise in this context
due to a variety of covariate shift issues that go beyond a mere combination of well-
studied confounding and censoring biases. We theoretically analyse their effects by
adapting recent generalization bounds from domain adaptation and treatment effect
estimation to our setting and discuss implications for model design. We use the
resulting insights to propose a novel deep learning method for treatment-specific
hazard estimation based on balancing representations. We investigate performance
across a range of experimental settings and empirically confirm that our method
outperforms baselines by addressing covariate shifts from various sources.

1 Introduction

The demand for methods evaluating the effect of treatments, policies and interventions on individuals
is rising as interest moves from estimating population effects to understanding effect heterogeneity
in fields ranging from economics to medicine. Motivated by this, the literature proposing machine
learning (ML) methods for estimating the effects of treatments on continuous (or binary) end-points
has grown rapidly, most prominently using tree-based methods [1, 2, 3, 4, 5], Gaussian processes
[6, 7], and, in particular, neural networks (NNs) [8, 9, 10, 11, 12, 13, 14, 15]. In comparison, the ML
literature on heterogeneous treatment effect (HTE) estimation with time-to-event outcomes is rather
sparse. This is despite the immense practical relevance of this problem – e.g. many clinical studies
consider time-to-event outcomes; this could be the time to onset or progression of disease, the time to
occurrence of an adverse event such as a stroke or heart attack, or the time until death of a patient.

In part, the scarcity of HTE methods may be due to time-to-event outcomes being inherently more
challenging to model, which is attributable to two factors [16]: (i) time-to-event outcomes differ from
standard regression targets as the main objects of interest are usually not only expected survival times
but the dynamics of the underlying stochastic process, captured by hazard and survival functions,
and (ii) the presence of censoring. This has led to the development of a rich literature on survival
analysis particularly in (bio)statistics, see e.g. [16, 17]. Classically, the effects of treatments in
clinical studies with time-to-event outcomes are assessed by examining the coefficient of a treatment
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indicator in a (semi-)parametric model, e.g. Cox proportional hazards model [18], which relies on
the often unrealistic assumption that models are correctly specified. Instead, we therefore adopt the
nonparametric viewpoint of van der Laan and colleagues [19, 20, 21, 22] who have developed tools
to incorporate ML methods into the estimation of treatment-specific population average parameters.
Nonparametrically investigating treatment effect heterogeneity, however, has been studied in much
less detail in the survival context. While a number of tree-based methods have been proposed
recently [23, 24, 25, 26], NN-based methods lack extensions to the time-to-event setting despite their
successful adoption for estimating the effects of treatments on other outcomes – the only exception
being [27], who directly model event times under different treatments with generative models.

Instead of modeling event times directly like in [27], we consider adapting machine learning methods,
with special focus on NNs, for estimation of (discrete-time) treatment-specific hazard functions. We
do so because many target parameters of interest in studies with time-to-event outcomes are functions
of the underlying temporal dynamics; that is, hazard functions can be used to directly compute
(differences in) survival functions, (restricted) mean survival time, and hazard ratios. We begin by
exploring and characterising the unique features of the survival treatment effect problem within the
context of empirical risk minimization (ERM); to the best of our knowledge, such an investigation is
lacking in previous work. In particular, we show that learning treatment-specific hazard functions
is a challenging problem due to the potential presence of multiple sources of covariate shift: (i)
non-randomized treatment assignment (confounding), (ii) informative censoring and (iii) a form of
shift we term event-induced covariate shift, all of which can impact the quality of hazard function
estimates. We then theoretically analyze the effects of said shifts on ERM, and use our insights to
propose a new NN-based model for treatment effect estimation in the survival context.

Contributions (i) We identify and formalize key challenges of heterogeneous treatment effect
estimation in time-to-event data within the framework of ERM. In particular, as discussed above,
we show that when estimating treatment-specific hazard functions, multiple sources of covariate
shift arise. (ii) We theoretically analyse their effects by adapting recent generalization bounds
from domain adaptation and treatment effect estimation to our setting and discuss implications
for model design. This analysis provides new insights that are of independent interest also in the
context of hazard function estimation in the absence of treatments. (iii) Based on these insights, we
propose a new model (SurvITE) relying on balanced representations that allows for estimation of
treatment-specific target parameters (hazard and survival functions) in the survival context, as well as
a sister model (SurvIHE), which can be used for individualized hazard estimation in standard survival
settings (without treatments). We investigate performance across a range of experimental settings and
empirically confirm that SurvITE outperforms a range of natural baselines by addressing covariate
shifts from various sources.

2 Problem Definition

In this section, we discuss the problem setup of heterogeneous treatment effect estimation from
time-to-event data, our target parameters and assumptions. In Appendix A, we present a self-
contained introduction to and comparison with heterogeneous treatment effect estimation with
standard (binary/continuous) outcomes.

