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Abstract
Parameter efficient fine-tuning (PEFT) has gained considerable attention by manipulating model
parameters, and low-rank adaptation (LoRA) is deemed the state-of-the-art technique in PEFT.
Though LoRA has witnessed its great successes in numerous fields, there still exists a theoretical
gap on how it enables convergence. More recently, representation fine-tuning (ReFT) was devel-
oped by turning the fine-tuning to hidden representations of a model that encode significant seman-
tic information, seemingly yielding the better performance than LoRA. In this work, we first estab-
lish the connection between LoRA and ReFT and then unify them into a meta-algorithm, dubbed
model efficient fine-tuning (MeFT). MeFT not only provably shows the best available convergence
rate coinciding with that in existing algorithms, but also theoretically reveals the relationship be-
tween the low rank and the convergence error. Our analysis facilitates the theoretical understanding
of how low-rank decomposition fine-tuning techniques drive LLMs and offers useful insights for
more efficient future algorithm design.

1. Introduction

Fine-tuning [4, 39] has remained as the extremely popular and critical technique to expedite the
adaptation of large language models (LLMs) for achieving desirable performance in downstream
tasks, as it is memory-efficient and computationally tractable. Parameter efficient fine-tuning (PEFT)
is now the workhorse to satisfy such need due to the emergence of low-rank adaptation (LoRA) [3,
10, 13, 20, 22, 33, 34], which remarkably reduces the number of trainable parameters by learning
pairs of rank-decomposition matrices, while freezing the original weights. Nevertheless, all existing
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UNIFIED CONVERGENCE

attempts have primarily focused on applications and empirical performance, leaving their relevant
convergence rates as a question mark. Additionally, a recent work [31] proposed another novel fine-
tuning approach termed representation fine-tuning (ReFT), which instead schematically fine-tunes
the hidden representations that encode rich semantic information from data, by conducting inter-
ventions on hidden layers. ReFT leads to the seemingly better model accuracy in different tasks
compared to LoRA and establishes a new line of work in model fine-tuning. However, regardless
of its stunning performance, there is still no rigorously theoretical guarantee provided from ReFT.
Thereby, in this work, we try to bridge the gap between the practice and theory.
Contributions. To address the above issues, we tactically analyze the favored LoRA algorithm
and the recently proposed ReFT algorithm, and surprisingly discover that both can be unified into
a meta-algorithm, dubbed model efficient fine-tuning (MeFT). We then establish the theoretical
convergence rate for MeFT by deriving the new smoothness constant for the objective loss with
a few mild assumptions, under the scenarios of low-rank decomposition/projection. Specifically,
the contributions we make in this work are outlined as follows: a) We propose MeFT to unify the
parameter efficient fine-tuning and representation fine-tuning. The unification also naturally applies
to other variants of LoRA; b) we establish the relationship between the convergence error bound
for MeFT and the intrinsic rank, resorting to the smoothness condition of the non-convex objective
with respect to the low-rank matrix. Please see Appendix for additional analysis and/or results.

2. Preliminaries and Problem Formulation

LoRA. The forward pass of a deep neural network involves weight matrix multiplications in numer-
ous dense layers. Though these matrices are full-rank, when adapting the model to specific tasks,
the authors in [1] have surprisingly shown that a pre-trained LLM has a low ”intrinsic dimension”,
which maintains the efficient learning even if it is projected into a smaller subspace. Inspired by
this, Hu et al. [10] proposed the vanilla LoRA, which implied that during fine-tuning, the updates to
the weights also have a low ”intrinsic rank”. Since its emergence, LoRA has set the state-of-the-art.
Considering a pre-trained model, we denote by W0 ∈ Rd×k its original weight matrix. The updates
to W0 is denoted as ∆W and can be represented by a low-rank decomposition between two matri-
ces, A ∈ Rr×k and B ∈ Rd×r. r is the rank in this context, and it satisfies that r ≪ min{d, k}.
Then the following relationship is obtained:

W = W0 +∆W = W0 +BA. (1)

