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ABSTRACT

We study the challenging exploration incentive problem in both bandit and rein-
forcement learning, where the rewards are scale-free and potentially unbounded,
driven by real-world scenarios and differing from existing work. Past works in
reinforcement learning either assume costly interactions with an environment or
propose algorithms finding potentially low quality local maxima. Motivated by
EXP-type methods that integrate multiple agents (experts) for exploration in ban-
dits with the assumption that rewards are bounded, we propose new algorithms,
namely EXP4.P and EXP4-RL for exploration in the unbounded reward case, and
demonstrate their effectiveness in these new settings. Unbounded rewards introduce
challenges as the regret cannot be limited by the number of trials, and selecting
suboptimal arms may lead to infinite regret. Specifically, we establish EXP4.P’s re-
gret upper bounds in both bounded and unbounded linear and stochastic contextual
bandits. Surprisingly, we also find that by including one sufficiently competent
expert, EXP4.P can achieve global optimality in the linear case. This unbounded
reward result is also applicable to a revised version of EXP3.P in the Multi-armed
Bandit scenario. In EXP4-RL, we extend EXP4.P from bandit scenarios to rein-
forcement learning to incentivize exploration by multiple agents, including one
high-performing agent, for both efficiency and excellence. This algorithm has
been tested on difficult-to-explore games and shows significant improvements in
exploration compared to state-of-the-art.

1 INTRODUCTION

Reinforcement Learning (RL) is a sequential decision-making process where a player or agent selects
an action from an action space, receives the action’s reward, and transitions to a new state within
the state space at each time step. This process’ state transitions and rewards adhere to a Markov
Decision Process (MDP), represented by a transition kernel. The player’s objective is to maximize the
cumulative reward, which may be discounted by a parameter, by the end of the game. A significant
challenge in RL involves the trade-off between exploration and exploitation. Exploration encourages
the player to try new actions or arms, enhancing understanding of the game and helping future
planning, albeit at the potential cost of sacrificing the immediate rewards. Conversely, exploitation
focuses on maximizing the current rewards by utilizing information of known states and actions,
which may prevent the player from learning more information about the game which could help to
increase future rewards. To optimize cumulative rewards, the player must balance learning the game
through exploration with securing immediate rewards through exploitation.

Given the existence of the state space and the dependency of actions on it, how to incentivize
exploration in RL has been a central focus. A significant line of work on RL exploration leverages
deep learning techniques. Utilizing deep neural networks to track Q-values through Q-networks in
RL, known as DQN, demonstrates the potent synergy between deep learning and RL, as shown by
(20). A simple exploration strategy based on DQN, the ϵ-greedy method, was introduced in (21).
Beyond ϵ-greedy, intrinsic model exploration, exemplified by DORA (14) and the work of (28),
calculates intrinsic rewards that directly incentivize exploration when combined with the extrinsic
(actual) rewards of RL. Random Network Distillation (RND) (8), a more recent approach, depends on
a fixed target network but faces risks for its local focus, lacking in global exploration efforts. Another
research direction explores agent-based methods. In (16), a zero-sum Markov Game involves two
players, with one aiming to maximize rewards and the other to minimize the opponent’s rewards.
This setup encourages the reward-maximizing player to explore more by observing its opponent’s
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performance. From a different angle, (33) investigates a fully decentralized homogeneous multi-agent
RL setting, enabling an agent to gain global environmental insights through communication with
others. Nonetheless, they all rely on each agent to communicate with the environment, and such
interactions can be inefficient and executing multiple actions may incur high costs. A gap remains in
how to promote exploration with fewer environment calls while still considering global environmental
information, marking a significant departure addressed herein.

The exploration incentive has been garnering significant attention in Multi-armed Bandit (MAB).
In MAB, the goal is to maximize the cumulative reward of a player throughout a bandit game by
selecting from multiple arms at each time step, or equivalently, to minimize the regret, defined as the
difference between the optimal rewards achievable and the actual obtained rewards. The contextual
bandit variant enriches MAB by incorporating a context or state space S and modifying the regret
definition. At time step t, the player has context st ∈ S and rewards rt follow f(st) for a function
f . Regret is defined by comparing the actual reward with the reward that could be achieved by the
best expert, namely simple regret, or by the step-wise optimal arms, namely cumulative regret. Most
existing works focus on simple regret. The contextual bandit problem has been further aligned with
RL when state and reward transitions follow a MDP.

Considering this relationship, extending bandit techniques to RL is a relevant step forward. UCB
(2) motivates count-based exploration (29) in RL and the subsequent Pseudo-Count exploration
(5). Nevertheless, it was initially developed for stochastic bandits and imposes constraints on how
the rewards are generated. General and with abundant theoretical analyses are the EXP-type MAB
algorithms. Specifically, the regret of EXP3.P for adversarial bandit achieves optimality both in
the expected and high probability sense. In EXP3.P, each arm has a trust coefficient (weight). The
player samples each arm with probability being the sum of its normalized weights and a bias term,
receives reward of the sampled arm and exponentially updates the weights based on the corresponding
reward estimates. It achieves the regret of the order O(

√
T ) in a high probability sense, though

not applicable to contextual bandits with the existence of a state space. To this end, a variant of
the EXP-type algorithms known as EXP4 is proposed in (3). In EXP4, there can be any number of
experts. Each expert possesses a sample rule (policy) for actions (arms) and a weight. The player
samples actions based on the weighted average of the experts’ sample rules and updates the weights
explicitly.The work on CORRAL in (1) considers a group of bandit algorithms, but it requires an
implicit parameter search. EXP4 offers exploration opportunities for RL involving multiple players
and one-step interactions with the environment, aspects yet to be studied. We address this gap herein
as part of our contributions.

However, the existing EXP4 or its variants suffer from a strict assumption on the scale of the rewards
and cannot be directly adapted to RL. It is worth noting that EXP-type algorithms are optimal under
the assumption that 0 ≤ rti ≤ 1 for any arm i and step t. The uniformly bounded assumption is
crucial in the proof of regret bounds for existing EXP-type algorithms. It requires the rewards to
be scalable with the knowledge of a uniform bound for all rewards in all states or context vectors.
Furthermore, In the context of contextual bandit, existing methods—whether in linear contextual
bandit (10), where the reward function is linear in context, or in stochastic contextual bandit (17),
where both context and reward follow time-invariant distributions throughout the game—presume
that rewards are bounded by 1. However, rewards in RL and contextual bandits can be unbounded and
unscalable in real-world scenarios, violating the bounded assumption. Examples include navigation
tasks, where the reward for each step moving the agent closer to the goal is unbounded, and racing
tasks, where the reward is the distance covered by the agent. The adaptation of bandit algorithms
to unbounded or scale-free cases remains unexplored. This necessitates a new algorithm based on
EXP3.P and EXP4, along with a corresponding regret analysis, which motivates this paper.

Moreover, for EXP4, the expected simple regret is proven to be optimal in the contextual bandit
scenario in (3). Independently, (22) proposes a modification of EXP4 that achieves a high probability
guarantee, which, however, necessitates changes in the reward estimates. High probability simple
regret in the original form of EXP4 has not yet been explored. Furthermore, while simple regret has
been extensively studied, recent focus has shifted to cumulative regret since it characterizes global
optimality, even in the stochastic contextual setting (17). Global optimality is especially important
considering global exploration in RL, which has not yet been studied for EXP4, adding additional
importance and relevance to our efforts.
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To this end, in this paper, we are the first to propose a new algorithm, EXP4.P, based on EXP4, that
does not alter the reward estimates in bandits with unbounded rewards. We demonstrate that its
optimal simple regret holds with high probability and in expectation for both linear contextual bandits
and stochastic contextual bandits, where the rewards may be unbounded. Extending the proof to
this unbounded context is non-trivial, necessitating the application of deep results from information
theory and probability. This includes establishing high-probability regret bounds in the bounded case
with exponential terms and leveraging Rademacher complexity theory and sub-Gaussian properties
to capture arm selection dynamics in the unbounded scenarios. Synthesizing these elements is highly
technical and introduces new concepts. As a by-product, this analysis also enhances EXP3.P to yield
comparable outcomes for MAB. Moreover, we also establish an upper bound on the cumulative regret
in the linear case, which not only closes the existing gap, but also shows the advantage of having
good enough experts for global exploration. The upper bounds for unbounded bandits necessitate
a sufficiently large T , and we provide a worst-case analysis suggesting that no sublinear regret is
attainable below a certain instance-specific minimum T , through our novel construction of instances.

Moreover, given the challenges in the RL context where rewards can be unbounded or unrescal-
able—a situation not yet addressed by prior methods—we integrate the proposed scale-free EXP-type
algorithms with deep RL. To achieve this, we extend the novel EXP4.P algorithm to RL, allowing for
general experts by broadening the concept of experts to be any RL algorithms. In this framework,
experts refine local policies through the underlying Markov process, and exponential weights are
assigned to these experts to derive a globally optimal policy. This represents the first RL algorithm to
leverage EXP-type exploration, ensuring that the overall performance is comparable to the best model
even when the best model is unknown beforehand, thus facilitating model selection (19). To overcome
the inefficiency of EXP4 and enable global exploration when dealing with many experts, we pair
EXP4-RL with at least one state-of-the-art expert, motivated by the result on the cumulative regret in
contextual bandits, enhancing both efficiency and performance. Specifically, our computational study
focuses on two agents: RND and ϵ-greedy DQN. We apply the EXP4-RL algorithm to challenging RL
games such as Montezuma’s Revenge and Mountain Car and benchmark its performance against RND
(8). The empirical results demonstrate that our algorithm achieves superior exploration capabilities
compared to RND by bypassing local maxima often encountered by RND. Additionally, it shows
an increase in total reward as training progresses. Overall, our algorithm significantly enhances
exploration in benchmark games.

While assumptions made in prior works cover several use cases, they are not applicable for emerging
and upcoming cases like the ones related to RL proposed herein. For the bandit papers without i.i.d.
assumptions, especially adversarial and contextual ones, the rewards are assumed to be bounded
between 0 and 1, which is a very important assumption in EXP-types algorithms. By extending
EXP4 to EXP4.P to unbounded sub-Gaussian settings (RL rewards are usually unbounded), we
show that EXP4 and EXP3 can also work and have the same bound compared to the algorithms
specifically developed for bounded settings. We also characterize the effectiveness of EXP4.P in the
linear contextual bandit setting, where the rewards are not i.i.d. due to the existence of arbitrarily
chosen contexts (the existing work in this context also assumes bounded rewards). We hope our
discoveries in the sub-Gaussian and non-stationary contextual cases (contextual MAB is one-step RL)
could motivate more work to consider powerful EXP-type algorithms in other unbounded settings,
such as heavy-tailed distributions. Moreover, EXP4.P allows the use of multiple experts and can even
achieve global optimality when an expert is good enough. This allows its adaptation into the context
of reinforcement learning, and leads to proposed EXP4-RL.

A more thorough literature review is provided in the appendix.

The structure of the paper is as follows. In Section 2 we develop a new algorithm EXP4.P by
modifying EXP4, and exhibit its regret bounds for contextual bandits and that of the EXP3.P
algorithm for unbounded MAB, and lower bounds. Section 3 discusses the EXP4.P algorithm for RL
exploration. Finally, in Section 4, we present numerical results related to the proposed algorithm.

2 REGRET BOUNDS

We first introduce notations. Let T be the time horizon. For bounded bandits, at step t, 0 < t ≤ T
rewards rt can be chosen arbitrarily under the condition that −1 ≤ rt ≤ 1. For unbounded bandits,
let rewards rt follow multi-variate distribution ft(µ,Σ) where µ = (µ1, µ2, . . . , µK) is the mean
vector and Σ = (aij)i,j∈{1,...,K} is the covariance matrix of the K arms and ft is the density.
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We specify ft to be non-degenerate sub-Gaussian for analyses on light-tailed distributions where
minj aj,j > 0. A random variable X is σ2-sub-Gaussian if for any t > 0, the tail probability satisfies
P (|X| > t) ≤ Be−σ2t2 where B is a positive constant.

The player receives reward yt = rtat
by pulling arm at. The regret is defined as RT =

maxj
∑T

t=1 r
t
j −

∑T
t=1 yt in adversarial bandits that depends on realizations of rewards. For con-

textual bandits with experts, besides the above let N be the number of experts and ct be the context
information. We denote the reward of expert i by Gi =

∑T
t=1 zi(t) =

∑T
t=1 ξi(t)

Tx(t), where
x(t) = rt and ξi(t) = (ξ1i (t), . . . , ξ

K
i (t)) is the probability vector of expert i. Then regret is defined

as RT = maxi Gi −
∑T

t=1 yt, which is with respect to the best expert, rather than the best arm in
MAB. This is reasonable since a uniform optimal arm is a special expert assigning probability 1 to the
optimal arm throughout the game and experts can potentially perform better and admit higher rewards.
This coincides with our generalization of EXP4.P to RL where the experts can be well-trained neural
networks. We follow established definitions of pseudo regret R′

T = T ·maxk µk −
∑

t E[yt] and∑T
t=1 maxi

∑K
j=1 ξ

j
i (t)µj −

∑
t E[yt] in adversarial and contextual bandits, respectively.

Meanwhile, following the existing literature, we denote Rcum
T as the cumulative regret incorporating

the contextual information. More specifically, we consider a linear contextual reward model where the
reward of arm i at time step t is formulated as rti = cTt θi+δi,t. Here ct represents the context received
at time step t, θi is the time-invariant parameter unique to arm i, and δi,t is the noise associated with
arm i at time step t. Formally, Rcum

T reads as Rcum
T =

∑T
t=1 maxi c

T
t θi −

∑T
t=1 c

T
t θat

.

Lastly, consistent with prior work, e.g., (7), we use the notation O∗(f(t)) for a given function f(t) to
represent a quantity of the order O(f(t) logk f(t)) for some integer k. In other words, this notation
allows us to neglect the logarithmic terms when considering the order of the quantity, which is for
convenience.

The core idea of the proposed algorithms herein is that by modifying the reward estimate or the
weight update, we enable the characterization of EXP-type algorithms in both non-contextual and
contextual settings, given unbounded reward distributions. This applies to both EXP3.P and EXP4.P,
with the latter being adaptable to RL for efficient multi-expert learning. The main focus is on EXP4,
as it is developed for the more general contextual setting. However, we were pleasantly surprised
to find that our proof technique for EXP4.P also applies to EXP3.P, given their similar algorithmic
structure with an additional term in the weight update, despite differences in the term itself. In a
similar manner, we establish the result for EXP3.P, adding a valuable side contribution. Inspired by
the global optimality result of EXP4.P (Theorem 4) in the linear contextual case, we extend EXP4.P to
multi-expert reinforcement learning, specifically EXP4-RL, by adapting the reward estimate without
a need for a large number of experts. The theoretical guarantee of EXP4-RL holds if the MDP has
episodes of length 1, by fixing the running estimate nr and choosing ∆ (analogous to α and γ in
EXP4.P) to ensure it matches the change in the reward estimate in EXP4.P.

We next demonstrate the algorithms and analyses across different scenarios.

2.1 CONTEXTUAL BANDITS AND EXP4.P ALGORITHM

For contextual bandits, (3) give the EXP4 algorithm and prove its expected regret to be optimal
under the bounded assumption on rewards and under the assumption that a uniform expert is always
included, where by uniform expert we refer to an expert that always assigns equal probability to each
arm. Our goal is to extend EXP4 to RL where rewards are often unbounded, such as several games
in OpenAI gym, for which the theoretical guarantee of EXP4 may be absent. To this end, herein
we propose a new Algorithm, named EXP4.P, as a variant of EXP4. Its effectiveness is two-fold.
First, we show that EXP4.P has an optimal regret with high probability in the bounded case and
consequently, we claim that the regret of EXP4.P is still optimal given unbounded bandits. All the
proof are in the Appendix under the aforementioned assumption on experts. Second, it is successfully
extended to RL where it achieves computational improvements.

