M³-IMPUTE: MASK-GUIDED REPRESENTATION LEARNING FOR MISSING VALUE IMPUTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Missing values are a common problem that poses significant challenges to data analysis and machine learning. This problem necessitates the development of an effective imputation method to fill in the missing values accurately, thereby enhancing the overall quality and utility of the datasets. Existing imputation methods, however, fall short of explicitly considering the 'missingness' information in the data during the embedding initialization stage and modeling the entangled feature and sample correlations during the learning process, thus leading to inferior performance. We propose M^3 -Impute, which aims to explicitly leverage the missingness information and such correlations with novel masking schemes. M³-Impute first models the data as a bipartite graph and uses a graph neural network to learn node embeddings, where the refined embedding initialization process directly incorporates the missingness information. They are then optimized through M³-Impute's novel feature correlation unit (FCU) and sample correlation unit (SCU) that effectively captures feature and sample correlations for imputation. Experiment results on 25 benchmark datasets under three different missingness settings show the effectiveness of M³-Impute by achieving 20 best and 4 second-best MAE scores on average.

025

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Missing values in a dataset are a pervasive issue in real-world data analysis. They arise for various reasons, ranging from the limitations of data collection methods to errors during data transmission and storage. Since many data analysis algorithms cannot directly handle missing values, the most common way to deal with them is to discard the corresponding samples or features with missing values, which would compromise the quality of data analysis. To tackle this problem, missing value imputation algorithms have been proposed to preserve all samples and features by imputing missing values with estimated ones based on the observed values in the dataset, so that the dataset can be analyzed as a complete one without losing any information.

038 The imputation of missing values usually requires modeling of correlations between different features and samples. Feature-wise correlations help predict missing values from other observed features 040 in the same sample, while sample-wise correlations help predict them in one sample from other 041 similar samples. It is thus important to jointly model the feature-wise and sample-wise correlations 042 in the dataset. In addition, the prediction of missing values also largely depends on the 'missingness' 043 of the data, i.e., whether a certain feature value is observed or not in the dataset. Specifically, 044 the missingness information directly determines which observed feature values can be used for imputation. For example, even if two samples are closely related, it may be less effective to use them for imputation if they have missing values in exactly the same features. It still remains a challenging 046 problem how to jointly model feature-wise and sample-wise correlations with such data missingness. 047

Among existing methods for missing value imputation, traditional methods (Burgette & Reiter, 2010; Hastie et al., 2015a; Mazumder et al., 2010a; García-Laencina et al., 2010; Honaker et al., 2011; Mazumder et al., 2010c; Hastie et al., 2015b) extract data correlations with statistical models, which are generally not flexible in handling mixed data types and struggle to scale up to large datasets. Recent learning-based imputation methods (Li et al., 2019; Mattei & Frellsen, 2019; Yoon et al., 2018; Kyono et al., 2021; Zheng & Charoenphakdee, 2022; Tashiro et al., 2021; Yoon & Sull, 2020; Muzellec et al., 2020; Du et al., 2024), instead, take advantage of the strong expressiveness and 054 scalability of machine/deep learning algorithms to model data correlations. However, most of them 055 are still built upon the raw tabular data structure as is, which greatly restricts them from jointly 056 modeling the feature-wise and sample-wise correlations. In light of this, graph-based methods (You 057 et al., 2020; Spinelli et al., 2020) have been proposed to model the raw data as a bipartite graph, 058 with samples and features being two different types of nodes. A sample node and a feature node are connected if the feature value is observed in that sample. The missing values are then predicted as the inner product between the embeddings of the corresponding sample and feature nodes. However, 060 this simple prediction does not explicitly consider the specific missingness information as mentioned 061 above. 062

063 In this work, we address these problems by proposing M³-Impute, a mask-guided representation 064 learning method for missing value imputation. The key idea behind M³-Impute is to explicitly utilize the data-missingness information as model input with our proposed novel masking schemes so that it 065 can accurately learn feature-wise and sample-wise correlations in the presence of different kinds of 066 data missingness. M³-Impute first builds a bipartite graph from the data as used in You et al. (2020). 067 In the embedding initialization for graph representation learning, however, we not only use the the 068 relationships between samples and their associated features but also the missingness information so 069 as to initialize the embeddings of samples and features jointly and effectively. We then propose novel feature correlation unit (FCU) and sample correlation unit (SCU) in M³-Impute to explicitly take 071 feature-wise and sample-wise correlations into account for imputation. FCU learns the correlations 072 between the target missing feature and observed features within each sample, which are then further 073 updated via a soft mask on the sample missingness information. SCU then computes the sample-wise 074 correlations with another soft mask on the missingness information for each pair of samples that have 075 values to impute. We then integrate the output embeddings of FCU and SCU to estimate the missing values in a dataset. We carry out extensive experiments on 25 open datasets. The results show that 076 M³-Impute outperforms state-of-the-art methods in 20 of the 25 datasets on average under three 077 different settings of missing value patterns, achieving up to 22.22% improvement in MAE compared to the second-best method. 079

079 080 081

082

2 RELATED WORK

 Traditional methods: These imputation approaches include joint modeling with expectationmaximization (EM) (Dempster et al., 1977; Ghahramani & Jordan, 1993; Honaker et al., 2011), *k*-nearest neighbors (kNN) (García-Laencina et al., 2010; Troyanskaya et al., 2001), and matrix completion (Hastie et al., 2015a; Cai et al., 2010; Candes & Recht, 2012; Mazumder et al., 2010b). However, joint modeling with EM and matrix completion often lack the flexibility to handle data with mixed modalities, while kNN faces scalability issues due to its high computational complexity. In contrast, M³-Impute is scalable and adaptive to different data distributions.

Learning-based methods: Iterative imputation frameworks (Jarrett et al., 2022; Azur et al., 2011; 090 Kyono et al., 2021; van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven & Bühlmann, 2012; 091 Van Buuren et al., 2006), such as MICE (van Buuren & Groothuis-Oudshoorn, 2011) and HyperIm-092 pute (Jarrett et al., 2022), have been extensively studied. These iterative frameworks apply different imputation methods for each feature and iteratively estimate missing values until convergence. In 094 addition, for deep neural network learners, both generative models (Yoon et al., 2018; Mattei & Frellsen, 2019; Yoon & Sull, 2020; Li et al., 2019; Rombach et al., 2022; Zheng & Charoenphakdee, 096 2022) and discriminative models (Kyono et al., 2021; Du et al., 2024; Wu et al., 2020) have also been proposed. However, these methods are built upon raw tabular data structures, which may fall 098 short of capturing the complex correlations in features, samples, and their combination. In contrast, M³-Impute is based on the bipartite graph modeling of the data, which is more suitable for learning 099 the data correlations for imputation. 100

Graph neural network-based methods: GNN-based methods (You et al., 2020; Spinelli et al., 2020) are proposed to address the drawbacks mentioned above due to their effectiveness in modeling complex relations between entities. Among them, GRAPE (You et al., 2020) transforms tabular data into a bipartite graph where features are one type of nodes and samples are the other. A sample node is connected to a feature node only if the corresponding feature value is present. This transformation allows the imputation task to be framed as a link prediction problem, where the inner product of the learned node embeddings is computed as the predicted values. However, these methods do not explicitly encode the missingness information of different samples and features

Figure 1: Overview of the M³-Impute model. The tabular data with missing values is first modeled as
 a bipartite graph with our refined initialization unit, which incorporates the missingness information in
 node embedding initialization. The graph is then processed with a GNN to update node embeddings.
 After that, we apply our novel soft masking schemes on these node embeddings to further encode
 correlation and missingness information in the learning process, using our novel components of
 feature correlation unit (FCU) and sample correlation unit (SCU). Eventually, the missing value is
 predicted with an MLP on the weighted sum of the outputs from FCU and SCU.

into the imputation process, which can impair their imputation accuracy. In contrast, M³-Impute enables explicit modeling of missingness information through **FCU** and **SCU** as well as our novel initialization unit so that feature-wise and sample-wise correlations can be accurately captured in the imputation process.

3 M³-Impute

138 3.1 OVERVIEW

We here provide an overview of M^3 -Impute to impute the missing value of feature f for a given 140 sample s, as depicted in Figure 1. Initially, the data matrix with missing values is modeled as an 141 undirected bipartite graph, and the missing value is imputed by predicting the edge weight \hat{e}_{sf} of 142 its corresponding missing edge (Section 3.2). M³-Impute next employs a GNN model, such as 143 GraphSAGE (Hamilton et al., 2017), on the bipartite graph to learn the embeddings of samples and 144 features. These embeddings, along with the known masks of the data matrix (used to indicate which 145 feature values are available in each sample), are then input into our novel feature correlation unit 146 (FCU) and sample correlation unit (SCU), which shall be explained in Section 3.3 and Section 3.4, 147 to obtain feature-wise and sample-wise correlations, respectively. Finally, M³-Impute takes the 148 feature-wise and sample-wise correlations into a multi-layer perceptron (MLP) to predict the missing 149 feature value \hat{e}_{sf} (Section 3.5). The whole process, including the embedding generation, is trained in an end-to-end manner. 150

151

153

131

132

133

134

135 136

137

139

152 3.2 INITIALIZATION UNIT

Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ be an $n \times m$ matrix that consists of n data samples and m features, where \mathbf{A}_{ij} denotes the j-th feature value of the i-th data sample. We introduce an $n \times m$ mask matrix $\mathbf{M} \in \{0, 1\}^{n \times m}$ for \mathbf{A} to indicate that the value of \mathbf{A}_{ij} is *observed* when $\mathbf{M}_{ij} = 1$. In other words, the goal of imputation here is to predict the missing feature values \mathbf{A}_{ij} for i and j such that $\mathbf{M}_{ij} = 0$. We define the *masked* data matrix \mathbf{D} to be $\mathbf{D} = \mathbf{A} \odot \mathbf{M}$, where \odot is the Hadamard product, i.e., the element-wise multiplication of two matrices.