As LoRA only conducts fine-tuning, W0 is frozen and does not get involved in the gradient update
during backpropagation. Only A and B matrices consist of trainable parameters. The initialization
for these two matrices is critical as it should not change W at the beginning. Hence, each element
of A0 is sampled from a Gaussian distribution, i.e., aij,0 ∼ N (0, σ2), and each element of B0 is set
0, i.e., bij,0 = 0.
ReFT. A technique that has only recently been proposed is ReFT, which intervenes hidden represen-
tations of a model to steer it towards successfully implementing downstream tasks during inference
time. Two instantiations resorting to low-rank linear subspaces of representations were developed
accordingly. We summarize them in the following. Denote by h ∈ Rd the hidden representation
and by R ∈ Rr×d and U ∈ Rr×d the low-rank projection matrices, where r is the rank of subspaces
and d is the dimension of the hidden-state representation. Note that d in this context has different
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physical meaning compared to that in LoRA and we keep using it for the purpose of unification in
the latter section. Therefore, the low-rank linear subspace ReFT (LoReFT) can be expressed as

ΦLoReFT (h) = h+R⊤(Uh+ b−Rh), (2)

which edits the hidden representation in the r-dimensional subspace spanned by the orthonormal
rows of R, where b ∈ Rr is the bias. This operation is called distributed interchange intervention
(DII) defined in [7] and shown efficient in representation intervention. Essentially, ΦLoReFT (h)
can be deemed as a linear transformation on h if we simplify Eq. 2 by setting b = 0. Another
simplified version called DiReFT gets rid of the orthogonality constraint and difference operation
in Eq. 2, leading to training time reduction. It is given by the following formula:

ΦDiReFT (h) = h+U⊤
2 (U1h+ b), (3)

where both U1,U2 ∈ Rr×d are low-rank projection matrices. DiReFT is claimed to resemble
LoRA [31] as it can be thought of as LoRA applied to hidden representations at certain positions.
Problem formulation. Consider fine-tuning an LLM that is parameterized by θ ∈ Rm in full rank,
over a dataset D. The cardinality of |D| is S. Note that in this context, we resort to a vector θ
instead of W (representing all weight matrices in multiple layers) for problem formulation and
convergence analysis, unless W is used for a specific purpose somewhere in the analysis. W in
practice can be flattened as θ. We have known that when m is extremely large, training the model is
computationally expensive. Instead, denoting by v (v := [A,B] or v := [U1,U2,b]) the low-rank
adapter (LoRA) or projection matrices (DiReFT), and by θ0 the pre-trained model parameters, we
have the following equation:

minv∈Rnf(v,θ0) :=
1

S

∑
s∈D

fs(v,θ0), (4)

where f : Rm → R is the global loss, fs is the loss corresponding to the sample s. Throughout
the paper, we assume f is continuously differentiable, coercive, and bounded below, i.e., f ≥ f∗ >
−∞. We notice that the dimension of v is different from that of θ0, since in Eq. 4 we only optimize
the parameters of low-rank matrices. Another scrutiny is that Eq. 4 is suitable for either LoRA or
ReFT as both keep pre-trained model parameters frozen during training.

3. Model Efficient Fine-tuning (MeFT)

In this section, we delve into the proposed MeFT to unify both LoRA and ReFT, followed by its
concrete convergence analysis. In this work, we leverage DiReFT instead of LoReFT for simplicity
and the analysis techniques for the former can be extended to the latter. Recall LoRA and DiReFT
in the following:

LoRA : W = W0 +BA (5)

DiReFT : ΦDiReFT (h) = h+U⊤
2 (U1h+ b) (6)

We let b = 0 and rewrite DiReFT as follows:

ΦDiReFT (h) = (I+U⊤
2 U1)h (7)
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By equating W0 = I, B = U⊤
2 , and A = U1, we retain LoRA in DiReFT mathematically, as

shown in Figure 1 in Appendix A.3. This motivates us to unify these two schemes together. Thus,
we propose MeFT as either parameters or representations belong to a model. To ease the analysis,
throughout the rest of the paper, we only use the same notations as those in LoRA. One may argue
that if b existing in DiReFT impedes the analysis. A recipe to this is to approximate b ≈ U3h
such that the second part of DiReFT can be rewritten as U⊤

2 (U1 +U3)h, which can be regarded as
a linear transformation of the hidden representation. The simplification of b also follows from the
traditionally theoretical analysis for neural network models.
Denote by g = 1

|S|
∑

s∈S ∇fs(v,θ0) the stochastic gradient, where S is a mini-batch of D. g is
assumed to be an unbiased estimate of ∇f(v,θ0), i.e., ∇f(v,θ0) = E[g]. Algorithm 1 shows the
algorithmic framework for optimizing parameters v using SGD. Line 4 in Algorithm 1 manifests the