2.1.1 EXP4.P ALGORITHM

Our proposed EXP4.P is shown as Algorithm 1. The highlighted part is the change compared to the
existing EXP4 algorithm. The upper bound of the confidence interval of the reward estimate is added
to the update rule for each expert, in the spirit of EXP3.P (see Algorithm 2) and removing the need of
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changing the reward estimate (but quite different from that in EXP3.P for MAB). More specifically,
motivated by the extension from EXP3 to EXP3.P, where an additional term in the trust coefficient
(weight) is added to guarantee a high-probability regret bound, we derive the term in EXP4.P based
on EXP4. To ensure a stronger result, i.e., the high-probability regret bound, this term represents
another layer of exploration. If the weight of the current expert is low, meaning this expert is explored
less, then the denominator is small, making the term large. This helps to increase the weight of the
expert, or in other words, to explore the expert more at the next time step. Quantitatively, the value of
α and the rate

√
NT are carefully chosen to control the degree and speed of such exploration, and the

choice of γ is specifically for the uniform expert. This high-probability bound enables us to establish
the regret bounds given unbounded rewards with probability (1 − δ)(1 − η)T . Subsequently, we
characterize the expected regret using Rademacher complexity and VC dimension, which also apply
to other algorithms.

Algorithm 1 EXP4.P

Initialization: Weights wi(1) = exp ( αγ
3K

√
NT ), i ∈ {1, 2, . . . , N} where N is the number of

experts for α > 0 and γ ∈ (0, 1);
for t = 1, 2, . . . , T do

The environment generates context ct;
Get probability vectors ξ1(t), . . . , ξN (t) of arms from experts based on ct where ξi(t) =

(ξji (t))j ;

For any j = 1, 2, . . . ,K, set pj(t) = (1− γ)
∑N

i=1

wi(t) · ξji (t)∑N
j=1 wj(t)

+ γ
K ;

Choose it randomly according to the distribution p1(t), . . . , pK(t);
Receive reward rit(t) = xit(t);
For any j = 1, . . . ,K, set x̂j(t) =

rj(t)
pj(t)

· 1j=it ;
Set x̂(t) = (x̂j(t))j ;
For any i = 1, . . . , N , set

ẑi(t) = ξi(t)
T x̂(t) and wi(t+ 1) = wi(t) exp(

γ
3K (ẑi(t) +

α

( wi(t)∑N
j=1 wj(t)

+ γ
K )

√
NT

));

end for

2.1.2 BOUNDED REWARDS

Borrowing the ideas of (3), we claim EXP4.P has an optimal sublinear regret with high probability
by first establishing two lemmas presented in Appendix. The main theorem is as follows. We assume
that the expert family includes a uniform expert, which is also assumed in the analysis of EXP4 in (3).
Theorem 1. Let 0 ≤ rt ≤ 1 for every t. For any fixed time horizon T > 0, for all K, N ≥ 2 and

for any 1 > δ > 0, γ =
√

3K lnN
T ( 2N

3 +1)
≤ 1

2 , α = 2
√

K ln NT
δ , we have that with probability at least

1− δ, RT ≤ 2

√
3KT

(
2N
3 + 1

)
lnN + 4K

√
KNT ln

(
NT
δ

)
+ 8NK ln

(
NT
δ

)
.

Theorem 1 implies RT ≤ O∗(
√
T ). The regret bound does depend on N . In practice the number of

experts is small compared to the time horizon and the independence among experts makes parallelism
a possibility. Note that γ < 1

2 for large enough T . The proof of Theorem 1 essentially relies on the
convergence of the reward estimators, similar to that in (3). However, the objectives are different
from (3), since our estimations and update of trust coefficients in EXP4.P are for experts, instead of
EXP3.P for arms. This characterize the relationships among EXP4.P estimates and the actual value
of experts’ rewards and the total rewards gained by EXP4.P and brings non-trivial challenges.

2.1.3 LINEAR CONTEXTUAL BANDIT WITH UNBOUNDED REWARDS

General reward is hard to analyze due to the fact that global optimality may be intractable if the
reward function is completely block-box in the given context and there are no assumptions about the
distribution of contexts. To this end, some literature assumes that the contexts follow a time-invariant
distribution; for example, recent work in characterizing global optimality through cumulative regret,
see (17). Nevertheless, stochasticity of context can be limiting especially when considering the
real-world scenarios. In a separate line of work, it is common to assume a linear reward structure,
see (10). However, therein rewards are assumed to be bounded and global optimality has not yet
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been studied, to the best of our knowledge. For this reason, we assume that the reward is linear in
the context which reads as ri,t = cTt θi + δi,t. Here δi,t follows a σ2

i,t-sub-Gaussian distribution with
mean 0 where σi,t ≤ σ and is independent across time step t.
Theorem 2. Let context ct be chosen arbitrarily and meets the condition that ||ct||, ||θi|| ≤ 1, without
loss of generality. Then we have that with probability (1− δ) · (1− 1

Ta )
T the regret of EXP4.P is

RT ≤ log(1/δ)O∗(
√
T ).

Note that we do not assume any bound on δi,t, unlike the prior work. The proof of Theorem 2 follows
that of Theorem 3, since the rewards are still sub-Gaussian and the variance proxies are bounded by
the same parameter σ. Besides this high probability regret bound, we also establish the upper bound
on the pseudo regret R′

T and expected regret E[RT ]. The formal statement reads as follows.
Theorem 3. Assume the same condition as in Theorem 2. Then we have R′

T ≤ E[RT ] ≤ O∗(
√
T ).

The formal proof is deferred to Appendix; here, we present the proof logic. The proof of this theorem
differs significantly from that of Theorem 6, since the rewards are no longer i.i.d. distributed. We first
bound the absolute difference between RT and R′

T by analyzing the non-stationary sub-Gaussian
behaviors of all the rewards. Next, we decompose the expected regret E[RT ] by characterizing
it across different events to ensure that the value and the probability of the events cannot be too
large simultaneously. In other words, either the probability of an event is small when RT is large,
or the value of RT itself is small. This allows us to control E[RT ] within the range of O∗(

√
T ).

Subsequently, using Jensen’s inequality immediately leads to the conclusion of the first part of the
inequality in the statement.

What we have established pertains to the simple regret for any policy class. Surprisingly, we obtain
the following upper bound for the cumulative regret when the policy class includes an optimal policy.
To the best of our knowledge, the prior work studying both simple and cumulative regret considers a
stochastic contextual bandit setting (17). Our finding closes the gap in the linear contextual bandit
setting under certain assumption. The formal statement reads as follows.
Theorem 4. Assume the same condition as in Theorem 2. If the cumulative regret is upper bounded
by G(T ), then the simple regret is upper bounded by max {O∗(

√
T ), G(T )} for some function G(T ).

Moreover, if there is a policy in the policy class π̄ ∈ {πt
j}

1≤t≤T
1≤j≤K such that

∑T
t=1

∑K
j=1 π̄

t
jµj,t ≥∑T

t=1 maxj µj,t − F (T ) for some function F (T ), then the cumulative regret of EXP4.P satisfies
Rcum

T ≤ max {O∗(
√
T ), F (T )}.

The complete proof is in Appendix. The proof sketch is as follows. We characterize the difference
between the cumulative and simple regret, and relate this difference to the gap between step-wise
optimality and global optimality. The latter is determined by the performance of the policy class.
With an optimal policy, we obtain the sublinear regret as stated.

The existence of such a policy is shown as follows. If the rewards are bounded, then LinUCB (10)
meets the condition with F (T ) = O∗(

√
T ), G(T ) = O∗(

√
T ). If the contexts are order preserving

in terms of the parameter vector θ then any optimal policy in terms of simple regret also meets the
condition, since it is now also optimal in terms of cumulative regret.

This theorem demonstrates the benefits of utilizing proficient experts within the EXP4.P algorithm and
fundamentally motivates extending EXP4.P to RL, building upon existing state-of-the-art methods.
More specifically, it suggests that if an expert can achieve step-wise optimality (e.g., F (T ) =

√
T ),

then EXP4.P can attain a similar outcome with Rcum
T ≤

√
T , enabling global exploration. Besides

the theoretical statement, we also elaborate on this idea through an extensive computational study in
Section 3.

2.1.4 STOCHASTIC CONTEXTUAL BANDIT WITH UNBOUNDED REWARDS

We proceed to show optimal regret bounds of EXP4.P for unbounded contextual bandit. Again, a
uniform expert is assumed to be included in the expert family. Surprisingly, we report that the analysis
can be adapted to the existing EXP3.P in next section, which leads to optimal regret in MAB under
no bounded assumption which is also a new result.
Theorem 5. For sub-Gaussian bandits, any time horizon T , for any 0 < η < 1, 0 < δ < 1
and γ, α as in Theorem 1, with probability at least (1 − δ)(1 − η)T , EXP4.P has regret RT ≤
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4∆(η)
(
2

√
3KT

(
2N
3 + 1

)
lnN

)
+4∆(η)

(
4K

√
KNT ln

(
NT
δ

)
+8NK ln

(
NT
δ

))
where ∆(η)

is determined by
∫∆

−∆
. . .
∫∆

−∆
f
(
x1, . . . , xK

)
dx1 . . . dxK = 1−η which yields ∆(η) of O( 1a log 1

η ).
In the proof of Theorem 5, we first perform truncation of the rewards of sub-Gaussian bandits by
dividing the rewards to a bounded part and unbounded tail. For the bounded part, we directly apply
the upper bound on regret of EXP4.P presented in Theorem 1 and conclude with the regret upper
bound of order O(∆(η)

√
T ). Since a sub-Gaussian distribution is a light-tailed distribution we can

control the probability of the tail, i.e. the unbounded part, which leads to the overall result.

The dependence of the bound on ∆ can be removed by considering large enough T as stated next.
Theorem 6. For sub-Gaussian bandits, for any a > 2, 0 < δ < 1, and γ, α as in Theorem 1, EXP4.P
has regret RT ≤ log(1/δ)O∗(

√
T ) with probability (1− δ) · (1− 1

Ta )
T .

Note that the constant term in O∗(·) depends on a. The above theorems deal with RT ; an upper
bound on pseudo regret or expected regret is established next. It is easy to verify by the Jensen’s
inequality that R′

T ≤ E[RT ] and thus it suffices to obtain an upper bound on E[RT ].

For bounded bandits, the upper bound for E[RT ] is of the same order as RT which follows by a
simple argument. For sub-Gaussian bandits, establishing an upper bound on E[RT ] or R′

T based
on RT requires more work. We show an upper bound on E[RT ] by using certain inequalities, limit
theories, and Rademacher complexity. To this end, the main result reads as follows.
Theorem 7. The regret of EXP4.P for sub-Gaussian bandits satisfies R′

T ≤ E [RT ] ≤ O∗(
√
T )

under the assumptions stated in Theorem 6.

2.2 MAB AND EXP3.P ALGORITHM

In this section, we establish upper bounds on regret in MAB given a high probability regret bound
achieved by EXP3.P in (3). We revisit EXP3.P and analyze its regret in unbounded scenarios in line
with EXP4.P. Formally, we show that EXP3.P achieves regret of order O∗(

√
T ) in sub-Gaussian

MAB, with respect to RT , E[RT ] and R′
T . The results are summarized as follows.

Theorem 8. For sub-Gaussian MAB, any T , for any 0 < η, δ < 1, γ = 2
√

3K lnK
5T , α = 2

√
ln NT

δ ,

EXP3.P has regret RT ≤ 4∆(η) · (
√

KT log(KT
δ )+4

√
5
3KT logK+8 log(KT

δ )) with probability

(1− δ)(1− η)T where ∆(η) = O( 1a log 1
η ), i.e.

∫∆

−∆
. . .
∫∆

−∆
f
(
x1, . . . , xK

)
dx1 . . . dxK = 1− η.

To proof Theorem 8, we again do truncation. We apply the bounded result of EXP3.P in (3) and
achieve a regret upper bound of order O(∆(η)

√
T ), similar to that of Theorem 5 for EXP4.P.

Similarly, we remove the dependence of the bound on ∆ in Theorem 9 and claim a bound on the
expected regret for sufficiently large T in Theorem 10.

Algorithm 2 EXP3.P

Initialization: Weights wi(1) = exp (αγ3

√
T
K ), i ∈ {1, 2, . . . ,K} for α > 0 and γ ∈ (0, 1);

for t = 1, 2, . . . , T do
For any i = 1, 2, . . . ,K, set pi(t) = (1− γ) wi(t)∑K

j=1 wj(t)
+ γ

K ;

Choose it randomly according to the distribution p1(t), . . . , pK(t);
Receive reward rit(t);
For 1 ≤ j ≤ K, set x̂j(t) =

rj(t)
pj(t)

· 1j=it and wj(t+ 1) = wj(t) exp
γ
3K (x̂j(t) +

α
pj(t)

√
KT

);
end for

Theorem 9. For sub-Gaussian MAB, for a > 2, 0 < δ < 1, and γ, α as in Theorem 8, EXP3.P has
regret RT ≤ log(1/δ)O∗(

√
T ) with probability (1− δ) · (1− 1

Ta )
T .

Theorem 10. The regret of EXP3.P in sub-Gaussian MAB satisfies R′
T ≤ E [RT ] ≤ O∗(

√
T ) with

the same assumptions as in Theorem 9.

3 EXP4.P ALGORITHM FOR RL
EXP4 has shown effectiveness in contextual bandits with statistical validity. Therefore, in this section,
we extend EXP4.P to RL in Algorithm 3 where rewards are assumed to be nonnegative.

7
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The player has experts that are represented by deep Q-networks trained by RL algorithms (there
is a one to one correspondence between the experts and Q-networks). Each expert also has a trust
coefficient. Trust coefficients are also updated exponentially based on the reward estimates as in
EXP4.P. At each step of one episode, the player samples an expert (Q-network) with probability that
is proportional to the weighted average of expert’s trust coefficients. Then ϵ-greedy DQN is applied
on the chosen Q-network. Here different from EXP4.P, the player needs to store all the interaction
tuples in the experience buffer since RL is a MDP. After one episode, the player trains all Q-networks
with the experience buffer and uses the trained networks as experts for the next episode. The basic

Algorithm 3 EXP4-RL

Initialization: Trust coefficients wk = 1 for any k ∈ {1, . . . , E}, E = number of experts (Q-
networks), K = number of actions, ∆, ϵ, η > 0 and temperature z, τ > 0, nr = −∞ (an upper
bound on reward);
while True do

Initialize episode by setting s0
for i = 1, 2, . . . , T (length of episode) do

Observe state si;
Let probability of Qk-network be ρk = (1− η) wk∑E

j=1 wj
+ η

E ;

Sample network k̄ according to {ρk}k;
For Qk̄-network, use ϵ-greedy to sample an action: a∗ = argmaxaQk̄(si, a), j ∈
{1, 2, . . . ,K}, πj = (1− ϵ) · 1j=a∗ + ϵ

K−1 · 1j ̸=a∗ ;
Sample action ai based on π;
Interact with the environment to receive reward ri and next state si+1;
nr = max{ri, nr};
Update the trust coefficient wk of each Qk-network as follows: Pk = ϵ-greedy(Qk), x̂kj =

1− 1j=a∗

Pkj+∆ (1− ri
nr

),∀j, yk = E[x̂kj ], wk = wk · e
yk
z ;

Store (si, ai, ri, si+1) in experience replay buffer B;
end for
Update each expert’s Qk-network from buffer B

end while

idea is the same as in EXP4.P by using the experts that give advice vectors with deep Q-networks. It
is a combination of deep neural networks with EXP4.P updates. From a different point of view, we
can also view it as an ensemble in classification (31), by treating Q-networks as ensembles in RL.
While general experts can be used, these are natural in a DQN framework. In our implementation
and experiments we use two experts, thus E = 2 with two Q-networks. The first one is based on
RND (8) while the second one is a simple DQN. To this end, in the algorithm before storing to the
buffer, we also record cir = ||f̂(si) − f(si)||2, the RND intrinsic reward as in (8). This value is
then added to the 4-tuple pushed to B. When updating Q1 corresponding to RND at the end of an
iteration in the algorithm, by using rj + cjr we modify the Q1-network and by using cjr an update
to f̂ is executed. Network Q2 pertaining to ϵ-greedy is updated directly by using rj . Intuitively,
Algorithm 3 circumvents RND’s drawback with the total exploration guided by two experts with
EXP4.P updated trust coefficients. When the RND expert drives high exploration, its trust coefficient
leads to a high total exploration. When it has low exploration, the second expert DQN should have
a high one and it incentivizes the total exploration accordingly. Trust coefficients are updated by
reward estimates iteratively as in EXP4.P, so they keep track of the long-term performance of experts
and then guide the total exploration globally. These dynamics of EXP4.P combined with intrinsic
rewards guarantee global exploration. The experimental results exhibited in the next section verify
this intuition regarding exploration behind Algorithm 3.

