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ABSTRACT

Federated learning (FL) is a technique that trains machine learning models from
decentralized data sources. We study FL under local differential privacy constraints,
which provides strong protection against sensitive data disclosures via obfuscating
the data before leaving the client. We identify two major concerns in designing
practical privacy-preserving FL algorithms: communication efficiency and high-
dimensional compatibility. We then develop a gradient-based learning algorithm
called sqSGD (selective quantized stochastic gradient descent) that addresses
both concerns. The proposed algorithm is based on a novel privacy-preserving
quantization scheme that uses a constant number of bits per dimension per client.
Then we improve the base algorithm in two ways: first, we apply a gradient
subsampling strategy that offers simultaneously better training performance and
smaller communication costs under a fixed privacy budget. Secondly, we utilize
randomized rotation as a preprocessing step to reduce quantization error. We
also initialize a discussion about the role of quantization and perturbation in
FL algorithm design with privacy and communication constraints. Finally, the
practicality of the proposed framework is demonstrated on benchmark datasets.
Experiment results show that sqSGD successfully learns large models like LeNet
and ResNet with local privacy constraints. In addition, with fixed privacy and
communication level, the performance of sqSGD significantly dominates that of
baseline algorithms.

1 INTRODUCTION

1.1 BACKGROUND

Federated learning (FL) Kairouz et al. (2019); Konečnỳ et al. (2016) is a rapidly evolving application
of distributed optimization to large-scale learning or estimation scenarios where multiple entities.
called clients, collaborate in solving a machine learning problem, under the coordination of a central
server. Each client’s raw data is stored locally and not exchanged or transferred. To achieve the
learning objective, the server collects minimal information from the clients for immediate aggregation.
FL is particularly suitable for mobile and edge device applications since the (sensitive) individual data
never directly leave the device and has seen deployments in industries (?Hard et al., 2019; Leroy et al.,
2019). While FL offers significant practical privacy improvements over centralizing all the training
data, it lacks a formal privacy guarantee. As discussed in Melis et al. (2018), even if only model
updates (i.e. gradient updates) are transmitted, it is easy to compromise the privacy of individual
clients.

Differential privacy (DP) (Dwork et al., 2014) is the state-of-the-art approach to address informa-
tion disclosure. Differentially private algorithms fuse participation of any individual via injecting
algorithm-specific random noise. In FL setting, DP is suitable for protecting against external adver-
saries, i.e. a malicious analyst that tries to infer individual data via observing final or intermediate
model results. However, DP paradigms typically assume a trusted curator, which corresponds to
the server in the FL setting. This assumption is often not satisfied in practical cases, under which
users that act as clients may not trust the service provider that acts as the server. Local differential
privacy (LDP) (Kasiviswanathan et al., 2011; Dwork et al., 2014) provides privacy protection on
the individual level via applying randomized mechanisms that obfuscate the data before leaving the
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client, and is a more natural privacy model for distributed learning scenarios like FL, allowing easier
compliance with regulatory strictures (Bhowmick et al., 2018).

1.2 METHODOLOGY

We will be focusing on distributed learning procedures that aim to solve an empirical risk minimization
problem in a decentralized fashion:

min
θ∈Θ

L(θ), L(θ) =
1

N

M∑
m=1

Lm(θ) (1)

where M denotes the number of clients. Let Yi denotes training data that belongs to the m-th client
consisting Nm data points, and N =

∑M
m=1Nm. The term Lm(θ) =

∑
y∈Ym `(θ, y) stands for

locally aggregated loss evaluated at parameter θ, where ` : Θ × Y 7→ R+ is the loss function
depending on the problem context and we use Θ and Y to describe parameter and data domain
respectively. We will seek to optimize (1) via gradient-based methods. In what follows we will use
[n], n ∈ N+ to denote the set {1, 2, . . . , n}. At round t, the procedure iterates as:

1. Server distribute the current value θt among a subset S of clients.

2. For each client s ∈ S, a local update is computed ∆s = g(θt, Ys) and transmitted to the
server.

3. The server aggregates all {∆s}s∈Ss to obtain a global update ∆ and updates the parameter
as θt+1 = θt + ∆.

We distinguish 2 practical scenarios as cross-silo FL and cross-device FL (Kairouz et al., 2019).
In cross-silo FL, M is relatively small (i.e. M ≤ 100 ) and usually each client has a moderate
or large amount of data (i.e. minmNm � 1). As a consequence, all the clients participate in the
learning process (i.e. S = [M ]). In each iteration a client computes locally a negative stochastic
gradient g(θt, Ys) = − 1

