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ABSTRACT

Recently, progress has been made in the application of neural networks to the nu-
merical analysis of stationary and instationary partial differential equations. For
example, one can use the variational formulation of the Dirichlet problem in order
to obtain an objective function – a penalised Dirichlet energy – for the optimiza-
tion of the parameters of neural networks with a fixed architecture. Although
this approach yields promising empirical results especially in high dimensions it
is lacking any convergence guarantees. We use the notion of Γ-convergence to
show that ReLU networks of growing architecture that are trained with respect
to suitably penalised Dirichlet energies converge to the solution of the Dirichlet
problem. We discuss how our findings generalise to arbitrary variational problems
under certain universality assumptions on the neural networks that are used. We
see that this covers nonlinear stationary PDEs like the p-Laplace.

1 INTRODUCTION

Artificial neural networks play a key role in current machine learning research and both their perfor-
mance in practice as well as numerous of their theoretical properties are studied extensively. After
their initial success in supervised learning problems (see Krizhevsky et al., 2012) neural networks
were successfully used in a variety of fields like generative and reinforcement learning (see Goodfel-
low et al., 2014; Mnih et al., 2013). More recently they have also been applied to inverse problems
and the numerical analysis of PDEs (see McCann et al., 2017; E et al., 2017, respectively). Some
of the deep learning based approaches to their numerical solution are similar to traditional learning
problems. In fact, the Feynman-Kac formula allows an approximate evaluation of the solution of
a Kolmogorov PDE via Monte-Carlo sampling and neural networks can be used for regression of
those evaluations (see Berner et al., 2018). However, one can also use the variational formulation
of elliptic PDEs and use the resulting energy as an objective function for the optimisation of the
parameters of the neural network.

More precisely, let us consider the Dirichlet problem on Ω ⊆ Rd which is the prototype of an elliptic
PDE and given by

−∆u = f in Ω

u = 0 on ∂Ω.
(1)

It is well known that for a function u ∈ H1
0 (Ω)1 and a square integrable right hand side f ∈ L2(Ω)

it is equivalent to be a weak solution2 of the Dirichlet problem or to be a solution of the variational
problem

u ∈ arg min
v∈H1

0 (Ω)

∫
Ω

(
1

2
|∇v|2 − fv

)
dx.

The objective function on the right hand side is known as the Dirichlet energy. In the remainder
we interpret neural networks as real functions on Ω ⊆ Rd which are elements of the space H1(Ω)
for sufficiently regular activation functions. Now, one could minimise the Dirichlet energy over all
neural networks with zero boundary values, i.e., all networks inH1

0 (Ω). Since the Dirichlet energy is

1The space of square integrable functions with square integrable first weak derivatives is denoted by H1(Ω),
the subspace of functions with zero boundary values with H1

0 (Ω); see Brezis (2010) for further details.
2See Brezis (2010) for a short introduction to the concept of weak solutions.
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coercive and continuous those trained networks would converge towards the solution of the Dirichlet
problem if they are universal approximators. However, contrary to finite element functions it is
not straight forward to enforce zero boundary value conditions for neural networks which makes
this optimisation problem infeasible. The solution is to relax the problem and consider arbitrary
networks but to penalise boundary values. This approach shows promising performance especially in
high dimensions (see E and Yu, 2018). Due to the early work of Ritz (1909) on the finite dimensional
approximation of variational problems this approach is known as the deep Ritz method. So far,
however, this numerical framework for variational problems is lacking convergence guarantees.

CONTRIBUTIONS AND MAIN RESULT

We show that neural networks of growing architecture that are trained with respect to suitably pe-
nalised Dirichlet energies converge to the solution of the Dirichlet problem (1). This is our main
contribution and proves the consistency of the deep Ritz method proposed by E and Yu (2018).

More precisely, let (Θn)n∈N be sets of parameters of neural networks that we assume to be universal
approximators in H1

0 (Ω) for n→∞. Now we introduce the objective functions

Ln : Θn → R, θ 7→
∫

Ω

(
1

2
|∇uθ|2 − fuθ

)
dx+ n

∫
∂Ω

u2
θds, (2)

where uθ is the network arising from the parameters θ and f ∈ L2(Ω) is some right hand side.
Theorem 1. Let (θn)n∈N be a sequence of quasi-minimisers of the objective functions, meaning

Ln(θn) ≤ inf
θ∈Θn

Ln(θ) + δn,

where δn → 0. Then (uθn)n∈N converges to the solution u of the Dirichlet problem (1), both weakly
in H1(Ω) and strongly in L2(Ω).