Problem setup. Assume we observe a time-to-event dataset D = {(ai, xi, τ̃i, δi)}ni=1 comprising
realizations of the tuple (A,X, T̃ ,∆) ∼ P for n patients. Here, X ∈ X and A ∈ {0, 1} are
random variables for a covariate vector describing patient characteristics and an indicator whether
a binary treatment was administered at baseline, respectively. Let T ∈ T and C ∈ T denote
random variables for the time-to-event and the time-to-censoring; here, events are usually adverse,
e.g. progression/onset of disease or even death, and censoring indicates loss of follow-up for a patient.
Then, the observed time-to-event outcomes of each patient are described by T̃ = min(T,C) and
∆ = 1(T ≤ C), which indicate the time elapsed until either an event or censoring occurs and whether
the event was observed or not, respectively. Throughout, we treat survival time as discrete2 and the
time horizon as finite with pre-defined maximum tmax, so that the set of possible survival times is
T = {1, · · · , tmax}.

2Where necessary, discretization can be performed by transforming continuous-valued times into a set of
contiguous time intervals, i.e., T = τ implies T ∈ [tτ , tτ + δt) where δt implies the temporal resolution.
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We transform the short data structure outlined above to a so-called long data structure which can
be used to directly estimate conditional hazard functions using standard machine learning methods
[20]. We define two counting processes NT (t) and NC(t) which track events and censoring, i.e.
NT (t) = 1(T̃ ≤ t,∆ = 1) and NC(t) = 1(T̃ ≤ t,∆ = 0) for t ∈ T ; both are zero until
either an event or censoring occurs. By convention, we let NT (0) = NC(0) = 0. Further, let
Y (t) = 1(NT (t) = 1 ∩NT (t−1) = 0) be the indicator for an event occuring exactly at time t; thus,
for an individual with T̃ = τ and ∆ = 1, Y (t) = 0 for all t 6= τ , and Y (t) = 1 at the event time
t = τ . The conditional hazard is the probability that an event occurs at time τ given that it does not
occur before time τ , hence it can be defined as [22]

λ(τ |a, x) = P(T̃ = τ,∆ = 1|T̃ ≥ τ,A = a,X = x)

= P(Y (τ) = 1|NT (τ−1) =C (τ−1) = 0, A = a,X = x)
(1)

It is easy to see from (1) that given data in long format, λ(τ |a, x) can be estimated for any τ by
solving a standard classification problem with Y (τ) as target variable, considering only the samples
at-risk at time τ in each treatment arm (individuals for which neither event nor censoring has occurred
until that time point; i.e. the set I(τ, a)

def
= {i ∈ [n] : NT (τ−1)i = NC(τ−1)i = 0 ∩ Ai = a}).

Finally, given the hazard, the associated survival function S(τ |a, x) = P(T > τ |A = a,X = x)
can then be computed as S(τ |a, x) =

∏
t≤τ

(
1− λ(t|a, x)

)
. The censoring hazard λC(t|a, x) and

survival function SC(t|a, x) can be defined analogously.

Target parameters. While the main interest in the standard treatment effect estimation setup with
continuous outcomes usually lies in estimating only the (difference between) conditional outcome
means under different treatments, there is a broader range of target parameters of interest in the
time-to-event context, including both treatment-specific target functions and contrasts that represent
some form of heterogeneous treatment effect (HTE). We define the treatment-specific (conditional)
hazard and survival functions as

λa(τ |x) = P(T = τ |T ≥ τ, do(A = a,C ≥ τ), X = x)

Sa(τ |x) = P(T > τ |do(A = a,C ≥ τ), X = x) =
∏

t≤τ

(
1− λa(t|x)

) (2)

Here, do(·) denotes [28]’s do-operator which indicates an intervention; in our context, do(A =
a,C ≥ τ) ensures that every individual is assigned treatment a and is observed at (not censored
before) the time-step of interest [20]. Below we discuss assumptions that are necessary to identify
such interventional quantities from observational datasets in the presence of censoring.
Given λa(τ |x) and Sa(τ |x), possible HTEs of interest3 include the difference in treatment-specific
survival times at time τ , i.e. HTEsurv(τ |x) = S1(τ |x)− S0(τ |x), the difference in restricted mean
survival time (RMST) up to time L, i.e. HTErmst(x) =

∑
tk≤L

(
S1(tk|x)−S0(tk|x)

)
· (tk− tk−1),

and hazard ratios. In the following, we will focus on estimation of the treatment specific hazard
functions {λa(t|x)}a∈{0,1},t∈T as this can be used to compute survival functions and causal contrasts.

Figure 1: The assumed underlying DAG. Covariates
X can be split into (possibly overlapping) subsets
X1, X2 and X3, determining treatment selection,
informative censoring, and event times, respectively.

Assumptions. (1. Identification) To identify
interventional quantities from observational
data, it is necessary to make a number of
untestable assumptions on the underlying data-
generating process (DGP) [28] – this generally
limits the ability to make causal claims to set-
tings where sufficient domain knowledge is
available. Here, as [20, 21], we assume the
data was generated from the fairly general di-
rected acyclic graph (DAG) presented in Fig.
1. As there are no arrows originating in hidden
nodes entering treatment or censoring nodes,
this graph formalizes (1.a) The ‘No Hidden
Confounders’ Assumption in static treatment
effect estimation and (1.b) The ‘Censoring At

3Note: All parameters of interest to us are heterogeneous (also sometimes referred to as individualized), i.e.
a function of the covariates X , while the majority of existing literature in (bio)statistics considers population
average parameters that are functions of quantities such as P(T > τ |do(A = a)), which average over all X .
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Random’ Assumption in survival analysis [20]. The latter is necessary here as estimating an effect of
treatment on event time implicitly requires that censoring can be ‘switched off’ – i.e. intervened on.
This graph implicitly also formalizes (1.c) The Consistency Assumption, i.e. that observed outcomes
are ‘potential’ outcomes under the observed intervention, as each node in a DAG is defined as a
function of its ancestors and exogenous noise [20]. Under these assumptions, λa(τ |x) = λ(τ |a, x).

