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ABSTRACT

Category-Agnostic Pose Estimation (CAPE) localizes keypoints across diverse
object categories with a single model, using one or few annotated support images.
Recent works have shown that using a pose-graph (i.e., treating keypoints as nodes
in a graph rather than isolated points) helps handle occlusions and break symme-
try. However, these methods assume a given pose-graph with equal-weight edges,
leading to suboptimal results. We introduce EdgeCape, a novel framework that
overcomes these limitations by predicting the graph’s edge weights in order to op-
timize localization. To further leverage structural (i.e., graph) priors, we propose
integrating Markov Attention Bias, which modulates the self-attention interaction
between nodes based on the number of hops between them. We show that this
improves the model’s ability to capture global spatial dependencies. Evaluated
on the MP-100 benchmark, which includes 100 categories and over 20K images,
EdgeCape achieves state-of-the-art results in the 1-shot and 5-shot settings, sig-
nificantly improving localization accuracy. Our code will be publicly available.

1 INTRODUCTION

2D pose estimation, which involves identifying the locations of key semantic parts within an image,
is a fundamental problem in computer vision. From human pose estimation (Fang et al., 2022a;
Cao et al., 2019; Yang et al., 2021) to animal tracking and vehicle localization (Song et al., 2019;
Reddy et al., 2018), accurate pose estimation is essential for both academic research and industrial
applications. Traditional approaches mainly focused on category-specific models that are tailored
to pre-defined keypoints and pre-defined object categories. These models achieve high accuracy in
some domains but struggle when encountering categories that lack annotated training data. This
limitation has sparked interest in flexible models that generalize beyond the fixed categories and
keypoints seen in training.

To address these challenges, Category-Agnostic Pose Estimation (CAPE) has emerged as a promis-
ing solution (Xu et al., 2022a). CAPE enables keypoint localization for arbitrary keypoints and any
object category using only a few annotated support images, allowing a single model to generalize
across diverse object types. By significantly reducing the need for extensive data collection and re-
training for each new category or keypoint definition, CAPE provides a versatile and cost-effective
approach to pose estimation. However, CAPE remains exceptionally challenging as it must infer
keypoint relations that are structurally meaningful across vastly different object categories using a
few annotated examples. This is crucial for breaking symmetry, handling occlusions, and preserving
object structure. Figure 1 highlights the differences between recent CAPE methods. Although early
works treated keypoints as isolated entities, recent works (Hirschorn & Avidan, 2024; Rusanovsky
et al., 2024) address this challenge by leveraging user-defined structural graphs. These graphs de-
scribe the skeletal relations between keypoints and are termed pose-graphs. These structural priors
hold for any viewing angle and both for rigid and non-rigid objects. Graph-based methods provide
robustness to occlusions, handle symmetric structures, and enforce anatomical consistency.

While effective, these methods rely on user-provided unweighted pose-graphs, significantly limit-
ing their adaptability. For example, when locating a human’s right elbow, both the right hand and
shoulder provide useful context, but their contributions should vary in strength. In conventional pose
estimation, these relative contributions are learned by leveraging the fact that the object category is
fixed, meaning its pose-graph definition is shared and can be learned from abundant same-category
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Support Data CapeFormer GraphCape EdgeCape (Ours)
(Only Nodes) (Unweighted Graph) (Weighted Graph)

Figure 1: Given a support image, keypoints definition, and skeletal relations (support data) from
any category, our model localizes the keypoints on a query image. Previous methods treat keypoints
as isolated (CapeFormer (Shi et al., 2023b)) or use unweighted graphs (GraphCape (Hirschorn &
Avidan, 2024)). We, in contrast, predict weighted graphs that lead to better localization.

examples. In contrast, CAPE presents fundamentally new and largely unexplored challenges: object
categories are unknown, and keypoints are determined dynamically at test time. We aim to advance
graph-based CAPE by leveraging optimal pose-graphs with real-valued edge weights. However,
multiple challenges arise. First, humans struggle to determine the optimal pose-graph, as demon-
strated in Figure 2. This is crucial, as different graph definitions significantly impact localization
performance (Hirschorn & Avidan, 2024). Moreover, requiring users to manually specify edge
weights is impractical, as there is no clear correct assignment. Second, existing edge prediction
methods are unsuitable for CAPE. Self-attention-based approaches, such as Graph Attention Trans-
formers (Veličković et al., 2017), struggle in category-agnostic settings because they fail to model
structural keypoint relations (Hirschorn & Avidan, 2024). Alternatively, GCN variants (Cai et al.,
2019; Shi et al., 2019) assume a fixed pose-graph - an assumption that does not hold for CAPE.
Lastly, CAPE requires generalization to unseen object categories, making direct pose-graph predic-
tion particularly challenging, as it demands an implicit understanding of 3D object structure and
anatomy. Thus, a more sophisticated approach is needed.

In this paper, we introduce EdgeCape, a novel approach that extends the graph-based CAPE frame-
work by tackling the challenge of category-agnostic pose-graph prediction. Our goal is to find the
optimal weighted pose-graph for any class. Rather than inferring the entire pose-graph from scratch,
we refine a user-provided unweighted pose-graph by learning to assign edge weights and add or re-
move connections as needed. This approach eliminates the need for 3D prior knowledge and enables
the model to adapt to any object category with varying geometries using a simple structural prior.
Furthermore, our method learns subtle instance-specific adjustments, which are crucial to handling
CAPE’s inherent ambiguity. In addition, we overcome the lack of ground-truth optimal edge weights
through a self-supervised strategy that predicts pose-graphs to maximize localization accuracy and
improve occlusion handling. Finally, to better exploit pose-graphs for improved localization, we
introduce a Markov attention bias that adjusts the model’s self-attention according to the structural
distance between nodes in the graph, supporting more complex spatial relations.

We evaluate our approach on the MP-100 benchmark, a comprehensive dataset comprising over
20,000 images spanning 100 diverse categories. Our method outperforms the previous state-of-
the-art, significantly improving localization accuracy. We also demonstrate the robustness of our
approach under challenging conditions through an extensive ablation study.

In summary, we introduce a novel CAPE method that enables a more nuanced capture of object
geometry, leveraging optimal weighted pose-graphs to improve localization accuracy. Our contribu-
tions can be summarized as follows:

• We are the first to explore category-agnostic pose-graph prediction, introducing a novel
mechanism that learns instance-specific weighted graphs that generalize across unseen ob-
ject categories.

• We propose an enhanced graph-based CAPE architecture with Markov Attention Bias, al-
lowing the model to better capture complex spatial dependencies between keypoints.

• We achieve SOTA results on the MP-100 benchmark, demonstrating the effectiveness of
our approach in both 1-shot and 5-shot settings.
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Figure 2: Which of these pose-graphs is optimal? As edge placement can be ambiguous, we aim
to learn the optimal pose-graph for category-agnostic keypoint localization. We show several graph
annotations for the same image. The second-to-last (cyan) serves as input to our model; the last
(orange) is our predicted pose-graph. While not visually superior, it achieves the best performance.