Algorithm 1: MeFT
Data: Input: pre-trained parameters θ0, initial low-rank adapter v0, the number of epochs T ,

learning rate α, dataset D
for t = 1, 2, ..., T do

Sample a random mini-batch S from D;
Calculate the stochastic gradient gt = 1

|S|
∑

s∈S ∇fs(vt,θ0);
Fine-tune the low-rank parameters: vt+1 = vt − αgt;

end
Result: vT

mini-batch stochastic gradient, which is specifically with respect to vt only. However, the frozen θ0
is still necessitated to fulfill the loss value calculation. When low-rank decomposition techniques
are applied in MeFT, we are not already aware of any existing results reporting the convergence
error bound, or whether it can still maintain the similar convergence rate as O( 1√

T
) [12]. We would

also like to study if the rank r can impact the convergence error bound. To this end, we start with
the following assumption.

Assumption 1 There exists a constant L > 0 such that ∥∇f(W1) − ∇f(W2)∥F ≤ L∥W1 −
W2∥F , for all W1,W2 ∈ Rd×k, where ∥ · ∥F is the Frobenius norm.

This assumption implies that f(θ) is L-smooth but not with low-rank decomposition. We have to
make sure the smoothness condition holds for W = W0+BA with the following two assumptions.

Assumption 2 For any A and B matrices induced by Algorithm 1, their largest singular values
i.e., σ1(A1), σ1(B), satisfy the following condition: 0 < max{σ1(A), σ1(B)} ≤ σ, where σ > 0.

Assumption 3 1) There exists a constant C > 0 such that for any parameters W1, W2, A1, A2,
B1, B2, ∥W1 −W2∥F ≤ C(∥A−A2∥F + ∥B1 −B2∥F ); 2) the gradient of f on W, ∇Wf , is
bounded above by a constant G > 0, i.e., ∥∇Wf∥F ≤ G.

Part 1 in Assumption 3 resembles a similar Triangle inequality among model parameters. We lever-
ages two instances for justification. They are A1 = A2 and B1 = B2, respectively. In these two
scenarios, either A or B is frozen. Then C can be quickly determined as

√
rσ as for any matrix

Z ∈ Rr×k, ∥Z∥F =
√∑

i σ
2
i (Z) ≤

√
rσ1(Z). In a generalized scenario, one can set a sufficiently
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large constant to ensure the condition to hold, though it leads to a looser bound. Part 2 in Assump-
tion 3 seems strong in this context. While it should be noted that though it has been relaxed in many
existing works, for LLM fine-tuning, this is still required to make sure the objective loss f is also
smooth with low-rank decomposition.

Lemma 1 Let Assumptions 1, 2, 3 hold. Suppose that W satisfies MeFT, i.e., W = W0 + BA.
Then, we have the following relationship:

∥∇f(v1,θ0)−∇f(v2,θ0)∥ ≤ (2LC
√
rσ +G)∥v1 − v2∥, (8)

for any given v1,v2 ∈ Rm, where ∥ · ∥ is Euclidean norm.

From Lemma 1, it can be observed that the loss f by using MeFT is smooth with a new constant
2LC

√
rσ+G. Equivalently, f(v,θ0) is 2LC

√
rσ+G-smooth. Compared to the original smooth-

ness constant L, with the low-rank decomposition and tuning both A and B yields a larger smooth-
ness constant if

√
r ≥ 1

2Cσ (which can be satisfied empirically). This intuitively implies that the loss
f with low-rank decomposition becomes less smooth, but instead the gradient may change faster.
This can assist in convergence for the early phase of the optimization, particularly if the gradient
is large at a point. Since a larger smoothness constant implies more dramatic changes in gradients,
which benefits the gradient decaying. However, less smooth objective function may slow down the
convergence as well, especially in the later phase, thus negatively affecting the convergence error.

Assumption 4 There exists a constant ζ > 0 such that E[∥g −∇f(v,θ0)∥2] ≤ ζ2.