The setting including the requirements on the domain Ω and the sets Θn are presented in full detail
later. Furthermore, this convergence result holds for a broad class of variational problems and the
penalisation strengths n can be replaced by arbitrary λn that approach +∞. In the following we
restrict ourselves to the Dirichlet problem and postpone technical details to the appendix.

2 PRELIMINARIES FROM NEURAL NETWORK THEORY

Let for the remainder d,m,L,N0, . . . , NL be natural numbers and let

θ = ((A1, b1), . . . , (AL, bL))

be a tupel of matrix-vector pairs where Al ∈ RNl×Nl−1 and bl ∈ RNl and N0 = d,NL = m. Every
matrix vector pair (Al, bl) induces an affine linear transformation denoted by Tl : RNl−1 → RNl .
The neural network with parameters θ and with respect to some activation function ρ : R → R is
the function

u = uθ : Rd → Rm, x 7→ TL(ρ(TL−1(ρ(· · · ρ(T1(x)))))).

If we have f = uθ for some θ we say the function f is expressed by the neural network. We call
d the input and m the output dimension, L the depth and W (θ) := maxl=0,...,LNl the width of the
neural network. In the remainder we will restrict ourselves to the casem = 1 since we only consider
real valued functions.

Further, we restrict ourselves to a specific activation function which is not only widely used in
practice (see Ramachandran et al., 2017) but also exhibits nice theoretical properties (see Arora
et al., 2016; Petersen et al., 2018). The rectified linear unit or ReLU activation function is defined
via x 7→ max {0, x} and we call networks with this particular activation function ReLU networks.
The class of ReLU networks coincides with the class of continuous and piecewise linear functions
(see Arora et al., 2016). Since piecewise linear functions are dense inH1

0 (Ω) we obtain the following
universal approximation result which we prove in detail in the appendix.
Theorem 2 (Universal approximation). Let Ω ⊆ Rd be an open set and u ∈ H1

0 (Ω). Then for
all ε > 0 there exists a function uε ∈ H1

0 (Ω) that can be expressed by a ReLU network of depth
dlog2(d+ 1)e+ 1 such that

‖u− uε‖H1(Ω) < ε.
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3 Γ-CONVERGENCE

We recall the definition of Γ-convergence, which we specialise to the case of reflexive spaces with
their associated weak topologies. For further reading we point the reader towards Dal Maso (2012).
Definition 3 (Γ-convergence). Let X be a reflexive Banach space, Fn, F : X → (−∞,∞]. Then
(Fn)n∈N is called Γ-convergent to F if the following two properties are satisfied.

1. Liminf inequality: For every x ∈ X and (xn)n∈N with xn ⇀ x3 we have

F (x) ≤ lim inf
n→∞

Fn(xn).

2. Recovery sequence: For every x ∈ X there is (xn)n∈N with xn ⇀ x such that

F (x) = lim
n→∞

Fn(xn).

The sequence (Fn)n∈N is called equi-coercive if the set {x ∈ X | Fn(x) ≤ r for some n} is
bounded in X (or equivalently relatively compact with respect to the weak topology) for all r ∈ R.
We say that a sequence (xn)n∈N are quasi minimisers of the functionals (Fn)n∈N if we have
Fn(xn) ≤ infx∈X Fn(x) + δn where δn → 0.

Our main result uses the following property of Γ-convergent sequences. We want to emphasise the
fact that there are no requirements regarding the continuity of any of the functionals and that the
functionals (Fn)n∈N are not assumed to admit minimisers.
Theorem 4 (Convergence of quasi-minimisers). Let X be a reflexive Banach space and (Fn)n∈N
be an equi-coercive sequence of functionals that Γ-converges to F which has a unique minimiser x.
Then every sequence (xn)n∈N of quasi-minimisers of the sequence (Fn)n∈N converges weakly to x.