2 RELATED WORKS

2.1 CATEGORY-AGNOSTIC POSE ESTIMATION

Category-agnostic pose estimation (CAPE), introduced by Xu(Xu et al., 2022a), aims to extend
conventional category-specific pose estimation (Fang et al., 2022a; Cao et al., 2019; Yang et al.,
2021; Yu et al., 2021; Yang et al., 2022) and multi-category pose estimation (Xu et al., 2022b;
Yu et al., 2021) to unseen categories, enabling models that generalize beyond category-specific
training for greater flexibility and robustness. POMNet (Xu et al., 2022a), a regression-based ap-
proach (Li et al., 2021; Oberweger & Lepetit, 2017; Zimmermann & Brox, 2017), utilized a trans-
former to encode query images and support keypoints for similarity prediction. Building on this,
CapeFormer (Shi et al., 2023a) adopted a DETR-like framework (Carion et al., 2020; Zhang et al.,
2022; Fang et al., 2022b; Wang et al., 2022) to address unreliable matching outcomes, refining initial
predictions. Later, different approaches were suggested to improve various aspects of CapeFormer.
ESCAPE(Nguyen et al., 2024), introduced super-keypoints that capture the statistics of semantically
related keypoints from different categories, tackling variability in object appearances and poses.
Chen (Chen et al., 2024) predicted meta-points independent of support annotations, later refined to
align with target keypoints. Similar to object proposal tokens (Alexe et al., 2012; Hosang et al.,
2015; Zitnick & Dollár, 2014), meta-points also provide structural cues. SCAPE (Liang et al., 2024)
simplified the task by directly regressing keypoint locations without refinement. X-Pose (Yang
et al., 2024) introduced a bottom-up approach for multi-instance localization. PPM (Peng et al.,
2024) harnessed Stable Diffusion (Rombach et al., 2022), learning pseudo-prompts for each key-
point at test time and localizing via diffusion model cross-attention maps. FMMP (Chen et al.,
2025) employed multiscale features and leveraged denser keypoint localization by randomly mixing
structurally linked keypoints. While effective, its reliance on multi-scale feature extraction restricts
the range of backbone architectures that can be utilized.

Recent work highlights the importance of object structure for CAPE localization. Graph-
Cape (Hirschorn & Avidan, 2024) used graph convolutional networks (GCNs) (Kipf & Welling,
2016) to model structural relations between keypoints, improving robustness to symmetry and oc-
clusions. CapeX (Rusanovsky et al., 2024) extended this by integrating pose-graphs with textual
point explanations, enabling pose inference from natural language. SDPNet (Ren et al., 2024) also
adopted graph-based methods, employing an auxiliary GCN for information sharing between key-
points. It predicts adjacency matrices via keypoint self-attention, supervised by a secondary GCN
and a mask-reconstruction task for self-supervised learning. However, these methods face key lim-
itations: (1) they rely only on keypoint features, whereas object structure may be better inferred
from the entire object; (2) generalizing to unseen categories without prior knowledge is highly chal-
lenging and requires 3D anatomical understanding; and (3) structural cues may be encoded in the
auxiliary GCN rather than the adjacency matrix, leading to information loss since the GCN is used
only during training. In contrast, we combine image and keypoint features to refine prior structural
knowledge and leverage decoder supervision to build a weighted graph optimized for localization.

2.2 STRUCTURAL ENCODING IN GNNS

Graph Transformers extend Transformers to graph-structured data, where self-attention can be
viewed as message passing between all nodes, independent of connectivity. Structural information
is incorporated using three main strategies:
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Figure 3: Framework Overview. Our model consists of two main components: a pose-graph
predictor (visualized in Figure 15) and a graph-based keypoint predictor. The pose-graph predictor
refines the prior graph input by predicting residual connections. The graph-based keypoint predictor
then utilizes the predicted keypoint relations, improving localization across diverse object structures.

Positional Embedding from Graph Structure. Mialon and Feldman (Mialon et al., 2021; Feldman
et al., 2022) introduce positional encodings based on graph kernels. Dwivedi (Dwivedi & Bresson,
2020) used Laplacian eigenvectors, later extended by Kreuzer (Kreuzer et al., 2021) with spectral
encodings for greater expressivity. Ma (Ma et al., 2023b) instead modeled adjacency matrices as
stochastic processes, using random-walk probabilities as relative encodings.

Integrating Graph Neural Networks (GNNs) with Transformers. Wu (Wu et al., 2021)
captured local features with GNNs followed by Transformers to model long-range dependen-
cies. Rampášek (Rampášek et al., 2022) combined GNN and self-attention layers, while
Hirschorn (Hirschorn & Avidan, 2024) replaced Transformer feed-forward layers with GCNs.

Incorporating Graph Structural Bias into Self-Attention. Ying (Ying et al., 2021) encodes
shortest-path distances as biases that directly alter the attention mechanism. Zhao (Zhao et al.,
2021) incorporated proximity-based neighborhood relations. Dwivedi (Dwivedi & Bresson, 2020)
integrated edge features into attention, while Wu et al. (Wu et al., 2022) injected topological infor-
mation as relational biases to enhance attention fidelity.

3 METHOD

The full framework of our method is shown in Figure 3. In the following, we outline the key com-
ponents of EdgeCape: (1) our graph-based CAPE formulation, (2) the category-agnostic pose-graph
prediction network, and (3) an enhanced graph decoder that embeds structural biases. Additional
details are in the supplementary (Section C).

3.1 PRELIMINARIES

CapeFormer (Shi et al., 2023b) treats keypoints as individual entities, sharing information via self-
attention. While effective for single-category pose estimation, it struggles to generalize structural
understanding to unseen categories (Hirschorn & Avidan, 2024). Consequently, self-attention alone
is insufficient to capture structural relations for CAPE. GraphCape (Hirschorn & Avidan, 2024)
addresses this limitation by incorporating user-provided pose-graphs as a structural prior. The pose-
graph is represented by an adjacency matrix Aprior ∈ {0, 1}K×K , where aij = 1 if node vi is
connected to node vj , and 0 otherwise. Using graph convolutions, information is propagated be-
tween connected keypoints, aiding in structure preservation and occlusion handling. Additionally,
integrating graphs during training helps break feature symmetry by enforcing similarity based on
structural relations rather than purely semantic attributes. Our work is built on GraphCape, and we
include the full framework details in the supplementary (Section C.1).
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3.2 CATEGORY-AGNOSTIC POSE-GRAPH PREDICTION

Category-agnostic pose-graph prediction presents a fundamentally new and largely unexplored chal-
lenge: object structures vary widely across categories, making it difficult to infer structure from
scratch. Our key insight is to predict adjustments to a user-provided prior Aprior rather than learning
the entire graph. This yields expressive, weighted pose-graphs that adapt to object-specific struc-
tures while remaining grounded in prior knowledge. Formally, we define a learnable function fθ to
learn the residual pose-graph in the form of an adjacency matrix ∆A ∈ RK×K :

∆A = fθ(Aprior, Fs, F
k
s ) (1)

where Aprior ∈ {0, 1}K×K is the unweighted graph input provided by the user (like in GraphCape),
and Fs ∈ Rhw×C and F k

s ∈ RK×C are the support image and keypoint features.