We point out that potentially more general RL algorithms based on Q-factors can be used, e.g., boost-
rapped DQN (24), random prioritized DQN (23) or adaptive ϵ-greedy VDBE (30) are a possibility.
Furthermore, experts in EXP4 can even be policy networks trained by PPO (26) instead of DQN for
exploration. A recommendation is to have a good enough expert and a small number of experts.

3.1 THEORETICAL RESULT

The theoretical guarantee on EXP4-RL is an implication of the current theoretical bound under certain
conditions. Specifically, we have the following corollary of Theorems 4 and 7.
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Corollary Let us assume that the length of the Markov decision process (MDP) in RL is 1, i.e. it is
reduced to a contextual bandit problem with multiple randomly drawn states, i.e., the state st in MDP
is stochastic and follows an i.i.d. distribution. Let the parameters nr and ∆ be chosen to ensure

that the change in the reward estimates in EXP4.P (with γ =
√

3K lnN
T ( 2N

3 +1)
≤ 1

2 , α = 2
√
K ln NT

δ )

and EXP4-RL is equivalent. Then the results of Theorems 4 and 7, also hold, which implies that
RT ≤ O(

√
T ), where T represents the number of episodes.

Remark (Algorithm Consistency). The algorithm differs from EXP4 in that the reward estimate is
constructed differently, which affects how the trust coefficients are updated. If we incorporate the
change in the reward estimate into the update of the trust coefficient, then this change is also reflected
in the exponential term, as highlighted in EXP4.P. However, the change in this specific exponential
term differs from that in EXP4.P. In other words, both are related in terms of changes in the reward
estimate compared to EXP4, although there is a difference in these changes. This can be addressed
by choosing the right α and γ (which might be time-dependent in this case).

4 COMPUTATIONAL STUDY

As a numerical demonstration of the superior performance and exploration incentive of Algorithm 3,
we show the improvements on baselines on two hard-to-explore RL games, Mountain Car and
Montezuma’s Revenge. More precisely, we present that the real reward on Mountain Car improves
significantly by Algorithm 3 in Section 4.1. Then we implement Algorithm 3 on Montezuma’s
Revenge and show the growing and remarkable improvement of exploration in Section 4.2. Intrinsic
reward cir = ||f̂(si)− f(si)||2 given by intrinsic model f̂ represents the exploration of RND in (8)
as introduced in Sections A and 3. We use the same criterion for evaluating exploration performance
of our algorithm and RND herein. RND incentivizes local exploration with the single step intrinsic
reward but with the absence of global exploration.

4.1 MOUNTAIN CAR

In this part, we summarize the experimental results of Algorithm 3 on Mountain Car, a classical
control RL game. This game has very sparse positive rewards, which brings the necessity and
hardness of exploration. Blog post (25) shows that RND based on DQN improves the performance of
traditional DQN, since RND has intrinsic reward to incentivize exploration. We use RND on DQN
from (25) as the baseline and show the real reward improvement of Algorithm 3, which supports the
intuition and superiority of the algorithm.

The comparison between Algorithm 3 and RND is presented in Figure 1. Here the x-axis is the
epoch number and the y-axis is the cumulative reward of that epoch. Figure 1a shows the raw
data comparison between EXP4-RL and RND. We observe that though at first RND has several
spikes exceeding those of EXP4-RL, EXP4-RL has much higher rewards than RND after 300 epochs.
Overall, the relative difference of areas under the curve (AUC) is 4.9% for EXP4-RL over RND,
which indicates the significant improvement of our algorithm. This improvement is better illustrated in
Figure 1b with the smoothed reward values. Here there is a notable difference between EXP4-RL and
RND. Note that the maximum reward hit by EXP4-RL is −86 and the one by RND is −118, which
additionally demonstrates our improvement on RND. The computation complexity is in Appendix.

We conclude that Algorithm 3 performs better than the RND baseline and that the improvement
increases at the later training stage. Exploration brought by Algorithm 3 gains real reward on this
hard-to-explore Mountain Car, compared to the RND counterpart (without the DQN expert). The
power of our algorithm can be enhanced by adopting more complex experts, not limited to only DQN.

4.2 MONTEZUMA’S REVENGE AND PURE EXPLORATION SETTING

In this section, we show the experimental details of Algorithm 3 on Montezuma’s Revenge, another
notoriously hard-to-explore RL game. The benchmark on Montezuma’s Revenge is RND based on
DQN which achieves a reward of zero in our environment (the PPO algorithm reported in (8) has
reward 8,000 with many more computing resources; we ran the PPO-based RND with 10 parallel
environments and 800 epochs to observe that the reward is also 0), which indicates that DQN has
room for improvement regarding exploration.

To this end, we first implement the DQN-version RND (called simply RND hereafter) on Montezuma’s
Revenge as our benchmark by replacing the PPO with DQN. Then we implement Algorithm 3 with

9
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(a) original (b) smooth
Figure 1: The performance of Algorithm 3
and RND measured by the epoch-wise re-
ward on Mountain Car

(a) small (b) medium (c) large
Figure 2: The performance of Algorithm 3 and RND measured by
intrinsic reward without parallel environments with three different
burn-in periods

(a) Q-network losses with
0.25 update

(b) Intrinsic reward after
smoothing with 0.25 update

(c) Intrinsic reward after
smoothing with 0.125

Figure 3: The performance of Algorithm 3 and RND with 10 parallel environments and with RND update
probability 0.25 and 0.125, measured by loss and intrinsic reward.
two experts as aforementioned. Our computing environment allows at most 10 parallel environments.
In subsequent figures the x-axis always corresponds to the number of epochs. RND update probability
is the proportion of experience that are used for training the intrinsic model f̂ (8).

A comparison between Algorithm 3 (EXP4-RL) and RND without parallel environments (the update
probability is 100% since it is a single environment) is shown in Figure 2 with the emphasis on
exploration by means of the intrinsic reward. We use 3 different numbers of burn-in periods (58,
68, 167 burn-in epochs) to remove the initial training steps, which is common in Gibbs sampling.
Overall EXP4-RL outperforms RND with many significant spikes in the intrinsic rewards. The larger
the number of burn-in periods is, the more significant is the dominance of EXP4-RL over RND.
EXP4-RL has much higher exploration than RND at some epochs and stays close to RND at other
epochs. At some epochs, EXP4-RL even has 6 times higher exploration. The relative difference in
the areas under the curves are 6.9%, 17.0%, 146.0%, respectively, which quantifies the much better
performance of EXP4-RL.

We next compare EXP4-RL and RND with 10 parallel environments and different RND update
probabilities in Figure 3. The experiences are generated by the 10 parallel environments.

Figure 3a shows that both experts in EXP4-RL are learning with decreasing losses of their Q-networks.
The drop is steeper for the RND expert but it starts with a higher loss. With RND update probability
0.25 in Figure 3b we observe that EXP4-RL and RND are very close when RND exhibits high
exploration. When RND is at its local minima, EXP4-RL outperforms it. Usually these local minima
are driven by sticking to local maxima and then training the model intensively at local maxima,
typical of the RND local exploration behavior. EXP4-RL improves on RND as training progresses,
e.g. the improvement after 550 epochs is higher than the one between epochs 250 and 550. In terms
for AUC, this is expressed by 1.6% and 3.5%, respectively. Overall, EXP4-RL improves RND local
minima of exploration, keeps high exploration of RND and induces a smoother global exploration.

With the update probability of 0.125 in Figure 3c, EXP4-RL almost always outperforms RND with a
notable difference. The improvement also increases with epochs and is dramatically larger at RND’s
local minima. These local minima appear more frequently in training of RND, so our improvement
is more significant as well as crucial. The relative AUC improvement is 49.4%. The excellent
performance in Figure 3c additionally shows that EXP4-RL improves RND with global exploration
by improving local minima of RND or not staying at local maxima.

Overall, with either 0.25 or 0.125, EXP4-RL incentivizes global exploration on RND by not getting
stuck in local exploration maxima and outperforms RND exploration aggressively. With 0.125
the improvement with respect to RND is more significant and steady. This experimental evidence
verifies our intuition behind EXP4-RL and provides excellent support for it. With experts being more
advanced RL exploration algorithms, e.g. DORA, EXP4-RL can bring additional possibilities.
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A LITERATURE REVIEW

The importance of exploration in RL is well understood. Count-based exploration in RL is a
success story with the UCB technique. Work (29) develops the Bellman value iteration V (s) =

maxa R̂(s, a) + γE[V (s′)] + βN(s, a)−
1
2 , where N(s, a) is the number of visits to (s, a) for state

s and action a. Value N(s, a)−
1
2 is positively correlated with curiosity of (s, a) and encourages

exploration. This method is limited to tableau model-based MDP for small state spaces. While (5)
introduces Pseudo-Count exploration for non-tabular MDP with density models, it is hard to model
the concept ties to data imbalance. However, UCB achieves optimality if bandits are stochastic
and may suffer linear regret otherwise (34). In the RL setting, such updates are inefficient and
do not fit the dynamic RL setting. EXP-type algorithms for non-stochastic bandits can generalize
to RL with fewer assumptions about the statistics of rewards, which have not yet been studied.
Independently, the idea of utilizing multiple experts has been studied extensively. For example, (16)
studies a zero-sum game theoretic setting and incentivizes exploration by learning from the policy
and trajectory of the opponent, while (33) investigates a cooperative multi-agent learning setting
where agents integrate the obtained information to make more informed decisions, with the hope
of overcoming their exploitation dilemma. However, these studies all assume that different agents
have varying interactions with the environment, which may be costly in the real world. In contrast,
EXP-type algorithms enable multiple agents to learn from a single trajectory, necessitating our work
herein. In conjunction with DQN, ϵ-greedy in (21) is a simple exploration technique using DQN.
Besides ϵ-greedy, intrinsic model exploration computes intrinsic rewards by the accuracy of a model
trained on experiences. Intrinsic rewards directly measure and incentivize exploration if added to
actual rewards of RL, e.g. see (14; 28; 8). Random Network Distillation (RND) in (8) define it as
e(s′, a) = ∥f̂(s′)− f(s′)∥22 where f̂ is a parametric model and f is a randomly initialized but fixed
model. Here e(s′, a), independent of the transition, only depends on state s′ and drives RND to
outperform others on Montezuma’s Revenge. None of these algorithms use several experts which is a
significant departure from our work.

Along the line of work on regret analyses focusing on EXP-type algorithms, (3) first introduces
EXP3.P for bounded adversarial MAB and EXP4 for bounded contextual bandits. For the EXP3.P
algorithm, an upper bound on regret of order O(

√
T ) holds with high probability and in expectation,

which has no gap with the lower bound and hence it establishes that EXP3.P is optimal. EXP4 is
optimal for contextual bandits in the sense that its expected regret is O(

√
T ). Then (22) extends

it to a high probability counterpart by modifying the reward estimates. These regret bounds are
invalid for bandits with unbounded support. Though (27) demonstrates a regret bound O(

√
T · γT )

for noisy Gaussian process bandits, information gain γT is not well-defined in a noiseless setting.
For noiseless Gaussian bandits, (15) shows both the optimal lower and upper bounds on regret,
but the regret definition is not consistent with (3). Considering the more general contextual bandit,
numerous analyses have focused on simple regret (6; 10), which, however, cannot uncover global
optimality and thus contributes less to incentivizing global exploration. Importantly, (17) is the first
not only to analyze the relationship between simple and cumulative regret but also to establish the
corresponding regret upper bounds. Nevertheless, therein the context is assumed to be i.i.d. across
time step t, specifically in a stochastic contextual bandit setting. An analysis on arbitrary contexts
remains unexplored. We tackle these problems by establishing an upper bound of order O∗(

√
T ) on

regret 1) with high probability for bounded contextual bandit, 2) for linear and stochastic contextual
bandit both in expectation and with high probability, and 3) for cumulative regret.

Comparison with BEXP4 (6) The key difference compared to BEXP4 lies in the fact that we only
modify the reward estimate (resulting in a change in the weight update) following the philosophy of
EXP3.P. Therefore, the modifications in our algorithm compared to EXP4 are consistent with those
from EXP3 to EXP3.P, despite the values of γ and α being different. However, BEXP4 modifies both
the probability over actions (introducing a fixed pmin) and the reward estimate (removing adjustable
γ), unlike the transition from EXP3 to EXP3.P. The necessity of this new EXP4.P lies in only
modifying the reward estimate, which allows better adaptation to RL. As a by-product, its alignment
with the transition from EXP3 to EXP3.P naturally extends the analysis of EXP4.P to EXP3.P. In
other words, if we establish results for BEXP4, they may not work for EXP3.P and RL, which is
undesirable and it establishes the importance of the proposed EXP4.P. As a result, the analysis due to
the new modifications is significantly different from BEXP4, as: 1) for bounded rewards, our analysis

13
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must be implicitly consistent with EXP3.P without experts (still challenging) while considering expert
advice, and 2) for challenging unbounded rewards, we establish new analytical tools.

B LOWER BOUNDS ON REGRET

Algorithms can suffer extremely large regret without enough exploration when playing unbounded
bandits given small T . To argue that our bounds on regret are not loose, we derive a lower bound on
the regret for sub-Gaussian bandits that essentially suggests that no sublinear regret can be achieved
if T is less than an instance-dependent bound. The main technique is to construct instances that have
certain regret, no matter what strategies are deployed. We need the following assumption.

Assumption 1 There are two types of arms with general K with one type being superior (S is
the set of superior arms) and the other being inferior (I is the set of inferior arms). Let 1 − q, q
be the proportions of the superior and inferior arms, respectively which is known to the adversary
and clearly 0 ≤ q ≤ 1. The arms in S are indistinguishable and so are those in I . The first pull
of the player has two steps. First the player selects an inferior or superior set of arms based on
P (S) = 1 − q, P (I) = q and once a set is selected, the corresponding reward of an arm from the
selected set is received.

An interesting special case of Assumption 1 is the case of two arms and q = 1/2. In this case, the
player has no prior knowledge and in the first pull chooses an arm uniformly at random.

The lower bound is defined as RL(T ) = inf supR′
T , where, first, inf is taken among all the strategies

and then sup is among all Gaussian MAB. The following is the main result for lower bounds based
on inferior arms being distributed as N (0, 1) and superior as N (µ, 1) with µ > 0.
Theorem 11. In Gaussian MAB under Assumption 1, for any q ≥ 1/3 we have RL(T ) ≥ (q −
ϵ) · µ · T , where µ has to satisfy G(q, µ) < q with ϵ and T determined by G(q, µ) < ϵ < q, T ≤

ϵ−G(q,µ)

(1−q)·
∫ ∣∣∣∣e− x2

2 −e−
(x−µ)2

2

∣∣∣∣ + 2 where G(q, µ) is max{
∫
|qe− x2

2 − (1− q)e−
(x−µ)2

2 |dx,

∫
|(1− q)e−

x2

2 − qe−
(x−µ)2

2 |dx}.