As used in recent studies (You et al., 2020), we model the masked data matrix **D** as a bipartite graph and tackle the missing value imputation problem as a link prediction task on the bipartite graph. Specifically, **D** is modeled as an undirected bipartite graph $\mathcal{G} = (\mathcal{S} \cup \mathcal{F}, \mathcal{E})$, where $\mathcal{S} =$ 162 $\{s_1, s_2, \ldots, s_n\}$ is the set of 'sample' nodes and $\mathcal{F} = \{f_1, f_2, \ldots, f_m\}$ is the set of 'feature' nodes. Also, \mathcal{E} is the set of edges that only exist between sample node s and feature node f when $\mathbf{D}_{sf} \neq 0$, and each edge $(s, f) \in \mathcal{E}$ is associated with edge weight e_{sf} , which is given by $e_{sf} = \mathbf{D}_{sf}$. Then, the missing value imputation problem becomes, for any missing entries in \mathbf{D} (where $\mathbf{D}_{sf} = 0$), to predict their corresponding edge weights by developing a learnable mapping $F(\cdot)$, i.e.,

$$\hat{e}_{sf} = F(\mathcal{G}, (s, f) \notin \mathcal{E}). \tag{1}$$

169 The recent studies that use the bipartite graph modeling initialize all sample node embeddings 170 as all-one vectors and feature node embeddings as one-hot vectors, which have a value 1 in the 171 positions representing their respective features and 0's elsewhere. We observe, however, that such an initialization does not effectively utilize the information from the masked data matrix, which leads 172 to inferior imputation accuracy, as shall be demonstrated in Section 4.3. Thus, in M³-Impute, we 173 propose to initialize each sample node embedding based on its associated (initial) feature embeddings 174 instead of initializing them separately. While the feature embeddings are randomly initialized, the 175 sample node embeddings are initialized in a way that reflects the embeddings of the features whose 176 values are available in their corresponding samples. 177

Let \mathbf{h}_{f}^{0} be the initial embedding of feature f, which is a randomly initialized d-dimensional vector, and define $\mathbf{H}_{F}^{0} = [\mathbf{h}_{f_{1}}^{0} \mathbf{h}_{f_{2}}^{0} \dots \mathbf{h}_{f_{m}}^{0}] \in \mathbb{R}^{d \times m}$. Also, let $\mathbf{d}_{s} \in \mathbb{R}^{m}$ be the *s*-th column vector of \mathbf{D}^{\top} , which is a vector of the feature values of sample s, and let $\mathbf{m}_{s} \in \mathbb{R}^{m}$ be its corresponding mask vector, i.e., $\mathbf{m}_{s} = \operatorname{col}_{s}(\mathbf{M}^{\top})$, where $\operatorname{col}_{s}(\cdot)$ denotes the *s*-th column vector of the matrix. We then initialize the embedding \mathbf{h}_{s}^{0} of each sample node s as follows:

$$\mathbf{h}_{s}^{0} = \phi \Big(\mathbf{H}_{F}^{0} \big[\mathbf{d}_{s} + \epsilon (\mathbb{1} - \mathbf{m}_{s}) \big] \Big), \tag{2}$$

where $\mathbb{1} \in \mathbb{R}^m$ is an all-one vector, and $\phi(\cdot)$ is an MLP. Note that the term $\mathbf{d}_s + \epsilon(\mathbb{1} - \mathbf{m}_s)$ indicates a vector that consists of observable feature values of *s* and some small positive values ϵ in the places where the feature values are unavailable (masked out).

189 3.3 FEATURE CORRELATION UNIT

167

168

183 184

188

190

205

210 211

To improve the accuracy of missing value imputation, we aim to fully exploit feature correlations which often appear in the datasets. While the feature correlations are naturally captured by GNNs, we observe that there is still room for improvement. We propose FCU as an integral component of M³-Impute to fully exploit the feature correlations.

To impute the missing value of feature f for a given sample s, FCU begins by computing the 195 feature 'context' vector of sample s in the embedding space that reflects the correlations between 196 the target missing feature f and observed features. Let $\hat{\mathbf{h}}_f \in \mathbb{R}^d$ be the learned embedding vector 197 of feature f from the GNN, and let \mathbf{H}_F be the $d \times m$ matrix that consists of all the learned feature 198 embedding vectors. We first obtain dot-product similarities between feature f and all the features 199 in the embedding space, i.e., $\mathbf{H}_{F}^{+}\mathbf{h}_{f}$. We then mask out the similarity values with respect to *non*-200 observed features in sample s. Here, instead of applying the mask vector \mathbf{m}_s of sample s directly, 201 we use a learnable 'soft' mask vector, denoted by \mathbf{m}'_s , which is defined to be $\mathbf{m}'_s = \sigma_1(\mathbf{m}_s) \in \mathbb{R}^m$, 202 where $\sigma_1(\cdot)$ is an MLP with the GELU activation function (Hendrycks & Gimpel, 2016). In other 203 words, we obtain feature-wise similarities with respect to sample s, denoted by r_s^f , as follows: 204

$$\mathbf{r}_{s}^{f} = \sigma_{2} \left((\mathbf{H}_{F}^{\top} \mathbf{h}_{f}) \odot \mathbf{m}_{s}^{\prime} \right) \in \mathbb{R}^{d}, \tag{3}$$

where $\sigma_2(\cdot)$ denotes another MLP with the GELU activation function. FCU next obtains the Hadamard product between the learned embedding vector of sample *s*, \mathbf{h}_s , and the feature-wise similarities with respect to sample *s*, \mathbf{r}_s^f , to learn their joint representations in a multiplicative manner. Specifically, FCU obtains the feature context vector of sample *s*, denoted by \mathbf{c}_s^f , as follows:

$$\mathbf{c}_{s}^{f} = \sigma_{3} \left(\mathbf{h}_{s} \odot \mathbf{r}_{s}^{f} \right) \in \mathbb{R}^{d},\tag{4}$$

where $\sigma_3(\cdot)$ is also an MLP with the GELU activation function. That is, **FCU** fuses the representation vector of s and the vector that has embedding similarity values between the target feature f and the available features in s through the effective use of the soft mask \mathbf{m}'_s . From (3) and (4), the operations of **FCU** can be written as

$$\mathbf{c}_{s}^{f} = \mathbf{FCU}(\mathbf{h}_{s}, \mathbf{m}_{s}, \mathbf{H}_{F}) = \sigma_{3}\left(\mathbf{h}_{s} \odot \sigma_{2}\left((\mathbf{H}_{F}^{\dagger}\mathbf{h}_{f}) \odot \sigma_{1}(\mathbf{m}_{s})\right)\right).$$
(5)

216 3.4 SAMPLE CORRELATION UNIT

To measure similarities between s and other samples, a common approach would be to use the dot product or cosine similarity between their embedding vectors. This approach, however, fails to take into account the observability or availability of each feature in a sample. It also does not capture the fact that different observed features are of different importance to the target feature to impute when it comes to measuring the similarities. We introduce **SCU** as another integral component of M^3 -Impute to compute the sample 'context' vector of sample s by incorporating the embedding vectors of its similar samples as well as different weights of observed features. **SCU** works based on the two novel masking schemes, which shall be explained shortly.

226

241

242

Suppose we are to impute the missing value of feature f for a given sample s. SCU aims to leverage the information from the samples that are similar to s. As a first step to this end, we create a subset of samples $\mathcal{P} \subset S$ that are similar to s. Specifically, we randomly choose and put a sample into \mathcal{P} with probability that is proportional to the cosine similarity between s and the sample. This operation is repeated without replacement until \mathcal{P} reaches a given size.

Mutual Sample Masking: Given a subset of samples \mathcal{P} that include *s*, we first compute the pairwise similarities between *s* and other samples in the subset \mathcal{P} . While they are computed in a similar way to **FCU**, we only consider the commonly observed features (or the common ones that have feature values) in both *s* and its peer $p \in \mathcal{P} \setminus \{s\}$, to calculate their pairwise similarity in the sense that the missing value of feature *f* is inferred. Specifically, we compute the pairwise similarity between *s* and $p \in \mathcal{P} \setminus \{s\}$, which is denoted by $sim(s, p \mid f)$, as follows:

$$\sin(s, p \mid f) = \mathbf{FCU}(\mathbf{h}_s, \mathbf{m}_p, \mathbf{H}_F) \cdot \mathbf{FCU}(\mathbf{h}_p, \mathbf{m}_s, \mathbf{H}_F) \in \mathbb{R}, \quad (6)$$

where \mathbf{h}_s and \mathbf{h}_p are the learned embedding vectors of samples s and p from the GNN, respectively, and \mathbf{m}_s and \mathbf{m}_p are their respective mask vectors. Note that the multiplication in the RHS of (6) is the dot product.