Refining Structural Features. First, we refine the keypoint features F k
s to enhance their struc-

tural semantics. Rather than sharing information only among the keypoint features F k
s , we also

incorporate the support image features Fs to provide valuable global structural context, which is
especially important in the category-agnostic setting where objects’ orientations vary widely and
keypoints alone may be ambiguous.

We build on a graph transformer decoder (Hirschorn & Avidan, 2024), which is well-suited for
modeling structural dependencies. To strengthen the interaction between F k

s and Fs, we add a
cross-attention layer where the image features are updated using the keypoint features. We refer to
this as a dual-attention graph decoder, since it enables bidirectional exchange of structural informa-
tion between image and keypoint features. In practice, we find that refining image features alongside
keypoint features significantly improves the quality of learned structural representations. The archi-
tecture of our pose-graph prediction network is illustrated in the Supplementary (Figure 15).

This modification also changes the role of the decoder itself. Originally designed to exchange infor-
mation between support keypoints and a query image, it now jointly processes keypoints and support
image features of the same image. This repurposing allows the model to learn richer structural priors
directly from the support image, leveraging the fact that structural patterns are shared within object
categories.

Predicting Residual Edges. Using the refined structure-aware features F k
refined, we compute ∆A

as pairwise cosine-similarities:

∆Aij =< F i
refined, F

j
refined > (2)

This similarity measure naturally quantifies the directional alignment and strength of relations be-
tween keypoints. We found this similarity measure as a balance between accuracy and efficiency.
Alternatives such as MLPs or attention-based predictions yielded only marginal improvements at a
higher computational cost.

The resulting ∆A is then combined with the user-provided prior Aprior. A naı̈ve approach would
directly sum Aprior and ∆A, but this leads to unstable training and poor convergence, as the output
graphs at the start of training lack structural meaning. Instead, we introduce a simple yet effective
scaling mechanism that stabilizes training. We combine Aprior and ∆A using a learnable scaling
factor initialized to zero, and pass the result through an activation function to ensure positivity:

A′ = ReLU(Aprior + c∆A) (3)

where c is the learnable scalar. At the start of training, c = 0, meaning the output pose graph is
initially Aprior, providing a stable foundation.

Lastly, we enforce adjacency matrix symmetry and normalization to ensure proper
interpretation as a valid pose-graph, and right-stochasticity. Symmetry is enforced
by averaging the matrix with its transpose and normalization is applied row-wise:

A =
A′ +A′T

2
(4) Ãij =

Aij∑
j Aij

(5)
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Pose-Graph Prediction Self-Supervision. Training the pose-graph predictor with only a localiza-
tion loss does not reliably produce useful graphs. We therefore introduce an additional supervision
signal. Designing such a signal is challenging: even for humans, identifying the correct graph struc-
ture is non-trivial, and assigning precise edge weights is impractical. To address this, we adopt an
unsupervised masking strategy, where our keypoint prediction module provides indirect supervision
for the pose-graph predictor. Using masking, we aim to find adjacency matrices that can help the
model overcome occlusions, a realistic scenario for this task.

Optimization is done as follows. We randomly mask a subset of the input support keypoint features
using the vector mask M , and replace them with a learnable masking token Fmask. Then, using the
masked input, the model predicts the query keypoint locations:

Pm
i = gθ(M ◦ F k

s + (1−M) ◦ Fmask, Ã, P 0) (6)
where ◦ is the Hadamard product, gθ is the keypoints prediction module, P 0 are the predicted co-
ordinates from the proposal generator (Section C), and Ã is the predicted adjacency matrix. The
adjacency loss is the L1 distance between the predicted locations Pm using masked keypoint fea-
tures and the ground-truth locations P̂ :

Ladj =
K∑
i=1

|Pm
i − P̂i| (7)

During backpropagation, this loss is used to update only the adjacency predictor. To achieve this,
we freeze the decoder’s weights and all inputs except Ã, ensuring that the adjacency matrix itself
encodes information useful for overcoming occlusion.

The final training objective combines this adjacency loss with the standard localization loss:
L = Loffset + λadjLadj , (8)

where Loffset is L1 localization loss as in (Shi et al., 2023b). More details about our training
scheme are in the supplementary, Section C.4.

3.3 MARKOV ATTENTION BIAS

In CAPE, encoding spatial relations between keypoints is critical for robust localization (Hirschorn
& Avidan, 2024; Rusanovsky et al., 2024). Having established a way to predict more informative
adjacency matrices, we now focus on how to better leverage these spatial relations during localiza-
tion. Keypoint localization is done using a transformer decoder (Figure 3) where the self-attention
mechanism provides a global receptive field by considering all pairwise keypoint interactions. How-
ever, this flexibility comes at a cost, as it weakens the influence of structural relations. We aim to
improve the model’s ability to capture both local and long-range structural dependencies. Graph-
Cape (Hirschorn & Avidan, 2024) partially tackled this issue by integrating GCNs into the feed-
forward network. While effective at modeling local structure, GCNs still struggle with reasoning
over long-range relations and therefore do not provide a complete solution. To address this lim-
itation, we introduce a new graph-informed bias term (Ying et al., 2021) into the self-attention
mechanism, enabling structural connectivity patterns to directly influence the flow of information
and enhance overall performance.

Our predicted adjacency matrix Ã contains weighted edges, reflecting varying strengths of keypoint
relations. We normalize it row-wise, treating it as a stochastic matrix that defines a Markov process.
Under this view, (Ãk)ij represents the probability of reaching node vj from node vi in exactly
k-hops. Ãij captures direct (1-hop) links while (Ãk)ij captures multi-hop (long-range) relations,
providing a principled way to encode both local and global structure. We start by constructing the
matrix P :

Pij = [I, Ã, Ã2, . . . , ÃK−1]i,j ∈ RK (9)
where K is the maximum number of hops considered. Intuitively, Pij captures multi-hop structural
relations. Then, using an MLP: RK → R, we modulate the influence of keypoints based on graph
distance, allowing the model to learn which relations are most relevant for localization. The resulting
modified self-attention in the decoder is:

aij =
(hiWQ)(hjWK)T√

d
+ MLP(Pij) (10)
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Support GT CapeFromer GraphCape Ours

Figure 4: Qualitative Comparison. We visualize keypoint predictions for the 1-shot setting. The
left column shows the support data, followed by ground-truth query keypoints, and results of differ-
ent methods. Our method performs best by leveraging predicted weighted pose-graphs, which serve
as more effective structural priors for keypoint localization.