To prove Theorem 11, we construct a special subset of Gaussian MAB with equal variances and
zero covariances. On these instances we find a unique way to explicitly represent any policy. This
builds a connection between abstract policies and this concrete mathematical representation. Then we
show that pseudo regret R′

T must be greater than certain values no matter what policies are deployed,
which indicates a regret lower bound on this subset of instances.

Feasibility of the aforementioned conditions is established in the following theorem.
Theorem 12. In Gaussian MAB under Assumption 1, for any q ≥ 1/3, there exist µ and ϵ, ϵ < µ
such that RL(T ) ≥ (q − ϵ) · µ · T .

The following result with two arms and equal probability in the first pull deals with general MAB. It
shows that for any fixed µ > 0 there is a minimum T and instances of MAB so that no algorithm can
achieve sublinear regret. Table 1 (see Appendix) exhibits how the threshold of T varies with µ.
Theorem 13. For general MAB under Assumption 1 with K = 2, q = 1/2, we have that RL(T ) ≥
T ·µ
4 holds for any distributions f0 for the arms in I and f1 for the arms in S with

∫
|f1 − f0| > 0

(possibly with unbounded support), for any µ > 0 and T satisfying T ≤ 1
2·
∫
|f0−f1| + 1.

C DETAILS ABOUT NUMERICAL EXPERIMENTS

C.1 MOUNTAIN CAR

For the Mountain Car experiment, we use the Adam optimizer with the 2 · 10−4 learning rate. The
batch size for updating models is 64 with the replay buffer size of 10,000. The remaining parameters
are as follows: the discount factor for the Q-networks is 0.95, the temperature parameter τ is 0.1,
η is 0.05, and ϵ is decaying exponentially with respect to the number of steps with maximum 0.9
and minimum 0.05. The length of one epoch is 200 steps. The target networks load the weights and
biases of the trained networks every 400 steps. Since a reward upper bound is known in advance, we
use nr = 1.

We next introduce the structure of neural networks that are used in the experiment. The neural
networks of both experts are linear. For the RND expert, it has the input layer with 2 input neurons,

14
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followed by a hidden layer with 64 neurons, and then a two-headed output layer. The first output layer
represents the Q values with 64 hidden neurons as input and the number of actions output neurons,
while the second output layer corresponds to the intrinsic values, with 1 output neuron. For the DQN
expert, the only difference lies in the absence of the second output layer.

Computational complexity On Mountain Car, the runtime of EXP4-RL is about 13 hours, while the
runtime of RND is about 10 hours. This implies the efficiency of the proposed algorithm since the
total operation time of an iteration is approximately determined by the sum of the operation times
the number of experts. RND runs much slower compared to DQN as it maintains more complex
neural networks. By enabling the use of sufficiently good experts, we eliminate the need for a large
number of experts, addressing the bottleneck of adapting EXP-type algorithms to RL. For EXP4.P
and EXP3.P, the total operation time is the same as for EXP4 and EXP3, respectively, noting that the
changes are in the construction of the reward estimates or, equivalently, the construction of the trust
coefficients.

C.2 MONTEZUMA’S REVENGE

For the Montezuma’s Revenge experiment, we use the Adam optimizer with the 10−5 learning rate.
The other parameters read: the mini batch size is 4, replay buffer size is 1,000, the discount factor
for the Q-networks is 0.999 and the same valus is used for the intrinsic value head, the temperature
parameter τ is 0.1, η is 0.05, and ϵ is increasing exponentially with minimum 0.05 and maximum 0.9.
The length of one epoch is 100 steps. Target networks are updated every 300 steps. Pre-normalization
is 50 epochs and the weights for intrinsic and extrinsic values in the first network are 1 and 2,
respectively. The upper bound on reward is set to be constant nr = 1.

For the structure of neural networks, we use CNN architectures since we are dealing with videos.
More precisely, for the Q-network of the DQN expert in EXP4-RL and the predictor network f̂ for
computing the intrinsic rewards, we use Alexnet (18) pretrained on ImageNet (11). The number of
output neurons of the final layer is 18, the number of actions in Montezuma. For the RND baseline
and RND expert in EXP4-RL, we customize the Q-network with different linear layers while keeping
all the layers except the final layer of pretrained Alexnet. Here we have two final linear layers
representing two value heads, the extrinsic value head and the intrinsic value head. The number of
output neurons in the first value head is again 18, while the second value head is with 1 output neuron.

More details about the setup of the experiment on Montezuma’s Revenge are elaborated as follows.
The experiment of RND with PPO in (author?) (8) uses many more resources, such as 1024
parallel environments and runs 30,000 epochs for each environment. Parallel environments generate
experiences simultaneously and store them in the replay buffer. Our computing environment allows at
most 10 parallel environments. For the DQN-version of RND, we use the same settings as (author?)
(8), such as observation normalization, intrinsic reward normalization and random initialization. RND
update probability is the proportion of experience in the replay buffer that are used for training the
intrinsic model f̂ in RND (8). Here in our experiment, we compare the performance under 0.125 and
0.25 RND update probability.

D PROOF OF RESULTS IN SECTION 3.1
We first present two lemmas that characterize the relationships among our EXP4.P estimations, the
true rewards, and the reward gained by EXP4.P, building on which we establish an optimal sublinear
regret of EXP4.P with high probability in the bounded case.

The estimated reward of expert i and the gained reward by the EXP4.P algorithm is denoted by
Ĝi =

∑T
t=1 ẑi(t) and GEXP4.P =

∑T
t=1 y(t) =

∑T
t=1 r

t
it

, respectively.

For simplicity, we denote

σ̂i(t+ 1) =
√
NT +

t∑
l=1

 1(
wi(l)∑
j wj(l)

+ γ
K

)
·
√
NT


U = max

i
(Ĝi + α · σ̂i(T + 1)), qi(t) =

wi(t)∑
j wj(t)

.

Let α be the parameter specified in Algorithm 3. The lemmas read as follows.
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Lemma 1. If 2
√
K ln NT

δ ≤ α ≤ 2
√
NT and γ < 1

2 , then P (∃ i, Ĝi + α · σ̂i(T + 1) < Gi) ≤ δ.

Lemma 2. If α ≤ 2
√
NT , then GEXP4.P ≥

(
1− (1 + 2N

3 )γ
)
·U− 3K

γ lnN−2αK
√
NT−2α2.

D.1 PROOF OF LEMMA 1

Proof. Let us denote st = α
2σ̂i(t+1) . Since α ≤ 2

√
NT by assumption and σ̂i(t+ 1) ≥

√
NT by its

definition, we have that st ≤ 1. Meanwhile,

P
(
Ĝi + ασ̂i(T + 1) < Gi

)
= P

(
T∑

t=1

(zi(t)− ẑi(t))−
ασ̂i(T + 1)

2
>

ασ̂i(T + 1)

2

)

≤ P

(
1

K
sT

T∑
t=1

(
zi(t)− ẑi(t)−

α

2
(
qi(t) +

γ
K

)√
NT

)
>

α2

4K

)

≤ e−
α2

4K E

[
exp

(
sT
K

T∑
t=1

(
zi(t)− ẑi(t)−

α

2
(
qi(t) +

γ
K

)√
NT

))]
(1)

where the first inequality holds by multiplying 1
K sT = 1

K · α
2σ̂i(T+1) on both sides and then using

the fact that σ̂i(T + 1) >
∑T

t=1

(
1(

qi(t) +
γ
K

)
·
√
NT

)
and the second one holds by the Markov’s

inequality.

We introduce variable Vt = exp

(
st
K

∑t
t′=1

(
zi(t

′)− ẑi(t
′)− α

2(qi(t′)+ γ
K )

√
NT

))
for any t =

1, . . . , T . Probability (1) can be expressed as e−
α2

4K E [VT ]. We denote Ft−1 as the filtration of the

past t− 1 observations. Note that Vt = exp

(
st
K

(
zi(t)− ẑi(t)− α

2(qi(t)+ γ
K )

√
NT

))
· V

st
st−1

t−1 and

st is deterministic given Ft−1 since it depends on qi(τ) up to time t and qi(t) is computed by the
past t− 1 rewards.

Therefore, we have

E[Vt|Ft−1]

= E

[
exp

(
st
K

(
zi(t)− ẑi(t)−

α

2
(
qi(t) +

γ
K

)√
NT

))
· (Vt−1)

st
st−1 |Ft−1

]

= Et

[
exp

(
st
K

(
zi(t)− ẑi(t)−

α

2
(
qi(t) +

γ
K

)√
NT

))]
· (Vt−1)

st
st−1

≤ Et

[
exp

(
st
K

(
zi(t)− ẑi(t)−

st
qi(t) +

γ
K

))
· (Vt−1)

st
st−1

]
≤ Et

[
1 +

st (zi(t)− ẑi(t))

K
+

s2t (zi(t)− ẑi(t))
2

K2

]
exp

(
− s2t
K
(
qi(t) +

γ
K

)) · (Vt−1)
st

st−1 (2)

where the first inequality holds by using the fact that

α = 2st · σ̂i(t+ 1) ≥ 2st ·
√
NT ≥ st ·

√
NT

by its definition and the second inequality holds since ex ≤ 1+x+x2 for x < 1 which is guaranteed by
st < 1 and zi(t)−ẑi(t) < 1. The latter one holds by 1 ≥ r > 0 and xi(t)−x̂i(t) = (1− 1

p )xit(t) ≤ 1
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for xit(t) > 0 and

zi(t)− ẑi(t) =

K∑
j=1

ξji (t)(xi(t)− x̂i(t))

=
∑
j ̸=it

ξji (t)xj(t) + ξiti (t)(xi(t)− x̂i(t))

≤
∑
j ̸=it

ξji (t) + ξiti (t)

=

K∑
j=1

ξji (t) = 1

Meanwhile,

E[ẑi(t)] = E

 K∑
j=1

ξji (t)x̂j(t)

 =

K∑
j=1

ξji (t)E[x̂j(t)] =

K∑
j=1

ξji (t) · xj(t) = zi(t)

and

E
[
(ẑi(t)− zi(t))

2
]

= E


 K∑

j=1

ξji (t) (x̂j(t)− xj(t))

2


≤ K

K∑
j=1

(
ξji (t)

)2
E
[
(x̂j(t)− xj(t))

2)
]

= K

K∑
j=1

(
ξji (t)

)2
·

(
pj(t) (xj(t))

2
(1− pj(t))

pj(t)
+ (1− pj(t)) (xj(t))

2

)

= K

K∑
j=1

(
ξji (t)

)2
· 2(1− pj(t)) (xj(t))

2

≤ K

K∑
j=1

(
ξji (t)

)2
· 1− γ

pj(t)

where the first inequality holds by the Cauchy Schwarz inequality and the second inequality holds by
the fact that xj(t) ≤ 1 and 2(1− p)p < 1− γ since γ < 1

2 by assumption.

Note that for any i, j = 1, . . . , N we have

pj(t) = (1− γ)

N∑
ī=1

qī(t) · ξ
j
ī
(t) +

γ

K

≥ (1− γ)qi(t) · ξji (t) + (1− γ)
γ

K
· ξji (t)

= (1− γ)(qi(t) +
γ

K
) · ξji (t).

since 1− γ ≤ 1, ξji (t) ≤ 1.
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We further bound

E
[
(ẑi(t)− zi(t))

2
]

≤ K

K∑
j=1

(
ξji (t)

)2
· 1− γ

pj(t)

≤ K

K∑
j=1

(1− γ)
(
ξji (t)

)2
(1− γ)(qi(t) +

γ
K )ξji (t)

= K

K∑
j=1

ξji (t)

qi(t) +
γ
K

= K
1

qi(t) +
γ
K

Then by using (2), we have that

E[Vt|Ft−1] ≤

(
1 +

s2t
K
(
qi(t) +

γ
K

)) exp

(
− s2t
K
(
qi(t) +

γ
K

)) · (Vt−1)
st

st−1

≤ exp

(
s2t

K
(
qi(t) +

γ
K

) − s2t
K
(
qi(t) +

γ
K

)) (Vt−1)
st

st−1

≤ 1 + Vt−1

where we have first used 1 + x ≤ ex and then ax ≤ 1 + a for any x ∈ [0, 1] with x = st
st−1

≤ 1. By
law of iterated expectation, we obtain

E[Vt] = E[E[Vt|Ft−1]] ≤ E[1 + Vt−1] = 1 + E[Vt−1].

Meanwhile, note that

E[V1] = exp

(
s1
K

(
zi(1)− ẑi(1)−

α

2
(
qi(1) +

γ
K

)√
NT

))

= exp

(
s1
K

(
zi(1)− ẑi(1)−

α

2
(

1
N + γ

K

)√
NT

))

≤ exp

(
s1
K

(
− α

2
(

1
N + γ

K

)√
NT

))
< 1

where the first inequality holds by using the fact that

zi(1)− ẑi(1) =

K∑
j=1

ξji (1)xj(1)(1−
1

(1− γ) 1
N

∑N
i′=1 ξ

j
i′(1) +

γ
K

)

≤
K∑
j=1

ξji (1)(1−
1

(1− γ) + γ
K

)

=
(−1 + 1

K )γ

1− γ + γ
K

< 0

since 0 < xj(1) ≤ 1 and 0 ≤ ξji′(1) ≤ 1 and the second inequality is a result of α > 0, s1 > 0.

Therefore, by induction we have that E[VT ] ≤ T .

To conclude, combining all above, we have that P
(
Ĝi + ασ̂i < Gi

)
≤ e−

α2

4K E[VT ] ≤ e−
α2

4K T and

the lemma follows as we choose specific α that satisfies e−
α2

4K T ≤ δ
N , i.e 2

√
K ln NT

δ ≤ α.
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D.2 PROOF OF LEMMA 2

Proof. For simplicity, let ϑ = γ
3K and consider any sequence i1, . . . , iT of actions by EXP4.P.

Since pj(t) >
γ
K , we observe

ẑi(t) =

K∑
j=1

ξij(t)x̂j(t) ≤
K∑
j=1

ξij(t)
1

pj(t)
≤

K∑
j=1

ξij(t)
K

γ
=

K

γ
.

Then the term ϑ ·

(
ẑi(t) +

α
wi(t)∑N

j=1
wj(t)

√
NT

)
is less than 1, noting that

ϑ ·

ẑi(t) +
α(

wi(t)∑N
j=1 wj(t)

+ γ
K

)√
NT


=

γ

3K

(
ẑi(t) +

α(
qi(t) +

γ
K

)√
NT

)

≤ γ

3K
· K
γ

+
γ

3K
· K
γ

· α√
NT

≤ 1

3
+

1

3
· 2

√
NT√
NT

= 1.

We denote Wt =
∑N

i=1 wi(t), which satisfies

Wt+1

Wt
=

N∑
i=1

wi(t+ 1)

Wt

=

N∑
i=1

qi(t) · exp

ϑ ·

ẑi(t) +
α(

wi(t)∑N
j=1 wj(t)

+ γ
K

)√
NT




≤
N∑
i=1

qi(t) ·
(
1 + ϑẑi(t) +

αϑ(
qi(t) +

γ
K

)√
NT

+

2ϑ2 (ẑi(t))
2
+ 2

α2ϑ2(
qi(t) +

γ
K

)2
NT

)

= 1 + ϑ

N∑
i=1

qi(t)ẑi(t) + 2ϑ2
N∑
i=1

qi(t) (ẑi(t))
2
+

αϑ

N∑
i=1

qi(t)(
qi(t) +

γ
K

)√
NT

+ 2α2ϑ2
N∑
i=1

qi(t)(
qi(t) +

γ
K

)2
NT

(3)

where the last inequality using the facts that ex < 1 + x+ x2 for x < 1 and 2(a2 + b2) > (a+ b)2.
Note that the second term in the above expression satisfies

N∑
i=1

qi(t)ẑi(t) =

N∑
i=1

qi(t)

 K∑
j=1

ξji (t)x̂j(t)


=

K∑
j=1

(
N∑
i=1

qi(t)ξ
j
i (t)

)
x̂j(t)

=

K∑
j=1

(
pj(t)− γ

K

1− γ

)
x̂j(t) ≤

xit(t)

1− γ
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Also the third term yields

N∑
i=1

qi(t) (ẑi(t))
2
=

N∑
i=1

qi(t)

 K∑
j=1

ξji (t)x̂j(t)

2

=

N∑
i=1

qi(t)
(
ξiti x̂it(t)

)2
≤ x̂it(t)

2 pit(t)

1− γ
≤ x̂it(t)

1− γ
.