(2. Estimation) To enable nonparametric estimation of λa(τ |x) for some τ ∈ T , we additionally
need to assume that the interventions of interest are observed with non-zero probability; within
different literatures these assumptions are known under the label of ‘overlap’ or ‘positivity’ [9, 19].
In particular, for 0 < ε1, ε2, < 1 we need that (2.a) ε1 < P(A = a|X = x) < 1 − ε1, i.e.
treatment assignment is non-deterministic, and that (2.b) P(NC(t) = 0|A = a,X = x) > ε2
for all t < τ , i.e. no individual will be deterministically censored before τ . Finally, because
λa(τ |x) is a probability defined conditional on survival up to time τ , we need to assume that (2.c)
P(NT (τ−1) = 0|A = a,X = x) > ε3 > 0 for it to be well-defined. We formally state and discuss
all assumptions in more detail in Appendix C.

3 Challenges in Learning Treatment-Specific Hazard Functions using ERM

Preliminaries: ERM under Covariate Shift. Recall that in problems with covariate shift, the
training distribution X,Y ∼ Q0(·) used for ERM and target distribution X,Y ∼ Q1(·) are mis-
matched: One assumes that the marginals do not match, i.e. Q0(X) 6= Q1(X), while the conditionals
remain the same, i.e. Q0(Y |X) = Q1(Y |X) [29]. If the hypothesis classH used in ERM does not
contain the truth (or in the presence of heavy regularization), this can lead to suboptimal hypothesis
choice as arg minh∈H EX,Y∼Q1(·)[`(Y, h(X))] 6= arg minh∈H EX,Y∼Q0(·)[`(Y, h(X))] in general.

3.1 Sources of Covariate Shift in Learning Treatment-Specific Hazard Functions

We now consider how to learn a treatment-specific hazard function λa(τ |x) from observational data
using ERM. As detailed in Section 2, we exploit the long data format by realizing that λa(τ |x) can
be estimated by solving a standard classification problem with Y (τ) as dependent variable and X as
covariates, using only the samples at risk with treatment status a, i.e. I(τ, a), which corresponds to
solving the empirical analogue of the problem

λ̂a(τ |x) ∈ arg min
ha,τ∈H

EX,Y (τ)∼Pa,τ (·)[`(Y (τ), ha,τ (X)] (3)

where we use Pa,τ to refer to the observational (at-risk) distribution Pa,τ (X,Y (τ)) =

λaT (τ |X)Pa,τ (X) with Pa,τ (X) = P(X|NT (τ−1) = NC(τ−1) = 0, A = a) = P(X|T̃ ≥
τ,A = a). If the loss function ` is chosen to be the log-loss, this corresponds to optimizing the
likelihood of the hazard.

The observational (at-risk) covariate distribution Pa,τ (X), however, is not our target distribution:
instead, to obtain reliable hazard estimates for the whole population, we wish to optimize the fit over
the population at baseline, i.e. the marginal distribution X ∼ P(X) which we will refer to as P0(X)
below to emphasize it being the baseline at-risk distribution4. Here, differences between P0(X) and
the population at-risk Pa,τ (X) can arise due to three distinct sources of covariate shift:

• (Shift 1) Confounding/treatment selection bias: if treatment is not assigned completely at random,
then P(X|A = a) 6= P0(X) and the distribution of characteristics across the treatment arms
differs already at baseline, thus Pa,τ (X) 6= P0(X) in general.

• (Shift 2) Censoring bias: regardless of the presence of confounding, if the censoring hazard is not
independent of covariates, i.e. λC(τ |a, x) 6= λC(τ |a), then the population at-risk changes over
time such that Pa,τ1(X) 6= Pa,τ2(X) 6= P0(X) in general. If, in addition, there are differences
between the treatment-specific censoring hazards, then the at-risk distribution will also differ
across treatment arms at any given time-point, i.e. Pa,τ (X) 6= P1−a,τ (X) for τ > 1 in general.

• (Shift 3) Event-induced shifts: Counterintuitively, even in the absence of both confounding and
censoring, there will be covariate shift in the at-risk population if the event-hazard depends on
covariates, i.e. if λ(τ |a, x) 6= λ(τ |a) then Pa,τ1(X) 6= Pa,τ2(X) 6= P0(X) in general. Further,
if there are heterogenous treatment effects, then Pa,τ (X) 6= P1−a,τ (X) for τ > 1 in general.