4 OUTLINE OF THE PROOF

Let d ∈ N and let Ω ⊆ Rd be an open, connected and bounded set with Lipschitz boundary ∂Ω. For
n ∈ N let Θn denote the set of parameters of networks with input dimension d, output dimension
1, depth dlog2(d+ 1)e+ 1 and width n. Further, we denote the set of ReLU networks arising from
those parameters by An := {uθ | θ ∈ Θn}. Since ReLU networks are continuous and piecewise
linear we have An ⊆ H1(Ω). Now we fix a right hand side f ∈ H1(Ω)′, that is f : H1(Ω)→ R is
linear and continuous. We introduce the functionals Fn : H1(Ω)→ (−∞,∞]

Fn(u) =


1

2

∫
Ω

|∇u|2dx+ n

∫
∂Ω

u2ds− f(u) for u ∈ An,

∞ otherwise ,

as well as the Dirichlet energy F : H1(Ω)→ (−∞,∞]

F (u) =


1

2

∫
Ω

|∇u|2dx− f(u) for u ∈ H1
0 (Ω),

∞ otherwise .

Theorem 5 (Γ-convergence). The sequence (Fn)n∈N of functionals Γ-converges to the Dirichlet
energy F in the weak topology of H1(Ω).

Proof. We start by checking the liminf inequality. Let first u /∈ H1
0 (Ω) and (un)n∈N be any sequence

in H1(Ω) such that un ⇀ u. By linearity and continuity of the trace operator it follows that
tr(un) ⇀ tr(u) in L2(∂Ω) and since u has nontrivial boundary values we have tr(u) 6= 0. Using
the weak semicontinuity of ‖·‖2L2(∂Ω) it follows that

lim inf
n→∞

‖tr(un)‖2L2(∂Ω) ≥ ‖tr(u)‖2L2(∂Ω) > 0.

3With this we denote the weak convergence of the sequence (xn)n∈N towards x.
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Using these facts we establish the liminf inequality in this case

lim inf
n→∞

Fn(un) ≥ lim inf
n→∞

n ‖tr(un)‖2L2(∂Ω) − lim
n→∞

f(un) =∞ = F (u).

Now we treat the case u ∈ H1
0 (Ω). Then using weak lower semi-continuity we find

lim inf
n→∞

Fn(un) ≥ lim inf
n→∞

1

2

∫
Ω

|∇un|2 dx− f(u) ≥ 1

2

∫
Ω

|∇u|2 dx− f(u) = F (u).

We are left to construct a recovery sequence. Assume that u does not have zero boundary conditions.
Then just choose un = u for all n. Otherwise assume u lies in H1

0 (Ω). By Theorem 2 there is a
sequence (un)n∈N such that un ∈ An∩H1

0 (Ω) and un → u strongly in H1(Ω) and hence it follows

Fn(un) =
1

2

∫
Ω

|∇un|2 dx− f(un)→ F (u).

Now we discuss the requirements of Corollary 4 which will yield the convergence of quasi-
minimisers. Firstly, the existence of unique minimisers is well known in the literature of variational
problems (see Struwe, 1990). The equi-coercivity of the sequence of functionals (Fn)n∈N follows
from the Poincaré type inequality (4) which can be proved with arguments adapted from Alt (1992).
The proofs of both assertions are fully elaborated in the appendix.
Proposition 6. The sequence (Fn)n∈N is equi-coercive.
Lemma 7. Let r > 0 be fixed and consider the set M ⊂ H1(Ω) of functions that satisfy

1

2

∫
Ω

|∇u|2 dx+

∫
∂Ω

u2 ds− f(u) ≤ r. (3)

Then there exists C only depending on r and Ω such that for every u ∈M we have

‖u‖L2(Ω) ≤ C(‖∇u‖L2(Ω) + 1). (4)

An application of Theorem 4 now yields the convergence of quasi minimsers.
Proposition 8. Any sequence (un)n∈N of quasi-minimizers of (Fn)n∈N converges to the solution of
the Dirichlet problem, both weakly in H1(Ω) and strongly in L2(Ω).