This formulation preserves the expressiveness of self-attention while explicitly guiding it to respect
structural priors. In effect, the model learns to weigh keypoint interactions based on both semantic
similarity and graph connectivity. A figure of the new graph-transformer decoder, along with the
full derivation of the bias term and training scheme, are provided in the supplementary, Section C.3.

4 EXPERIMENTS

We follow standard CAPE practice by training and evaluating on MP-100 dataset (Xu et al., 2022a),
which includes over 20,000 images from 100 categories with up to 68 keypoints per category. The
dataset is split such that categories used for training, validation, and testing do not overlap, and it
provides five different category splits to ensure robust generalization. We also report results on AP-
10K (Yu et al., 2021) (supplementary, Section B.2), an animal pose dataset covering 23 families and
60 species. Unlike MP-100, it uses a shared keypoint definition and pose-graph structure.

For evaluation, we use the Probability of Correct Keypoint (PCK) (Yang & Ramanan, 2012) metric.
We use a 0.2 threshold for backward compatibility with prior works. But, as this metric became
saturated, we follow (Chen et al., 2025) and also report mPCK (mean PCK over thresholds 0.05,
0.1, 0.15, 0.2) for a more challenging evaluation.

Implementation Details. For a fair comparison, we match the training parameters, data augmen-
tations, and data pre-processing to previous works. Additional details are in the supplementary
(Section C.5). Notably, our method introduces only minimal latency overhead, adding a lightweight
MLP (Markovian Attention Bias) and a single decoder pass (pose-graph predictor), adding only
∼2 ms per image (on an A5000 GPU).

4.1 QUALITATIVE RESULTS

Figure 4 provides a qualitative comparison between our method and previous graph-based CAPE
works, CapeFormer (Shi et al., 2023b), and GraphCape (Hirschorn & Avidan, 2024). With stronger
pose-graphs and a better mechanism to exploit them via Markov Attention Bias, our approach
achieves superior localization.

Additionally, Figure 5 provides examples of category-agnostic pose-graph predictions. As can be
seen, our network weakens symmetric parts’ connections, which can hurt localization. For exam-
ple, the table has stronger connections between the base and legs than between the different corners
of the base. Alternatively, it creates new helpful connections in the human face. In the supple-
mentary (Section B.3), we demonstrate the instance adaptability of our graph prediction module.
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Table 1: Graph-based Results. mPCK comparison between graph-based methods on the MP-100
dataset. Our method consistently outperforms others across all settings and data splits.

Method 1-Shot 5-Shot
Split 1 Split 2 Split 3 Split 4 Split 5 Avg Split 1 Split 2 Split 3 Split 4 Split 5 Avg

CapeFormer 78.44 73.56 73.61 73.14 73.51 74.45 83.71 79.77 79.18 79.62 75.89 79.63
GraphCape 79.87 75.06 76.16 73.58 73.98 75.73 83.93 79.81 78.78 79.02 79.28 80.16

Ours 81.96 77.63 77.35 75.68 75.98 77.72 84.92 80.91 79.68 79.76 80.08 81.07

Table 2: Point-based Results. PCK@0.2 performance comparison. Our approach outperforms
other methods on the 1-shot and 5-shot settings. Best results are bold, second-best are underlined.

Model 1-Shot 5-Shot
Split 1 Split 2 Split 3 Split 4 Split 5 Avg Split 1 Split 2 Split 3 Split 4 Split 5 Avg

POMNet (Xu et al., 2022a) 84.23 78.25 78.17 78.68 79.17 79.70 84.72 79.61 78.00 80.38 80.85 80.71
ESCAPE (Nguyen et al., 2024) 86.89 82.55 81.25 81.72 81.32 82.74 91.41 87.43 85.33 87.27 86.76 87.63
MetaPoint+ (Chen et al., 2024) 90.43 85.59 84.52 84.34 85.96 86.17 92.58 89.63 89.98 88.70 89.20 90.02

SDPNet (Ren et al., 2024) 91.54 86.72 85.49 85.77 87.26 87.36 93.68 90.23 89.67 89.08 89.46 90.42
X-Pose (Yang et al., 2024) 89.07 85.05 85.26 85.52 85.79 86.14 - - - - - -

SCAPE (Liang et al., 2024) 91.47 86.29 87.23 87.07 86.94 87.80 94.33 90.53 91.49 90.68 89.80 91.37
FMMP (Chen et al., 2025) 88.19 85.26 83.03 85.29 84.72 85.30 91.97 89.36 87.35 89.33 88.56 89.31

CapeFormer (Shi et al., 2023a) 91.07 86.94 87.05 85.53 85.77 87.27 94.98 91.47 90.69 90.24 88.62 91.20
GraphCape (Hirschorn & Avidan, 2024) 92.39 88.47 89.24 85.76 86.66 88.50 95.21 91.51 90.65 89.92 90.22 91.50

Ours 93.57 89.53 89.31 87.38 87.29 89.42 95.45 91.88 91.13 90.28 90.61 91.87

Input Graph Predicted Graph

Figure 5: Predicted Pose-Graphs. We
visualize predicted graphs: left column
shows input Aprior, right shows output A.
Line width reflects edge weight. Observe
the slimmer table-base edges and the new
facial edges. Our model prunes symmet-
ric part links and forms connections that
aid localization.

4.2 QUANTITATIVE RESULTS

Following (Chen et al., 2025), we categorize CAPE
methods into two groups: graph and point-based meth-
ods. We note that point-based methods largely pursue
orthogonal directions and can be combined. Additional
metrics and in-depth comparisons are in the supplemen-
tary (Section B.1).

Graph-based methods. Table 1 reports mPCK results
of graph-based methods on MP-100 under 1-shot and
5-shot settings. As shown, our method consistently
outperforms other methods across all splits and set-
tings. We achieve significant gains of +1.99% in 1-
shot and +0.9% in 5-shot mPCK over GraphCape. At
a finer evaluation threshold (e.g., 0.05), these margins
widen substantially, reaching +4.0% and +2.23% re-
spectively. Importantly, the improvements are stable
across splits - even in cases where GraphCape under-
performs CapeFormer (for example, split 3 in 5-shot),
our approach remains superior. This suggests that sim-
ply injecting graph priors can be brittle, whereas pre-
dicting them yields a stronger and more reliable struc-
tural prior. Overall, we reach a substantial improve-
ment of 3.27% (1-shot) and 1.44% (5-shot) mPCK over
CapeFormer (which uses isolated keypoints).