4With slight abuse of notation, we will use P0 and Pa,τ also to refer to densities of continuous x
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What makes the survival treatment effect estimation problem unique? While Shift 1 arises also
in the standard treatment effect estimation setting, Shift 2 and Shift 3 arise uniquely due to the nature
of time-to-event data5. Thus, estimating treatment effects from time-to-event data is inherently more
involved than estimating treatment effects in the standard static setup, as covariate shift at time
horizon τ > 1 can arise even in a randomized control trial (RCT). Thus, in addition to the overall
at-risk population changing over time, both treatment effect heterogeneity and treatment-dependent
censoring can lead to differences in the composition of the population at-risk in each treatment arm.
Further, Shifts 1, 2 and 3 can also interact to create more extreme shifts; e.g. if treatment selection is
based on the same covariates as the event process (i.e. X1 = X3 in Fig. 1) then event-induced shift
can amplify the selection effect over time (refer to Appendix E for a synthetic example of this).

3.2 Possible Remedies and Theoretical Analysis

A natural solution to tackle bias in ERM caused by covariate shift is to use importance weighting
[30]; i.e. to reweight the empirical risk by the density ratio of target P0(X) and observed distribution
Pa,τ (X). If we wanted to obtain a hazard estimator for (τ, a), optimized towards the marginal
population, optimal importance weights are given by w∗a,τ (x) = P0(x)

Pa,τ (x) =
pτ,a

ea(x)ra(x,τ) with pτ,a =

P(T̃ ≥ τ,A = a), ea(x) = P(A = a|X = x) the propensity score, and ra(x, τ) = P(T̃ ≥
τ |A = a,X = x) the probability to be at risk, i.e. the probability that neither event nor censoring
occurred before time τ . These weights are well-defined due to the overlap assumptions detailed in
Sec. 2; however, they are in general unknown as they depend on the unknown target parameters
λa(τ |x) through ra(x, τ). Further, especially for large τ , these weights might be very extreme even
if known, which can lead to highly unstable results [31] – making biased yet stabilized weighting
schemes, e.g. truncation, a good alternative. Therefore, we only assume access to some (possibly
imperfect) weights wa,τ (x) s.t. EX∼Pa,τ [wa,τ (x)] = 1, so that we can create a weighted distribution
Pwa,τ = wa,τ (x)Paτ (x). (Note: Paτ (x) can be recovered by using wa,τ (x) = 1.)

Either instead of [8, 9] or in addition to weighting [10, 12, 14, 32], the literature on learning balanced
representations for static treatment effect estimation has focused on finding a different remedy for
distributional differences between treatment arms: creating representations Φ : X → R which have
similar (weighted) distributions across arms as measured by an integral probability metric (IPM),
motivated by generalization bounds. As we show below, we can exploit a similar feature in our
context by finding a representation that minimizes the IPM term not between treatment arms, but
between covariate distribution at baseline P0 and Pwa,τ . The proposition below bounds the target risk
of a hazard estimator λ̂a(τ |x) = h(Φ(x)) relying on any representation. The proof, which relies
on the concept of excess target information loss, proposed recently to analyze domain-adversarial
training [33], and the standard IPM arguments made in e.g. [32], is stated in Appendix C.

Proposition 1. For fixed a, τ and representation Φ : X → R, let PΦ
0 , PΦ

a,τ and Pw,Φa,τ denote the
target, observational, and weighted observational distribution of the representation Φ. Define the
pointwise losses

`h,Q(x; a, τ)
def
= EY (τ)|x,a∼Q[`(Y (τ), h(Φ(X)))|X = x,A = a]

`h,QΦ(φ; a, τ)
def
= EY (τ)|φ,a∼QΦ [`(Y (τ), h(Φ))|Φ = φ,A = a]

(4)

of (hazard) hypothesis h ≡ ha,τ : R → [0, 1] w.r.t. distributions in covariate and representation
space, respectively. Assume there exists a constant CΦ > 0 s.t. CΦ

−1`h,Pw,Φa,τ
(φ, a, τ) ∈ G for some

family of functions G. Then we have that

EX∼P0
[`h,P(X; a, τ)]︸ ︷︷ ︸
Target Risk

≤ EX∼Pa,τ [wa,τ (X)`h,P(X; a, τ)]︸ ︷︷ ︸
Weighted observational risk

+CΦ IPMG(PΦ
0 ,Pw,Φa,τ )︸ ︷︷ ︸

Distance in Φ-space

+ ηlΦ(h)︸ ︷︷ ︸
Info loss

(5)

5Interestingly, changes of the at-risk population over time arise also in standard survival problems (without
treatments); yet in the context of prediction these do not matter: as the at-risk population at any time-step is also
the population that will be encountered at test-time, this shift in population over time is not problematic, unless
it is caused by censoring. If, however, our goal is estimation of the best target parameter (here: the hazard at a
specific point in time τ ) over the whole population, this corresponds to a setting where the ideal evaluation is
performed on a population different from the observed one – and hence requires careful consideration of the
consequences of the covariate shifts discussed above.
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where IPMG(P,Q) = supg∈G
∣∣∫ g(x)(P(x)−Q(x))dx

∣∣ and we define the excess target informa-

tion loss η`Φ(h) analogously to [33] as η`Φ(h)
def
= EX∼P[ξPΦ

0 ,P(X) − ξPw,Φa,τ ,P(X)] with ξQΦ,Q(x)
def
=

`h,QΦ(φ; a, τ)− `h,Q(x; a, τ). For invertible Φ, η`Φ(h) = ξQΦ,Q(x) = 0.