Theorem 2 Let Assumptions 1 to 4 hold. Consider a sequence (vt)t∈N generated by Algorithm 1,
with a constant step size α =

√
D

L̂ζ2T
, where D = f(v1,θ0) − f∗, L̂ = 2LC

√
rσ + G. Then for

any T ≥ 4L̂D
ζ2

, it follows that

mint=1:TE[∥∇f(vt,θ0)∥2] ≤ 2.5

√
DL̂ζ2

T
. (9)

Convergence rate. Theorem 2 suggests that the convergence rate with MeFT is O(
√

1
T ), which

resembles the best available rate [6]. The initialization error D and the variance of g also influence
the error bound. Both a good initialization and a large batch are able to reduce the convergence error
bound, making it reach an ”approximate” critical point faster. Fine-tuning with large mini-batches
aligns with the conclusion in [23], but this also practically slows down the convergence. Given an
arbitrarily small constant ε > 0, we have that T = O(ε−2) ⇒ mint=1:TE[∥∇f(vt,θ0)∥2] = O(ε).
Substituting L = 2LC

√
rσ+G into the conclusion of Theorem 2 implies that the convergence rate

has a correlation with the rank r and the largest eigenvalue σ of low-rank decomposition matrices,

i.e., mint=1:TE[∥∇f(vt,θ0)∥2] ≤ O
(

r1/4σ1/2

T 1/2

)
. To the best of our knowledge, this is the first result

to show how the convergence rate evolves with the ”intrinsic rank” for a low-rank decomposition
model efficient fine-tuning. We have also noticed that a recent result [38] reporting an information-
theoretic generalization bound shows the similar relationship between the bound and the rank, i.e.,
E ∝ O(r1/2), where E signifies the generalization bound in this context. Preliminary results are
presented to validate the relationship between the rank and the error bound in Appendix A.6.
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Training vs. fine-tuning. Given the same initialization and variance, compared to training a model
with full parameters, MeFT results in a worse convergence error bound. This intuitively makes
sense since model updates have been approximated by using a low-rank decomposition, leading to
the approximation error [25]. If r is extremely large, then T is required to be large as well to enable
the convergence as more parameters are trainable. However, the convergence will be slow due to
the relationship between α, T , and r. In this case, the error bound seems to be too pessimistic to
explain the SGD performance. However, it should be noted that this result is for fine-tuning the
model, instead of training from scratch entirely from a random initialization. Hence, D could be
much smaller in this scenario, leading to a smaller convergence error bound for MeFT empirically.
Another insight from the conclusion is that the learning rate has now become dependent on the
model size, α ∝ r−1/4 such that it may facilitate the LLM fine-tuning by allowing extrapolation
from smaller models to large ones.
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Appendix A. Additional Analysis

In this section, we present additional analysis or missing proof in the main contents.

A.1. Methodology comparison

Table 1: Quantitative comparison among different methods

Method Convergence # of params

Full model O( 1√
T
) kd

LoRA[10] N/A (d+ k)r
DiReFT [31] N/A 2dr

MeFT O(
√

r1/2

T ) 2dr or (k + d)r

T : number of iterations; d: input dimension; k: output
dimension; r: low rank;