R

∑
y∈Rs ∇`(θt, y) of Ls(θt)/Ns, based on a uniform random subsample

Rs ⊂ Ys of size R. In cross-device FL S is a uniformly random subset of [M ], and g(θt, Ys) =
− 1
Ns

∑
y∈Ys ∇`(θt, y) is the average negative gradient over Ys evaluated at θt. In this paper we

will be focusing on the FedSgd aggregation rule corresponding to a stochastic gradient step with
learning rate η, i.e., ∆ = η

∑
s∈S

Ns
N g(θt, Ys). Generally speaking, there are two sources of data that

need privacy protection: the parameter θt and the updates {∆s}s∈S . In this paper we will develop
algorithms for protecting {∆s}s∈S against inference attack or reconstruction attack, which will
be defined later. Note that the protection of θts could be done via applying standard central DP
techniques as in Bhowmick et al. (2018). To begin our discussion on suitably defined privacy models,
we first review the local model of privacy.

Local differential privacy Kasiviswanathan et al. (2011) we say a randomized algorithm A that
maps the private data X ∈ X to some value Z = A(X) ∈ Z is ε-locally differentially private, if the
induced conditional probability measure P (·|X = x) satisfies that for any x, x′ ∈ X and any Z ∈ Z:

e−ε ≤ P (Z|X = x)

P (Z|X = x′)
≤ eε (2)

In the FL setting, the private data X is typically not the raw data Y but the gradient of the loss
function ` evaluated at Y . Hereafter we will assume the private data to be a d dimensional euclidean
vector, while d could be very large (i.e. to the order of millions). LDP is a very strong privacy
protection model that protects individual data against inference attacks that aims at inferring the
membership of arbitrary data from the data universe. According to the discussion in Bhowmick et al.
(2018), allowing adversaries with such strength may be overly pessimistic: to conduct an effective
inference attack the adversary shall come up with "the true data" and only use the privatized output to
verify his/her belief about the membership. If the prior information is reasonably constrained for the
adversary, we may adopt a weaker, but still elegant type of privacy protection paradigm that protects
against reconstruction attacks. Heuristically, reconstruction attack aims at recovering individual data
with respect to a well-defined criterion, given a prior over the data domain that is not too concentrated.
Formally, we adopt the definition in Bhowmick et al. (2018):
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Reconstruction attack Bhowmick et al. (2018) Let π be a prior distribution over the data domain
Y that encodes the adversary’s prior belief. We describe the generation process of privatized user
data as Y → X → Z = A(X) for some (privacy-protecting) mechanism A. Additionally let
f : Y 7→ Rk be the target of reconstruction (i.e., the adversary wants to evaluate the value f(Y ))
and Lrec : Rk × Rk 7→ R+ be the reconstruction loss serving as the criterion. Then an estimator
ζ : X 7→ Rk provides an (α, p, f)-reconstruction breach for the loss Lrec if there exists some z ∈ Z
such that:

P (Lrec(f(X), ζ(z))|A(X) = z) > p (3)

The existence of a reconstruction breach provides an attack that effectively breaks the privatized
algorithm for some output z. Hence to provide protection against reconstruction attacks, we need the
following to hold:

sup
ζ

sup
z∈Z

P (Lrec(f(X), ζ(z))|A(X) = z) ≤ p (4)

When (4) holds, the mechanism A is said to be (α, p, f)-protected against reconstruction for the loss
Lrec. In (Bhowmick et al., 2018, Lemma 2.2), the authors relates LDP mechanisms with protection
against reconstruction attacks, and the result for several scenarios suggest that using LDP mechanisms
with large ε may still provide decent protection against reconstruction. As a consequence, we identify
two sorts of threats used in this paper:

Inference attacks by powerful adversaries this is the standard setup in LDP scenarios under which
the adversary can observe the final learned model, as well as the information about potential partici-
pants except for the precise membership list. For such cases, only low ε LDP mechanisms provide
sufficient protection against inference attacks.
Reconstruction attacks by curious onlookers in this relaxed scenario we assume the adversary is
able to observe all model updates and individual communications to conduct reconstruction attacks
that target the evaluation of some function f over private individual data. But knowledge about
individual data is restricted some prior distribution πf . For such cases, we will discover mechanisms
that are based upon LDP algorithms with large ε but provides decent protection against reconstruction.

Moreover, we assume the adversaries to be semi-honest (Lyu et al., 2020), i.e. they are curious about
individual data but follow the FL protocol correctly.