In practice, one will not optimise the functionals Fn over X but rather the objective functions
Ln(θ) := Fn(uθ) over the parameter space Θn. However, if (θn)n∈N is a sequence of quasi-
minimisers of (Ln)n∈N, then (uθn)n∈N is a sequence of quasi-minimisers of (Fn)n∈N. Hence, the
previous result yields the convergence of (uθn)n∈N towards the solution of the Dirichlet problem
which is our main result.
Theorem 9. Let (θn)n∈N be a sequence of quasi-minimisers of (Ln)n∈N. Then (uθn)n∈N converges
weakly in H1(Ω) and hence strongly in L2(Ω) to the solution u of the Dirichlet problem

−∆u = f in Ω

u = 0 on ∂Ω.

5 DISCUSSION

We established a convergence result for the deep Ritz method in the following sense. If networks of
growing size are trained to quasi-minimise a penalised Dirichlet energy with penalisation strength
approaching +∞ these networks converge to the solution of the Dirichlet problem. This result
generalises to a wide class of variational energies that include nonlinear PDEs like the p-Laplace
operator and to other neural networks that satisfy the universal approximation property.

However, this result does not resolve the study of the deep Ritz method completely since we do
not take the numerical evaluation of the Dirichlet energies or the network optimisation into account.
Further, it is not clear under what assumptions this approach is able to overcome the curse of dimen-
sionality and whether a similar approach can be taken for higher order stationary PDEs and PDE
constraint optimisation problems. Finally, it remains to establish error estimates.
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A UNIVERSAL APPROXIMATION IN SOBOLEV TOPOLOGY

In this section of the appendix we prove the universal approximation result which we stated as
Theorem 2 in the main text. Our proof uses that every continuous, piecewise linear function can be
represented by a neural network with ReLU activation function and then shows how to approximate
Sobolev functions with zero boundary conditions by such functions. The precise definition of a
piecwise linear function is the following.

Definition 10 (Continuous piecewise linear function). We say a function f : Rd → R is continuous
piecewise linear or shorter piecewise linear if there exists a finite set of closed polyhedra whose
union is Rd, and f is affine linear over each polyhedron. Note every piecewise linear functions is
continuous by definition since the polyhedra are closed and cover the whole space Rd, and affine
functions are continuous.

Theorem 11 (Universal expression). Every ReLU neural network uθ : Rd → R is a piecewise
linear function. Conversely, every piecewise linear function f : Rd → R can be expressed by a
ReLU network of depth at most dlog2(d+ 1)e+ 1.

For the proof of this statement we refer to Arora et al. (2016). We turn now to the approximation
capabilities of piecewise linear functions. For an open set Ω ⊂ Rd we denote by C∞c (Ω) the space
of infinitely often differentiable functions with compact support in Ω. Furthermore, for p ∈ [1,∞],
the Sobolev space W 1,p(Ω) consists of weakly differentiable functions u such that both u and all its
weak derivatives are integrable in p-th power. We refer to Brezis (2010) for more details on these
function spaces and their associated norms.

Lemma 12. Let ϕ ∈ C∞c (Rd) be a smooth function with compact support. Then for every ε > 0
there is a piecewise linear function sε such that for all p ∈ [1,∞] it holds

‖sε − ϕ‖W 1,p(Rd) < ε and supp(sε) ⊂ supp(ϕ) +Bε(0).

Here we set Bε(0) to be the ε-ball around zero, i.e., Bε(0) = {x ∈ R | |x| < ε}.

Proof. In the following we will denote by ‖·‖∞ the uniform norm on Rd. To show the assertion
choose a triangulation T of Rd of width δ = δ(ε) > 0, consisting of rotations and translations of
one non-degenerate simplex K. We choose sε to agree with ϕ on all vertices of elements in T .
Since ϕ is compactly supported it is uniformly continuous and hence it is clear that ‖ϕ− sε‖∞ < ε
if δ is chosen small enough.
To prove convergence of the gradients we show that also ‖∇ϕ−∇sε‖∞ < ε which will be shown
on one element K ∈ T and as the estimate is independent of K is understood to hold on all of Rd.
So letK ∈ T be given and denote its vertices by x1, . . . , xn+1. We set vi = xi+1−x1, i = 1, . . . , d
to be the vectors spanning K. By the one dimensional mean value theorem we find ξi on the line
segment joining x1 and xi such that

∂visε(v1) = ∂viϕ(ξi).