246 **Irrelevant Feature Masking:** After we obtain the pairwise similarities between s and other samples 247 in \mathcal{P} , it would be natural to consider a weighted sum of their corresponding embedding vectors, i.e., 248 $\sum_{p \in \mathcal{P} \setminus \{s\}} sim(s, p \mid f) \mathbf{h}_p$, in imputing the value of the target feature f. However, we observe that 249 \mathbf{h}_p contains the information from the features whose values are available in p as well as possibly 250 other features as it is learned via the so-called neighborhood aggregation mechanism that is central to 251 GNNs, but some of the features may be irrelevant in inferring the value of feature f. Thus, instead of using $\{\mathbf{h}_p\}$ directly, we introduce a *d*-dimensional mask vector \mathbf{r}_p^{T} for \mathbf{h}_p , which is to mask out 253 potentially irrelevant feature information in h_p , when it comes to imputing the value of feature f. 254 Specifically, it is defined by

$$\mathbf{r}_{p}^{f} = \sigma_{4}\left(\left[\mathbf{m}_{p}; \overline{\mathbf{m}}_{f}\right]\right) \in \mathbb{R}^{d},\tag{7}$$

where $\overline{\mathbf{m}}_f$ is an *m*-dimensional one-hot vector that has a value 1 in the place of feature f and 0's elsewhere, $[\cdot; \cdot]$ denotes the vector concatenation operation, and $\sigma_4(\cdot)$ is an MLP with the GELU activation function. Note that the rationale behind the design of \mathbf{r}_p^f is to embed the information on the features whose values are present in p as well as the information on the target feature f to impute. The mask \mathbf{r}_p^f is then applied to \mathbf{h}_p to obtain the masked embedding vector of p as follows:

261 262

255

$$\phi_p(\mathbf{h}_p, \mathbf{r}_p^f) = \sigma_5\left(\mathbf{h}_p \odot \mathbf{r}_p^f\right) \in \mathbb{R}^d,\tag{8}$$

where $\sigma_5(\cdot)$ is also an MLP with the GELU activation function. Once we have the masked embedding vectors of samples (excluding s) in \mathcal{P} , we finally compute the sample context vector of sample s, denoted by \mathbf{z}_s^f , which is a weighted sum of the masked embedding vectors with weights being the pairwise similarity values, i.e.,

$$\mathbf{z}_{s}^{f} = \sigma_{6} \left(\sum_{p \in \mathcal{P} \setminus \{s\}} \sin(s, p \mid f) \phi_{p}(\mathbf{h}_{p}, \mathbf{r}_{p}^{f}) \right) \in \mathbb{R}^{d},$$
(9)

Algorithm 1 Forward computation of M^3 -Impute to impute the value of feature f for sample s.

1: Input: Bipartite graph \mathcal{G} , initial feature node embeddings \mathbf{H}_{F}^{0} , GNN model (e.g., GraphSAGE) $\mathbf{GNN}(\cdot)$, known mask matrix **M**, and a subset of samples $\mathcal{P} \subset \mathcal{S}$.

2: **Output:** Predicted missing feature value \hat{e}_{sf} .

3: Obtain initial sample node embeddings \mathbf{H}_{S}^{0} according to Equation (2). Perform graph representation learning

- 4: $\mathbf{H}_S, \mathbf{H}_F = \mathbf{GNN}(\mathbf{H}_S^0, \mathbf{H}_F^0, \mathcal{G}).$
- 5: $\mathbf{c}_s^f = \mathbf{FCU}(\mathbf{h}_s, \mathbf{m}_s, \mathbf{H}_F).$

270

271

272

273

274

275

276

277 278

279

281 282

284

286 287 288

289

290

291

292 293

305 306

307 308

309

310

311

312 313

314

- 6: $\mathbf{z}_s^f = \mathbf{SCU}(\mathbf{H}_{\mathcal{P}}, \mathbf{M}_{\mathcal{P}}, \mathbf{H}_F).$
- 7: Predict the missing feature value \hat{e}_{sf} using Equation (11).

where $\sigma_6(\cdot)$ is again an MLP with the GELU activation function. From (6)–(9), the operations of SCU can be written as

$$\mathbf{z}_{s}^{f} = \mathbf{SCU}(\mathbf{H}_{\mathcal{P}}, \mathbf{M}_{\mathcal{P}}, \mathbf{H}_{F}) = \sigma_{6} \left(\sum_{p \in \mathcal{P} \setminus \{s\}} \sin(s, p \mid f) \sigma_{5} \left(\mathbf{h}_{p} \odot \sigma_{4} \left([\mathbf{m}_{p}; \overline{\mathbf{m}}_{f}] \right) \right) \right), \quad (10)$$

where $\mathbf{H}_{\mathcal{P}} = {\mathbf{h}_p, p \in \mathcal{P}}$ and $\mathbf{M}_{\mathcal{P}} = {\mathbf{m}_p, p \in \mathcal{P}}$.

3.5 IMPUTATION

For a given sample s, to impute the missing value of feature f, M^3 -Impute obtains its feature context vector \mathbf{c}_{s}^{f} and sample context vector \mathbf{z}_{s}^{f} through FCU and SCU, respectively, which are then used for imputation. Specifically, it is done by predicting the corresponding edge weight \hat{e}_{sf} as follows:

$$\hat{e}_{sf} = \phi_{\alpha} \left((1 - \alpha) \mathbf{c}_{s}^{f} + \alpha \mathbf{z}_{s}^{f} \right), \tag{11}$$

where $\phi_{\alpha}(\cdot)$ denotes an MLP with a non-linear activation function (i.e., ReLU for continuous 295 values and softmax for discrete ones), and α is a learnable scalar parameter. This scalar parameter 296 α is introduced to strike a balance between leveraging feature-wise correlation and sample-wise 297 correlation. It is necessary because the quality of \mathbf{z}_{e}^{t} relies on the quality of the samples chosen in 298 \mathcal{P} , so overly relying on \mathbf{z}_s^f would backfire if their quality is not as desired. To address this problem, 299 instead of employing a fixed weight α , we make α learnable and adaptive in determining the weights 300 for $\mathbf{c}_s^{\mathsf{f}}$ and $\mathbf{z}_s^{\mathsf{f}}$. Note that this kind of learnable parameter approach has been widely adopted in 301 natural language processing (See et al., 2017; Wang et al., 2019; Li et al., 2020; Paulus et al., 2018) 302 and computer vision (Dai et al., 2017; Zhu et al., 2019a;b), showing superior performance to its fixed 303 counterpart. In M³-Impute, the scalar parameter α is learned based on the similarity values between 304 s and its peer samples $p \in \mathcal{P} \setminus \{s\}$ as follows:

$$\alpha = \phi_{\gamma} \Big(\prod_{p \in \mathcal{P} \setminus \{s\}} \sin(s, p \mid f) \Big), \tag{12}$$

where \parallel represents the concatenation operation, and $\phi_{\gamma}(\cdot)$ is an MLP with the activation function $\gamma(x) = 1 - 1 / e^{|x|}$. The overall operation of M³-Impute is summarized in Algorithm 1. To learn network parameters, we use cross-entropy loss and mean square error loss for imputing discrete and continuous feature values, respectively.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP 315

316 **Datasets:** We conduct experiments on 25 open datasets. These real-world datasets consist of mixed 317 data types with both continuous and discrete values and cover different domains including civil 318 engineering (CONCRETE, ENERGY), physics and chemistry (YACHT), thermal dynamics (NAVAL), 319 etc. Since the datasets are fully observed, we introduce missing values by applying a randomly 320 generated mask to the data matrix. Specifically, as used in prior studies (Jarrett et al., 2022; Kyono 321 et al., 2021), we apply three masking generation schemes, namely missing completely at random 322 (MCAR), missing at random (MAR), and missing not at random (MNAR).¹ We use MCAR with 323

¹More details about the datasets and mask generation for missing values can be found in Appendix.

Table 1: Impu	utation ac	curacy in M	IAE. MAE	scores are	enlarged	by 10 times.
Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm

326		Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
327	Mean	$2.09 \pm .04$	$0.98 \pm .01$	$1.79 \pm .01$	$1.85 \pm .00$	$3.10 \pm .04$	$2.31 \pm .00$	$2.50 \pm .00$	$1.68 \pm .00$
308	Svd	$2.46 \pm .16$	$0.92 \pm .01$	$1.94 \pm .02$	$1.53 \pm .03$	$2.24 \pm .06$	$0.50 \pm .00$	$\overline{3.67} \pm .06$	$2.33 \pm .01$
320	Spectral	$2.64 \pm .11$	$0.91 \pm .01$	$1.98 \pm .04$	$1.46 \pm .03$	$2.26 \pm .09$	$0.41 \pm .00$	$2.80 \pm .01$	$2.13 \pm .01$
329	Mice	$1.68 \pm .05$	$0.77 \pm .00$	$1.34 \pm .01$	$1.16 \pm .03$	$1.53 \pm .04$	$0.20 \pm .01$	$2.50 \pm .00$	$1.16 \pm .01$
220	Knn	$1.67 \pm .02$	$0.72 \pm .00$	$1.16 \pm .03$	$0.95 \pm .01$	$1.81 \pm .03$	$0.10 \pm .00$	$\overline{2.77} \pm .01$	$1.38 \pm .01$
330	Gain	$2.26 \pm .11$	$0.86 \pm .00$	$1.67 \pm .03$	$1.23 \pm .02$	$1.99 \pm .03$	$0.46 \pm .02$	$2.70 \pm .00$	$1.31 \pm .05$
331	Miwae	$2.37 \pm .01$	$1.00 \pm .00$	$1.81 \pm .01$	$1.74 \pm .04$	$2.79 \pm .04$	$2.37 \pm .00$	$2.57 \pm .00$	$1.72 \pm .00$
222	Grape	$1.46 \pm .01$	0.60 ± .00	$0.75 \pm .01$	$0.64 \pm .01$	$1.36 \pm .01$	$0.07 \pm .00$	$2.50 \pm .00$	$1.00 \pm .00$
332	Miracle	$3.84 \pm .00$	$0.70 \pm .00$	$1.71 \pm .05$	$\overline{3.12} \pm .00$	$3.94 \pm .01$	$0.18 \pm .00$	$\overline{2.49} \pm .00$	$1.13 \pm .01$
333	HyperImpute	$1.76\pm.03$	$\underline{0.67} \pm .01$	$0.84\pm.02$	$0.82\pm.01$	$\underline{1.32} \pm .02$	$\textbf{0.04} \pm .00$	$2.58\pm.05$	$1.06\pm.01$
334	M ³ -Impute	$\textbf{1.33} \pm .04$	0.60 ± .00	0.71 ± .01	0.59 ± .00	$1.31 \pm .01$	$\underline{0.06} \pm .00$	$\underline{2.50} \pm .00$	0.99 ± .00

337

338

339

324

325

> a missing ratio of 30%, unless otherwise specified. We follow the preprocessing steps adopted in Grape (You et al., 2020) to scale feature values to [0, 1] with a MinMax scaler (Leskovec et al., 2014). Due to the space limit, we below present the results of eight datasets that are used in Grape and report other results in Appendix.

Baseline models: M³-Impute is compared against popular and state-of-the-art imputation methods, 340 including statistical methods, deep generative methods, and graph-based methods listed as follows: 341 **MEAN:** It imputes the missing value \hat{e}_{sf} as the mean of observed values in feature f from all 342 the samples. K-nearest neighbors (**kNN**) (Troyanskaya et al., 2001): It imputes the missing value 343 \hat{e}_{sf} using the kNNs that have observed values in feature f with weights that are based on the 344 Euclidean distance to sample s. Multivariate imputation by chained equations (Mice) (van Buuren 345 & Groothuis-Oudshoorn, 2011): This method runs multiple regressions where each missing value 346 is modeled upon the observed non-missing values. Iterative SVD (Svd) (Hastie et al., 2015a): It 347 imputes missing values by solving a matrix completion problem with iterative low-rank singular 348 value decomposition. Spectral regularization algorithm (Spectral) (Mazumder et al., 2010a): This 349 matrix completion algorithm uses the nuclear norm as a regularizer and imputes missing values with 350 iterative soft-thresholded SVD. Miwae (Mattei & Frellsen, 2019): It works based on an autoencoder 351 generative model trained to maximize a potentially tight lower bound of the log-likelihood of the observed data and Monte Carlo techniques for imputation. Miracle (Kyono et al., 2021): It uses 352 the imputation results from naive methods such as MEAN and refines them iteratively by learning 353 a missingness graph (m-graph) and regularizing an imputation function. Gain (Yoon et al., 2018): 354 This method trains a data imputation generator with a generalized generative adversarial network 355 in which the discriminator aims to distinguish between real and imputed values. Grape (You et al., 356 2020): It models the data as a bipartite graph and imputes missing values by predicting the weights 357 of the missing edges, each of which is done based on the inner product between the embeddings 358 of its corresponding sample and feature nodes. HyperImpute (Jarrett et al., 2022): HyperImpute 359 is a framework that conducts an extensive search among a set of imputation methods, selecting the 360 optimal imputation method with fine-tuned parameters for each feature in the dataset. We follow the 361 official implementations of all the baseline models and report their hyperparameters in Appendix.

362 M^3 -Impute configurations: Parameters of M^3 -Impute are updated by the Adam optimizer with a 363 learning rate of 0.001 for 40,000 epochs. For graph representation learning, we use a three-layer 364 GNN model, which is a variant of GraphSAGE (Hamilton et al., 2017) that not only learns node embeddings but also edge embeddings via the neighborhood aggregation mechanism, as similarly 366 used in Grape (You et al., 2020). We employ mean-pooling as the aggregation function and use 367 ReLU as the activation function for the GNN layers. We set the embedding dimension d to 128. We 368 randomly drop 50% of observable edges during training to improve the model's generalization ability. For each experiment, we conduct five runs with different random seeds and report the average results. 369

370

4.2 OVERALL PERFORMANCE 371

372 We first compare the feature imputation performance of M^3 -Impute with popular and state-of-the-art 373 imputation methods. As shown in Table 1, M³-Impute achieves the lowest imputation MAE for 374 six out of the eight examined datasets and the second-best MAE scores in the other two, which 375 validates the effectiveness of M^3 -Impute. For KIN8NM dataset, M^3 -Impute underperforms Miracle. It is mainly because each feature in KIN8NM is independent of the others, so none of the observed 376 features can help impute missing feature values. For NAVAL dataset, the only model that outperforms 377 M³-Impute is HyperImpute (Jarrett et al., 2022). In the NAVAL dataset, nearly every feature exhibits a

379			-			-		-		
380		Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power	
381 382	HyperImpute Grape	$\begin{array}{c} 1.76 \pm .03 \\ 1.46 \pm .01 \end{array}$	$\begin{array}{c} 0.67 \pm .01 \\ \textbf{0.60} \pm .00 \end{array}$	$\begin{array}{c} 0.84 \pm .02 \\ 0.75 \pm .01 \end{array}$	$\begin{array}{c} 0.82 \pm .01 \\ 0.64 \pm .01 \end{array}$	$\begin{array}{c} 1.32 \pm .02 \\ 1.36 \pm .01 \end{array}$	$\begin{array}{c} \textbf{0.04} \pm .00 \\ 0.07 \pm .00 \end{array}$	$\frac{2.58}{2.50} \pm .05 \\ \pm .00$	$\begin{array}{c} 1.06 \pm .01 \\ \underline{1.00} \pm .00 \end{array}$	
383	Architecture									
384 385 386	Init Only Init+FCU Init+SCU M ³ -Impute	$\begin{array}{c} 1.43 \pm .01 \\ 1.35 \pm .01 \\ 1.37 \pm .01 \\ \textbf{1.33} \pm .04 \end{array}$	$\begin{array}{c} \textbf{0.60} \pm .00 \\ \underline{0.61} \pm .00 \\ \textbf{0.60} \pm .00 \\ \textbf{0.60} \pm .00 \\ \textbf{0.60} \pm .00 \end{array}$	$\begin{array}{c} 0.74 \pm .00 \\ \underline{0.72} \pm .03 \\ 0.73 \pm .00 \\ \textbf{0.71} \pm .01 \end{array}$	$\begin{array}{c} 0.63 \pm .01 \\ \underline{0.61} \pm .02 \\ 0.63 \pm .01 \\ \textbf{0.59} \pm .00 \end{array}$	$\begin{array}{c} 1.35 \pm .01 \\ 1.32 \pm .00 \\ \textbf{1.30} \pm .00 \\ \underline{1.31} \pm .01 \end{array}$	$\begin{array}{c} \underline{0.06} \pm .00 \\ \underline{0.07} \pm .01 \\ 0.09 \pm .01 \\ \underline{0.06} \pm .00 \end{array}$	$\begin{array}{c} \textbf{2.50} \pm .00 \\ \textbf{2.50} \pm .00 \\ \textbf{2.50} \pm .00 \\ \textbf{2.50} \pm .00 \\ \textbf{2.50} \pm .00 \end{array}$	$\begin{array}{c} \textbf{0.99} \pm .00 \\ \textbf{0.99} \pm .00 \\ \underline{1.00} \pm .00 \\ \textbf{0.99} \pm .00 \end{array}$	
387	Sampling Strateg	у								
388	M ³ -Uniform	$\underline{1.34} \pm .01$	$0.60 \pm .00$	$0.73 \pm .01$	$\underline{0.61}\pm.00$	$\underline{1.31} \pm .00$	$\underline{0.06} \pm .00$	$2.50 \pm .00$	$0.99 \pm .00$	

Table 2: Ablation study. M³-Uniform stands for M³-Impute with the uniform sampling strategy.