In the seminal work (Duchi et al., 2018), the authors developed minimax optimal LDP mean estimators
under i.i.d generative constraints. Bhowmick et al. (2018) used separate mechanisms to privatize
both the direction and the scale of the individual gradients, and was shown to achieve comparable
performance with respect to non-private counterparts using high εs. Despite the effectiveness of
the LDP approach, the communication cost 1 is prohibitive. For models involving deep neural
architectures, the number of parameters explodes to the order of millions. For each round, each
client transmit O(dδ) bits to the server, where δ is the minimum number of bits to represent a real
number with desired precision. The resulting communication cost is usually not affordable for mobile
scenarios. In fact, the primary bottleneck for FL is usually communication, especially for deep neural
architectures (Kairouz et al., 2019). It is thus of significant importance to reduce the communication
cost to a reasonable level. We identify two main challenges in building practical privacy-preserving
FL algorithms:

Communication Efficiency The algorithm shall be communication efficient, measured in terms of
bits transferred per client in a single round.
High-dimensional compatibility It was shown in Duchi et al. (2018) that upon estimating a d-
dimensional vector, the locally private constraint incurs a multiplicative penalty of O(d/ε2) in terms
of minimax `2 risk. This linear dependence on the dimension of gradients may result in overly noisy
gradient estimates that destroy the learning process. Hence the algorithm shall be able to handle
models with high-dimensional inputs with tolerable performance degradation.

1In general, there are two sources of communication cost in a distributed learning scenario that requires
sequential interactions between the server and the clients: downlink cost that happens during clients downloading
the updated model from the central server, and uplink cost that happens when clients sending their updates to the
server. In was previously noted in Konečnỳ et al. (2016) that uplink cost usually dominates downlink costs in FL
settings. Hence in the scope of this work, we will refer to communication cost as uplink communication cost.
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Summary of contributions In this paper, we propose a practical solution to locally private FL
setting that addresses the above concerns which we term selective quantized stochastic gradient
descent (sqSGD). Our contributions are summarized as follows:

1. We propose a novel algorithm for locally private multivariate mean estimation. The proposed
algorithm stochastically quantizes each dimension of each sample to K equally spaced
levels and serves as the base algorithm for our gradient-based learning framework.

2. We make several improvements to the basic algorithm under the gradient-based learning
scenario. Specifically, we attribute the estimation error of the base algorithm to perturbation
error caused by privacy constraints, and quantization error. Then we utilize a gradient
subsampling strategy to simultaneously reduce communication cost and improve private
estimation utility. We also apply randomized rotation to reduce quantization error.

3. We verify the performance of sqSGD on benchmark datasets using standard neural archi-
tectures like LeNet (Lecun et al., 1998) and ResNet (He et al., 2016), and make systematic
studies on the impact of both communication and privacy constraints. Specifically, under the
same privacy and communication constraints, our model outperforms baseline algorithms
that do not involve quantization by a significant margin.

2 RELATED WORK

Communication-efficient FL Since its introduction in (Konečný et al., 2016), communication
efficiency has been one of the central topics of FL (Konečnỳ et al., 2016; Kairouz et al., 2019).
Konečnỳ et al. (2016) described two kinds of general approaches for improving communication
efficiency: structured updates like randomized masking, and sketched updates like quantization
methods. The design of sqSGD could be viewed as a combination of the aforementioned approaches.

Privacy-preserving FL As optimization via stochastic gradient methods remains the most repre-
sentative task in federated learning, most privacy-preserving FL approaches are based on private
SGD type algorithms like Abadi et al. (2016). McMahan et al. (2018) used a slightly tweaked central
DP model to train large language models. Wei et al. (2020) derived federated aggregation schemes
under the central DP model and discussed convergence properties. Bhowmick et al. (2018) justified
using large privacy budgets in LDP settings, while still provide reasonable privacy guarantees against
reconstruction attacks. However, most of the previous works on privacy-preserving FL did not address
communication efficiency problems.

Gradient sparsification and quantization Gradient dropping methods threshold gradients based
on either fixed single threshold (Aji & Heafield, 2017) or adaptively chosen thresholds (Chen
et al., 2017) are reported to greatly reduce communication overhead. DGC (Lin et al., 2018)
adopted more elegant refinements like accumulation correction and factor masking to achieve even
higher compression ratios. FedSel (Liu et al., 2020) performed privatized gradient sparsification via
adopting randomized response techniques to select the most significant gradient dimension. Gradient
quantization methods like QSGD (Alistarh et al., 2017) or TernGrad (Wen et al., 2017) are able to
achieve little performance degradation on large neural architectures using less than 4 quantization
bits. Privatized versions of quantized SGD are recently proposed, cpSGD (Agarwal et al., 2018)
adopts the central DP model and vqSGD (Gandikota et al., 2019) allows local DP model.