Note that ∂visε is constant on all of K where it is defined. Now for arbitrary x ∈ K we compute
with setting w =

∑d
i=1 αivi for w ∈ Rd with |w| ≤ 1. Note that the αi are bounded uniformly in

w, where we use that all elements are the same up to rotations and translations.

‖∇ϕ(x)−∇sε(x)‖ = sup
|w|≤1

‖∇ϕ(x)w −∇sε(x)w‖

≤ sup
|w|≤1

d∑
i=1

|αi| ‖∂viϕ(x)− ∂visε(x)‖︸ ︷︷ ︸
=(∗)

where again (∗) is uniformly small due to the uniform continuity of∇ϕ. Noting that the W 1,∞ case
implies the claim for all p ∈ [1,∞) the proof is complete.

We turn to the proof of Theorem 2 which we state again for the convenience of the reader. Note that
this can be generalised to the Sobolev spaces W 1,p

0 (Ω).
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Theorem 2 (Universal approximation). Let Ω ⊆ Rd be an open set and u ∈ H1
0 (Ω). Then for

all ε > 0 there exists a function uε ∈ H1
0 (Ω) that can be expressed by a ReLU network of depth

dlog2(d+ 1)e+ 1 such that
‖u− uε‖H1(Ω) < ε.

Proof. Let u ∈ H1
0 (Ω) and ε > 0. By the density ofC∞c (Ω) inH1

0 (Ω) (see Brezis, 2010) we choose
a smooth function ϕε ∈ C∞c (Ω) such that ‖u− ϕε‖ ≤ ε/2. Furthermore we use Lemma 12 and
choose a piecewise linear function uε such that ‖ϕε − uε‖H1 ≤ ε/2 and such that uε has compact
support in Ω. This yields

‖u− uε‖H1(Ω) ≤ ‖u− ϕε‖H1(Ω) + ‖ϕε − uε‖H1(Ω) ≤ ε

and by Theorem 11 we know that uε is in fact a realisation of a neural network with depth at most
dlog2(d+ 1)e+ 1.

B POINCARÉ TYPE INEQUALITY AND EQUI-COERCIVITY

This section of the appendix provides the proof of the Poincaré type inequality we stated in the main
text and shows how this leads to the equi-coercivity of the sequence (Fn) hence provides the proof
to the main result which is Theorem 9 in the main text. We begin by establishing that the limit
functional F has a unique minimiser as this is required in Theorem 4.

Lemma 13. The functional F : H1(Ω)→ (−∞,∞]

F (u) =


1

2

∫
Ω

|∇u|2dx− f(u) u ∈ H1
0 (Ω),

∞ u ∈ H1(Ω) \H1
0 (Ω).

has a unique minimiser.

Proof. The existence follows by the direct method of the calculus of variations (see Struwe, 1990,
Chapter 1) and the uniqueness by the strict convexity of F .

The following lemma uses a classical compactness argument to establish a Poincaré type inequality,
see for example Alt (1992) in Chapter 8 on generalised Poincaré inequalities.

Lemma 7. Let Ω ⊆ Rd be an open and bounded set with Lipschitz boundary. Let further r > 0 be
fixed and consider the set M ⊂ H1(Ω) defined as

M :=
{
u ∈ H1(Ω)

∣∣ 1

2

∫
Ω

|∇u|2 dx+

∫
∂Ω

u2 ds− f(u) ≤ r
}
. (5)

Those functions satisfy a Poincaré type inequality of the form

‖u‖L2(Ω) ≤ C(‖∇u‖L2(Ω) + 1), (6)

where C only depends on r and Ω.

Proof. The proof consists of two steps. First we will show that the inequality (5) implies that
M cannot contain arbitrarily large, constant functions and second we prove that a failure of the
Poincaré inequality (6) means that M contains any large, constant function hence the assertion
follows.

Step 1. Let ξ ∈ R be a constant function in M . We will show that there is some fixed
C > 0 depending only on r, ‖f‖H1(Ω)′ and |∂Ω| such that

|ξ| ≤ C.