We also note that

αϑ

N∑
i=1

qi(t)(
qi(t) +

γ
K

)√
NT

≤ αϑ

√
N

T

and

2α2ϑ2
N∑
i=1

qi(t)(
qi(t) +

γ
K

)2
NT

≤ 2α2ϑ2 1

3ϑT
=

2α2ϑ

3T
.

Plugging these estimates in (3), we get

Wt+1

Wt
≤ 1 +

ϑ

1− γ
xit(t) +

2ϑ2

1− γ

K∑
j=1

x̂j(t) + αϑ

√
N

T
+

2α2ϑ

3T
.

Then we note that for any j,
∑N

i=1 ξ
j
i (t) ≥ 1

K by the assumption that a uniform expert is included,
which gives us that

Wt+1

Wt
≤ 1 +

ϑ

1− γ
xit(t) +

2ϑ2

1− γ
K

N∑
i=1

ẑi(t) + αϑ

√
N

T
+

2α2ϑ

3T
.

Since ln (1 + x) < x, we have that

ln
Wt+1

Wt
≤ ϑ

1− γ
xit(t) +

2ϑ2

1− γ
K

N∑
i=1

ẑi(t) + αϑ

√
N

T
+

2α2ϑ

3T
.

Then summing over t leads to

ln
WT+1

W1
≤ ϑ

1− γ
GEXP4.P +

2ϑ2

1− γ
K

N∑
i=1

Ĝi(t) + αϑ
√
NT +

2α2ϑ

3
.

Meanwhile, by initialization we have that

ln (W1) = ln (Nwi(1))

= ln
(
N · exp

(
αϑ

√
NT

))
= lnN + αϑ

√
NT.
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For any ī, we also have

lnWT+1 = ln

N∑
i=1

wi(T + 1)

≥ lnwī(T + 1)

= ln

(
wī(T ) exp

(
ϑ

(
ẑī(T ) +

α

(qī(T ) +
γ
K )

√
NT

)))

= ln

(
wī(1)

T∏
t=1

exp

(
ϑ

(
ẑī(t) +

α

(qī(t) +
γ
K )

√
NT

)))

= ln

(
wī(1) exp

(
ϑ

(
T∑

t=1

ẑī(t) +

T∑
t=1

α

(qī(t) +
γ
K )

√
NT

)))

= ln

(
exp (ϑα

√
NT ) exp

(
ϑ

(
T∑

t=1

ẑī(t) +

T∑
t=1

α

(qī(t) +
γ
K )

√
NT

)))

= ln

(
exp

(
ϑ

(
T∑

t=1

ẑī(t) + α

(
√
NT +

T∑
t=1

1

(qī(t) +
γ
K )

√
NT

))))
= ϑĜī + αϑσ̂ī(T + 1).

Therefore, we have that

ϑĜī + αϑσ̂ī(T + 1)− lnN − αϑ
√
NT ≤ ϑ

1− γ
GEXP4.P +

2ϑ2

1− γ
K

N∑
i=1

Ĝi + αϑ
√
NT +

2α2ϑ

3
.

By re-organizing the terms and then multiplying by 1−γ
ϑ on both sides, the above expression can be

written as

GEXP4.P = (1− γ)(Ĝī + ασ̂ī(T + 1))

− (1− γ)
lnN

ϑ
− (1− γ)2α

√
NT − 2ϑK

N∑
i=1

Ĝi − (1− γ)
2α2

3

≥ (1− γ)(Ĝī + ασ̂ī(T + 1))− lnN

ϑ
− 2α

√
NT − 2ϑK

N∑
i=1

Ĝi − 2α2

Note that the above holds for any ī and that
∑N

i=1 Ĝi ≤ NU .

The lemma follows by replacing Ĝī + ασ̂ī(T + 1) with U by selecting ī to be the expert where U

achieves maximum and
∑N

i=1 Ĝi with NU .

D.3 PROOF OF THEOREM 1

Proof. Without loss of generality, we assume δ ≥ NTe−
NT
K and T ≥

max
(

3(2N+3)K lnN
3 , 36K lnN

2N+3

)
. If either of the conditions does not hold, it is easy to ob-

serve that the theorem holds as follows. Since reward is between 0 and 1, the regret is always less or
equal to T . On the other hand, if one of these conditions is not met, a straightforward derivation
shows that the last term in the upper bound of the regret statement in the theorem is greater or equal
to T .

By Lemma 2, we have that

GEXP4.P ≥
(
1− (1 +

2N

3
)γ

)
· U − 3K

γ
lnN − 2αK

√
NT − 2α2.
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Since δ ≥ NTe−
NT
K , we have 2

√
K ln

(
NT
δ

)
≤ 2

√
NT . Then Lemma 1 gives us that

U ≥ Gmax = max
i

Gi, with probability at least 1− δ

when γ < 1
2 .

Combining the two together and using the fact that Gmax ≤ T , we get

Gmax −GEXP4.P ≤
((

2N

3
+ 1

)
γ

)
Gmax +

3K lnN

γ
+ 2αK

√
NT + 2α2

≤
((

2N

3
+ 1

)
γ

)
T +

3K lnN

γ
+ 2αK

√
NT + 2α2, (4)

which holds with probability at least 1− δ when 1− 2N+3
3 · γ ≥ 0

Let γ =
√

3K lnN

T( 2N
3 +1)

and α = 2
√

K ln
(
NT
δ

)
. Note that T ≥ max

(
3(2N+3)K lnN

3 , 36K lnN
2N+3

)
,

which implies that

1− 2N + 3

3
· γ = 1− 2N + 3

3
·
√

3K lnN

T
(
2N
3 + 1

) ≥ 0

γ =

√
3K lnN

T
(
2N
3 + 1

) <
1

2

By plugging them into the right hand side of (4), we get

Gmax −GEXP4.P

≤ 2

√
3KT

(
2N

3
+ 1

)
lnN + 4K

√
KNT ln

(
NT

δ

)
+ 8K ln

(
NT

δ

)

≤ 2

√
3KT

(
2N

3
+ 1

)
lnN + 4K

√
KNT ln

(
NT

δ

)
+ 8NK ln

(
NT

δ

)
w.p. at least 1− δ

i.e. RT = Gmax −GEXP4.P ≤ O∗(
√
T ), with probability at least 1− δ.

Lemma 3. Let us suppose that random variables X1, X2, X3, . . . , Xn are sub-Gaussian distributed
with variance proxies that are upper bounded by σX , but are not necessarily independent. Then we
have that

E[ max
1≤i≤n

|Xi|] ≤ σX

√
2 log 2n.

Proof. Consider variables X−1 = −X1, X−2 = −X2, . . . , X−n = −Xn. It is straightforward
to see that they are sub-Gaussian distributed with the same variance proxy as X1, X2, . . . , Xn,
respectively.
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Then we have that for any λ > 0

E[ max
1≤i≤n

|Xi|] = E[ max
−n≤i≤n

Xi]

=
1

λ
E[log emax−n≤i≤n Xi ]

≤ 1

λ
logE[emax−n≤i≤n Xi ]

=
1

λ
logE[ max

−n≤i≤n
eXi ]

≤ 1

λ
logE[

∑
−n≤i≤n

eXi ]

≤ 1

λ
log

∑
−n≤i≤n

e
σ2
Xλ2

2 =
1

λ
log 2ne

σ2
Xλ2

2 (5)

where the first inequality holds by the Jensen’s inequality, the second inequality holds by the non-
negativity of eXi , and the third inequality uses the definition of sub-Gaussian random variables.

Choosing λ = 2 log 2n
σ2
X

in (5) leads to E[max1≤i≤n |Xi|] ≤ σX

√
2 log 2n, which completes the

proof.

D.4 PROOF OF THEOREM 3

Proof. We first consider the expected deviation of RT compared to the pseudo regret R′
T . Following

the definition, we obtain

E[|RT −R′
T |]

= E[|max
i

T∑
t=1

K∑
j=1

ϵji (t)yi,t −
T∑

t=1

yat,t −max
i

T∑
t=1

K∑
j=1

ϵji (t)c
T
t θj +

T∑
t=1

cTt θat
|]

= E[|max
i

T∑
t=1

K∑
j=1

ϵji (t)(c
T
t θj + δj,t)−

T∑
t=1

(cTt θat
+ δat,t)−max i

T∑
t=1

K∑
j=1

ϵji (t)c
T
t θj +

T∑
t=1

cTt θat
|]

= E[|max
i

T∑
t=1

K∑
j=1

ϵji (t)δj,t −
T∑

t=1

δat,t|]

Using the triangle inequality, we derive that

A = E[|max
i

T∑
t=1

K∑
j=1

ϵji (t)δj,t −
T∑

t=1

δat,t|]

≤ E[|max
i

T∑
t=1

K∑
j=1

ϵji (t)δj,t|] + E[|
T∑

t=1

δat,t|]

≤ E[max
i

|
T∑

t=1

K∑
j=1

ϵji (t)δj,t|] + E[|
T∑

t=1

δat,t|]

≤
N∑
i=1

E[|
T∑

t=1

K∑
j=1

ϵji (t)δj,t|] + E[|
T∑

t=1

δat,t|]. (6)
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We observe that
∑T

t=1

∑K
j=1 ϵ

j
i (t)δj,t and

∑T
t=1 δat,t are sub-Gaussian distributed based on Lemma

5 in (32). Moreover, the variance proxy of
∑T

t=1

∑K
j=1 ϵ

j
i (t)δj,t, σ1, meets

σ2
1 =

T∑
t=1

K∑
j=1

(ϵji (t))
2σ2

j,t

≤
T∑

t=1

K∑
j=1

(ϵji (t))
2σ2 ≤ σ2

T∑
t=1

·1 = Tσ2

where the last inequality holds by the Cauchy-Schwarz inequality and the fact that
∑K

j=1 ϵ
j
i (t) = 1.

Likewise, the variance proxy of
∑T

t=1 δat,t, σ2, meets

σ2
2 =

T∑
t=1

σ2
at,t ≤

T∑
t=1

σ2 = Tσ2.

By Lemma 3, we obtain that

E[|
T∑

t=1

K∑
j=1

ϵji (t)δj,t|] ≤
√
Tσ2

√
2 log 2

and

E[|
T∑

t=1

δat,t|] ≤
√
Tσ2

√
2 log 2.

Subsequently, we derive that

A ≤ N(
√
Tσ2

√
2 log 2) +

√
Tσ2

√
2 log 2 = (N + 1)σ

√
2T log 2

which immediately implies that

E[|RT −R′
T |] ≤ (N + 1)σ

√
2T log 2 = O∗(

√
T ). (7)

We next decompose the expected regret E[RT ] as follows. Note that

E[RT ] = E[RT 1RT≥O∗(
√
T ) +RT 1RT≤O∗(

√
t)]

≤ E[RT 1RT≥O∗(
√
T )] +O∗(

√
T )P (RT ≤ O∗(

√
T ))

≤ E[RT 1RT≥O∗(
√
T )+E[RT ]] + E[RT 1O∗(

√
T )≤RT≤O∗(

√
T )+E[RT ]] +O∗(

√
T )

:= E1 + E2 +O∗(
√
T ). (8)

Let P1 = P
(
RT ≤ log(1/δ)O∗(

√
T )
)

which equals to P
(
RT ≤ O∗(

√
T )
)

since log(1/δ) =

log(
√
T ) = O∗(

√
T ). By Theorem 2 we have

P1 = (1− δ) · (1− η)T . (9)

We consider δ = 1/
√
T and η = T−a for a > 2. We have

lim
T→∞

(1− δ)(1− η)T = lim
T→∞

(1− δ)(1− 1

T a
)T

= lim
T→∞

(1− δ)(1− 1

T a
)(T

a)· T
Ta = lim

T→∞
e

T
Ta

and
lim

T→∞

(
1− (1− δ)(1− η)T

)
· log T · T = lim

T→∞
(1− e

T
Ta ) · log(T ) · T

≤ lim
T→∞

log(T ) · T · T 1−a = lim
T→∞

T 2−a · log(T ) = 0.
(10)
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By using (7), (9), and (10), we obtain

E1 = E
[
RT1RT≥O∗(

√
T )+E[RT ]

]
= E

[
(RT −R′

T )1(RT−E[RT ])≥O∗(
√
T )

]
+ E

[
R′

T1(RT−E[RT ])≥O∗(
√
T )

]
≤ E [|RT −R′

T |] +R′
T · P

(
RT ≥ E [RT ] +O∗(

√
T )
)

≤ E [|RT −R′
T |] + E [RT ] · P

(
RT ≥ E [RT ] +O∗(

√
T )
)

≤ O∗(
√
T ) + C0 · log(T ) · T · P

(
RT ≥ O∗(

√
T )
)

= O∗(
√
T ) + C0 · log(T ) · T (1− P1) = O∗(

√
T ) (11)

where the second inequality uses the Jensen’s inequality which gives us

R′
T ≤ E[RT ].

Additionally, we note that by definition,

E[RT ] = E[max
i

T∑
t=1

K∑
j=1

ϵji (t)yi,t −
T∑

t=1

yat,t]

≤ E[|max
i

T∑
t=1

K∑
j=1

ϵji (t)yi,t|] + E[

T∑
t=1

yat,t]

≤ T ·N ·KE[max
j,t

yi,t] + TE[max
j,t

yi,t]

= T (NK + 1)E[max
j,t

yi,t]

≤ T (NK + 1)(max
j,t

cTt θj + E[max
j,t

δi,t])

≤ T (NK + 1)(1 + σ
√
2 log (2T )K) ≤ CL · T · log T (12)

where the last inequality holds by the fact that ||ct|| ≤ 1, ||θj || ≤ 1 and by Lemma 3. Here CL is a
constant.

Consequently, the asymptotic behavior of the second term E2 reads

E2 = E
[
RT1O∗(

√
T )<RT<O∗(

√
T )+E[RT ]

]
= E

[
RT1RT−O∗(

√
T )∈(0,E[RT ])

]
= E

[(
RT −O∗(

√
T )
)
1RT−O∗(

√
T )∈(0,E[RT ])

]
+O∗(

√
T )

≤ E [RT ]P
(
RT −O∗(

√
T ) ∈ (0, E [RT ])

)
+O∗(

√
T )

≤ E [RT ]P
(
RT −O∗(

√
T ) > 0

)
+O∗(

√
T )

≤ CL log(T ) · T · (1− P1) +O∗(
√
T ) = O∗(

√
T ) (13)

where the last inequality uses (9) and (12).