Point-based methods. We show in Table 2 our results compared to recent CAPE models using
the more common, but saturated, PCK threshold 0.2. EdgeCape surpasses the previous state-of-
the-art, with margins that are on par with - and in many cases exceeds - the gains reported by
prior leading methods. As shown, at PCK@0.2 the improvements over GraphCape are +0.92% (1-
shot) and +0.37% (5-shot), highlighting that performance using this coarse threshold is approaching
saturation. Nonetheless, our method achieves impressive gains of +1.62% (1-shot) and +0.5% (5-
shot) over SCAPE, the previous non-graph-based state-of-the-art. Notably, our work can be further
combined with other point-based CAPE methods, which we leave for future work.

Limitations. Our method consistently enhances accuracy across both low- and higher-shot settings,
with particularly notable improvements in the 1-shot scenario. Yet, the performance gain is smaller

8
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in higher-shot settings - a trend also observed when comparing CapeFormer and GraphCape. This is
expected, as graph-based methods are particularly effective for handling occlusions and preserving
structure under low-shot conditions. Nonetheless, our contribution in higher-shot settings remains
substantial, as our learned pose-graphs and their effective utilization enable consistently stronger
gains than those achieved by GraphCape.

4.3 ABLATION STUDY

Table 3: Method Ablation. We
show mPCK results demonstrating the
contribution of our category-agnostic
pose-graph prediction module and the
Markov Attention Bias.

Markov
Attention Bias

(-) (+)

Pose-Graph
Prediction

(-) 79.87 80.78
(+) 80.76 81.96

Following standard practice, ablation studies are con-
ducted on MP-100’s split-1 in the 1-shot setting. We
analyze the contribution of each component within our
framework and examine the impact of input pose-graphs
Aprior on performance. In the supplementary (Sec-
tion B.2), we provide additional extensive ablation exper-
iments, including a quantitative comparison in the chal-
lenging super cross-category setting, performance using
different backbones, evaluation of occlusion handling,
quantitative analysis of different design choices and our
suggested supervision strategy, and histograms of pre-
dicted adjacency weight changes.

Components Contribution. Table 3 shows the importance of both the Markov Attention Bias and
the category-agnostic pose-graph prediction model. We build on GraphCape (Hirschorn & Avidan,
2024), incorporating each component separately. The results show that both components contribute
to improved performance, with the greatest gain achieved when they are combined. The Markov
Attention Bias not only improves performance on its own but also benefits further from the enhanced
predicted pose-graphs, resulting in an even greater overall boost.

0 1 3 5 8 12 16
Number of Added Random Edges

60

65

70

75

80

PC
K

Noisy Aprior vs mPCK
Ours
GraphCape

Figure 6: mPCK with noisy Aprior. Test-
ing on graphs with randomly added edges
shows that our method is robust to incor-
rect graph inputs, effectively predicting
pose-graphs for improved localization.

The Impact of Prior Graph Input Aprior. To eval-
uate the impact of the input pose-graph prior, we com-
pare our method to GraphCape using noisy graph in-
puts Aprior, as shown in Figure 6. We inject up to 16
random edges per pose-graph, comparable to the orig-
inal skeleton’s edge count, spanning noise levels from
mild to fully randomized topologies. Since graph-based
models rely on connectivity for localization, incorrect
connections mislead the model by propagating cues
between unrelated keypoints, degrading performance.
Yet, our method consistently outperforms GraphCape,
with the gap widening as more random edges are added.
This highlights our model’s resilience to input pose-
graph variations and its ability to predict optimal pose-
graphs. Moreover, since the Markov Attention Bias heavily depends on the pose-graph, our superior
performance further underscores the effectiveness of our prediction module. This robustness is es-
pecially valuable in real-world scenarios where defining an optimal pose-graph is difficult.

5 CONCLUSIONS

We introduce EdgeCape, a CAPE method that improves keypoint localization via predicted
category-agnostic pose-graphs. Unlike previous approaches that treat keypoints independently or
rely on unweighted user-provided graphs, EdgeCape predicts weighted pose-graphs for more accu-
rate localization. By integrating these predictions with Markov Attention Bias, our model captures
complex structural dependencies, improving robustness to occlusions and symmetry. On MP-100,
EdgeCape achieves state-of-the-art performance in 1-shot and 5-shot settings. Beyond CAPE, our
framework highlights the broader potential of weighted graph refinement for category-agnostic vi-
sion tasks under data scarcity and structural variability.

9
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A SUPPLEMENTARY - INTRODUCTION

Section B presents additional experimental results for our method, including:

• Additional MP-100 quantitative evaluations.

• Quantitative evaluations on the AP-10K dataset.

• Super-cross category experiment, emphasizing generalization.

• Occlusion handling experiment, using query image masking performance comparison.

• Supervision strategy ablation studies.

• Predicted adjacency matrix change - histogram showing the matrices change given different
Aprior inputs, demonstrating the effect of our graph prediction module.

• Additional qualitative results - including predicted graphs, and qualitative comparisons.

Section C provides additional details about the different components in our method:

• Framework Overview.

• Markov Attention Bias.

• Training Scheme.

• Implementation Details.

B FURTHER EXPERIMENTS

Table 4: MP-100 PCK@0.1 Results. comparison between graph-based methods on the MP-100
dataset. Our method consistently outperforms others across all settings and data splits.

Method 1-Shot 5-Shot
Split 1 Split 2 Split 3 Split 4 Split 5 Avg Split 1 Split 2 Split 3 Split 4 Split 5 Avg

CapeFormer 74.48 68.39 67.99 68.18 68.86 69.58 81.46 77.12 76.28 76.71 71.86 76.69
GraphCape 76.17 70.05 71.15 68.89 68.95 71.04 81.99 77.22 75.26 75.99 76.28 77.35

Ours 79.29 73.82 73.1 71.16 72.19 73.91 83.32 78.42 76.29 76.82 77.29 78.43

Table 5: MP-100 Additional Metrics. AUC and NME performance under a 1-shot setting. Our
approach outperforms other methods. The best results are bold.

Model AUC ↑ NME ↓
Split 1 Split 2 Split 3 Split 4 Split 5 Avg Split 1 Split 2 Split 3 Split 4 Split 5 Avg

CapeFormer 88.64 86.39 86.18 85.81 86.51 86.70 0.088 0.110 0.111 0.116 0.108 0.106
GraphCape 89.08 87.69 86.97 87.01 86.67 87.48 0.083 0.097 0.103 0.104 0.107 0.099

Ours 90.05 87.95 88.43 87.18 87.40 88.20 0.074 0.094 0.089 0.103 0.103 0.093

B.1 QUANTITATIVE RESULTS - ADDITIONAL METRICS

Graph-based methods For a more complete comparison of our method, we report PCK at thresh-
old 0.1 in Table 4. As shown in Table 4, our method outperforms other graph-based methods.
Specifically, we outperform GraphCape by +2.87% on the 1-shot setting and by +1.08% on the 5-
shot setting. Overall, we achieve gains of +4.33% and +1.74% over CapeFormer. Notably, even in
splits where GraphCape underperforms CapeFormer, our method comes on top, underscoring the
advantage of graph-based methods over point-based ones when optimal pose-graphs are learned and
effectively utilized.