7
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Using a scaled version of Young’s inequality with ε|Ω|1/2 ≤ |∂Ω|/2 we compute

r ≥
∫
∂Ω

ξ2 ds− f(ξ) ≥ |ξ|2|∂Ω| − ‖f‖H1(Ω)′ ‖ξ‖H1(Ω)

= |ξ|2|∂Ω| − ‖f‖H1(Ω)′ |Ω|
1/2|ξ|

≥ |ξ|2|∂Ω| − C(ε) ‖f‖2H1(Ω)′ − ε|Ω| · |ξ|
2

≥ 1

2
|∂Ω| |ξ|2 − C(ε) ‖f‖2H1(Ω)′ .

Thus we can solve for |ξ| and find a uniform bound in terms of r, ‖f‖H1(Ω)′ and |∂Ω|.

Step 2. Now we assume that the inequality fails and will show that this implies that M con-
tains arbitrarily large constant functions. Assume therefore that there is a sequence (uk) ⊂M such
that

‖∇uk‖L2(Ω) + 1 ≤ 1

k
‖uk‖L2(Ω) .

This inequality implies that ‖uk‖L2(Ω) → ∞ and hence for every large but fixed R > 0 we may

assume that ‖uk‖−1
L2(Ω)R ≤ 1 and set vk = uk(R ‖uk‖−1

L2(Ω)). By the star shape of M the vk are a
sequence in M and the above inequality yields upon multiplying

‖∇vk‖L2(Ω) +
R

‖uk‖L2(Ω)

≤ R

k
→ 0. (7)

As ‖vk‖L2(Ω) = R and (7) implies a bound on ‖∇vk‖L2(Ω) we extract a weakly H1(Ω) convergent
subsequence vj ⇀ v with limit v in M by the weak closedness of M . Also from (7) we deduce that

∇vj ⇀ ∇v = 0 weakly in L2(Ω)n

and thus there is a constant ξ ∈ R such that v(x) = ξ up to a set of measure zero in Ω. To identify
ξ we employ the Rellich compactness theorem (see Alt, 1992) which yields that vj → v strongly in
L2(Ω) and together with ‖vj‖L2(Ω) = R we conclude

R = ‖v‖L2(Ω) = ‖ξ‖L2(Ω) = |Ω|1/2|ξ|

and as R > 0 was arbitrary this shows that M contains any large, constant function which manifests
the desired contradiction.

Note that Rellich’s theorem requires some regularity of the boundary of Ω. We assumed that it
locally is the graph of a Lipschitz continuous function but the lemma above holds whenever the
embedding H1(Ω) ↪→ L2(Ω) is compact.

Before we turn to the equi-coercivity we define the functional

Gn(u) =
1

2

∫
Ω

|∇u|2 dx+ n

∫
∂Ω

u2 ds− f(u)

hence Gn agrees with Fn where Fn 6=∞. Note that it trivially holds

Fn = Gn + χAn

where χAn
= 0 on An and χAn

=∞ otherwise. We also remark that

Fn ≥ Gn ≥ G1.

This means to show the equi-coercivity of (Fn)n∈N it suffices to prove the coercity of the single
functional G1.

Proposition 6. The sequence (Fn)n∈N is equi-coercive, i.e., for every r ∈ R there is a bounded set
Kr ⊂ H1(Ω) such that ⋃

n∈N
{Fn ≤ r} ⊂ Kr.

8
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Proof. We fix r ∈ R. As we discussed before the statement of the theorem it is enough to show
that M = {G1 ≤ r} ⊂ Kr for some bounded set Kr in H1(Ω). The next observation is that upon
adding ‖∇u‖L2(Ω) to the inequality (6) we find that

‖u‖H1(Ω) ≤ C(‖∇u‖L2(Ω) + 1) (8)

hence it is enough to provide an L2(Ω) bound on the gradients of the functions in M . We employ a
scaled version of Young’s inequality with fitting ε > 0 and compute using the inequality (8)

r ≥ 1

2
‖∇u‖2L2(Ω) − ‖f‖H1(Ω)′ ‖u‖H1(Ω)

≥ 1

2
‖∇u‖2L2(Ω) − C ‖f‖H1(Ω)′ ‖∇u‖L2(Ω) − C ‖f‖H1(Ω)′

≥ 1

2
‖∇u‖2L2(Ω) − ε ‖∇u‖

2
L2(Ω) − (C(ε) + C) ‖f‖H1(Ω)′

≥ 1

4
‖∇u‖2L2(Ω) − (C(ε) + C) ‖f‖H1(Ω)′ .