3 OUR MODEL

3.1 BASE MECHANISM

As a starting point, we base our communication efficient mean estimation algorithm on the stochastic
k-level quantization(Suresh et al., 2017) scheme: We assume a uniform upper bound U on the `∞
norm of any individual gradients over the whole course of the FL process. The quantization procedure
is described as follows: Let K ≥ 2 be the desired quantization level. We quantize the gradient to a
sequence of points −U = B1 < B2 < . . . , < BK−1 < BK = U , where

Bk = −U +
2(k − 1)U

K − 1
(5)
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The case for K = 2 corresponds to using only the endpoints {−U,U} for quantization. We will
denote the quantization range as B = {Bk}Kk=1. For each dimension j ∈ [d] of the individual gradient
Xj , we first locate Xj to one of the K bins via finding a k∗ such that Xj ∈ [Bk∗ , Bk∗+1) and round
Xj to the boundary of the bin as:

X̂j =

{
Bk∗+1 with probability k∗(Xj−Bk∗ )

2U
Bk∗ otherwise

(6)

Note that X̂j is an unbiased estimator of Xj . The quantization scheme reduces the communication
cost to d log2K bits per round per client.

Next we privatize X̂j by constructing a locally private unbiased estimator of X̂j (where we fix
the randomness of the quantization step), thereby obtaining a locally private estimator of X with
its value resides in Bd. To describe the privatization scheme we introduce some new notations:
for ∀v1, v2 ∈ Bd, define M(v1, v2) = #{j : vj1 = vj2} − #{j : vj1 6= vj2} where #C stands
for the number of elements in the set C. For a given positive integer κ ∈ {0, . . . , d − 1}, let
S(v;Bd) := {u :M(u, v) > κ} and S(v;Bd) := {u :M(u, v) ≤ κ}. The privatization procedure,
which we termed PrivQuantK,∞, is summarized in Algorithm1. To state the privacy guarantee
of PrivQuantK,∞, we identify two setups which corresponds to protection against inference and
reconstruction attacks. The later case requires additional specifications for the priors and evaluation
function held by the adversary, which we state as follows: we assume the evaluation function f to be
a map from Y to a compact set C ⊂ Rr. For any absolutely continuous prior π on Y , we use πf to
denote the induced prior on f . Let π0 be the uniform prior over C, we will be focusing on priors that
belong to the following set:

Pf (ρ0) =

{
π : sup

y∈C
log

dπf (y)

dπ0(y)
≤ ρ0

}
(7)

where ρ0 is a non-negative number. The set Pf (ρ0) characterize prior beliefs that are "not much
more certain than uniformly random guessing" over all possible outcomes that belong to the image of
the evaluation function. We state the theorem under the orthogonal reconstruction attack that uses
the evaluation function fA(x) = Ax/ ‖x‖2 with A ∈ Rr×d an orthonormal matrix, i.e., AAT = Ir,
and the reconstruction criterion is chosen as the `2 error Lrec(x, x′) = ‖x/ ‖x‖2 − x′/ ‖x′‖2‖

2
2
.

Theorem 1. For any K ≥ 2, Consider PrivQuantK,∞ as a mechanism parameterized by (κ, p). Let
τ := dd+κ+1

2 e, and let (κ, p) be chosen such that the following relation holds:

p

1− p
×
∑τ−1
`=0

(
d
`

)
(K − 1)(d−`)∑d

`=τ

(
d
`

)
(K − 1)(d−`)

≤ eε (8)

then Z is an unbiased estimator of X , i.e. E(Z) = X , with randomness jointly over the quantization
step and sampling step. Moreover, we have the following privacy guarantees:

Inference attack protection PrivQuantK,∞(·, κ, p) is ε-locally differentially private.

Reconstruction attack protection with k ≥ 4 and a ∈ [0, 1], PrivQuantK,∞(·, κ, p) is
(
√

2− 2a, ω(a), fA)-protected against reconstruction for

ω(a) =
√

8 exp

(
− (r − 1)a2

2

)
exp(ε+ ρ0) (9)

The proof will be deferred to appendix A.1. Theorem 1 implies that, if the adversary aims at
reconstructing a non-vanishing fraction of the private data with r = O(d), for small a that allows
coarse reconstruction, we only need ε and ρ0 to be of smaller order than d to ensure that any
reconstruction attack will not succeed with reasonable probability. Note for K = 2 levels and U = 1,
algorithm 1 reduces to algorithm PrivUnit∞ in (Bhowmick et al., 2018).