Additionaly we include the Area Under ROC Curve (AUC), and Normalized Mean Error (NME) on
the MP-100 dataset 1-shot setting. As shown in Table 5, our method also excels in these metrics,
demonstrating the superiority of our method.
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Figure 7: MP-100 Comparison. Average PCK@0.2 comparison with recent methods. The circle
size indicates the model’s size. The x-axis and y-axis represent the 1-shot and 5-shot PCK, respec-
tively (best is top right). Our approach leads in both settings.

Point-based methods We also include a visual quantitative comparison of the MP-100 dataset
with recent CAPE methods in Figure 7. It’s important to note that most other non graph-based
CAPE works are complementary and parallel to ours, meaning that combining different methods
could help build even stronger CAPE models.

B.2 ABLATION STUDY

Table 6: Backbones Ablation. Comparison between graph-based methods on the MP-100 dataset
(1-shot, split 1) using different backbones and metrics. Predicted weighted graphs improve perfor-
mance, increasing the gap in performance using stronger pre-trained features.

Method Backbone Metric
PCK@0.1 mPCK

CapeFormer
SwinV2

74.05 77.77
GraphCape 76.44 79.80

Ours 77.66 80.63
CapeFormer

DinoV2
74.48 78.44

GraphCape 76.17 79.87
Ours 79.29 81.96

Performance Using Different Backbones. Table 6 shows results on the MP-100 dataset under
1-shot setting. As can be seen, we consistently outperform CapeFormer (Shi et al., 2023b) and
GraphCape (Hirschorn & Avidan, 2024), highlighting the effectiveness of our approach. Moreover,
contrary to GraphCape’s claim (Hirschorn & Avidan, 2024), DinoV2 features outperform SwinV2
in graph-based CAPE methods. While previous works (Lin et al., 2023; Shi et al., 2023b; Liang
et al., 2024) have found other backbones more suitable for localization tasks, our results suggest
that DinoV2’s superior generalization and semantic understanding make it especially well-suited for
category-agnostic settings. Importantly, we achieve these results while keeping the DinoV2 back-
bone frozen, preserving its rich self-supervised representations rather than fine-tuning, as done in
prior methods. Furthermore, the performance gap increases when predicting pose-graphs using Di-
noV2 features, aligning with findings by Banani et al. (El Banani et al., 2024), who demonstrated the
intrinsic 3D structural awareness of DinoV2. This structural understanding is particularly beneficial
for capturing pose-graph structures.
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Table 7: AP-10K Results. PCK@0.1, AUC, and NME results for the single-category AP-10K
benchmark.

Model Metric
PCK@0.1 ↑ AUC ↑ NME ↓

CapeFormer 69.70 86.41 0.094
GraphCape 72.01 87.22 0.086

Ours 72.48 87.29 0.085

Single-Category Setting. We report PCK performance on a single-category pose estimation
benchmark using the AP-10K dataset (Yu et al., 2021), a large-scale animal pose estimation bench-
mark comprising 23 animal families and 60 species. This dataset features a unified keypoint def-
inition and skeletal structure across all categories. Notably, the training and testing category splits
are not mutually exclusive, meaning some categories may appear in both sets. This setup allows us
to evaluate our method’s effectiveness in a single-category context, where categories share common
anatomical structures but exhibit species-specific variations.

Results are presented in Table 7. Our method outperforms CapeFormer (Shi et al., 2023b) and
GraphCape (Hirschorn & Avidan, 2024), showing superiority also in this setting.

Table 8: Super Cross-Category. PCK@0.2 results for the super cross-category setting. Our method
outperforms others in this challenging setting across most splits, demonstrating robust generaliza-
tion.

Method Human
Body

Human
Face Vehicle Furniture

POMNet (Xu et al., 2022a) 73.82 79.63 34.92 47.27
ESCAPE (Nguyen et al., 2024) 80.60 84.13 41.39 55.49
MetaPoint+ (Chen et al., 2024) 84.32 82.21 46.51 53.67

SDPNet (Ren et al., 2024) 83.84 81.24 45.53 53.08
SCAPE (Liang et al., 2024) 84.24 85.98 45.61 54.13

CapeFormer (Shi et al., 2023a) 83.44 80.96 45.40 52.49
GraphCape (Hirschorn & Avidan, 2024) 88.38 83.28 44.06 45.56

Ours 91.38 87.61 44.12 54.03

Super Cross-Category. We conduct a cross-super-category experiment following prior works
to evaluate our model’s generalization capacity. Splitting the MP-100 dataset into eight super-
categories, we hold out each super-category in turn and train on the remaining categories. As
shown in Table 8, our model outperforms other graph-based methods across most splits. Notably, in
the furniture split, GraphCape (Hirschorn & Avidan, 2024) performs worse than CapeFormer (Shi
et al., 2023b), indicating that in this case, the input pose-graph impedes performance. However, our
graph-prediction network not only surpasses GraphCape but also outperforms CapeFormer. This
demonstrates that our model successfully learns pose-graphs that improve localization, even when
the input pose-graphs are suboptimal.

Adjacency Matrix Supervision. To evaluate the effectiveness of our unsupervised masking strat-
egy, we first test the performance using the GCN reconstruction approach proposed by Ren et al.(Ren
et al., 2024), which utilizes an auxiliary GCN to reconstruct masked inputs. With this approach, we
achieve (PCK@0.2) 92.88% accuracy, compared to 93.57% using our decoder-based reconstruc-
tion strategy - a decrease of 0.69%. This drop supports our hypothesis that structural information is
embedded within the auxiliary GCN weights and thus not retained during inference.

Furthermore, we investigate the impact of our decoder reconstruction strategy under varying levels
of input keypoint masking. The results of this analysis are illustrated in Figure 8. As shown, masking
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keypoints enhances the supervision signal for the adjacency matrix, leading to more robust and
structurally meaningful graph representations.

0 25 50 75
Masking Percentage %

93.0

93.2

93.4

93.6

93.8

94.0

PC
K

Keypoint Masking Supervision vs PCK

Figure 8: Keypoint Masking Supervision. Effect of the proposed unsupervised masking strategy
with varying percentages of masked input keypoints

Pose-Graph Predictor Design. We also ablate different design choices for the pose-graph pre-
dictor. First, we check the contribution of using full-image features compared to just the keypoint
features to predict pose graphs. As hypothesized, using only keypoint features results in a decrease
of 0.24% compared to using all features. This validates that the full-image features’ global context
helps infer structural relations more effectively.