Combining all these together, we obtain

E[RT ] ≤ O∗(
√
T ) +O∗(

√
T ) +O∗(

√
T ) = O∗(

√
T )

which concludes the proof.
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D.5 PROOF OF THEOREM 4

Proof. By the definition of Rsimple
T , we have that

RT = max
i

T∑
t=1

K∑
j=1

ϵij(t)yi,t −
T∑

t=1

yat,t

= max
i

T∑
t=1

K∑
j=1

ϵij(t)(c
T
t θj + δj,t)−

T∑
t=1

(cTt θat
+ δat,t)

≤ max
i

T∑
t=1

K∑
j=1

ϵij(t)c
T
t θj +max

i

T∑
t=1

K∑
j=1

ϵij(t)δj,t −
T∑

t=1

cTt θat
−

T∑
t=1

δat,t

≤
T∑

t=1

max
i

K∑
j=1

ϵji (t)c
T
t θj +max

i

T∑
t=1

K∑
j=1

ϵij(t)δj,t −
T∑

t=1

cTt θat
−

T∑
t=1

δat,t

≤
T∑

t=1

max
i

K∑
j=1

ϵji (t)max
j

cTt θj +max
i

T∑
t=1

K∑
j=1

ϵij(t)δj,t −
T∑

t=1

cTt θat
−

T∑
t=1

δat,t

=

T∑
t=1

(max
j

cTt θj)max
i

K∑
j=1

ϵji (t) + max
i

T∑
t=1

K∑
j=1

ϵij(t)δj,t −
T∑

t=1

cTt θat
−

T∑
t=1

δat,t

=

T∑
t=1

max
j

cTt θj +max
i

T∑
t=1

K∑
j=1

ϵij(t)δj,t −
T∑

t=1

cTt θat
−

T∑
t=1

δat,t

= Rcum
T +max

i

T∑
t=1

K∑
j=1

ϵij(t)δj,t −
T∑

t=1

δat,t

where the second and third inequalities hold by the Jensen’s inequality, and the last inequality uses
the definition of Rcum

T which is defined by

Rcum
T =

T∑
t=1

max
j

cTt θj −
T∑

t=1

cTt θat
.

Subsequently, we obtain that

E[RT ] ≤ E[Rcum
T +max

i

T∑
t=1

K∑
j=1

ϵijδj,t −
T∑

t=1

δat,t]

= E[Rcum
T ] + E[max

i

T∑
t=1

K∑
j=1

ϵijδj,t]

≤ E[Rcum
T ] +

√√√√logNσ(

T∑
t=1

K∑
j=1

ϵijδj,t)

≤ E[Rcum
T ] +

√
logN

√
TK

where the first equality holds by the fact that δat,t has mean 0, the second inequality uses Lemma 3,
and the last inequality results from Lemma 5 in (32).

This implies that if E[Rcum
T ] is upper bounded by G(T ), then we have E[RT ] ≤

max {O∗(
√
T ), G(T )}, which completes the proof of the first half of the statement.
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On the other hand, again based on the definition of E[RT ], we have

RT = max
i

T∑
t=1

K∑
j=1

ϵij(t)(c
T
t θj ++δj,t)−

T∑
t=1

(cTt θat + δat,t)

≥
T∑

t=1

K∑
j=1

πj(c
T
t θj + δj,t)−

T∑
t=1

(cTt θat + δat,t),

which leads to

E[RT ] ≥ E[

T∑
t=1

K∑
j=1

πjc
T
t θj ] + E[

T∑
t=1

K∑
j=1

πjδj,t]− E[

T∑
t=1

cTt θat ]− E[δat,t]

= E[

T∑
t=1

K∑
j=1

πjc
T
t θj ]− E[

T∑
t=1

cTt θat ] + E[

T∑
t=1

K∑
j=1

πjδj,t]

= E[

T∑
t=1

K∑
j=1

πjc
T
t θj ]− E[

T∑
t=1

cTt θat ]

where the last equality uses the fact that δj,t is independent of everything else, including πj .

By assumption, we obtain

T∑
t=1

K∑
j=1

πt
jc

T
t θj ≥

T∑
t=1

max
j

µj,t − F (T ) =

T∑
t=1

max
j

cTt θj − F (T )

which immediately implies that

E[RT ] ≥ E[

T∑
t=1

max
j

cTt θj ]− F (T )− E[

T∑
t=1

cTt θat
]

= E[Rcum
T ]− F (T ).

Henceforth, if the simple regret satisfies that E[RT ] ≤ O∗(
√
T ), which holds by Theorem 3, then

the cumulative regret also meets E[Rcum
T ] ≤ max {O∗(

√
T ), F (T )}.

This completes the proof of the second half of the statement.

D.6 PROOF OF THEOREM 5

Proof. Since the rewards can be unbounded in our setting, we consider truncating the reward with
any ∆ > 0 for any arm i by rti = r̄ti + r̂ti where

r̄ti = rti · 1(−∆≤rti≤∆), r̂
t
i = rti · 1(|rti |>∆).

Then for any parameter 0 < η < 1, we choose such ∆ that satisfies

P (rti = r̄ti , i ≤ K) = P (−∆ ≤ rt1 ≤ ∆, . . . ,−∆ ≤ rtK ≤ ∆)

=

∫ ∆

−∆

∫ ∆

−∆

. . .

∫ ∆

−∆

f(x1, . . . , xK)dx1 . . . dxK ≥ 1− η . (14)

The existence of such ∆ = ∆(η) follows from elementary calculus.

Let A = {|rti | ≤ ∆ for every i ≤ K, t ≤ T}. Then the probability of this event is

P (A) = P (rti = r̄ti , i ≤ K, t ≤ T ) ≥ (1− η)T .
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With probability (1− η)T , the rewards of the player are bounded in [−∆,∆] throughout the game.
Then Rc,B

T = maxi
∑T

t=1

∑K
j=1 ξ

j
i (t)r̄

t
j −

∑T
t=1 r̄

i
t ≤ T ·∆ −

∑T
t=1 rt is the regret under event

A, i.e. Rc
T = Rc,B

T with probability (1 − η)T . For the EXP4.P algorithm and Rc,B
T with rewards

r̄tj =
r̄tj+∆

∆ satisfying 0 < r̄tj < 1, for every δ > 0, according to Theorem 1 , we have

Rc,B
T ≤ 4∆(η)

(
2

√
3KT

(
2N

3
+ 1

)
lnN + 4K

√
KNT ln

(
NT

δ

)
+ 8NK ln

(
NT

δ

))
.

Then we have

RT ≤ 4∆(η)

(
2

√
3KT

(
2N

3
+ 1

)
lnN + 4K

√
KNT ln

(
NT

δ

)
+ 8NK ln

(
NT

δ

))
with probability (1− δ) · (1− η)T .

D.7 PROOF OF THEOREM 6

Lemma 4. For any non-decreasing differentiable function ∆ = ∆(T ) > 0 satisfying

limT→∞
∆(T )2

log(T ) = ∞, limT→∞ ∆′(T ) ≤ C0 < ∞,

and any 0 < δ < 1, a > 2 we have

P
(
Rc

T ≤ ∆(T ) · log(1/δ) ·O∗(
√
T )
)
≥ (1− δ)

(
1− 1

T a

)T

for any T large enough.

Proof. Let a > 2 and let us denote

F (y) =

∫ y

−y

f(x1, x2, . . . , xK)dx1dx2 . . . dxK ,

ζ(T ) = F (∆(T ) · 1)−
(
1− 1

T a

)
for y ∈ RK and 1 = (1, . . . , 1) ∈ RK . Let also y−i = (y1, . . . , yi−1, yi+1, . . . , yK) and x|xi=y =
(x1, . . . , xi−1, y, xi+1, . . . , xK). We have limT→∞ ζ(T ) = 0.

The gradient of F can be estimated as

∇F ≤

(∫ y−1

−y−1

f (x|x1=y1
) dx2 . . . dxK , . . . ,

∫ y−K

−y−K

f (x|xK=yK
) dx1 . . . dxK−1

)
.

According to the chain rule and since ∆′(T ) ≥ 0, we have

dF (∆(T ) · 1)
dT

≤
∫ ∆(T )·1−1

−∆(T )·1−1

f
(
x|x1=∆(T )

)
dx2 . . . dxK ·∆′(T )+

. . .+

∫ ∆(T )·1−K

−∆(T )·1−K

f
(
x|xK=∆(T )

)
dx1 . . . dxK−1 ·∆′(T ).

Next we consider∫ ∆(T )1−i

−∆(T )1−i

f
(
x|xi=∆(T )

)
dx1 . . . dxi−1dxi+1 . . . dxK

≤ e−
1
2aii(∆(T ))2+µi∆(T ) ·

∫ ∆(T )1−i

−∆(T )1−i

eg(x−i)dx1 . . . dxi−1dxi+1 . . . dxK .
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Here eg(x−i) is the conditional density function given xi = ∆(T ) and thus∫∆(T )1−i

−∆(T )1−i
eg(x−i)dx1 . . . dxi−1dxi+1 . . . dxK ≤ 1. We have∫ ∆(T )1−i

−∆(T )1−i

f
(
x|xi=∆(T )

)
dx1 . . . dxi−1dxi+1 . . . dxK

≤ e−
1
2aii(∆(T ))2+µi∆(T )

≤ e−
1
2 minj ajj(∆(T ))2+maxj µj∆(T ).

Then for T ≥ T0 we have ∆′
T ≤ C0 + 1 and in turn

ζ ′(T ) ≤ (C0 + 1) ·K · e− 1
2 minj ajj(∆(T ))2+maxj µj∆(T ) − a · T−a−1.

Since we only consider non-degenerate sub-Gaussian bandits with min aii > 0, µi are constants and
∆(T ) → ∞ as T → ∞ according to the assumptions in Lemma 4, there exits C1 > 0 and T1 such
that

e−
1
2 minj ajj(∆(T ))2+maxj µj∆(T ) ≤ e−C1∆(T )2 for every T > T1.

Since limT→∞
∆(T )2

log(T ) = ∞, we have

∆(T )2 > 2(a+1)
C1

· log(T ) for T > T2.

These give us that

ζ(T )′ ≤ (C0 + 1)Ke−2(a+1) log T − aT−a−1

= (C0 + 1)Ke−2(a+1) log T − ae−(a+1) log T

< 0 for T ≥ T3 ≥ max(T0, T1, T2).

This concludes that ζ ′(T ) < 0 for T ≥ T3. We also have limT→∞ ζ(T ) = 0 according to the
assumptions. Therefore, we finally arrive at ζ(T ) > 0 for T ≥ T3. This is equivalent to∫ ∆(T )·1

−∆(T )·1
f (x1, . . . , xK) dx1 . . . dxK ≥ 1− 1

T a
,

i.e. the rewards are bounded by ∆(T ) with probability 1− 1
Ta . Then by the same argument for T

large enough as in the proof of Theorem 1, we have

P
(
Rc

T ≤ ∆(T ) · log(1/δ) ·O∗(
√
T )
)
≥ (1− δ)(1− 1

T a
)T .

Proof of Theorem 3. In Lemma 4, we choose ∆(T ) = log(T ), which meets all of the assumptions.
The result now follows from log T ·O∗(

√
T ) = O∗(

√
T ), Lemma 4 and Theorem 2.

D.8 PROOF OF THEOREM 7
We first list 3 known lemmas. The following lemma by (author?) (13) provides a way to bound
deviations.
Lemma 5. For any function class F , and i.i.d. random variable {x1, x2, . . . , xT }, the result

Ex

[
supf∈F

∣∣∣Exf − 1
T

∑T
t=1 f (xt)

∣∣∣] ≤ 2Rc
T (F )

holds where Rc
T (F ) = Ex,σ

[
supf

∣∣∣ 1T ∑T
t=1 σtf (xt)

∣∣∣] and σt is a {−1, 1} random walk of t steps.

The following result holds according to (author?) (4).
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Lemma 6. For any subclass A ⊂ F , we have R̂c
T ≤ R(A, T ) ·

√
2 log |A|
T , where R(A, T ) =

supf∈A

(∑T
t=1 f

2(xt)
) 1

2

and R̂c
T = supf

∣∣∣ 1T ∑T
t=1 σtf (xt)

∣∣∣.
A random variable X is σ2-sub-Gaussian if for any t > 0, the tail probability satisfies

P (|X| > t) ≤ Be−σ2t2 ,

where B is a positive constant. The following lemma is listed in the Appendix A of (author?) (9).
Lemma 7. For i.i.d. σ2-sub-Gaussian random variables {Y1, Y2, . . . , YT }, we have

E [max1≤t≤T |Yt|] ≤ σ
√
2 log T + 4σ√

2 log T
.

Proof of Theorem 4. Let us define F = {fi,t : x →
∑K

j=1 ξ
j
i (t)xj(t)|j = 1, 2, . . . ,K; t =

1, . . . , T}. Let xt = x(t) = (rt1, r
t
2, . . . , r

t
K) where rti is the reward of arm i at step t and let at be the

arm selected at time t by EXP4.P. Then for any fj,t ∈ F , fj,t(xti) = It=ti

∑K
j=1 ξ

j
i (t)xj(t). In sub-

Gaussian bandits, {x1, x2, . . . , xT } are i.i.d. random variables since the sub-Gaussian distribution
σ2 −N (µ,Σ) is invariant to time and independent of time. Then by Lemma 5, we have

E
[
maxi,t

∣∣∣∑K
j=1 ξ

j
i (t)µj − 1

T

∑T
t=1

∑K
j=1 ξ

j
i (t)r

t
j

∣∣∣] ≤ 2Rc
T (F ).

We consider

E [|R′
T −RT |] = E

∣∣∣∣∣∣
T∑

t=1

max
i

K∑
j=1

ξji (t)µj −
T∑

t=1

µat −

max
i

T∑
t=1

K∑
j=1

ξji (t)r
t
j −

T∑
t=1

rtat

∣∣∣∣∣∣


≤ E

∣∣∣∣∣∣T ·max
i,t

K∑
j=1

ξji (t)µj −max
i

T∑
t=1

K∑
j=1

ξji (t)r
t
j −

(
T∑

t=1

µat −
T∑

t=1

rtat

)∣∣∣∣∣∣


≤ E

∣∣∣∣∣∣T ·max
i,t

K∑
j=1

ξji (t)µj −max
i

T∑
t=1

K∑
j=1

ξji (t)r
t
j

∣∣∣∣∣∣
+ E

[∣∣∣∣∣
T∑

t=1

µat −
T∑

t=1

rtat

∣∣∣∣∣
]

≤ E

T ·max
i,t

∣∣∣∣∣∣
K∑
j=1

ξji (t)µj −
1

T

T∑
t=1

K∑
j=1

ξji (t)r
t
j

∣∣∣∣∣∣
+ E

[∣∣∣∣∣
T∑

t=1

µat
−

T∑
t=1

rtat

∣∣∣∣∣
]

≤ 2TRc
T (F ) + 2T1R

c
T1
(F ) + · · ·+ 2TKRc

TK
(F )

(15)

where Ti is the number of pulls of arm i. Clearly T1 + T2 + . . . + TK = T . By Lemma 6 with
A = F which has a cardinality of NT we get

Rc
T (F ) = E

[
R̂c

T (F )
]
≤ E[R(F, T )] ·

√
2 log (NT )

T
,

Rc
Tj
(F ) ≤ E [R (F, Tj)] ·

√
2 log (NT )

Tj
j = {1, 2, , . . . ,K}.

Since R(F, T ) is increasing in T and Tj ≤ T , we have Rc
Tj
(F ) ≤ E [R (F, T )] ·

√
2 log(NT )

Tj
.

We next bound the expected deviation E [|R′
T −RT |] based on (15) as follows

E [|R′
T −RT |] ≤ 2TE[R(F, T )]

√
2 log (NT )

T
+

K∑
j=1

[
2TjE[R(F, T )]

√
2 log (NT )

Tj

]
≤ 2(K + 1)

√
2 log (NT )E[R(F, T )]. (16)
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Regarding E[R(F, T )], we have

E[R(F, T )] = E

sup
f∈F

(
T∑

t=1

f2(xt)

) 1
2

 = E

sup
i

 T∑
t=1

 K∑
j=1

ξji (t)r
t
j

2


1
2



≤ E

sup
i,t

T ·

 K∑
j=1

ξji (t)r
t
j

2


1
2

 (17)

≤
√
T · E

sup
i,t

K∑
j=1

|ξji (t)r
t
j |


≤

√
T · E

 N∑
i=1

sup
t

K∑
j=1

|ξji (t)r
t
j |

 =
√
T ·

N∑
i=1

E

 K∑
j=1

sup
t

|ξji (t)r
t
j |


≤

√
T ·

N∑
i=1

K∑
j=1

E

[
max
1≤t≤T

|rtj |
]
=

√
NT ·

K∑
i=1

E

[
max
1≤t≤T

|rtj |
]
. (18)

We next use Lemma 7 for any arm j. To this end let Yt = rtj . Since xt are sub-Gaussian, the
marginals Yt are also sub-Gaussian with mean µi and standard deviation of aii. Combining this with
the fact that a sub-Gaussian random variable is σ2-sub-Gaussian justifies the use of the lemma. Thus
E
[
max1≤t≤T |rjt |

]
≤ aj,j ·

√
2 log T +

4aj,j√
2 log T

.