We may view the estimation error of Z (measured in terms of `2 risk) as coming from two parties:
one from the quantization step, and the other from the privatization step. In the following sections we
will take closer looks at the two sources of error, and develop corresponding improvements. Indeed
as verified by our empirical study (see section 4), certain improvements are necessary to achieve
high-dimensional compatibility.
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Algorithm 1 Private K-quantized `∞ Ball PrivQuantK,∞

Require: X ∈ [−U,U ]d, κ ∈ {0, · · · , d− 1}, p ≥ 1
2 , τ = dd+κ+1

2 e.
1: Quantize each coordinate of X to B using (6) to obtain X̂ ∈ Bd.
2: Sample a random vector V as follows: with probability p, V is sampled uniformly at random

from S(X̂;Bd); otherwise with probability 1 − p, V is sampled uniformly at random from
S(X̂;Bd).

3: Calculate normalizing factor

m = p

(
d−1
τ−1

)
(K − 1)d−τ∑d

`=τ

(
d
`

)
(K − 1)d−l

− (1− p)
(
d−1
τ−1

)
(K − 1)d−τ∑τ−1

`=0

(
d
`

)
(K − 1)d−l

return Z = 1
m · V

3.2 IMPROVING PRIVATIZATION UTILITY VIA SELECTIVE GRADIENT UPDATE

PrivQuantK,∞ provides an unbiased estimator of individual gradients, but the considerable amount
of noise injected would hurt the training process. This defect is amplified in deep learning scenarios:
empirically, Lin et al. (2018) observed that for many representative deep architectures, most of the
gradient dimensions are nearly sparse. Hence privatizing the whole gradient vector would result in a
high privatization error that is even orders of magnitude higher than the norm of the gradient itself.

The (almost) sparse structure of the gradients suggests a modification to the estimation scheme via
privatizing and transmitting only a fraction of the gradient dimensions, which could be regarded as
significantly reducing variance at the cost of a small amount of bias. Such techniques are closely
related to gradient compression that sends a few most significant gradient dimensions (Lin et al.,
2018). Typically, gradient compression techniques require selecting top-k gradients measured in
absolute magnitude (Lin et al., 2018; Aji & Heafield, 2017). A straightforward extension to the local
private setting would be to perform private selection methods like exponential mechanism (Dwork
et al., 2014) or noisy top-k (Ding et al., 2019), for which we need to allocate a certain fraction of
privacy budget. However, these solutions are either computationally expensive or "too noisy" for
picking high dimensional gradients that are almost sparse. We defer a more detailed discussion to
appendix A.2.

Motivated by algorithm designs in distributed learning like random masking (Konečnỳ et al., 2016)
and Hogwild! (Niu et al., 2011), we utilize a simple strategy, gradient subsampling, by randomly
sample d̃ = brdc dimensions, where r is the sampling proportion of gradient dimensions. To further
improve training efficiency, we applied local accumulation techniques like momentum correction
and factor masking similar to (Lin et al., 2018). It is worth noting that low sampling ratio do not
necessarily improves model performance as the overall bias of the sparse approximation would
become significant when only a few dimensions are selected. A more detailed study of this aspect is
provided in appendix A.3.

3.3 IMPROVING QUANTIZATION PERFORMANCE VIA RANDOMIZED ROTATION

As shown in (Agarwal et al., 2018; Suresh et al., 2017), for a d-dimensional vectorX , the quantization
error scales with

(
maxj∈[d]X

j −minj∈[d]X
j
)2

. To reduce quantization error, an effective way is
to preprocess the data via randomized rotation, so as to make maxj∈[d]X

j − minj∈[d]X
j small

in expectation. Note that we only need to rotate the fraction of gradient that are selected to get
transmitted.

To perform randomized rotation we need to assume public randomness between the server and the
clients, under which we generate an orthogonal random matrix R ∈ Rd̃×d̃ and apply the linear
transform to the individual gradients X̃ = RX on the client side, and apply inverse transform on
the server side Z̃ = R−1Z. We adopt the method in (Agarwal et al., 2018; Suresh et al., 2017) to
generate R that support fast matrix multiplication with O(d log d) time and O(1) space. Specifically,
we generate R = 1

d̃
HA where A is a random diagonal matrix with i.i.d. Rademacher entries (i.e.
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P(Aii = 1) = P(Aii = −1) = 0.5,∀i ∈ [d̃]), and H is a Walsh-Hadamard matrix (Horadam, 2012),
defined recursively by the formula:

H(21) =

[
1 1
1 −1

]
, H(2m) =

[
H(2m−1) H(2m−1)
H(2m−1) −H(2m−1)

]
, (10)

The randomized rotation operation is performed before quantization and privatization, therefore we
project the vector X to an `2 ball of radius U before rotation. This would ensure the vector obtained
after rotation has `∞ norm bounded by U as well.