Moreover, we ablate the strategy of predicting pose graphs using the refined features. We compare
the following strategies:

• Using the suggested cosine similarity:

∆Aij =< F i
refined, F

j
refined > (11)

• Using an MLP-based prediction:

∆Aij = MLP
(
[F i

refined ∥F
j
refined]

)
(12)

• Using multi-headed attention-based prediction:

∆Aij = Linear
([

Qi
1 ·K

j
1 ∥ . . . ∥Qi

H ·Kj
H

])
(13)

All methods achieve similar performance. Thus, we opt for the simplest design and use cosine
similarity as our preferred strategy.

0 5 10 15 20 25 30
Masking Percentage %
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92

93
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K

Query Image Masking vs PCK

MaskQuery Ours
Mask Query - GraphCape
Mask Query - CapeFormer

Figure 9: Handling Occlusions. PCK@0.2 results when masking the query image. Our method
consistently surpasses GraphCape, leveraging cues provided by the weighted graph structure to over-
come information gaps in the query images.

Handling Occlusions. To demonstrate the effect of weighted graph information in handling oc-
clusions, we applied random partial masking to the query images before executing our algorithm.
As shown in Figure 9, our method consistently surpasses others when parts of the query images are
masked, accurately predicting keypoints.
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Figure 10: Adjacency Matrix Change Histogram. A histogram showing the weight changes of
our predicted weighted graph. We show the change given different Aprior inputs. the x-axis shows
the change and the y-axis is the log-frequency. The dashed red line shows no change in edge weight.

Input Graph Predicted Graph Zoom In

Figure 11: Instance Adaptability. We visualize an example of instance adaptability. The left
column denotes the input Aprior and the right column is the refined adjacency matrix. In the top
row, we see a graph input of a panda body, where all keypoints are visible. In the bottom row, as
some keypoints are occluded (node 15), the input graph includes isolated nodes (node 16). Our
predicted graph connects this isolated node to enhance localization.

Adjacency Matrix Change. We assess how the weights of the adjacency matrices change. We
create a histogram of the difference between normalized Aprior and the normalized predicted A
matrix. Results are shown in Figure 10. demonstrate that our network effectively refines the input
graph prior. This refinement involves both creating new connections and adjusting the weights of
existing ones, enabling the model to better represent structural relationships.

B.3 ADDITIONAL QUALITATIVE RESULTS

Figure 11 shows the instance adaptability of our graph prediction module. As can be seen, our
graph prediction predicts different graphs for instances of the same category given different inputs.
Moreover, Figure 12 shows skeleton predictions for different input values of Aprior. We use self-
loops, visualizing performance without any prior knowledge, and with random omission graphs,
where we drop some of the edge connections randomly. In addition, Figure 13 illustrates additional
skeleton predictions.
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Input Graph Predicted Graph Input Graph Predicted Graph

Figure 12: Predicted Graphs with Various Aprior. We visualize the unnormalized graph outputs
with various Aprior inputs. The left column denotes the input Aprior and the right column is the
refined adjacency matrix. Line width corresponds to edge weight.

We also present in Figure 14 additional qualitative comparison for Capeformer (Shi et al., 2023a),
GraphCape (Hirschorn & Avidan, 2024), and the non graph-based SCAPE (Liang et al., 2024) on
various categories.
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Input Graph Predicted Graph Input Graph Predicted Graph

Figure 13: Predicted Skeleton. We visualize the unnormalized graph outputs. The left column de-
notes the input Aprior and the right column is the refined adjacency matrix. Line width corresponds
to edge weight. The model disconnects symmetric parts and creates new connections that are helpful
for localization.
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Support GT CapeFromer SCAPE GraphCape EdgeCape

Figure 14: Qualitative Comparison. We visualize keypoints predictions for the 1-shot setting.
The left column denotes the support image with its corresponding skeleton. The second column is
the ground-truth query keypoints. The following columns are results from CapeFormer, SCAPE,
GraphCape, and our method.
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C METHOD DETAILS

C.1 FRAMEWORK OVERVIEW

We base our method on GraphCape (Hirschorn & Avidan, 2024), introducing two main architectural
modifications:

• Incorporating Markov Bias attention in the graph-decoder.
• Adding a category-agnostic pose-graph prediction module.

These modifications are detailed in the main paper, while below we provide a brief overview of
GraphCape’s architecture for completeness. For full details, please refer to the original paper.

• Feature Extractor: A pre-trained model extracts features from both support and query
images. Support keypoint features are derived by element-wise multiplication between the
support image’s feature map and keypoint masks, created using Gaussian kernels centered
at the support keypoints. In multi-shot scenarios (e.g., 5-shot), the average of support
keypoint features across images in feature space is taken. This results in the query feature
map F̂q ∈ Rhw×C and support keypoint features F̂s ∈ RK×C .

• Transformer Encoder: The transformer encoder fuses information between support key-
point and query patch features. It comprises three transformer blocks, each with a self-
attention layer. Support keypoints and query features are concatenated before entering the
self-attention layer and separated afterward. The output is the refined query feature map
Fq and refined support keypoint features Fs.

• Similarity-Aware Proposal Generator: GraphCape builds on CapeFormer’s two-stage
approach, first generating initial keypoint predictions, which are then refined via a DETR-
based transformer decoder. The proposal generator aligns support keypoint features with
query features, producing similarity maps from which peaks are selected as similarity-
aware proposals. To enhance efficiency and adaptability, a trainable inner-product mecha-
nism (Shi et al., 2022) is used to explicitly model similarity.

• Graph Transformer Decoder: A transformer decoder network decodes keypoint loca-
tions from the query feature map. It contains three layers, each with self-attention, cross-
attention, and feed-forward blocks. In this design, GraphCape replaces the simple MLP
in the transformer decoder’s feed-forward network with a GCN-based module to incorpo-
rate structural priors directly into the keypoint prediction process. To prevent excessive
smoothing—a common issue in deep GCNs that can blur node distinctions and degrade
performance—GraphCape adds a linear layer for each node following the GCN layer:

F k
s = Wlinearσact(WadjF

k
s Ãprior +WselfF

k
s ) (14)

Where Wi are learnable parameters, σact is an activation function (ReLU), and Ãprior ∈
RK×K is the symmetrically normalized adjacency matrix.
Using an iterative refinement strategy (Cai & Vasconcelos, 2018; Teed & Deng, 2020; Zhu
et al., 2020), each decoder layer predicts coordinate deltas for prior predictions. This means
that the updated coordinates are created as follows:

P l+1 = σ(σ−1(P l) +MLP (F l+1
s )) (15)

where σ and σ−1 are the sigmoid and its inverse. Additionally, the decoder leverages pre-
dicted coordinates to provide enhanced reference points for feature pooling from the image
feature map. The keypoints’ positions from the last layer are used as the final prediction.