Rearranging the inequality we see that ‖∇u‖L2(Ω) ≤ C(r) which is sufficient to conclude the proof
due to (8).

Proposition 8. Any sequence (un)n∈N of quasi-minimizers of (Fn)n∈N converges to the solution of
the Dirichlet problem, both weakly in H1(Ω) and strongly in L2(Ω).

The proof of this result follows from an application of Theorem 4. In practice, one will not optimise
the functionals Fn over X but rather the objective functions Ln(θ) := Fn(uθ) over the parameter
space Θn. However, the convergence of the neural networks arising from training4 converge towards
the solution of the Dirichlet problem which is our main result.
Theorem 9. Let (θn)n∈N be a sequence of quasi-minimisers of (Ln)n∈N. Then (uθn)n∈N converges
weakly in H1(Ω) and hence strongly in L2(Ω) to the solution u of the Dirichlet problem

−∆u = f in Ω

u = 0 on ∂Ω.

Proof. Let (θn)n∈N be a sequence of quasi-minimisers of (Ln)n∈N. Since Fn ≡ ∞ on the comple-
ment of An = {uθ | θ ∈ Θn} we have

inf
u∈H1(Ω)

Fn(u) = inf
θ∈Θn

Fn(uθ) = inf
θ∈Θn

Ln(θ).

Now the computation

Fn(uθn) = Ln(θn) ≤ inf
θ∈Θn

Ln(θ) + δn = inf
u∈H1(Ω)

Fn(u) + δn

shows that (uθn)nN is a sequence of quasi-minimisers of (Fn)n∈N. Proposition 8 now yields the
claim.

Note that the assumption of a Lipschitz boundary was only used in the proof of the Poincaré type
inequality in Lemma 7. However, this lemma and therefore our main result hold whenever the
embedding H1(Ω) ↪→ L2(Ω) is compact.

C EXTENSION TO GENERAL VARIATIONAL PROBLEMS

We conclude the appendix by briefly considering how to extend our results, in fact the above con-
siderations admit a direct extension to a considerably broader class of energies, including energies
associated to higer order elliptic equations and also non-quadratic ones such as the p-Dirichlet en-
ergy, the Euler-Lagrange equations of which is the p-Laplace (see Struwe, 1990). In this section the
activation function ρ : R → R is no longer assumed to be ReLU but needs to be chosen according
to the energy.

4or more precisely the functions arising from the parameters obtained through training

9
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Setting 14. We begin with the assumptions and the norm structure on the space where the energy
will live. Assume X is a reflexive Banach space with norm ‖ · ‖X and that there is an additional
norm | · | on X , which does not need to render X complete. Furthermore let Y be another Banach
space with norm ‖ · ‖Y and let T : (X, ‖·‖X) → (Y, ‖·‖Y ) be a linear and continuous operator
which is linked to the norm ‖ · ‖X in the following way

‖x‖X = |x|+ ‖Tx‖Y for all x ∈ X.
As for the activation function the only thing we require for the moment is that the neural networks
are members of the space X and An ⊂ X denotes again the networks of some fixed architecture
that is growing in n. Of course this implies that our Banach space X is some kind of function space.
We turn to the energy and some abstract analogue of boundary values. We assume that there are two
maps

E : X → R and γ : X → B

where E (the energy) is bounded from below, weakly lower semi-continuous and norm-continuous.
Both, the weak topology related to the weak lower semi-continuity and the norm-continuity are
meant with respect to the norm ‖·‖X . Furthermore γ (the trace operator) is a linear and continuous
map from (X, ‖·‖) into the Banach space B that is the abstract analogue of boundary values. We
set X0 = ker(γ). With this terminology fixed we are able to define our functionals Fn, F : X →
(−∞,∞]. Let f ∈ X ′ and set

Fn(x) =

{
E(x) + n ‖γ(x)‖2B − f(x) x ∈ An,

∞ x /∈ An.
and for the limit functional

F (x) =

{
E(x)− f(x) x ∈ X0,

∞ x /∈ X0.