The final selective SGD updating process is summarized in algorithm 2. The randomized rotation
and sparsification strategy have no effect on privacy level, hence the local update within a single
round is ε-LDP. At the same time, communication cost was further reduced from O(d log2K) bits to
O(d̃ log2K) bits per client.

Algorithm 2 sqSGD: Selective Quantized SGD with local privacy guarantee

Require: Training data {Yi}Mi=1, gradient norm bound U , privacy budge ε, sampling ratio r ∈ (0, 1),
local correction factor α, β, learning rate η, batch size B.

1: Find a (κε, pε) pair that satisfies relation (8)
2: Calculate the corresponding normalizing constant mε as in algorithm 1
3: Set d̃ = 2blog2(rd)c, and using public randomness to generate a random matrix R ∈ Rd̃×d̃,

according to the construction in (10)
4: Initialize model parameter θ0 and local residuals resi,0 = 0,∀i = 1, . . . , N
5: for t = 0, . . . , T − 1 do
6: Sample a batch of indices St ∈ [N ] with size B
7: for s ∈ S do
8: //* Client Side Update *//
9: Select a uniformly random subset of [d] with cardinality d̃, denoted as Ds,

10: also let DCs denote [d]\D.
11: Calculate local (stochastic) gradient with respect to client data Xs,t = g(Ys,t, θt)
12: Clip the local gradient to the `2 ball with radius U
13: Accumulate and Apply rotation X̃s,t = R (resi,t[Ds] + βXs,t[Ds])
14: Rotate and update local residual ress,t+1[DCs ] = ress,t[DCs ] + αXs,t[DCs ]
15: and ress,t+1[Ds] = 0

16: Calculate Zs,t = PrivQuantK,∞(X̃s,t, κε, pε)
17: Upload (Zs,t/mε,Ds) to the server
18: //* Server Side Update *//
19: Gradient update step θt+1 = θt −R−1 η

B

∑
s∈S Z

dense
s,t , where Zdense

s,t is the d− dimensional
20: zero vector with indices in Ds replaced by Zs,t.

return θT

4 EXPERIMENTS

In this section, we apply sqSGD to simulated FL environments, constructed via standard datasets
MNIST (Lecun et al., 1998), EMNSIT (Cohen et al., 2017), and Fashion MNIST (Xiao et al., 2017)
which we abbreviate as FMNIST hereafter. All three datasets are of equal (training) sample size,
therefore we randomly partition each dataset into 10 equally sized blocks to simulate a cross-silo FL
environment consisting of a central server and 10 clients.

We train on MNIST and EMNIST datasets using the LeNet-5 architecture (Lecun et al., 1998)
(119, 850 parameters). We also train a larger network under the ResNet-110 architecture (1, 722, 224
parameters) on the FMNIST dataset. Since the main goal of the empirical study is not to achieve
state-of-the-art performance, we adopt the following common strategies without further tuning across
all experiments: in each round, we randomly sample a single batch with batch size 32 for each client
and compute a single gradient update step. Without gradient subsampling, this would be equivalent
to a stochastic gradient descent update over the entire data with a batch size of 320. The training
duration is measured via number of epochs (1 epoch = 188 rounds). We use the same configuration
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Figure 1: Study on impact of communication constraints
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Figure 2: Study on impact of privacy constraints

of learning rate η = 0.001 and local correction factors α = 1.0, β = 1.0 across all experiments. We
set the `2 norm bound of the gradients U = 10 as it works reasonably well. Note that we could use a
more elegant distributed private estimation of the `2 norm bound via sending privatized magnitude
evaluated at different points of the parameter space, i.e. via mechanisms like ScalarDP in Bhowmick
et al. (2018). Finally, for a given privacy budget ε, we use the following method to determine the
value of (κε, pε): We set κε to be the largest integer such that the value of the left hand side of (8) is
smaller than or equal to e0.9ε, and pε = e0.1ε

1+e0.1ε .

Choice of privacy budget ε across all the experiments we align the choice ε = O(
√
d) with respect

to the additional risk factor O(d/ε2) in private mean estimation (in comparison to non-private case).
As the models used in our experiments are all of high dimension, the choice of high-epsilon will
basically provide little protection against inference attacks. However, with respect to reconstruction
attack specified in section 1.2 and the protection level (4), such choice still provide reasonable
protection against reconstruction attacks if the adversary’s goal is to evaluate more than O(

√
d) of

the entries in the private data.