390 strong linear correlation with the other features, i.e., every pair of features has correlation coefficient 391 close to one. This allows HyperImpute to readily select a linear model from its model pool for each 392 feature to impute. Nonetheless, M³-Impute exhibits overall superior performance to the baselines as it can be well adapted to datasets with different levels of correlations over features and samples. In 393 other words, M³-Impute benefits from explicitly incorporating the missingness information with our 394 carefully designed masking schemes to better capture feature-wise and sample-wise correlations. 395

396 Furthermore, we evaluate the performance of M³-Impute under MAR and MNAR settings. We 397 observe that M3-Impute consistently outperforms all the baselines under all the eight datasets and 398 achieves an even larger margin in the improvement compared to the case with MCAR setting. This implies that our explicit modeling of the missingness information through our novel soft masking 399 schemes in FCU and SCU as well as the initialization unit is effective in handling different patterns 400 of missing values in the input data. It is worth noting that some baseline models may perform worse 401 than simple imputers, such as Mean, on certain datasets, as similarly observed in recent studies (You 402 et al., 2020; Jarrett et al., 2022). It may be because these datasets are of relative small size, and the 403 number of samples and features is not sufficient to train the corresponding models. Comprehensive 404 results on all the datasets across different missing ratios are provided in Appendix. 405

406 4.3 ABLATION STUDY 407

To study the effectiveness of three integral components of M^3 -Impute, we consider three variants of 408 M³-Impute, each with a subset of the components, namely initialization only (Init Only), initialization 409 + FCU (Init + FCU), and initialization + SCU (Init + SCU). The performance of these variants 410 are evaluated against the top-performing imputation baselines such as Grape and HyperImpute. As 411 shown in Table 2, the three variants derived from M³-Impute achieve lower MAE values than both 412 baselines in most datasets, demonstrating the effectiveness of our novel components in M³-Impute. 413

Specifically, for initialization only, the key difference between M³-Impute and Grape lies in our 414 refined initialization process to explicitly leverage missingness information in node embeddings. The 415 reduced MAE values observed by the Init Only variant demonstrate that our proposed initialization 416 process is more effective in utilizing information between samples and their associated features, 417 including missing ones, as compared to the basic initialization used in Grape (You et al., 2020). 418 In addition, we observe that when FCU or SCU is incorporated, MAE values are further reduced 419 for most datasets. This validates that explicitly modeling of missingness information through our 420 novel masking schemes in FCU and SCU indeed improves imputation accuracy. When all the three 421 components are combined together as in M³-Impute, they work synergistically to lower MAE values, 422 validating the efficacy of incorporating the missingness information when capturing sample-wise and feature-wise correlations for missing data imputation. 423

424 425

378

387 388 389

4.4 ROBUSTNESS

426 Missing ratio: In practice, datasets may possess different missing ratios. To validate the model's 427 robustness under such circumstances, we evaluate the performance of M³-Impute and other baseline 428 models with varying missing ratios, i.e., 0.1, 0.3, 0.5, and 0.7. Figure 3 shows their performance. 429 We use the MAE of HyperImpute (HI) as the reference performance and offset the performance of each model by $MAE_x - MAE_{HI}$, where x represents the considered model. For clarity, we here 430 only report the results of four top-performing models. As shown in Figure 3, M^3 -Impute outperforms 431 other baseline models for almost all the cases, especially under YACHT, CONCRETE, ENERGY,

Figure 3: Model performance vs. missing ratios. MAE scores are offset by HyperImpute.

450 and HOUSING datasets. It is worth noting that modeling feature correlations in these datasets is 451 particularly challenging due to the presence of considerable amounts of weakly correlated features, along with a few strongly correlated ones. Nonetheless, FCU and SCU in M^3 -Impute are able to 452 better capture such correlations with our efficient masking schemes, thereby resulting in a large 453 improvement in imputation accuracy. In addition, for KIN8NM dataset, M³-Impute ties with the 454 second-best model, Grape. As mentioned in Section 4.2, each feature in KIN8NM is independent 455 of the others, so none of the observed features can help impute missing feature values. For NAVAL 456 dataset, where each feature strongly correlates with the others, M³-Impute surpasses Grape but falls 457 short of HyperImpute, due to the same reason as discussed in Section 4.2. Overall, M³-Impute is 458 robust to various missing ratios. Comprehensive results can be found in Appendix. 459

Sampling strategy in SCU: While SCU uses a sampling strategy based on pairwise cosine similarities to construct a subset of samples \mathcal{P} , the simplest sampling strategy to build \mathcal{P} would be to choose samples uniformly at random without replacement (M³-Uniform). Intuitively, this approach cannot identify similar peer samples accurately and thus would lead to inferior performance. Nonetheless, as shown in Table 2, even with this naive uniform sampling strategy, M³-Uniform still outperforms the two leading imputation baselines.

Table 3: MAE scores for varying peer-sample size $(|\mathcal{P}|-1)$ and different values of ϵ .

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
Peer = 1	$1.34 \pm .00$	0.60 ± .00	$0.73 \pm .00$	$0.61 \pm .01$	$1.32 \pm .00$	0.06 ± .00	2.5 ± .00	0.99 ± .0
Peer = 2	$1.35 \pm .01$	$0.61 \pm .00$	$0.72 \pm .01$	0.59 ± .01	$1.32 \pm .00$	0.06 ± .00	$2.5 \pm .00$	$1.00 \pm .0$
Peer = 5	$1.33 \pm .04$	0.60 ± .00	$0.71 \pm .01$	$0.60 \pm .00$	$1.32 \pm .01$	0.06 ± .00	$2.5 \pm .00$	0.99±.0
Peer = 10	$1.33 \pm .01$	$0.61 \pm .00$	0.71 ± .01	$0.60 \pm .01$	$1.31 \pm .01$	$0.07 \pm .00$	$2.5 \pm .00$	$1.00 \pm .00$
Peer = 15	$1.34 \pm .00$	$0.61 \pm .00$	$0.72 \pm .01$	$0.60 \pm .00$	$1.31 \pm .00$	$0.07 \pm .00$	$2.5 \pm .00$	0.99 ± .0
Peer = 20	$\overline{1.34} \pm .04$	$\overline{0.61} \pm .00$	$0.72 \pm .01$	$\overline{0.60} \pm .01$	$1.31 \pm .00$	$\overline{0.07} \pm .00$	2.5 ± .00	$1.00 \pm .00$
$\epsilon = 0$	$1.34 \pm .01$	$0.61 \pm .00$	0.71 ± .01	0.60 ± .01	1.30 ± .00	0.06 ± .00	2.50 ± .00	0.99 ± .0
$\epsilon = 10^{-5}$	$1.31 \pm .01$	$0.61 \pm .00$	$0.71 \pm .00$	0.60 ± .01	$1.30 \pm .00$	$0.07 \pm .00$	$2.50 \pm .00$	$1.00 \pm .00$
$\epsilon = 10^{-4}$	$1.33 \pm .04$	$0.60 \pm .00$	0.71 ± .01	0.60 ± .00	$1.30 \pm .00$	$0.06 \pm .00$	$2.50 \pm .00$	$0.99 \pm .$
$\epsilon = 10^{-3}$	$1.33 \pm .04$	$0.60 \pm .00$	$0.72 \pm .01$	$0.60 \pm .01$	$1.30 \pm .00$	$0.07 \pm .01$	$2.50 \pm .00$	$0.99\pm$.

Size of \mathcal{P} **in SCU:** Intuitively, a proper peer size $(|\mathcal{P}| - 1)$ should balance high-similarity peers and potential peers that serve for regularization and generalization purposes. In general, the trend across different datasets shows that a too-small peer size may only include high-similarity peers, while a too-large peer size may include too many noisy nodes and incur higher computational overhead. As shown in Table 3, the variation in performance is small, indicating that our method is relatively robust to this parameter. From the extensive experiments on 25 datasets, we recommend a peer size of 5–10 for practical use.

Initialization parameter ϵ : We also evaluate whether a non-zero value of ϵ in the initialization unit of M³-Impute indeed leads to an improvement in imputation accuracy. As shown in Table 3, for YACHT and WINE datasets, the introduction of a non-zero value of ϵ results in lower MAE scores.

Another insight that we have from Table 3 is that ϵ should not be set too large, as a large value of ϵ might impose incorrect weights to the features with missing values. We observe that it is an overall good choice to set ϵ to 1×10^{-5} or 1×10^{-4} .

4.5 RUNNING TIME ANALYSIS

We present a running time comparison in Table 4. The results show that our method is both accurate and time-efficient. For example, for inference with GPU, the time taken to impute *all* the missing values for any dataset we tested is less than one second under the setting of MCAR with 30% missingness. More results can be found in Appendix.

Table 4: Running time (in seconds) for feature imputation using different methods at test time. (C) represents CPU running time and (G) indicates GPU running time.

Model	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
Mean (C)	0.0006	0.0018	0.0013	0.0018	0.0011	0.0105	0.0037	0.0020
kNN (C)	0.03	0.75	0.27	0.10	0.17	47.97	16.36	17.92
Mice (C)	0.03	0.13	0.04	0.07	0.05	1.21	0.16	0.05
Gain (C)	3.25	3.95	3.21	4.24	3.38	4.01	3.05	3.21
HyperImpute (C)	21.68	23.98	36.00	131.83	42.12	56.88	28.67	22.61
Miracle (C)	3.94	12.28	8.65	6.23	5.23	75.19	35.03	32.77
Miwae (C)	7.63	37.14	23.44	12.13	17.95	283.64	164.71	206.09
Grape (C)	0.05	0.26	0.12	0.10	0.09	3.32	1.14	0.63
Grape (G)	0.02	0.02	0.02	0.02	0.02	0.19	0.07	0.05
M ³ -Impute (C)	0.05	0.43	0.18	0.14	0.13	5.09	1.55	0.78
M ³ -Impute (G)	0.02	0.02	0.04	0.04	0.04	0.56	0.19	0.12

4.6 DIFFERENT GNN VARIANTS

We also conduct experiments using different GNN variants such as GraphSAGE, GAT, and GCN. The results in Table 5 indicate that different aggregation mechanisms may introduce varying errors, but our method consistently outperforms its Grape counterpart, demonstrating its effectiveness.

Table 5: MAE for different GNN variants under MCAR setting with 30% missingness.