C.2 CATEGORY-AGNOSTIC POSE-GRAPH PREDICTION

The architecture of our pose-graph prediction network fθ is illustrated in Figure 15. Formally, we
define a learnable function fθ to learn the residual pose-graph in the form of an adjacency matrix
∆A ∈ RK×K :

∆A = fθ(Aprior, Fs, F
k
s ) (16)

where Aprior ∈ {0, 1}K×K is the unweighted graph input provided by the user (like in GraphCape),
and Fs ∈ Rhw×C and F k

s ∈ RK×C are the support image and keypoint features.
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Figure 15: Category-Agnostic Pose-Graph Predictor. Our pose-graph predictor (as referenced in
Figure 3) uses the prior input graph Aprior, the support image features Fs and keypoint features F k

s

to produce structure-aware keypoint features F k
refined. Cosine-similarity is then applied to predict

the residual adjacency output ∆A.

C.3 MARKOV ATTENTION BIAS

In category-agnostic pose estimation, encoding spatial relations between keypoints is beneficial for
robust localization, especially when dealing with novel objects (Hirschorn & Avidan, 2024; Ru-
sanovsky et al., 2024). Transformer models naturally have a global receptive field, allowing each
node (or token) to attend to all others within a layer. However, this flexibility introduces a challenge:
Transformers lack inherent structural constraints, so positional dependencies must be explicitly en-
coded to reflect local relations. While this is often done in sequence data through absolute or relative
positional encodings, graphs pose a different challenge, as nodes are not arranged linearly and con-
nectivity is defined by edges.

Our approach aims to better utilize the structural dependencies between keypoints for CAPE. We
build on the foundations set by GraphCape (Hirschorn & Avidan, 2024), which incorporates GCN
layers into the feed-forward layers to propagate structural information. However, the GCN layers
used in that model were limited by their fixed, nearest-neighbor receptive field, which restricts the
model’s ability to capture more complex or distant connections between keypoints.

Thus, we further integrate the graph-prior into the architecture. We follow Ying et al.(Ying et al.,
2021), adding a bias term based on graph connectivity to the self-attention mechanism in the decoder.
Denote aij as the (i, j)-element of the Query-Key product attention matrix a, resulting in:

aij =
(hiWQ)(hjWK)T√

d
+ bϕ(vi,vj) (17)

where bϕ(vi,vj) is a learnable scalar indexed by ϕ(vi, vj), and is unique for each attention head.
Unlike the limited receptive field in GCNs, using bϕ(vi,vj) enables each node in a single Transformer
layer to adaptively attend to all other nodes based on the graph’s structural information. ϕ(vi, vj) is
usually the distance of the shortest path (SPD) between vi and vj if the two nodes are connected.

This bias term is highly effective in capturing general structure, boosting the performance of Graph-
Cape by around 0.5%. However, it assumes a discrete distance between nodes and is applicable for
unweighted adjacency matrices. Our primary objective is to predict real-valued edges, representing
the strength of the structural keypoints connections. Thus, inspired by Ma et al.(Ma et al., 2023a),
we treat the normalized adjacency matrix Ã as a right stochastic matrix.

A stochastic matrix is commonly used to describe the transitions in a Markov chain, where each
element (Ã)ij represents the probability of moving from one state (or node) vi to another state vj in a
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Figure 16: Graph Decoder Prediction Layer. Overview of the Transformer decoder architecture,
adapted from the GraphCape design. The decoder consists of self-attention, cross-attention, and a
graph-based feed-forward network. We incorporate a Markov Attention Bias into the self-attention
mechanism to encourage structural keypoint interactions. Self-attention facilitates adaptive inter-
actions among support keypoints, while cross-attention extracts localization information from the
input features. Finally, the decoder refines keypoint features and outputs location predictions.

single step. Specifically, the entry (Ãk)ij gives the probability of transitioning from node vi to node
vj in exactly k-hops. This process allows us to capture both direct and indirect relations between
keypoints, enabling the model to consider more distant keypoints that may influence localization.
Thus, we build the following matrix:

Pij = [I, A,A2, ..., Ak−1]i,j ∈ RK (18)
where I is the identity matrix and the parameter K controls the maximum number of hops consid-
ered. We incorporate this graph characteristic into our model’s attention mechanism to enable more
nuanced and flexible structural priors. The complete decoder layer is illustrated in Figure 16. Based
on Equations 17 and 18, we use the following bias term:

aij =
(hiWQ)(hjWK)T√

d
+MLP (Pij) (19)

where MLP: RK → R, modulates the influence of keypoints based on their distance in the graph
(i.e., the number of hops between them). This formulation results in a continuous and learnable
structure-based bias term.

C.4 TRAINING SCHEME

When we attempt to directly integrate the adjacency matrix predictor and the self-attention bias
mechanism, we observe only a small impact on the model’s performance. Changing the adjacency
matrix while training the bias attention MLP results in unstable training. Thus, we first train our
base model and fine-tune each added component.

We begin by training the base model and establishing strong foundational features necessary for
robust localization. Optimization is done using Loffset which is the L1 localization loss as in (Shi
et al., 2023b). Once the model has converged, we integrate the skeleton predictor. This stage allows
the model to further adapt by incorporating specific structural insights provided by the skeleton
predictor. For this phase, we add the adjacency loss, resulting in:

L = Loffset + λadjLadj , (20)
In the final phase, we maintain the frozen feature extractor and freeze the skeleton predictor. Then,
we integrate the Markov bias attention. This final stage allows the model to strengthen its capacity
to interpret spatial dependencies between keypoints.
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This three-phase approach allows each component to integrate structural encoding progressively,
enhancing accuracy through a stable framework.

C.5 IMPLEMENTATION DETAILS

For a fair comparison, training parameters, data augmentations, and data pre-processing are kept the
same as in previous works. In addition, the backbone size was matched to other works, thus, we use
the smallest (∼20M parameters) versions of SwinV2 and DinoV2.

The graph predicting network, encoder, and keypoint prediction decoder have 3 layers. For the
Markov Bias Attention, we use a maximum of K = 4 hops, and for Ladj we mask 50% of keypoints,
using λadj = 1. The model is built upon MMPose framework (Contributors, 2020), trained using
Adam optimizer with a batch size of 16, the learning rate is 10−5, and decays by 10× on the 160th
and 180th epoch. Each phase is trained for 100 epochs. Training takes ∼ 8 hours on a single Nvidia
A100 GPU.

Evaluation of SCAPE (Liang et al., 2024) and FMMP (Chen et al., 2025) was done by removing the
keypoint identifiers (which were shown to be inapplicable for real-world scenarios (Nguyen et al.,
2024; Yang et al., 2024; Hirschorn & Avidan, 2024)) and training a network using their official code.
As FMMP leverages a larger number of keypoints, it experienced a relatively greater performance
drop without these identifiers. For SCAPE, we use DinoV2 as the backbone to ensure a fair compar-
ison. And, since FMMP relies on multi-scale features, we adopt a modern pre-trained multi-scale
vision transformer backbone (PVT-V2). We also used GraphCape and CapeFormer official code for
evaluation and visualizations.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

This article was refined with the help of LLMs to improve clarity and style. They helped polish the
writing.
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