Unlike the bounds provided in [9, 10, 32, 14, 27], this bound does not rely on representations to be
invertible; we consider this feature important as none of the works listed actually enforced invertibility
in their proposed algorithms. Given bound (5), it is easy to see why non-invertibilty can be useful:
for any (possibly non-invertible) representation for which it holds that Y (τ) |=X|Φ(X), A, it also
holds that η`Φ(h) = ξPΦ,P(x) = ξPw,Φa,τ ,P(x) = 0 and the causally identifying restrictions continue to
hold. A simple representation for which this property holds is a selection mechanism that chooses
only the causal parents of Y (τ) from within X; if X can be partitioned into variables affecting the
instantaneous risk (X3 in Fig. 1), and variables affecting only treatment assignment (X1 \X3) and/or
censoring mechanism (X2 \X3), then the IPM term can be reduced by a representation which drops
the latter two sets of variables – or irrelevant variables correlated with any such variables – without
affecting η`Φ(h). As a consequence, event-induced covariate shift can generally not be fully corrected
for using non-invertible representations (unless the variables affecting event time are different at
every time-step). Further, given perfect importance weights w∗, both η`Φ(h) and IPM term are zero.

Except for the dependence on η`Φ(h), this bound differs from the regression-based bound for survival
treatment effects stated in [27] (which is identical to the original treatment effect bound in [9]) in that
we have dependence on τ in the IPM term, which, among other things, explicitly captures the effect
of censoring. Our bound motivates that, instead of finding representations that balance treatment-
and control group at baseline (or at each time step) we should find representations that balance PΦ

a,τ

towards the baseline distribution PΦ
0 for each time step, which motivates our method detailed below.

If, instead, we would apply the IPM-term to encourage only the arm-specific at-risk distributions at
each time-step to be similar, this would correct only for shifts due to (i) confounding at baseline, (ii)
treatment-induced differences in censoring and (iii) treatment-induced differences in events. It will,
however, not allow handling the event- and censoring-induced shifts that occur regardless of treatment
status. Note that this bound therefore also motivates the use of balanced representations for modeling
time-to-event outcomes in the presence of informative censoring even in the standard prediction
setting, which is a finding that could be of independent interest for the ML survival analysis literature.

3.3 From hazards to survival functions

If the ultimate goal is to use the hazard function to estimate survival functions as Ŝa(τ |x) =∏
t≤τ

(
1− λ̂a(t|x)

)
, the best target population to consider during hazard estimation may not be the

marginal distribution. Instead, the optimal target population may depend on the metric by which
we wish to evaluate the resulting survival function. If we wanted to find the survival function
that maximises the complete data likelihood (corresponding to the hypothetical setting in which
we intervened to set A = a and C ≥ τ ), the target population (at each time step t) would be
P(X|T ≥ t, do(A = a,C ≥ t)) – the population that preserves event-induced shift but removes
selection- and censoring-induced shifts. If, instead, we focused on the MSE of estimating the survival
function (as in our experiments), it becomes more difficult to derive an exact target population for
estimating the hazards. If we assume access to a perfect estimate of the survival function for the
first τ−1 time steps (i.e. Ŝ(τ−1|x) = S(τ−1|x)) and focus only on estimating the next hazard,
λa(τ |X), we can write

EX∼P0
[(Sa(τ |X)−Ŝa(τ |X))2] = EX∼P0

[(Sa(τ−1|X)(1−λa(τ |X))−Ŝa(τ−1|X)(1−λ̂a(τ |X)))2]

= EX∼P0
[Sa(τ−1|X)2(λ̂a(τ |X)−λa(τ |X))2]

and notice that the MSE will implicitly down-weigh individuals with lower survival probability6.

Defining an exact target population for the hazard when the goal is to also estimate the survival
function well is thus not straightforward, making exact importance weighting difficult. Additionally,
unlike the marginal population, interventional populations which change over time, such as P(X|T ≥
t, do(A = a,C ≥ t)), are never observed in practice and hence cannot be used to perform balancing

6Due to the square in the term Sa(τ − 1|X)2, this will be even more extreme than exact up-weighting of the
population P(X|T ≥ τ, do(A = a,C ≥ τ)).
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Figure 2: SurvITE architecture.

regularization of a representation using empirical IPM-terms. Therefore, we refrain from using
importance weighting in our method (which is described in the next section), and resort to using
the marginal population for balancing regularization of the representation throughout. Intuitively,
as outlined in the previous section, we expect that doing so will not over-correct for event-induced
shifts that are predictive of outcome (and should hence be preserved) as such “over-balancing" would
reduce the predictive power of the representation, which would immediately be penalized by the
presence of the expected loss component in the bound7. Additionally, we expect that using the
marginal population for balancing could be useful also for estimating the survival function even in the
absence of selection- and censoring-induced shifts, as it may help to remove the effect of variables
that appear spuriously correlated with outcome over time.