Impact of communication constraints We evaluate the performance of trained models using the
test set accuracy. The privacy budget is chosen as ε = 400 for LeNet models and ε = 2000 for
ResNet models. Sampling ratio is fixed at r = 0.5%. We vary the quantization level in the range
{2, 8, 32} which corresponds to using {1, 3, 5} bits per client per dimension. The results are plotted
in figure 1. The results indicate that a while 1-bit sqSGD is efficient in terms of communication
cost, the quantization error results in significant degradation in model performance, both in the final
accuracy after model convergence, and in the speed of convergence. A reasonable quantization level
(i.e. larger than 3 bits) yields competitive performance.

Impact of privacy constraints Next we investigate the performance loss due to privacy constraints.
We fix the sampling rate at r = 0.5% and quantization level at K = 16. For LeNet-5 architec-
ture, we select ε from the set {200, 300, 400}, for ResNet-110 architecture, we select ε from the
set {1000, 2000, 3000}. The results are plotted in figure 2. The results imply that with limited
communication, we need high privacy budgets to ensure successful training on large models.

Baseline comparisons We compare sqSGD against two baselines:

Piecewise mechanism (PM) (Wang et al., 2019) PM is designed for mean estimation under local
privacy model that improves accuracy upon the PrivUnit∞ algorithm in Bhowmick et al. (2018)
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Figure 3: Comparison of sqSGD against piecewise mechanism

κ = 0. Although PM communicates real values, the multi-dimensional version of PM (Wang et al.,
2019, Algorithm 4) samples a fraction of coordinates for perturbation hence we may view PM
practically as a limited-communication mean estimation algorithm. For large d settings, we choose
reasonably large ε values such that PM communicates raw perturbed gradients in bε/2.5c dimensions.
vqSGD Gandikota et al. (2019) vqSGD uses an communication-optimal distributed mean estima-
tion algorithm that adopts vector quantization strategies. The per client communication cost of
vqSGD is O(log d) for mean estimation task. The algorithm has trivial extensions to locally private
settings using randomized response strategies (Gandikota et al., 2019). As discussed by the authors,
for distributed optimization settings with high dimensional models. Variance reduction techniques
are necessary, specifically one data point is communicated b times and server uses the average of b
quantized gradients for aggregation. This makes the communication cost O(b log d). Note that in
private settings this results in a caveat that privacy protection level is degraded under composition. In
our experiments we will ignore this caveat and use variance reduction so that the communication of
vqSGD matches that of sqSGD and PM.

We compare the three approaches across all tasks mentioned above under the same privacy budget.
For sqSGD we use K = 16 for LeNet architectures and K = 128 for ResNet architectures, and we
adjust the sampling ratio in sqSGD such that communication costs remain equal among all methods.
The comparisons are presented in figure 3. Figure 3 shows that sqSGD consistently outperforms PM
by a significant margin across all tasks under various privacy levels. vqSGD obtains comparable
performance with sqSGD in relatively smaller models and high-privacy regime (Note that vqSGD
approaches offer much worse privacy protections in this setting), but breaks down when models get
larger. Overall, in high-dimensional settings, sqSGD provides much better optimization performance.

Additional experiments We present an experimental study on the effect of gradient subsampling in
appendix A.3, and another study on the trade-off between quantization and subsampling in A.4. The
results of additional experiments further justify the choice of sampling ratios and quantization levels
in the above comparisons.

5 CONCLUSION

We studied privacy-preserving federated learning under the local differential privacy model. To
achieve both communication efficiency and high-dimensional compatibility, we proposed a gradient-
based learning framework sqSGD that is based on a novel private multivariate mean estimation
scheme with controllable quantization levels. We applied gradient subsampling and randomized
rotation to reduce estimation error of the base mechanism that exploits the specific structure of
federated learning with large modern neural architectures. Finally, our designed algorithm was shown
on standard datasets to be capable of training large models with random initializations, surpassing
baseline algorithms by a significant margin.
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A APPENDIX

A.1 PROOFS

Proof of theorem 1. Let u ∈ Bd and U ∼ Unif(Bd). The vector V ∈ Bd sampled as in algorithm 1,
has p.m.f.

p(v | u) ∝
{

1/P(M(U, u) > κ) ifM(v, u) > κ

1/P(M(U, u) < κ) ifM(v, u) ≤ κ.