Continuing with equation 18 we further obtain

E[R(F, T )] ≤
√
NT ·K ·max

j

(
aj,j
√

2 log T +
4aj,j√
2 log T

)
=

(
K
√

2NT log T +
4
√
NT√

2 log T

)
·max

j
aj,j . (19)

By combining equation 16 and equation 19 we conclude

E [|R′
T −RT |] ≤ 2(K + 1)

√
2 log (NT ) ·max

j
aj,j ·

(
K
√
2NT log T +

4
√
NT√

2 log T

)
= O∗(

√
T ).

(20)

We now turn our attention to the expectation of regret E[RT ]. It can be written as

E [RT ] = E
[
RT1RT≤O∗(

√
T )

]
+ E

[
RT1RT>O∗(

√
T )

]
≤ O∗(

√
T )P

(
RT ≤ O∗(

√
T )
)
+ E

[
RT1RT>O∗(

√
T )

]
≤ O∗(

√
T ) + E

[
RT1RT>O∗(

√
T )

]
= O∗(

√
T ) + E

[
RT1O∗(

√
T )<RT<O∗(

√
T )+E[RT ]

]
+ E

[
RT1RT≥O∗(

√
T )+E[RT ]

]
.

(21)

We consider δ = 1/
√
T and η = T−a for a > 2. We have

lim
T→∞

(1− δ)(1− η)T = lim
T→∞

(1− δ)(1− 1

T a
)T

= lim
T→∞

(1− δ)(1− 1

T a
)(T

a)· T
Ta = lim

T→∞
e

T
Ta
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and

lim
T→∞

(
1− (1− δ)(1− η)T

)
· log T · T = lim

T→∞
(1− e

T
Ta ) · log(T ) · T

≤ lim
T→∞

log(T ) · T · T 1−a = lim
T→∞

T 2−a · log(T ) = 0.
(22)

Let P1 = P
(
RT ≤ log(1/δ)O∗(

√
T )
)

which equals to P
(
RT ≤ O∗(

√
T )
)

since log(1/δ) =

log(
√
T ) = O∗(

√
T ). By Theorem 3 we have P1 = (1− δ) · (1− η)T .

Note that E[RT ] ≤ C0 log(T ) · T as shown by

E[RT ] = E

max
i

T∑
t=1

K∑
j=1

ξji (t)r
t
j −

T∑
t=1

rtat

 ≤ E

∣∣∣∣∣max
i

T∑
t=1

K∑
j=1

ξji (t)r
t
j

∣∣∣∣∣
+ E

[
max

i

T∑
t=1

|rti |

]

≤ TNK · E
[
max

j
max

t
|rtj |
]
+ T · E

[
max

j
max

t
|rtj |
]
= T (NK + 1) · E

[
max

j
max

t
|rtj |
]

≤ (NK + 1)T ·
K∑
j=1

E
[
max

t
|rtj |
]
≤ (NK + 1)T ·

K∑
j=1

(
aj,j
√
2 log T +

4aj,j√
log T

)

≤ 2T ·
K∑
j=1

max
i

aj,j

(√
2 log T +

4√
log T

)
≤ C0 · T · log(T )

for a constant C0.

The asymptotic behavior of the second term in equation 21 reads

E
[
RT1O∗(

√
T )<RT<O∗(

√
T )+E[RT ]

]
= E

[
RT1RT−O∗(

√
T )∈(0,E[RT ])

]
= E

[(
RT −O∗(

√
T )
)
1RT−O∗(

√
T )∈(0,E[RT ])

]
+O∗(

√
T )

≤ E [RT ]P
(
RT −O∗(

√
T ) ∈ (0, E [RT ])

)
+O∗(

√
T )

≤ E [RT ]P
(
RT −O∗(

√
T ) > 0

)
+O∗(

√
T )

≤ C0 log(T ) · T · (1− P1) +O∗(
√
T ) = O∗(

√
T )

where at the end we use equation 22.

Regarding the third term in equation 21, we note that R′
T ≤ E[RT ] by the Jensen’s inequality. By

using equation 20 and again equation 22 we obtain

E
[
RT1RT≥O∗(

√
T )+E[RT ]

]
= E

[
(RT −R′

T )1(RT−E[RT ])≥O∗(
√
T )

]
+ E

[
R′

T1(RT−E[RT ])≥O∗(
√
T )

]
≤ E [|RT −R′

T |] +R′
T · P

(
RT ≥ E [RT ] +O∗(

√
T )
)

≤ E [|RT −R′
T |] + E [RT ] · P

(
RT ≥ E [RT ] +O∗(

√
T )
)

≤ O∗(
√
T ) + C0 · log(T ) · T · P

(
RT ≥ O∗(

√
T )
)

= O∗(
√
T ) + C0 · log(T ) · T (1− P1) = O∗(

√
T ).

Combining all these together we obtain E[RT ] = O∗(
√
T ) which concludes the proof.
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E PROOF OF RESULTS IN SECTION 3.2
E.1 PROOF OF THEOREM 8

Proof. Since the rewards can be unbounded in our setting, we consider truncating the reward with
any ∆ > 0 for any arm i by rti = r̄ti + r̂ti where

r̄ti = rti · 1(−∆≤rti≤∆), r̂
t
i = rti · 1(|rti |>∆).

Then for any parameter 0 < η < 1, we choose such ∆ that satisfies

P (rti = r̄ti , i ≤ K) = P (−∆ ≤ rt1 ≤ ∆, . . . ,−∆ ≤ rtK ≤ ∆)

=

∫ ∆

−∆

∫ ∆

−∆

. . .

∫ ∆

−∆

f(x1, . . . , xK)dx1 . . . dxK ≥ 1− η . (23)

The existence of such ∆ = ∆(η) follows from elementary calculus.

Let A = {|rti | ≤ ∆ for every i ≤ K, t ≤ T}. Then the probability of this event is

P (A) = P (rti = r̄ti , i ≤ K, t ≤ T ) ≥ (1− η)T .

With probability (1− η)T , the rewards of the player are bounded in [−∆,∆] throughout the game.
Then RB

T =
∑T

t=1(maxi r̄
t
i − r̄it) ≤ T ·∆ −

∑T
t=1 rt is the regret under event A, i.e. RT = RB

T

with probability (1− η)T . For the EXP3.P algorithm and RB
T with rewards r̄tj =

r̄tj+∆

∆ satisfying
0 < r̄tj < 1, for every δ > 0, according to (author?) (3) we have

RB
T ≤ 4∆

(√
KT log(

KT

δ
) + 4

√
5

3
KT logK + 8 log(

KT

δ
)

)
with probability 1− δ.

Then we have

RT ≤ 4∆(η)
(√

KT log(KT
δ ) + 4

√
5
3KT logK + 8 log(KT

δ )
)

with probability (1−δ)·(1−η)T .

E.2 PROOF OF THEOREM 9

Lemma 8. For any non-decreasing differentiable function ∆ = ∆(T ) > 0 satisfying

limT→∞
∆(T )2

log(T ) = ∞, limT→∞ ∆′(T ) ≤ C0 < ∞,

and any 0 < δ < 1, a > 2 we have

P
(
RT ≤ ∆(T ) · log(1/δ) ·O∗(

√
T )
)
≥ (1− δ)

(
1− 1

T a

)T

for any T large enough.

Proof. Let a > 2 and let us denote

F (y) =

∫ y

−y

f(x1, x2, . . . , xK)dx1dx2 . . . dxK ,

ζ(T ) = F (∆(T ) · 1)−
(
1− 1

T a

)
for y ∈ RK and 1 = (1, . . . , 1) ∈ RK . Let also y−i = (y1, . . . , yi−1, yi+1, . . . , yK) and x|xi=y =
(x1, . . . , xi−1, y, xi+1, . . . , xK). We have limT→∞ ζ(T ) = 0.
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The gradient of F can be estimated as

∇F ≤

(∫ y−1

−y−1

f (x|x1=y1
) dx2 . . . dxK , . . . ,

∫ y−K

−y−K

f (x|xK=yK
) dx1 . . . dxK−1

)
.

According to the chain rule and since ∆′(T ) ≥ 0, we have

dF (∆(T ) · 1)
dT

≤
∫ ∆(T )·1−1

−∆(T )·1−1

f
(
x|x1=∆(T )

)
dx2 . . . dxK ·∆′(T )+

. . .+

∫ ∆(T )·1−K

−∆(T )·1−K

f
(
x|xK=∆(T )

)
dx1 . . . dxK−1 ·∆′(T ).

Next we consider∫ ∆(T )1−i

−∆(T )1−i

f
(
x|xi=∆(T )

)
dx1 . . . dxi−1dxi+1 . . . dxK

= e−
1
2aii(∆(T ))2+µi∆(T ) ·

∫ ∆(T )1−i

−∆(T )1−i

eg(x−i)dx1 . . . dxi−1dxi+1 . . . dxK .

Here eg(x−i) is the conditional density function given xi = ∆(T ) and thus∫∆(T )1−i

−∆(T )1−i
eg(x−i)dx1 . . . dxi−1dxi+1 . . . dxK ≤ 1. We have∫ ∆(T )1−i

−∆(T )1−i

f
(
x|xi=∆(T )

)
dx1 . . . dxi−1dxi+1 . . . dxK

≤ e−
1
2aii(∆(T ))2+µi∆(T )

≤ e−
1
2 minj ajj(∆(T ))2+maxj µj∆(T ).

Then for T ≥ T0 we have ∆′
T ≤ C0 + 1 and in turn

ζ ′(T ) ≤ (C0 + 1) ·K · e− 1
2 minj ajj(∆(T ))2+maxj µj∆(T ) − a · T−a−1.

Since we only consider non-degenerate Gaussian bandits with min aii > 0, µi are constants and
∆(T ) → ∞ as T → ∞ according to the assumptions in Lemma 8, there exits C1 > 0 and T1 such
that

e−
1
2 minj ajj(∆(T ))2+maxj µj∆(T ) ≤ e−C1∆(T )2 for every T > T1.

Since limT→∞
∆(T )2

log(T ) = ∞, we have

∆(T )2 > 2(a+1)
C1

· log(T ) for T > T2.

These give us that

ζ(T )′ ≤ (C0 + 1)Ke−2(a+1) log T − aT−a−1

= (C0 + 1)Ke−2(a+1) log T − ae−(a+1) log T

< 0 for T ≥ T3 ≥ max(T0, T1, T2).

This concludes that ζ ′(T ) < 0 for T ≥ T3. We also have limT→∞ ζ(T ) = 0 according to the
assumptions. Therefore, we finally arrive at ζ(T ) > 0 for T ≥ T3. This is equivalent to∫ ∆(T )·1

−∆(T )·1
f (x1, . . . , xK) dx1 . . . dxK ≥ 1− 1

T a
,

i.e. the rewards are bounded by ∆(T ) with probability 1− 1
Ta . Then by the same argument for T

large enough as in the proof of Theorem 4, we have

P
(
RT ≤ ∆(T ) · log(1/δ) ·O∗(

√
T )
)
≥ (1− δ)(1− 1

T a
)T .
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Proof of Theorem 6. In Lemma 8, we choose ∆(T ) = log(T ), which meets all of the assumptions.
The result now follows from log T ·O∗(

√
T ) = O∗(

√
T ), Lemma 8 and Theorem 5.

E.3 PROOF OF THEOREM 10
We again utilize the 3 known lemmas, Lemma 5,Lemma 5 and Lemma 7.

Proof of Theorem 7. Let us define F = {fj : x → xj |j = 1, 2, . . . ,K}. Let xt = (rt1, r
t
2, . . . , r

t
K)

where rti is the reward of arm i at step t and let at be the arm selected at time t by EXP3.P. Then for
any fj ∈ F , fj(xt) = rtj . In Gaussian-MAB, {x1, x2, . . . , xT } are i.i.d. random variables since the
Gaussian distribution N (µ,Σ) is invariant to time and independent of time. Then by Lemma 5, we
have

E
[
maxi

∣∣∣µi − 1
T

∑T
t=1 r

t
i

∣∣∣] ≤ 2Rc
T (F ).

We consider

E [|R′
T −RT |] = E

[∣∣∣∣∣T ·max
i

µi −
T∑

t=1

µat
−

(
max

i

T∑
t=1

rti −
T∑

t=1

rtat

)∣∣∣∣∣
]

= E

[∣∣∣∣∣T ·max
i

µi −max
i

T∑
t=1

rti −

(
T∑

t=1

µat
−

T∑
t=1

rtat

)∣∣∣∣∣
]

≤ E

[∣∣∣∣∣T ·max
i

µi −max
i

T∑
t=1

rti

∣∣∣∣∣
]
+ E

[∣∣∣∣∣
T∑

t=1

µat −
T∑

t=1

rtat

∣∣∣∣∣
]

≤ E

[
max

i

∣∣∣∣∣T · µi −
T∑

t=1

rti

∣∣∣∣∣
]
+ E

[∣∣∣∣∣
T∑

t=1

µat
−

T∑
t=1

rtat

∣∣∣∣∣
]

≤ 2TRc
T (F ) + 2T1R

c
T1
(F ) + · · ·+ 2TKRc

TK
(F )

(24)

where Ti is the number of pulls of arm i. Clearly T1 + T2 + . . . + TK = T . By Lemma 6 with
A = F we get

Rc
T (F ) = E

[
R̂c

T (F )
]
≤ E[R(F, T )] ·

√
2 logK

T
,

Rc
Ti
(F ) ≤ E [R (F, Ti)] ·

√
2 logK

Ti
i = {1, 2, , . . . ,K}.

Since R(F, T ) is increasing in T and Ti ≤ T , we have Rc
Ti
(F ) ≤ E [R (F, T )] ·

√
2 logK
Ti

.

We next bound the expected deviation E [|R′
T −RT |] based on (24) as follows

E [|R′
T −RT |] ≤ 2TE[R(F, T )]

√
2 logK

T
+

K∑
i=1

[
2TiE[R(F, T )]

√
2 logK

Ti

]
≤ 2(K + 1)

√
2 logKE[R(F, T )]. (25)

Regarding E[R(F, T )], we have

E[R(F, T )] = E

sup
f∈F

(
T∑

t=1

f(xt)

) 1
2

 = E

sup
i

(
T∑

t=1

(rti)
2

) 1
2


≤ E

 K∑
i=1

(
T∑

t=1

(rti)
2

) 1
2

 ≤
K∑
i=1

E

[(
T · max

1≤t≤T
(rit)

2

) 1
2

]

=
√
T ·

K∑
i=1

E

[
max
1≤t≤T

|rti |
]
. (26)
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We next use Lemma 7 for any arm i. To this end let Yt = rti . Since xt are Gaussian, the marginals
Yt are also Gaussian with mean µi and standard deviation of aii. Combining this with the fact
that a Gaussian random variable is also σ2-sub-Gaussian justifies the use of the lemma. Thus
E
[
max1≤j≤T |rji |

]
≤ ai,i ·

√
2 log T +

4ai,i√
2 log T

.

Continuing with equation 26 we further obtain

E[R(F, T )] ≤
√
T ·K ·max

i

(
ai,i
√

2 log T +
4ai,i√
2 log T

)
=

(
K
√

2T log T +
4
√
T√

2 log T

)
·max

i
ai,i. (27)

By combining equation 25 and equation 27 we conclude

E [|R′
T −RT |] ≤ 2(K + 1)

√
2 logK ·max

i
ai,i ·

(
K
√

2T log T +
4
√
T√

2 log T

)
= O∗(

√
T ).