4 SurvITE: Estimating HTEs from Time-to-Event Data

Based on the theoretical analysis above, we propose a novel deep learning approach to HTE estimation
from observed time-to-event data, which we refer to as SurvITE (Individualized Treatment Effect
estimator for Survival analysis).8 The network architecture is illustrated in Figure 2. Note that even in
the absence of treatments we can use this architecture for estimation of hazards and survival functions
by using only one treatment a = 0. As we show in the experiments, this version of our method –
SurvIHE (Individualized Hazard Estimator for Survival analysis) – is of independent interest in the
standard survival setting, as it tackles Shifts 2 & 3. Below, we describe the empirical loss functions
we use to find representation Φ and hypotheses ha,τ .

Let Φ : X → R denote the representation (parameterized by θφ) and ha,τ : R → [0, 1] the
hazard estimator for treatment a and time τ (parameterized by θha,τ ), each implemented as a fully-
connected neural network. While the output heads are thus unique to each treatment-group time-step
combination, we allow hazard estimators to share information by using one shared representation
for all hazard functions. This allows for both borrowing of information across different a, τ and
significantly reduces the number of parameters of the network. Then, given the time-to-event data D,
we use the following empirical loss functions for the observational risk and the IPM term:

Lrisk(θφ, θh) =
1

tmax

tmax∑
t=1

∑
i:τ̃i≥t

n−1
1,tai`

(
yi(t), h1,t(Φ(xi))

)
+ n−1

0,t (1−ai)`
(
yi(t), h0,t(Φ(xi))

)
,

Lipm(θφ) =
∑

a∈{0,1}

tmax∑
t=1

Wass
(
{Φ(xi)}ni=1, {Φ(xi)}i:τ̃i≥t,ai=a

)
,

whereWass(·, ·) is the finite-sample Wasserstein distance [34]; refer to Appendix D for further detail.
Note that Lipm(θφ), which penalizes the discrepancy between the baseline distribution and each
at-risk distribution PΦ

a,τ , simultaneously tackles all three sources of shifts. Further, na,t = |I(τ, a)| is
the number of samples at-risk in each treatment arm; its presence ensures that each a, τ -combination
contributes equally to the loss. Overall, we can find Φ and ha,τ ’s that optimally trade off balance and

7In practice, we ensure this by weighting the contribution of the IPM term by a hyperparameter that is chosen
to preserve predictive performance of the representation (see Appendix D).

8The source code for SurvITE is available in https://github.com/chl8856/survITE.
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predictive power as suggested by the generalization bound (5) by minimizing the following loss:

Ltarget(θφ, θh) = Lrisk(θφ, θh) + βLipm(θφ) (6)

where θh = {θha,τ }a∈{0,1},τ∈T , and β > 0 is a hyper-parameter. The pseudo-code of SurvITE, the
details of how to obtain Wass(·, ·) and how we set β can be found in Appendix D.

5 Related work

Heterogeneous treatment effect estimation (non-survival) has been studied in great detail in the
recent ML literature. While early work built mainly on tree-based methods [1, 2, 3, 4], many
other methods, such as Gaussian processes [6, 7] and GANS [35], have been adapted to estimate
HTEs. Arguably the largest stream of work [8, 9, 10, 11, 12, 13, 14, 15] built on NNs, due to their
flexibility and ease of manipulating loss functions, which allows for easy incorporation of balanced
representation learning as proposed in [8, 9] and motivated also the approach taken in this paper.
Another popular approach has been to consider model-agnostic (or ‘meta-learner’ [36]) strategies,
which provide a ‘recipe’ for estimating HTEs using any predictive ML method [36, 37, 38, 15].
Because of their simplicity, the single model (S-learner) – which uses the treatment indicator as an
additional covariate in otherwise standard model-fitting – and two model (T-learner) – which splits
the sample by treatment status and fit two separate models – strategies [36], can be directly applied to
the survival setting by relying on a standard survival (prediction) method as base-learner.

ML methods for survival prediction continue to multiply; here we focus on the most related class
of methods – namely on those nonparametrically modeling conditional hazard or survival functions
– and not on those relying on flexible implementations of the Cox proportional hazards model (e.g.
[39, 40, 41]) or modeling (log-)time as a regression problem (e.g. [42, 43, 44, 45, 46, 47]). One
popular nonparametric estimator of survival functions is [48]’s random survival forest, which relies
on the Nelson-Aalen estimator to nonparametrically estimate the cumulative hazard within tree-leaves.
The idea of modeling discrete-time hazards directly using any arbitrary classifier and long data-
structures goes back to at least [49], with implementations using NN-based methods presented in e.g.
[50, 51, 52, 53]. [54] models the probability mass function instead of the hazard, and [55] use labels
1{T > t}t∈T to estimate the survival function directly using multi-task logistic regression. For a
more detailed overview of different strategies for estimating survival functions, refer to Appendix B.