The event that M(U, u) = κ when d+κ+1
2 ∈ Z implies that U and u match in exactly d+κ+1

2

coordinates; the number of such matches is
(

d
(d+κ+1)/2

)
. Computing the binomial sum, we have

P(M(U, u) > κ) =
1

Kd

d∑
`=d d+κ+1

2 e

(
d

`

)
(K − 1)(d−`)

P(M(U, u) ≤ κ) =
1

Kd

d d+κ+1
2 e−1∑
`=0

(
d

`

)
(K − 1)(d−`)

(11)

Now we show unbiasedness via showing E[V | u = u] = m · u. We have

E[V | u = u] = pE[U | M(U, u) > κ] + (1− p)E[U | M(U, u) ≤ κ]

By rotational symmetry, it suffices to show:

E[V 1 | u = u] = pE[U1 | M(U, u) > κ]︸ ︷︷ ︸
Υ1

+(1− p)E[U1 | M(U, u) ≤ κ]︸ ︷︷ ︸
Υ2

For Υ1, we have:

Υ1 =
1

KdP(M(U, u) > κ)
×

d∑
`=τ

u1

(
d

`

)
(K − 1)d−` −

∑
w∈B\u1

w

(
d

`

)
(K − 1)d−`−1


=

u1

KdP(M(U, u) > κ)
×
(
d− 1

τ − 1

)
(K − 1)(d−τ)

Where in the second equality we used the fact that
∑
w∈B w = 0. Similar calculations yield:

Υ2 = − u1

KdP(M(U, u) ≤ κ)
×
(
d− 1

τ − 1

)
(K − 1)(d−τ)

Combining the preceding display with (11), we have:

E[V 1 | u = u] =

(
p

(
d−1
τ−1

)
(K − 1)d−τ∑d

`=τ

(
d
`

)
(K − 1)d−l

− (1− p)
(
d−1
dτ−1

)
(K − 1)d−τ∑τ−1

`=0

(
d
`

)
(K − 1)d−l

)
× u1

= mu1

Next we show privacy guarantee.

LDP guarantee As P(M(U, u) > κ) is decreasing in κ for any u, u′ ∈ Bd and v ∈ Bd we have

p(v | u)

p(v | u′)
≤ p

1− p
· P(M(U, u′) ≤ κ)

P(M(U, u) > κ)
=

p

1− p
×
∑τ−1
`=0

(
d
`

)
(K − 1)(d−`)∑d

`=τ

(
d
`

)
(K − 1)(d−`)

The result follows by relation (8)

Reconstruction protection guarantee the result follows by Bhowmick et al. (2018, Proposition 1)
and the LDP guarantee.
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Figure 4: Study on the effect of gradient subsampling

A.2 ON THE PRACTICALITY OF PRIVACY-PRESERVING SELECTION METHODS

Performing top-k selection with local privacy constraints could be done via two approaches. The first
take is iteratively running the exponential mechanism (Dwork et al., 2014) for k times, each time
selecting a single index with gumble noise. The bottleneck of this take is that it requires sampling
from a high dimensional distribution for k times, which is computationally heavy. Note that the
privatization step is carried out on the client side device, which is usually assumed to be of limited
computational power in FL settings (Kairouz et al., 2019), thus using iterative exponential mechanism
is not practical for FL scenarios. The second take is the noisy top-k algorithm (Ding et al., 2019),
which generalizes the report noisy max mechanism in Dwork et al. (2014). The algorithm requires
adding Laplacian noise of scale 2Uk/ε to each dimension of the gradient vector. In practice, k is
typically chosen at the order of hundreds. Since most of the gradients are very small in magnitude,to
ensure reasonable noise requires a high ε budget to allocate for the selection step. This would
significantly affect the overall privacy level.

A.3 EXPERIMENTS ON THE EFFECT OF GRADIENT SUBSAMPLING

In this experiment, we investigate the effect of subsampling under the setup of training a ResNet110
model on the FMNIST dataset. We fix the privacy level at ε = 2000 and quantization level at K = 16.
We vary the subsampling ratio from the set {1, 5, 10, 50} × 10−3. The results are plotted in figure 4.
It could be seen from the plot that using a high sampling ratio severely hurts the training performance,
while also incurs more communication. It is thus necessary to perform subsampling. However, using
a very low subsampling ratio also causes training failure. This phenomenon will be further explored
in the next experiment.

A.4 EXPERIMENTS ON THE TRADE-OFF BETWEEN QUANTIZATION AND SAMPLING

In this experiment, we study the trade-off between quantization and sampling under the setup of
training a LeNet-5 model on the MNIST dataset. We fix the privacy level at ε = 400, and fix the total
communication cost per client, measured using the product r log2K. We vary the quantization level
in the range {2, 8, 32, 128} which corresponds to using {1, 3, 5, 7} bits per client per dimension, and
the sampling rate are adjusted accordingly. The results are shown in figure 5. The results suggest
that increasing the quantization level may not monotonically increase training performance. This is
mainly due to the random subsample scheme of sqSGD, under which the structure of gradients is not
fully explored.
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Figure 5: Study on the trade-off between quantization and sampling with fixed communication level
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