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
M ³ -Impute w/ different GNN variants:								
E-GraphSage	1.33	0.60	0.71	0.60	1.32	0.06	2.50	0.99
GCN	2.04	0.97	1.76	1.62	2.37	2.10	2.50	1.66
GAT	1.56	0.95	1.01	0.78	1.39	0.31	2.50	1.02
GraphSage	1.48	0.68	1.02	0.78	1.44	0.37	2.50	1.05
Grape w/ differen	nt GNN va	ariants:						
E-GraphSage	1.46	0.60	0.75	0.64	1.36	0.07	2.50	1.00
GCN	2.04	1.44	2.24	2.90	3.27	2.71	2.50	1.73
GAT	2.02	0.99	1.90	2.13	3.22	2.45	2.50	1.67
GraphSage	2.02	<u>0.98</u>	<u>1.81</u>	<u>1.74</u>	<u>3.17</u>	<u>2.30</u>	2.50	1.66

5 CONCLUSION

In this paper, we highlighted the importance of missingness information and presented M^3 -Impute, a mask-guided representation learning method for missing value imputation. M³-Impute improved the embedding initialization process by considering the relationships between samples and their associated features (including missing ones). In addition, for more effective representation learning, we introduced two novel components in M^3 -Impute – FCU and SCU, which explicitly model the missingness information with our novel soft masking schemes to better capture data correlations for imputation. Extensive experiment results on 25 open datasets demonstrate the effectiveness of M^3 -Impute, where it achieves overall superior performance to popular and state-of-the-art methods, with 20 best and 4 second-best MAE scores on average under three different settings of missing value patterns. For reproducibility purpose, we have included the implementations of M³-Impute and all the baseline models with detailed running instructions in the supplementary material.

540 REFERENCES

547

555

556

558

562

563

564

565

574

575

576

Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf. Multiple imputation by
 chained equations: what is it and how does it work? *International journal of methods in psychiatric research*, 20(1):40–49, 2011.

- Thomas Brooks, D. Pope, and Michael Marcolini. Airfoil self-noise. https://doi.org/10.
 24432/C5VW2C, March 2014. URL https://doi.org/10.24432/C5VW2C.
- Lane F Burgette and Jerome P Reiter. Multiple imputation for missing data via sequential regression
 trees. American journal of epidemiology, 172(9):1070–1076, 2010.
- Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. *SIAM Journal on optimization*, 20(4):1956–1982, 2010.
- Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. *Commu- nications of the ACM*, 55(6):111–119, 2012.
 - Paulo Cortez, Antonio Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Wine quality. https://doi.org/10.24432/C56S3T, October 2009. URL https://doi.org/10. 24432/C56S3T.
- Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
 convolutional networks. In 2017 IEEE International Conference on Computer Vision (ICCV), pp.
 764–773, 2017. doi: 10.1109/ICCV.2017.89.
 - Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1): 1–22, 1977.
- Tianyu Du, Luca Melis, and Ting Wang. Remasker: Imputing tabular data with masked autoencoding.
 In The Twelfth International Conference on Learning Representations, 2024. URL https: //openreview.net/forum?id=KI9NqjLVDT.
- 569
 570
 571
 Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL http://archive.
 ics.uci.edu/ml.
- Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. *Ann. Statist.*, 32(1):407–499, 2004.
 - Ronald A Fisher. The use of multiple measurements in taxonomic problems. *Annals of eugenics*, 7 (2):179–188, 1936.
- Pedro J García-Laencina, José-Luis Sancho-Gómez, and Aníbal R Figueiras-Vidal. Pattern classifica tion with missing data: a review. *Neural Computing and Applications*, 19:263–282, 2010.
- Zoubin Ghahramani and Michael Jordan. Supervised learning from incomplete data via an em approach. Advances in neural information processing systems, 6, 1993.
- William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.
- Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank svd via fast alternating least squares. *J. Mach. Learn. Res.*, 16(1):3367–3402, jan 2015a. ISSN 1532-4435.
- Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd via fast alternating least squares. *The Journal of Machine Learning Research*, 16(1):3367–3402, 2015b.

616

619

638

639

640

- Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.
 08415.
- Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI: https://doi.org/10.24432/C5NC77.
- James Honaker, Gary King, and Matthew Blackwell. Amelia ii: A program for missing data. *Journal of statistical software*, 45:1–47, 2011.
- Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyperimpute:
 Generalized iterative imputation with automatic model selection. In Kamalika Chaudhuri, Stefanie
 Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162
 of *Proceedings of Machine Learning Research*, pp. 9916–9937. PMLR, 2022. URL https:
 //proceedings.mlr.press/v162/jarrett22a.html.
- Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. MIRACLE: causallyaware imputation via learning missing data mechanisms. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 23806-23817, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/ c80bcf42c220b8f5c41f85344242f1b0-Abstract.html.
- Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. *Mining of Massive Datasets, 2nd Ed.* Cambridge University Press, 2014. ISBN 978-1107077232. URL http://www.mmds.org/.
- Mingzhe Li, Xiuying Chen, Shen Gao, Zhangming Chan, Dongyan Zhao, and Rui Yan. VMSMO: Learning to generate multimodal summary for video-based news articles. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 9360–9369, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.752. URL https: //aclanthology.org/2020.emnlp-main.752.
- Steven Cheng-Xian Li, Bo Jiang, and Benjamin M. Marlin. Misgan: Learning from incomplete data with generative adversarial networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=S11DV3RcKm.
- Tjen-Sien Lim. Contraceptive Method Choice. UCI Machine Learning Repository, 1999. DOI: https://doi.org/10.24432/C59W2D.
- Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: deep generative modelling and imputation of
 incomplete data sets. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
 California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 4413–4423. PMLR,
 2019. URL http://proceedings.mlr.press/v97/mattei19a.html.
 - Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res., 11:2287–2322, aug 2010a. ISSN 1532-4435.
- Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for
 learning large incomplete matrices. *The Journal of Machine Learning Research*, 11:2287–2322,
 2010b.
- Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for
 learning large incomplete matrices. *The Journal of Machine Learning Research*, 11:2287–2322, 2010c.

686

687

688

- Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal transport. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 7130–7140. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/muzellec20a.html.
- Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=HkAClQgA-.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 10674– 10685. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01042. URL https://doi.org/10. 1109/CVPR52688.2022.01042.
- Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
 pointer-generator networks. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 pp. 1073–1083, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
 10.18653/v1/P17-1099. URL https://aclanthology.org/P17-1099.
- V. Sigillito, S. Wing, L. Hutton, and K. Baker. Ionosphere. https://doi.org/10.24432/
 C5W01B, December 1988. URL https://doi.org/10.24432/C5W01B.
- David Slate. Letter recognition. UCI Machine Learning Repository, 1991. DOI: https://doi.org/10.24432/C5ZP40.
- Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Missing data imputation with adversarially trained graph convolutional networks. *Neural Networks*, 129:249–260, 2020. doi: 10.1016/J.
 NEUNET.2020.06.005. URL https://doi.org/10.1016/j.neunet.2020.06.005.
- Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for mixed-type data. *Bioinformatics*, 28(1):112–118, 2012.
- Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional scorebased diffusion models for probabilistic time series imputation. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 24804–24816, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/ cfe8504bda37b575c70ee1a8276f3486-Abstract.html.
 - Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, and Russ B. Altman. Missing value estimation methods for dna microarrays. *Bioinformatics*, 17(6):520–525, 2001. ISSN 1367-4803. doi: 10.1093/bioinformatics/17.6.520.
- Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
 in r. Journal of Statistical Software, 45(3):1–67, 2011. doi: 10.18637/jss.v045.i03. URL
 https://www.jstatsoft.org/index.php/jss/article/view/v045i03.
- Stef Van Buuren, Jaap PL Brand, Catharina GM Groothuis-Oudshoorn, and Donald B Rubin. Fully conditional specification in multivariate imputation. *Journal of statistical computation and simula-tion*, 76(12):1049–1064, 2006.
- Wenbo Wang, Yang Gao, Heyan Huang, and Yuxiang Zhou. Concept pointer network for abstractive summarization. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3076–3085, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1304.
 URL https://aclanthology.org/D19–1304.

 William H. Wolberg, Olvi L. Mangasarian, and W. Nick Street. Breast cancer wisconsin (diagnostic). https://doi.org/10.24432/C5DW2B, October 1995. URL https://doi.org/10. 24432/C5DW2B.

- Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros Rekatsinas. Attention-based learning for
 missing data imputation in holoclean. *Proceedings of Machine Learning and Systems*, 2:307–325, 2020.
- I-Cheng Yeh. Blood transfusion service center. https://doi.org/10.24432/C5GS39,
 October 2008. URL https://doi.org/10.24432/C5GS39.
- Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: missing data imputation using generative adversarial nets. In Jennifer G. Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research*, pp. 5675–5684. PMLR, 2018. URL http://proceedings.mlr.press/v80/yoon18a.html.
- Seongwook Yoon and Sanghoon Sull. GAMIN: generative adversarial multiple imputation network for highly missing data. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 8453-8461.
 Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00848. URL https://openaccess.thecvf.com/content_CVPR_2020/html/Yoon_GAMIN_ Generative_Adversarial_Multiple_Imputation_Network_for_Highly_ Missing_Data_CVPR_2020_paper.html.
- Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel J. Kochenderfer, and Jure Leskovec. Handling
 missing data with graph representation learning. In Hugo Larochelle, Marc' Aurelio Ranzato, Raia
 Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
 paper/2020/hash/dc36f18a9a0a776671d4879cae69b551-Abstract.html.
- Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in tabular data. *CoRR*, abs/2210.17128, 2022. doi: 10.48550/ARXIV.2210.17128. URL https://doi.org/10.48550/arXiv.2210.17128.
- Xizhou Zhu, Dazhi Cheng, Zheng Zhang, Stephen Lin, and Jifeng Dai. An empirical study of spatial attention mechanisms in deep networks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2019a.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable, better
 results. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
 9300–9308, 2019b. doi: 10.1109/CVPR.2019.00953.