Estimating HTEs from time-to-event data has been studied in much less detail. [23, 25] use
tree-based nearest-neighbor estimates to estimate expected differences in survival time directly,
and [24] use a BART-based S-learner to output expected differences in log-survival time. [56]
performed a simulation study using different survival prediction models as base-learners for a two-
model approach to estimating the difference in median survival time. Based on ideas from the
semi-parametric efficiency literature, [26] and [57] propose estimators that target the (restricted)
mean survival time directly and consequently do not output estimates of the treatment-specific hazard
or survival functions. We consider the ability to output treatment-specific predictions an important
feature of a model if the goal is to use model output to give decision support, given that it allows the
decision-maker to trade-off relative improvement with the baseline risk of a patient. Finally, [27]
recently proposed a generative model for treatment-specific event times which relies on balancing
representations to balance only the treatment groups at baseline. This model does not output hazard-
or survival functions, but can provide approximations by performing Monte-Carlo sampling.

6 Experiments

Unfortunately, when the goal is estimating (differences of) survival functions (instead of predicting
survival), evaluation on real data will not reflect performance w.r.t. the intended baseline population.
Therefore, we conduct a range of synthetic experiments with known ground truth. We evaluate the
effects of different shifts separately by starting with survival estimation without treatments, and then
introduce treatments. Finally, we use the real-world dataset Twins [58] which has uncensored survival
outcomes for twins (where the treatment is ‘being born heavier’), and is hence free of Shifts 1 & 2.

Baselines. Throughout, we use Cox regression (Cox), a model using a separate logistic regression
to solve the hazard classification problem at each time-step (LR-sep), random survival forest (RSF),
and a deep learning-based time-to-event method [54] (DeepHit) as natural baselines; when there
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Figure 3: RMSE of estimating the survival function S0(t|x) (top) and the treatment effect
HTEsurv(t|x) (bottom) for different time steps across synthetic settings. Averaged across 5 runs.

are treatments, we use them in a two-model (T-learner) approach. In settings with treatments, we
additionally use the CSA-INFO model of [27] (CSA), where we use its generative capabilities to
approximate target quantities via monte-carlo sampling. Finally, we consider ablations of SurvITE
(and SurvIHE); in addition to removing the IPM term (SurvITE (no IPM)), we consider two variants
of SurvITE based on [9]’s CFRNet balancing term: SurvITE (CFR-1) creates a representation
balancing treatment groups at baseline only, and SurvITE (CFR-2) creates a representation optimiz-
ing for balance of treatment groups at each time step (i.e. no balancing towards P0). We discuss
implementation in Appendix D.

Synthetic Experiments. We consider a range of synthetic simulation setups (S1-S4) to highlight
and isolate the effects of the different types of covariate shift. As event and censoring processes, we
use

λa(t|x) =

{
0.1σ(−5x2

1 − a · (1{x3 ≥ 0}+ 0.5)) for t ≤ 10

0.1σ(10x2 − a · (1{x3 ≥ 0}+ 0.5))) for t > 10
, λC(t|x) = 0.01σ(10x2

4)

with treatment assignment mechanism a ∼ Bern(ξ · σ(
∑
p∈P xp)), with σ the sigmoid function.

Additionally, we assume administrative censoring at t = 30 throughout, i.e., λC(30|x) = 1, marking
e.g. the end of a hypothetical clinical study. Covariates are generated from a 10-dimensional
multivariate normal distribution with correlations, i.e. X ∼ N (0,Σ) where Σ = (1− ρ)I + ρ11>
with ρ = 0.2. We use 5000 independently generated samples each for training and testing.

In S1, we begin with the simplest case – no treatments and no censoring – using only λ0(t|x) to
generate events, considering only event-induced shift (Shift 3). In S2, we introduce informative
censoring using λC(t|x) (Shift 2+3). In S3, we use treatments and consider biased treatment
assignment (without censoring) (Shift 1+3). In S4, we consider the most difficult case with all three
types of shift (Shift 1+2+3). In the latter two settings, we vary treatment selection by changing (i)
whether the covariate set overlaps with the event-inducing covariates (P={1, 2}) or not (P={9, 10})
and (ii) the selection strength ξ ∈ {1, 3}. We present exploratory plots of these DGPs in Appendix E.

Fig. 3 (top) shows performance on estimating S0(t|x) =
∏
k≤t

(
1− λ0(k|x)

)
for all scenarios and

methods, while Fig. 3 (bottom) shows performance on estimating the difference in survival functions
(HTEsurv(t|x)) for a selection of methods (for readability, full results in Appendix F). In Table
1, we further evaluate the estimation of differences in RMST (HTErmst(x)). Results for hazard
estimation and additional performance metrics for survival prediction are reported in Appendix F. We
observe that SurvITE (/SurvIHE) performs best throughout, and that introduction of the IPM term
leads to substantial improvements across all scenarios. In S1 with only event-induced covariate shift
and in S3/4 when treatment selection and event-inducing covariates overlap (P={1, 2}), balancing
cannot remove all shift as the shift-inducing covariates are predictive of outcome; however, even
here the IPM-term helps as it encourages dropping other covariates (which appear imbalanced due to
correlations in X). While our method was motivated by theory for estimation of hazard functions, it
thus indeed also leads to gains in survival function estimation. As expected, both Cox and LR-sep
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Table 1: RMSE on estimation of HTErmst(x) (mean ± 95%-CI) for different times for the Synthetic
and Twins datasets (Ls are the 25 & 75th and 75 & 95th percentiles of event times, respectively).