A.2. Related Works

Parameter efficient fine-tuning (PEFT). In this context, we review related works on low-rank
adaptation (LoRA) and refer interested reader in other PEFT methods such as adapter-based or
prompt-based methods to [9, 16, 29]. Despite the fact that LoRA was just proposed in [10] a cou-
ple years ago, it has shown pronounced capabilities in fine-tuning LLMs, resulting in the more
rapid applications of LLMs in various areas, e.g., medicine [27], networking [11], healthcare [35],
and software engineering [24]. To continue reducing the computational overhead when fine-tuning
LLMs, advanced LoRA variants have been proposed by manipulating low-rank matrices. Beyond
the aforementioned works, Lialin et al. [17] developed ReLoRA which utilized low-rank updates
to train high-rank networks by reducing the memory and improving the training speed. To ad-
dress the issue of suboptimal performance when using vanilla LoRA with fixed rank, the authors
from [37] introduced RankAdapter, which involves an end-to-end automatic optimization flow to
determine different ranks during fine-tuning based on a light-weight performance model. This aims
at reducing the performance gap caused by fixed rank. However, these two works only empiri-
cally evaluate their algorithms’ performance without delivering any theoretical insights. Another
recent work [36] focusing on memory-efficient LLM fine-tuning presented AdaZeta, leveraging the
zeroth-order method to approximate gradients. Their analysis shows the explicit convergence rate,
Nevertheless, the convergence error bound relies heavily on a quite complex constant, which could
be difficult to determined in practice. Analogously, existing works [5, 25, 28] still pay more at-
tention to the impact of dynamic ranks on the fine-tuning performance. More recently, LoRA was
integrated with mixture of experts [14, 30] for improving the accuracy performance. The authors
in [21] replaced a single LoRA in one layer with multiple LoRA experts, such that the most appro-
priate experts can be selected and activated based on the input context. Unfortunately, these works
are still lack of theoretical foundations and haven’t investigated the suitability of LoRA.
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Representation fine-tuning (ReFT). ReFT is a new line of work which was developed recently [31]
by switching the focus of fine-tuning from model parameters to hidden representations. They
claimed that representations have encoded rich semantic information and suggested that editing rep-
resentations may be a more powerful alternative to weight updates. The motivation originates from
some recent works on activation steering and representation engineering [2, 15, 19, 26], showing
that adding fixed or task-specific steering vectors or applying concept erasure to the residual stream
ensures the decent adaptation of pre-trained LLMs to downstream tasks without computationally
intensive fine-tuning. We briefly review these related works in this context for completeness. A
technique called inference-time intervention [15] was developed to enhance the ”truthfullness” of
LLMs by shifting model activations during inference. Their resulting findings also suggested that
LLMs may have an internal representation of the likelihood of something being true. To boost the
transparency of AI systems, the authors in [40] called for the representation engineering comprising
representation reading and representation control, which turned the action from model parameters
to hidden representations. A recent work [26] defined the so-called representation-space counter-
factuals and unified the linear erasure and steering vector interventions together by proposing an
approach called minimally modified counterfactuals, which successfully mitigates bias in multi-
class classification and reduces the generation of toxic language. However, the representation-space
counterfactuals can be converted to natural language counterfactuals [2] for analyzing the linguistic
alterations corresponding to a given representation-space intervention and interpreting the features
utilized for encoding a specific concept. Additionally, interventional interpretability [31] has been
another incentive for ReFT, implying that interventions on linear subspaces of representations evi-
dently show that human-interpretable concepts are encoded linearly. Regardless of the convincing
performance by ReFT, we are not aware of any reported results on the provable guarantees, thus
resulting in a theoretical gap.
Convergence for LLMs. Distinct convergence rate for LLM fine-tuning is a fairly underexplored
topic, particularly when a vast majority of works tends to highlight the astonishing empirical perfor-
mance of LLMs. Only a couple works have attempted to address this issue, including [18] and [23].
Liang et al. [18] presented a memory-efficient LLM training method called online subspace descent
and provided the convergence guarantee, instead of an explicit rate. Similarly, another work [23]
advocated the adoption of large mini-batches for training LLMs, where they arrived at the same
convergence rate as in [8]. However, this work is not applicable to low-rank decomposition matrix
fine-tuning. A concurrent work [32] proposed Opt-Laws to capture the relationship between hyper-
parameters and training outcomes by leveraging stochastic differential equations, retaining the sub-
linear convergence rate of training LLMs. Though their analysis does not apply to fine-tuning, the
convergence theoretically justifies that the error bound is proportional to the model size.

A.3. Schematic Diagram

Figure 1 shows the schematic diagrams of both LoRA and MeFT. Though what they fine-tune is
different, the updates comply with each other. The interventions to hidden representations in low-
dimensional space in ReFT can resemble the low-rank matrix adaption in LoRA.
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UNIFIED CONVERGENCE

Figure 1: The operational equivalence between LoRA (left side) and ReFT (right side). A unified
matrix operation can be applied to either parameters for LoRA or representations for ReFT.