754 755

756 A APPENDIX

Table 6: Overview of datasets, which contains continuous features (Cont. F.) and discrete features (Disc. F.).

Figure 4: Pearson correlation coefficients of UCI datasets.

784 In this section, we elaborate on extensive and comprehensive experiment results. We first provide an 785 overview of the dataset details in Section A.1, and present the performance of the imputation methods under different missingness settings, namely MAR and MNAR, in Section A.2. We then provide 786 the comprehensive results across different missingness ratios in Section A.3. For more thorough 787 analysis, we extend our evaluation of M³-Impute on 17 additional datasets, totaling 25 datasets, in 788 Section A.4, and elaborate on the computational resources used in Section A.5. We further assess 789 the quality of imputed values generated by M^3 -Impute by leveraging them in downstream tasks in 790 Section A.6. Finally, we perform a sensitivity analysis on the hyperparameters of M^3 -Impute in 791 Section A.7, and provide the implementation details of baselines, including their hyperparameter 792 choices, in Section A.8.

793 794

795

782

783

A.1 DATASET DETAILS

796 Table 6 presents the statistics of the eight UCI datasets (Dua & Graff, 2017) used throughout Section 4. 797 Figure 4 illustrates the Pearson correlation coefficients among the features. In the Kin8nm dataset, all features are linearly independent, whereas the Naval dataset exhibits strong correlations among 798 its features. Under the MCAR setting, M³-Impute performs comparably to the baseline imputation 799 methods on these two datasets (shown in Table 1). However, in real-world scenarios, features are not 800 always entirely independent or strongly correlated. In the other six datasets, we observe a mix of 801 weakly correlated features along with a few that are strongly correlated. In these cases, M³-Impute 802 consistently outperforms all baseline methods. 803

804 805

A.2 DETAILED RESULTS OF DIFFERENT MISSINGNESS SETTINGS

We adopt the same procedure outlined in Grape (You et al., 2020) to generate missing values under different settings.

• MCAR: An $n \times m$ matrix is sampled from a uniform distribution. Positions with values no greater than the ratio of missingness are viewed as missing and the remaining positions are observable.

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Pov
Mean	$2.20 \pm .13$	$1.09 \pm .05$	$1.79 \pm .21$	$2.02 \pm .20$	$3.26 \pm .36$	$2.75 \pm .11$	2.49 ± .01	1.81 :
Svd	$2.64 \pm .22$	$1.04 \pm .14$	$2.32 \pm .06$	$1.71 \pm .15$	$3.68 \pm .16$	$0.52 \pm .11$	$2.69 \pm .02$	2.37 :
Spectral	$3.06 \pm .11$	$0.91 \pm .13$	$2.12 \pm .17$	$1.84 \pm .28$	$2.88 \pm .35$	$1.29 \pm .47$	$3.56 \pm .01$	3.37
Mice	$1.79 \pm .10$	$0.79 \pm .01$	$1.27 \pm .08$	$1.22 \pm .05$	$1.12 \pm .07$	$0.27 \pm .01$	$2.51 \pm .03$	1.16
Knn	$1.69 \pm .07$	$0.66 \pm .07$	$0.89 \pm .30$	$0.89 \pm .12$	$1.61 \pm .35$	$0.07 \pm .00$	$\overline{2.94} \pm .01$	1.11
Gain	$2.07 \pm .02$	$1.13 \pm .20$	$1.87 \pm .16$	$0.92 \pm .05$	$2.26 \pm .14$	$0.91 \pm .07$	$2.93 \pm .02$	1.42
Miwae	$2.17 \pm .02$	$0.98 \pm .02$	$1.80 \pm .01$	$1.53 \pm .05$	$3.91 \pm .04$	$2.91 \pm .07$	$2.58 \pm .02$	2.05
Grape	$1.20 \pm .03$	0.60 ± .00	$0.77 \pm .02$	$0.66 \pm .01$	$1.05 \pm .02$	0.07 ± .01	$2.49 \pm .00$	1.06
Miracle	$3.75 \pm .00$	$0.70 \pm .00$	$1.94 \pm .00$	$2.24 \pm .00$	$3.89 \pm .00$	$0.36 \pm .00$	$2.82 \pm .10$	0.86
Hyperimpute	$2.06 \pm .12$	$0.78\pm.06$	$1.30 \pm .15$	$1.05 \pm .21$	$1.11 \pm .38$	$1.01 \pm .18$	$3.07 \pm .06$	1.07
M ³ -Impute	1.09 ± .03	0.60 ± .00	0.77 ± .02	0.60 ± .00	0.98 ± .02	0.07 ± .00	2.49 ± .00	1.01

Table 7: MAE scores under MAR setting with 30% missingness.

Table 8: MAE scores under MNAR setting with 30% missingness.

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
Mean	$2.18 \pm .09$	$1.04 \pm .02$	$1.80 \pm .09$	$1.95 \pm .13$	$3.17 \pm .22$	$2.60 \pm .07$	$2.49 \pm .01$	$1.76 \pm .14$
Svd	$2.61 \pm .13$	$1.06 \pm .07$	$2.24 \pm .05$	$1.58 \pm .06$	$3.55 \pm .09$	$0.53 \pm .05$	$\overline{2.69} \pm .02$	$2.27 \pm .25$
Spectral	$2.75 \pm .14$	$1.01 \pm .08$	$1.86 \pm .03$	$1.60 \pm .22$	$2.50 \pm .15$	$1.35 \pm .21$	$3.34 \pm .00$	$3.14 \pm .41$
Mice	$1.91 \pm .10$	$0.77 \pm .07$	$1.37 \pm .05$	$1.22 \pm .06$	$1.57 \pm .03$	$0.21 \pm .07$	$2.50 \pm .00$	$1.08 \pm .02$
Knn	$1.92 \pm .10$	$0.75 \pm .05$	$1.15 \pm .32$	$0.95 \pm .11$	$1.96 \pm .11$	0.08 ± .02	$3.06 \pm .02$	$1.65 \pm .07$
Gain	$2.34 \pm .12$	$0.92 \pm .05$	$1.80 \pm .05$	$1.08 \pm .05$	$1.92 \pm .06$	$1.12 \pm .03$	$2.78 \pm .03$	$1.22 \pm .03$
Miwae	$2.17 \pm .00$	$0.99 \pm .01$	$1.81 \pm .03$	$1.60 \pm .02$	$3.63 \pm .00$	$2.63 \pm .03$	$2.55 \pm .02$	$1.95 \pm .03$
Grape	$1.23 \pm .03$	$0.61 \pm .00$	$0.73 \pm .01$	$0.61 \pm .01$	$1.16 \pm .01$	0.08 ± .01	2.46 ± .01	$1.02 \pm .01$
Miracle	$3.85 \pm .00$	$0.70 \pm .00$	$1.87 \pm .00$	$2.51 \pm .00$	$3.86 \pm .00$	$0.30 \pm .00$	$2.64 \pm .00$	$1.06 \pm .00$
Hyperimpute	$1.95 \pm .10$	$0.72 \pm .03$	$0.88 \pm .02$	$0.85 \pm .03$	$1.19 \pm .24$	$0.85 \pm .04$	$2.71 \pm .06$	$1.09 \pm .06$
M ³ -Impute	$1.15 \pm .02$	0.60 ± .00	0.68 ± .02	$0.54 \pm .01$	1.09 ± .01	$0.08 \pm .00$	$2.46 \pm .00$	1.00 ± .00

• MAR: A subset of features is randomly selected to be fully observed. The values for the remaining features are removed according to a logistic model with random weights, using the fully observed feature values as input. The desired rate of missingness is achieved by adjusting the bias term.

• **MNAR**: This is done by first applying the MAR mechanism above. Then, the remaining feature values are masked out using the MCAR mechanism.

In addition to the results for MCAR setting presented in Table 4.2, Tables 7 and 8 present the MAE scores under MAR and MNAR settings, respectively. M³-Impute consistently outperforms all the baseline methods in both scenarios.

A.3 ROBUSTNESS AGAINST VARIOUS MISSINGNESS SETTINGS

Tables 16, 17, and 18 present the performance of various imputation methods under different levels of missingness across MCAR, MAR, and MNAR settings, respectively. M³-Impute achieves the lowest MAE scores in most cases and the second-best MAE scores in the remaining ones.

A.4 FURTHER EVALUATION ON 17 ADDITIONAL DATASETS

Table 9: Overview of 17 additional datasets, which contains continuous features (Cont. F.) and discrete features (Disc. F.).