Methods S3 (ζ = 3, no overlap) S4 (ζ = 3, no overlap) Twins (no censoring) Twins (censoring)
L = 10 L = 20 L = 10 L = 20 L = 30 L = 180 L = 30 L = 180

Cox 0.434±0.03 1.073±0.05 0.424±0.02 1.047±0.04 2.85±0.10 20.33±0.50 2.88±0.09 20.60±0.50
RSF 0.328±0.02 1.027±0.03 0.332±0.02 1.058±0.03 3.15±0.07 22.42±0.36 3.18±0.08 22.62±0.46

LR-sep 0.412±0.02 1.111±0.07 0.418±0.02 1.149±0.04 2.94±0.10 20.60±0.53 2.94±0.10 20.66±0.52
DeepHit 0.347±0.03 0.821±0.07 0.361±0.08 0.830±0.15 2.95±0.28 20.89±1.91 2.86±0.09 20.69±0.52

CSA 0.421±0.01 2.098±0.26 0.406±0.01 1.932±0.12 3.42±0.12 26.20±1.21 4.41±0.54 47.79±1.55

SurvITE (no IPM) 0.275±0.04 0.843±0.11 0.310±0.05 0.930±0.11 2.80±0.10 19.80±1.01 2.85±0.22 20.00±1.07
SurvITE (CFR-1) 0.269±0.04 0.825±0.09 0.341±0.02 1.016±0.10 2.68±0.06 19.16±0.37 2.67±0.15 19.10±0.85
SurvITE (CFR-2) 0.236±0.04 0.691±0.08 0.294±0.07 0.815±0.15 2.61±0.12 18.69±0.64 2.69±0.22 19.20±1.44

SurvITE 0.225±0.03 0.687±0.08 0.237±0.03 0.703±0.06 2.53±0.09 18.34±0.70 2.63±0.10 18.76±0.56

do not perform well as they are misspecified, while the nonparametric RSF is sufficiently flexible
to capture the underlying DGP and usually performs similarly to SurvITE (architecture only), but
is outperformed once the IPM term is added. For readability, we did not include DeepHit in Fig. 3;
using table F.1 presented in Appendix F, we observe that DeepHit performs worse than the SurvITE
architecture without IPM term, indicating that our model architecture alone is better suited for
estimation of treatment-specific survival functions (note that [54] focused mainly on discriminative
(predictive) performance, and not on the estimation of the survival function itself). Therefore, upon
addition of the IPM-terms, the performance gap between SurvITE and DeepHit only becomes larger.

A comparison with ablated versions highlights the effect of using the baseline population to define
balance; naive balancing across treatment arms (either at baseline – SurvITE(CFR-1), or over time –
SurvITE(CFR-2)) is not as effective as using the baseline population as a target, especially at the later
time steps where the effects of time-varying shifts worsen. While SurvITE(CFR-2) almost matches
the performance of the full SurvITE in S3, it performs considerably worse in S4, indicating that this
form of balancing suffers mainly due to its ignorance of censoring. Finally, a comparison with CSA
highlights the value of modeling hazard functions directly: we found that Monte-Carlo approximation
of the survival function using the generated event times gives very badly calibrated survival curves
as event times generated by CSA were concentrated in a very narrow interval, leading to survival
estimates of 0 and 1 elsewhere. Its performance on estimation of RMST was likewise poor; we
conjecture that this is due to (i) CSA modeling continuous time, while the outcomes were generated
using a coarse discrete time model, and (ii) the significant presence of administrative censoring.

Real data: Twins. Finally, we consider the Twins benchmark dataset, containing survival times (in
days, administratively censored at t=365) of 11400 pairs of twins, which is used in [58, 35] to measure
HTEs of birthweight on infant mortality. We split the data 50/50 for training and testing (by twin pairs),
and similar to [35], use a covariate-based sampling mechanism to select only one twin for training
to emulate selection bias. Further, we consider a second setting where we additionally introduce
covariate-dependent censoring. For all discrete-time models, we use a non-uniform discretization
to construct classification tasks because most events are concentrated in the first weeks. A more
detailed description of the data and experimental setup can be found in Appendix E. As the data is
real and ground truth probabilities are unknown, HTErmst(x) is suited best to evaluate performance
on estimating effect heterogeneity. The results presented in Table 1 largely confirm our findings on
relative performance in the synthetic experiments; only RSF performs relatively worse on this dataset.

7 Conclusion

We studied the problem of inferring heterogeneous treatment effects from time-to-event data by
focusing on the challenges inherent to treatment-specific hazard estimation. We found that a variety
of covariate shifts play a role in this context, theoretically analysed their impact, and demonstrated
across a range of experiments that our proposed method SurvITE successfully mitigates them.

Limitations. Like all methods for inferring causal effects from observational data, SurvITE relies on
a set of strong assumptions which should be evaluated by a domain expert prior to deployment in
practice. Here, the time-to-event nature of our problem adds an additional assumption (‘random cen-
soring’) to the standard ‘no hidden confounders’ assumption in classical treatment effect estimation.
If such assumptions are not properly assessed in practice, any causal conclusions may be misleading.
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