A.4. Proof for Lemma 1

Lemma 1 Let Assumptions 1, 2, 3 hold. Suppose that W satisfies MeFT, i.e., W = W0 + BA.
Then, we have the following relationship:

∥∇f(v1,θ0)−∇f(v2,θ0)∥ ≤ (2LC
√
rσ +G)∥v1 − v2∥, (10)

for any given v1,v2 ∈ Rm.
Proof Recall the gradient of f on W, ∇Wf . Then we can obtain the gradient on v being
[∇Af(W),∇Bf(W)]. Based on the chain rule, we have ∇Af(W) = B⊤∇Wf and ∇Bf(W) =
∇WfA⊤. Given this and the fact that f(Wi) := f(W0 +BiAi), i = 1, 2, we have the following
relationship

∥∇f(v1,W0)−∇f(v2,W0)∥F
∥v1 − v2∥F

=
∥B⊤

1 ∇W1f −B⊤
2 ∇W2f∥F + ∥∇W1fA

⊤
1 −∇W2fA

⊤
2 ∥F

∥v1 − v2∥F

=
∥B⊤

1 ∇W1f −B⊤
1 ∇W2f +B⊤

1 ∇W2f −B⊤
2 ∇W2f∥F

∥v1 − v2∥F

+
∥∇W1fA

⊤
1 −∇W2fA

⊤
1 +∇W2fA

⊤
1 −∇W2fA

⊤
2 ∥F

∥v1 − v2∥F

(11)

As

B⊤
1 ∇W1f −B⊤

1 ∇W2f +B⊤
1 ∇W2f −B⊤

2 ∇W2f = B⊤
1 (∇W1f −∇W2f) + (B⊤

1 −B⊤
2 )∇W2f

According to Triangle inequality and Cauchy-Schwartz inequality, we can obtain

∥B⊤
1 ∇W1f −B⊤

1 ∇W2f +B⊤
1 ∇W2f −B⊤

2 ∇W2f∥F
≤ ∥B⊤

1 (∇W1f −∇W2f)∥F + ∥(B⊤
1 −B⊤

2 )∇W2f∥F
≤ ∥B⊤

1 ∥F ∥∇W1f −∇W2f∥F + ∥B⊤
1 −B⊤

2 ∥F ∥∇W2f∥F .
(12)
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Similarly, we have ∥∇W1fA
⊤
1 −∇W2fA

⊤
1 +∇W2fA

⊤
1 −∇W2fA

⊤
2 ∥F ≤ ∥∇W1f−∇W2f∥F ∥A⊤

1 ∥F+
∥∇W2f∥F ∥A⊤

1 −A⊤
2 ∥F . With these relationship in hand, we have

∥∇f(v1,W0)−∇f(v2,W0)∥F
∥v1 − v2∥F

≤ ∥∇W1f −∇W2f∥F (∥A⊤
1 ∥F + ∥B⊤

1 ∥F ) + ∥∇W2f∥F (∥A⊤
1 −A⊤

2 ∥F + ∥B⊤
1 −B⊤

2 ∥F )
∥A1 −A2∥F + ∥B1 −B2∥F

≤ L∥W1 −W2∥F (∥A⊤
1 ∥F + ∥B⊤

1 ∥F )
∥A1 −A2∥F + ∥B1 −B2∥F

+G

≤ 2LC
√
rσ +G,

(13)

where the second inequality follows from Assumption 1 and the third inequality follows from As-
sumption 2 and Assumption 3. This completes the proof.

A.5. Proof for Theorem 2

Theorem 2 Let Assumptions 1 to 4 hold. Consider a sequence (vt)t∈N generated by Algorithm 1,
with a constant step size α =

√
D

L̂ζ2T
, where D = f(v1,θ0) − f∗, L̂ = 2LC

√
rσ + G. Then for

any T ≥ 4L̂D
ζ2

, it follows that

mint=1:TE[∥∇f(vt,θ0)∥2] ≤ 2.5

√
DL̂ζ2

T
. (14)

Proof In light of the smoothness assumption, we can obtain the following relationship

f(vt+1,θ0)− f(vt,θ0)− ⟨∇f(vt,θ0),vt+1 − vt⟩ ≤
L̂

2
∥vt+1 − vt∥2. (15)

Substituting the update law into the last equation yields the following relationship:

f(vt+1,θ0)− f(vt,θ0) + α⟨∇f(vt,θ0), gt⟩ ≤
L̂

2
α2∥gt∥2. (16)

The right hand side of Eq. 16 can be rewritten as

L̂

2
α2∥gt∥2 =

L̂

2
α2∥gt −∇f(vt,θ0) +∇f(vt,θ0)∥2, (17)

which leads to the following relationship

L̂

2
α2∥gt∥2 ≤ L̂α2(∥gt −∇f(vt,θ0)∥2 + ∥∇f(vt,θ0)∥2) (18)

It follows from a basic inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. Substituting Eq. 18 to Eq. 16 and
taking expectation on both sides produces:

E[f(vt+1,θ0)− f(vt,θ0)] + αE[∥∇f(vt,θ0)∥2] ≤
L̂α2E[∥gt −∇f(vt,θ0)∥2 + ∥∇f(vt,θ0)∥2].