(28)

We now turn our attention to the expectation of regret E[RT ]. It can be written as

E [RT ] = E
[
RT1RT≤O∗(

√
T )

]
+ E

[
RT1RT>O∗(

√
T )

]
≤ O∗(

√
T )P

(
RT ≤ O∗(

√
T )
)
+ E

[
RT1RT>O∗(

√
T )

]
≤ O∗(

√
T ) + E

[
RT1RT>O∗(

√
T )

]
= O∗(

√
T ) + E

[
RT1O∗(

√
T )<RT<O∗(

√
T )+E[RT ]

]
+ E

[
RT1RT≥O∗(

√
T )+E[RT ]

]
.

(29)

We consider δ = 1/
√
T and η = T−a for a > 2. We have

lim
T→∞

(1− δ)(1− η)T = lim
T→∞

(1− δ)(1− 1

T a
)T

= lim
T→∞

(1− δ)(1− 1

T a
)(T

a)· T
Ta = lim

T→∞
e

T
Ta

and
lim

T→∞

(
1− (1− δ)(1− η)T

)
· log T · T = lim

T→∞
(1− e

T
Ta ) · log(T ) · T

≤ lim
T→∞

log(T ) · T · T 1−a = lim
T→∞

T 2−a · log(T ) = 0.
(30)

Let P1 = P
(
RT ≤ log(1/δ)O∗(

√
T )
)

which equals to P
(
RT ≤ O∗(

√
T )
)

since log(1/δ) =

log(
√
T ) = O∗(

√
T ). By Theorem 6 we have P1 = (1− δ) · (1− η)T .

Note that E[RT ] ≤ C0 log(T ) · T as shown by

E[RT ] = E

[
max

i

T∑
t=1

rti −
T∑

t=1

rtat

]
≤ 2E

[
max

i

T∑
t=1

|rti |

]
≤ 2T · E

[
max

i
max

t
|rti |
]

≤ 2T ·
K∑
i=1

E
[
max

t
|rti |
]
≤ 2T ·

K∑
i=1

(
ai,i
√

2 log T +
4ai,i√
log T

)

≤ 2T ·
K∑
i=1

max
i

ai,i

(√
2 log T +

4√
log T

)
≤ C0 · T · log(T )

for a constant C0.
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The asymptotic behavior of the second term in equation 29 reads

E
[
RT1O∗(

√
T )<RT<O∗(

√
T )+E[RT ]

]
= E

[
RT1RT−O∗(

√
T )∈(0,E[RT ])

]
= E

[(
RT −O∗(

√
T )
)
1RT−O∗(

√
T )∈(0,E[RT ])

]
+O∗(

√
T )

≤ E [RT ]P
(
RT −O∗(

√
T ) ∈ (0, E [RT ])

)
+O∗(

√
T )

≤ E [RT ]P
(
RT −O∗(

√
T ) > 0

)
+O∗(

√
T )

≤ C0 log(T ) · T · (1− P1) +O∗(
√
T ) = O∗(

√
T )

where at the end we use equation 30.

Regarding the third term in equation 29, we note that R′
T ≤ E[RT ] by the Jensen’s inequality. By

using equation 28 and again equation 30 we obtain

E
[
RT1RT≥O∗(

√
T )+E[RT ]

]
= E

[
(RT −R′

T )1(RT−E[RT ])≥O∗(
√
T )

]
+ E

[
R′

T1(RT−E[RT ])≥O∗(
√
T )

]
≤ E [|RT −R′

T |] +R′
T · P

(
RT ≥ E [RT ] +O∗(

√
T )
)

≤ E [|RT −R′
T |] + E [RT ] · P

(
RT ≥ E [RT ] +O∗(

√
T )
)

≤ O∗(
√
T ) + C0 · log(T ) · T · P

(
RT ≥ O∗(

√
T )
)

= O∗(
√
T ) + C0 · log(T ) · T (1− P1) = O∗(

√
T ).

Combining all these together we obtain E[RT ] = O∗(
√
T ) which concludes the proof.

F PROOF OF RESULTS IN SECTION 3.3
For brevity, we define n = T − 1.

We start by showing the following proposition that is used in the proofs.
Proposition 1. Let G(q, µ), q, and µ be defined as in Theorem 6. Then for any q ≥ 1/3, there exists
a µ that satisfies the constraint G(q, µ) < q.

Proof. Let us denote G1 =
∫
|qf0(x)− (1− q)f1(x)| dx,G2 =

∫
|(1− q)f0(x)− qf1(x)| dx.

Then we have

G1(q, µ) =

∫
|qf0(x)− (1− q)f1(x)| dx

=

∫
(qf0(x)− (1− q)f1(x))1qf0(x)>(1−q)f1(x)dx

+

∫
(−qf0(x) + (1− q)f1(x))1qf0(x)<(1−q)f1(x)dx

=

∫
(qf0(x)− (1− q)f1(x))1x<g(µ)dx+

∫
(−qf0(x) + (1− q)f1(x))1x>g(µ)dx

=
1√
2π

[∫ g(µ)

−∞

(
qe−

x2

2 − (1− q)e−
(x−µ)2

2

)
dx+

∫ ∞

g(µ)

(
−qe−

x2

2 + (1− q)e−
(x−µ)2

2

)
dx

]

=
1√
2π

[
q

∫ g(µ)

−g(µ)

e−
x2

2 − (1− q)

∫ g(µ)−µ

−g(µ)+µ

e−
x2

2

]

where g(µ) = 1
2 · µ− log( 1−q

q )

µ . Similarly we get

G2(q, µ) =
1√
2π

[
(1− q)

∫ g(µ)

−g(µ)

e−
x2

2 − q

∫ g(µ)−µ

−g(µ)+µ

e−
x2

2

]
.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

It is easy to establish continuity of G1(q, µ) and G2(q, µ) on [0,∞), as well as the continuity of
G(q, µ). Indeed, we have

G(q, µ) =

{
|1− 2q| µ = 0

max(q, 1− q) µ → ∞ .

Since q ≥ 1
3 , then |1 − 2q| < q. From continuity of G(q, µ), there exists µ0 > 0 such that

G(q, µ) < q for any µ ≤ µ0.

Proof of Theorem 11. As in Assumption 1, let the inferior arm set be I and the superior one be S,
respectively, P (I) = q and P (S) = 1− q. Arms in I follow f0(x) = N (0, 1) and arms in S follow
f1(x) = N (µ, 1) where µ > 0. According to Assumption 1, at the first step the player pulls an arm
from either I or S and receives reward y1. At time step i > 1, the reward is yi and let bi represent a
policy of the player. We can always define bi as

bi =

{
1 if the chosen arm at step i is not in the same arm set as the initial arm,

0 otherwise.

Let ai ∈ {0, 1} be the actual arm played at step i. It suffices to only specify ai is in arm set I (ai = 0)
or S (ai = 1) since the arms in I and S are identical. The connection between ai and bi is explicitly
given by bi = |ai − a1|. By Assumption 1, it is easy to argue that bi = S′

i(y1, y2, ..., yi−1) for a set
of functions S′

2, S
′
3, . . . , S

′
n, S

′
n+1. We proceed with the following lemma.

Lemma 9. Let the rewards of the arms in set I follow any L1 distribution f0(x) and in set S follow
any L1 distribution f1(x) where the means satisfy µ(f1) > µ(f0). Let B be the number of arms
played in the game in set S. Let us assume the player meets Assumption 1. Then no matter what
strategy the player takes, we have ∣∣∣E[B]−(1−q)·(n+1)

n+1

∣∣∣ ≤ ϵ

where ϵ, T, f0, f1 satisfy

G(q, f0, f1) + (1− q)(n− 1)
∫
|f0(x)− f1(x)| ≤ ϵ,

G(q, f0, f1) = max
{∫

|qf0(x)− (1− q)f1(x)| dx,
∫
|(1− q)f0(x)− qf1(x)| dx

}
.

Proof. We have

E[B] =

∫
(a1 + a2 + · · ·+ an+1) fa1

(y1) fa2
(y2) . . . fan

(yn) dy1dy2 . . . dyn.

If a1 = 0, then ai = bi and

E [B|a1 = 0] =

∫
(0 + b2 (y1:1) + . . .+ bn+1 (y1:n)) f0 (y1) fb2 (y2) . . . fbn (yn) dy1dy2 . . . dyn.

If a1 = 1, then 1− ai = bi and

E [B|a1 = 1] =

∫
(1 + 1− b2 (y1:1) + · · ·+ 1− bn+1 (y1:n)) f1 (y1) . . . f1−bn (yn) dy1dy2 . . . dyn.

This gives us

E[B] = q · E [B|a1 = 0] + (1− q) · E [B|a1 = 1]

= (1− q)(n+ 1)

+

∫
(b2 + · · ·+ bn+1) · (q · f0 (y1) . . . fbn (yn)− (1− q) · f1 (y1) . . . f1−bn (yn)) dy1dy2 . . . dyn.

By defining b1 = 0, we have

E[B] = (1− q) · (n+ 1)+∫
(b2 + · · ·+ bn+1) (q · fb1 (y1) . . . fbn (yn)− (1− q) · f1−b1 (y1) . . . f1−bn (yn)) dy1dy2 . . . dyn.
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For any 1 ≤ m ≤ n we also derive∫ ∣∣∣∣∣
m∏
i=1

fbi (yi)−
m∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dym
≤
∫ m−1∏

i=1

fbi (yi) |fbm (ym)− f1−bm (yn)| dy1dy2 . . . dym+

∫ ∣∣∣∣∣
m−1∏
i=1

fbi (yi)−
m−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ f1−bm (ym) dy1dy2 . . . dym

≤
∫

|f0(x)− f1(x)| dx+

∫ ∣∣∣∣∣
m−1∏
i=1

fbi (yi)−
m−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ f1−bm (ym) dy1dy2 . . . dym

=

∫
|f0(x)− f1(x)| dx+

∫ ∣∣∣∣∣
m−1∏
i=1

fbi (yi)−
m−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dym−1

≤ 2 ·
∫

|f0(x)− f1(x)| dx+

∫ ∣∣∣∣∣
m−2∏
i=1

fbi (yi)−
m−2∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dym−2

≤ m

∫
|f0(x)− f1(x)| .

(31)

This provides∣∣∣∣E[B]− (1− q) · (n+ 1)

n+ 1

∣∣∣∣
≤
∫ ∣∣∣∣∣q ·

n∏
i=1

fbi (yi)− (1− q) ·
n∏

i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dyn
≤
∫ n−1∏

i=1

fbi (yi) |q · fbn (yn)− (1− q) · f1−bn (yn)| dy1dy2 . . . dyn+

∫ ∣∣∣∣∣(1− q) ·
n−1∏
i=1

fbi (yi)− (1− q) ·
n−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ f1−bn (yn) dy1dy2 . . . dyn

≤ max

{∫
|q · f0(x)− (1− q) · f1(x)| dx,

∫
|(1− q) · f0(x)− q · f1(x)| dx

}
+

(1− q) ·
∫ ∣∣∣∣∣

n−1∏
i=1

fbi (yi)−
n−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dyn−1

≤ max

{∫
|q · f0(x)− (1− q) · f1(x)| dx,

∫
|(1− q) · f0(x)− q · f1(x)| dx

}
+

(1− q) · (n− 1) ·
∫

|f0(x)− f1(x)| ,

where the last inequality follows from (31).The statement of the lemma now follows.

According to Proposition 1, there is such µ satisfying the constraint G(q, µ) < q. Note that
G(q, µ) = G(q, f0, f1). Then we can choose ϵ to be any quantity such that G(q, µ) < ϵ < q. Finally,
there is T satisfying T ≤ ϵ−G(q,µ)

(1−q)·
∫
|f0(x)−f1(x)| + 2 that gives us

G(q, µ) + (1− q)(T − 2)
∫
|f0(x)− f1(x)| ≤ ϵ.

By choosing ϵ, T, µ as above, by Lemma 9 we have∣∣∣∣E[B]− (1− q) · T
T

∣∣∣∣ < ϵ,
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which is equivalent to E[B] < (1 − q + ϵ) · T . Therefore, regret R′
T satisfies, with A being the

number of arm pulls from I , inequality

R′
T =

∑
t

max
k

(µk)−
∑
t

E[yt] = Tµ−
∑
t

E[yt] = Tµ− (E[B] · µ+ E[A] · 0)

≥Tµ− (1− q + ϵ)µT = (q − ϵ)µT.

This yields RL
T = inf supR′

T ≥ (q − ϵ) · µT.

Theorem 12 follows from Theorem 11 and Proposition 1.

Proof of Theorem 13. The assumption here is the special case of Assumption 1 where there are two
arms and q = 1/2. Set I follows f0 and S follows f1 where µ(f0) < µ(f1).

In the same was as in the proof of Theorem 8 we obtain

RL(T ) ≥
(
1
2 − ϵ

)
· T · µ

under the constraint that n/2 ·
∫
|f0 − f1| = n/2 ·TV(f0, f1) < ϵ where TV stands for total variation.

Here we use G(1/2, µ) = 1/2 · TV(f0, f1). Setting ϵ = 1/4 yields the statement.

In the Gaussian case it turns out that ϵ = 1/4 yields the highest bound. For total variation of Gaussian
variables N(µ1, σ

2
1) and N(µ2, σ

2
2), (author?) (12) show that

TV
(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
≤ 3|σ2

1−σ2
2|

2σ2
1

+ |µ1−µ2|
2σ1

,

which in our case yields TV ≤ µ
2 . From this we obtain µ · T ≥ ϵ and in turn RL

T ≥ ϵ · ( 12 − ϵ). The
maximum of the right-hand side is obtained at ϵ = 1

4 . This justifies the choice of ϵ in the proof of
Theorem 1.

G CONTRIBUTION

Our contributions are two-fold. On the one hand, our optimal regret holds for T being large enough
in unbounded bandits. On the other hand, the lower bound regret suggests a lower bound on T to
achieve sublinear but not necessarily optimal regret as a by-product. The question for any T points a
future direction.

G.1 UPPER BOUNDS

Figure 4: The framework of regret analysis in non-stochastic bandits.

As we can see in Figure 4, the domain of regret analyses for non-stochastic regret bounds
can fall into 8 sub-categories by taking all the possible combinations of A and B and C,
where A = {Contextual, Adversarial}, B = {Bounded rewards, Unbounded rewards}, C =
{High probability bound,Expected bound} to name a few. The colored boxes in the leaf nodes
correspond to the results in this paper and the remained boxes are already covered by the existing
literature. For contextual bandits, establishing a high probability regret bound is non-trivial even
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for bounded rewards since regret in a contextual setting significantly differs from the one in the
adversarial setting. To this end, we propose a brand new algorithm EXP4.P that incorporates EXP3.P
in adversarial MAB with EXP4. The analysis for regret of EXP4.P in unbounded cases is quite
general and can be extended to EXP3.P without too much effort.

To conclude, the theoretical analyses regarding the upper bound fill the gap between the regret bound
in (author?) (3) and all others in Figure 4.

G.2 LOWER BOUNDS

Table 1: Boundary for T as a function of µ

µ 10−5 10−4 10−3 10−2 10−1

Upper bound for T 25001 2501 251 26 3.5

In view of unbounded bandits, the previous lower bound in (author?) (3) does not hold since
unboundedness apparently increases regret. The relationship between the lower bound and time
horizon is listed in Table 1 to facilitate the understanding of the lower bound. More precisely, Table
1 provides the values of the relationship between µ and largest T in the Gaussian case where the
inferior arms are distributed based on the standard normal and the superior arms have mean µ > 0
and variance 1. As we can observe in the table, the maximum of T for the lower bound to hold
changes with instances. A small µ means the lower bound on regret of order T holds for larger T . For
example, there is no way to attain regret lower than T · 10−4/4 for any 1 ≤ T ≤ 2501. The function
decreases very quickly. This coincides with the intuition since it would be difficult to distinguish
between the optimal arm and the non-optimal ones given their rewards are close. A lower bound for
large T remains open.
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