To get an intuition for the setting think of X = H1(Ω) where | · | = ‖ · ‖L2 and ‖ · ‖X = ‖ · ‖H1

such as T : H1(Ω)→ L2(Ω)d with u 7→ ∇u. The question we ask now is:

Under which assumptions do we obtain the Γ-convergence and equi-coercivity of (Fn)n∈N to F in
the weak topology of X?

To this end we formulate the hypothesis below.

(H1) The union
⋃
n∈NAn ∩X0 is dense in X0 with respect to the norm ‖·‖X .

(H2) The space X is reflexive, its norm is given as ‖ · ‖X = | · |+ ‖T · ‖Y , for some norm | · | on
X and T : (X, ‖·‖X)→ (Y, ‖·‖Y ) is linear and continuous into the Banach space Y .

(H3) The identity (X, ‖ · ‖X) → (X, | · |) maps weakly convergent sequences to strongly con-
vergent ones.

(H4) The map γ is linear and continuous and the set {‖γ(x)‖2B−f(x) ≤ r}∩ker(T ) is bounded
in X by a constant C = C(r) <∞ for every r ∈ R.

(H5) The energy E : X → R is bounded from below, weakly lower semi-continuous (with
respect to the weak topology induced by ‖·‖X ) and also ‖·‖X -continuous and satisfies
|E(x)| ≥ c1 ‖Tx‖pY − c2 for p > 1 and constants c1, c2. Furthermore assume that E has a
unique minimiser on X0.

We can again formulate our main result, its proof is very similar to the case of the Dirichlet energy.
Theorem 15. Under the hypotheses (H1)-(H5) the sequence (Fn)n∈N of functionals Γ-converges
towards F . Further every sequence of quasi-minimisers of (Fn)n∈N converges to the unique min-
imiser of F .

Proof. The proof mainly consists of abstraction of the concepts we already met in the Dirichlet case
and therefore we will keep it brief. A look back to the shows that (H1), together with the strong
continuity of E from (H5) provides a recovery sequence and the lim inf inequality follows by the
lower semi-continuity assumed in (H5). The hypothesis (H2)-(H4) take care of the equi-coercivity
which deserves some extra comments and we refer the reader to the next lemma.

10
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Lemma 16 (Abstract Poincaré Inequality). Consider the setting described above i.e., let (X, ‖·‖X)
and (Y, ‖·‖Y ) be Banach spaces with a linear and continuous map T : X → Y and another norm
| · | on X such that ‖x‖X = |x| + ‖Tx‖Y and the identity (X, ‖·‖X) → (X, | · |) maps weakly
to strongly convergent sequences. Let M be some weakly closed, star-shaped set with center zero.
Then ker(T ) ∩M is bounded if and only if there is a constant C such that

|x| ≤ C(‖Tx‖Y + 1) for all x ∈M.

Proof. This works exactly as in the case X = H1(Ω) and Y = L2(Ω)d with T = ∇ which we
studied before.

THE p-LAPLACE: AN EXAMPLE FOR A NONLINEAR PDE

We illustrate the abstract setting by considering the p-Dirichlet energy for p ∈ (1,∞) given by

E : W 1,p(Ω)→ R with E(u) =
1

p

∫
Ω

|∇u|p dx

Note that for p 6= 2 the associated Euler-Lagrange equation is nonlinear. This PDE is called the
p-Laplace equation and, in strong formulation, is given by

−div(|∇u|p−2∇u) = f in Ω

u = 0 on ∂Ω,

compare also to the first chapter of Struwe (1990). Choosing the ReLU activation function, the
abstract setting presented in (14) is applicable in this case by the following choices

X = W 1,p(Ω), Y = Lp(Ω)d, B = Lp(∂Ω), |u| = ‖u‖Lp(Ω)

as well as

γ = tr : W 1,p(Ω)→ Lp(∂Ω)

T : W 1,p(Ω)→ Lp(Ω)d with u 7→ ∇u.

Clearly (H1), (H2) and (H5) are fulfilled and (H3) is due to Rellich’s embedding theorem. We look
at (H4) and need to guarantee that for every f ∈ W 1,p(Ω)′ and r > 0 the following set is bounded
in W 1,p(Ω) {

‖tr(u)‖2Lp(∂Ω) − f(u) ≤ r
}
.

This works similar to the case p = 2 discussed above and uses again a scaled version of Young’s
inequality.
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