(19)
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By leveraging Assumption 4, Eq. 19 becomes

E[f(vt+1,θ0)− f(vt,θ0)] + αE[∥∇f(vt,θ0)∥2] ≤ L̂α2ζ2 + L̂α2E[∥∇f(vt,θ0)∥2] (20)

As the step size α =
√

D
L̂ζ2T

and T ≥ 4L̂D
ζ2

, we can obtain that α ≤ 1
2L̂

. We then have:

E[f(vt+1,θ0)− f(vt,θ0)] ≤ L̂α2ζ2 − α

2
E[∥∇f(vt,θ0)∥2]. (21)

With some simple mathematical manipulations, the following inequality is obtained:

E[∥∇f(vt,θ0)∥2] ≤
2(E[f(vt,θ0)− f(vt+1,θ0)])

α
+

L̂αζ2

2
. (22)

Now we sum the above equation over 1 to T such that

T∑
t=1

E[∥∇f(vt,θ0)∥2] ≤
2(f(v1,θ0)− f∗)

α
+

T L̂αζ2

2
. (23)

Dividing both sides by T , we have:

mint=1:TE[∥∇f(vt,θ0)∥2] ≤
∑T

t=1 E[∥∇f(vt,θ0)∥2]
T

≤ 2D

αT
+

L̂αζ2

2
. (24)

Substituting the step size α =
√

D
L̂ζ2T

into the last inequality yields the desirable result.

A.6. Experimental Results

In this study, we employed the Llama-2-7b-hf model with the Alpaca-GPT4 dataset. Due
to the extensive training time associated with LoRA (Low-Rank Adaptation), we utilized only a
subset of the dataset to ensure computational efficiency without compromising the validity of our
results. The model’s performance was evaluated using two benchmark suites: MT-Bench and
AdvBench, which assess the model across a range of tasks, providing a holistic view of its strengths
and limitations. We specifically analyzed the effects of varying LoRA ranks (8, 16, 32, 64) on model
performance, while maintaining a fixed batch size of 32 to balance memory usage and training
stability.
Evaluation Metrics:

• MT-Bench: Evaluates the model’s machine translation capabilities, focusing on its ability to
produce accurate and fluent translations across diverse languages.

• AdvBench: Assesses the model’s robustness against adversarial inputs, testing its capacity
to handle challenging scenarios with reliability and stability.

Due to the computationally intensive nature of the evaluations, results were collected from check-
points taken between 40 and 200 epochs, which were randomly selected to provide a representative
sample of the model’s performance throughout training.
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(a)

(b)

Figure 2: (a) Performance (the higher, the better) of the meta-llama/Llama-2-7b-hf model
on MT-Bench using different LoRA ranks (8, 16, 32, 64) with a batch size of 32. Checkpoints
from 40 to 200 epochs were randomly selected; (b) Performance (the higher, the better) of the
meta-llama/Llama-2-7b-hf model on AdvBench using different LoRA ranks (8, 16, 32,
64) with a batch size of 32. Checkpoints from 40 to 200 epochs were randomly selected.
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Figure 2 (a) demonstrates the model’s performance on MT-Bench, illustrating the impact of differ-
ent LoRA ranks on translation accuracy. Lower ranks generally yield better performance while also
reducing computational cost.
Figure 2 (b) highlights the model’s resilience in the face of adversarial inputs, as measured by
AdvBench. Models with lower LoRA ranks tend to exhibit greater robustness, providing improved
stability and reliability under challenging conditions.
Our experiments demonstrate that lower LoRA ranks not only result in better performance on both
benchmarks, but also require fewer computational resources and shorter training times. These find-

ings support our theoretical results (mint=1:TE[∥∇f(vt,θ0)∥2] ≤ O
(

r1/4σ1/2

T 1/2

)
) and underscore

the significance of choosing the right LoRA rank based on the specific goals and constraints of the
deployment environment for practical application. We remark that the results shown here are pre-
liminary and more extensive results will be presented in our future work for the thorough validation.
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