	AIrfoil	BLood	Wine-White	IOnosphere	BReast	IRis	DIabetes	PRotein	SParr
# Samples	1503	748	4899	351	569	150	442	45730	4601
# Cont. F.	5	4	12	34	30	4	10	9	57
# Disc. F.	1	0	0	0	0	0	0	0	0
	LEtter	ABalone	Ai4i	СМС	GErman	STeel	LIbras	California-Housing	
# Samples	20000	4177	10000	1473	1000	1941	360	20640	
# Cont. F.	16	7	7	8	13	33	91	9	
# Disc. F.	0	1	5	1	7	0	0	0	

> In this experiment, we further evaluate M³-Impute on 17 datasets: Airfoil (Brooks et al., 2014), Blood (Yeh, 2008), Wine-White (Cortez et al., 2009), Ionosphere (Sigillito et al., 1988), Breast

Cancer (Wolberg et al., 1995), Iris (Fisher, 1936), Diabetes (Efron et al., 2004), Protein, Spam, Letter (Slate, 1991), Abalone, Ai4i, CMC (Lim, 1999), German (Hofmann, 1994), Steel, Libras, and California-housing. An overview of the dataset details is provided in Table 9, and feature correlations are illustrated in Figure 5. We conduct experiments with missingness in data under MCAR, MAR, and MNAR settings, each with missing ratios of {0.1, 0.3, 0.5, 0.7}. Results are presented in Tables 19, 20, and 21 for MCAR, MAR, and MNAR settings, respectively. Across all three types of missingness for the 17 datasets, M³-Impute achieves 13 best and 3 second-best MAE scores on average.

911

913

912 A.5 COMPUTATIONAL RESOURCES

All our experiments are conducted on a GPU server running Ubuntu 22.04, with PyTorch 2.1.0
 and CUDA 12.1. We train and test M³-Impute using a single NVIDIA A100 80G GPU. With the
 experimental setup described in Section 4.1, the total running time (including both training and
 testing) for each of the five repeated runs ranged from 1 to 5 hours, depending on the scale of the
 datasets. In Section 4.5, we report the running time of M³-Impute on eight datasets. Here we extend

Model	Protein	Spam	Letter	Libras	California-housing
Mean (C)	0.0187	0.0151	0.0162	0.0073	0.0090
Knn (C)	523.68	18.50	126.43	0.63	103.14
Svd (C)	0.61	5.29	0.61	0.16	0.48
Mice (C)	1.36	8.99	2.21	14.45	0.35
Spectral (C)	3.13	1.61	3.24	0.55	1.62
Gain (C)	5.07	5.71	4.28	8.94	3.73
HyperImpute (C)	37.89	183.68	26.25	26.67	35.03
Miracle (C)	173.69	91.53	110.45	34.24	81.48
Miwae (C)	982.18	147.75	443.49	17.80	454.16
Grape (C)	6.97	4.33	5.25	0.84	3.13
Grape (G)	0.37	0.24	0.28	0.05	0.18
M ³ -Impute (C)	10.27	7.53	7.80	1.51	4.61
M ³ -Impute (G)	0.99	0.69	0.76	0.19	0.51

Table 10: Running time (in seconds) for feature imputation using different methods at test time. (C) represents CPU running time and (G) indicates GPU running time.

our investigation to larger datasets with more samples and features. As shown in Table 10. M³-Impute also demonstrates efficiency on these datasets. When using a GPU, the time required to impute all missing values for any dataset is less than one second under the setting of MCAR with 30% missingness.

A.6 DOWNSTREAM TASK PERFORMANCE

We further evaluate the quality of imputed values from different imputation methods by performing a downstream label prediction task. In particular, each sample in the eight examined datasets contains a continuous label, and the task is to predict the label using the feature values. Starting with an input data matrix with 30% missingness, we first impute the data using the corresponding imputation methods, and then do linear regression on the completed data matrix to predict labels. As shown in Table 11, M³-Impute consistently achieves good performance across different datasets, with six best performance and two second best, indicating its effectiveness in the missing value imputation.

Table 11: MAE scores of label prediction under the MCAR setting with 30% missingness.

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
Mean	9.08	0.54	10.50	4.44	4.29	0.0065	0.18	6.31
Svd	9.12	0.55	10.90	4.26	3.40	0.0058	0.19	6.93
Spectral	8.98	0.54	10.50	4.33	3.42	0.0057	0.19	6.67
Mice	8.95	0.54	10.20	3.99	2.84	0.0044	0.18	4.99
Knn	8.91	0.53	9.95	4.17	3.04	0.0049	0.18	5.68
Gain	9.82	0.53	10.60	4.20	2.79	0.0060	0.18	5.08
Miwae	9.40	0.54	10.60	5.43	3.65	0.0065	0.18	5.50
Grape	8.96	0.52	9.17	3.66	2.61	0.0038	0.18	4.83
Miracle	9.70	0.55	10.50	5.01	4.37	0.0039	0.18	4.93
HyperImpute	9.58	0.51	9.94	3.87	2.49	0.0032	0.18	4.69
M ³ -Impute	8.82	0.51	9.04	3.60	2.57	0.0036	0.18	4.69

A.7 ANALYSIS OF HYPERPARAMETERS IN M³-IMPUTE

In this experiment, we evaluate the sensitivity of M^3 -Impute to various hyperparameter settings. Tables 12, 13, and 14 summarize the performance of M^3 -Impute across different hidden dimensions, GNN layer counts, and edge dropout ratios. Overall, the results show that M³-Impute is robust to different hyperparameter settings across the tested datasets. Based on these observations, we

Table 12: MAE of M^3 -Impute with varying embedding dimensions under the MCAR setting with 30% missingness.

968		Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
969	d=32	1.38	0.63	0.89	0.71	1.32	0.18	2.50	1.02
970	d=64	1.34	0.62	0.78	0.63	1.31	0.11	2.50	1.01
971	d=128 d=256	1.33 1.37	0.60 0.61	0.71 0.68	0.60 0.60	1.32 1.33	0.06 0.06	2.50 2.50	0.99 0.99

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
L = 1	1.43	0.62	0.82	0.65	1.30	0.12	2.50	1.01
L = 2	1.36	0.61	0.77	0.62	1.31	0.09	2.50	1.01
L = 3	1.33	0.60	0.71	0.60	1.32	0.06	2.50	0.99
L = 4	1.35	0.60	0.71	0.61	1.32	0.06	2.50	0.99

Table 13: MAE of M³-Impute with varying numbers of GNN layers (L) under the MCAR setting
 with 30% missingness.

Table 14: MAE of M³-Impute with varying edge dropout ratios under MCAR setting with 30% missingness.

Drop %	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
90%	1.53	0.66	0.94	0.69	1.35	0.13	2.50	1.03
70%	1.35	0.62	0.75	0.62	1.33	0.08	2.50	1.00
50%	1.33	0.60	0.71	0.60	1.32	0.06	2.50	0.99
30%	1.38	0.61	0.73	0.60	1.31	0.06	2.50	1.00

recommend setting the hidden dimension to 128, the number of GNN layers to 3, and the edge dropout ratio to 50% as a general guideline.

A.8 BASELINE CONFIGURATION

For Mean, Svd, Spectral, and Knn, we follow the widely adopted implementation in Grape (You et al., 2020). For Gain (Yoon et al., 2018), Miwae (Mattei & Frellsen, 2019), Grape (You et al., 2020), Miracle (Kyono et al., 2021), and HyperImpute (Jarrett et al., 2022), we use their official implementations. By default, we follow the optimal parameter settings provided in the original papers. However, we observe that part of the baselines do not perform well with their default parameters on certain datasets. To ensure a fair comparison, we conduct a grid search over the hyperparameters and report the best results achieved across all our experiments. The search ranges for these hyperparameters are detailed in Table 15.

Table 15: Hyperparameter search space.

Model	Hyperparameters
Svd	<pre>rank = {3, 5, 10, 20} max_iters = {200, 1000, 2000}</pre>
Spectral	<pre>max_iters = {100, 200, 500}</pre>
Mice	<pre>max_iter = {10, 30, 50, 100}</pre>
Knn	$K = \{3, 5, 10, 20\}$
Gain	n_epochs = {1000, 2000, 3000}
Miwae	n_epochs = {1000, 2000, 3000} K = {5, 10, 15, 20}
Grape	hidden_dim = {64, 128, 256} edge_dropout_ratio = {0.1, 0.3, 0.5}
Miracle	<pre>n_hidden = {8, 16, 32, 64} reg_lambda = range(0.1, 1, 0.1) reg_beta = range(0.1, 1, 0.1) max_steps = {500, 1000, 2000}</pre>

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm
Missing 10%							
Mean	2.22 ± 0.05	0.96 ± 0.02	1.81 ± 0.02	1.84 ± 0.01	3.09 ± 0.07	2.30 ± 0.01	2.50 ± 0.01
Svd	1.92 ± 0.16	0.88 ± 0.03	2.04 ± 0.04	1.69 ± 0.11	1.75 ± 0.10	0.34 ± 0.00	5.04 ± 0.06
Spectral	2.24 ± 0.12	0.76 ± 0.02	1.84 ± 0.05	1.28 ± 0.04	1.76 ± 0.08	0.38 ± 0.01	2.71 ± 0.02
Mice	1.38 ± 0.13	0.62 ± 0.01	0.97 ± 0.04	0.98 ± 0.04	1.28 ± 0.07	0.13 ± 0.00	2.50 ± 0.01
Knn	1.40 ± 0.17	0.49 ± 0.01	0.58 ± 0.05	0.74 ± 0.04	1.42 ± 0.05	0.03 ± 0.00	2.53 ± 0.01
Gain	2.30 ± 0.04	0.83 ± 0.04	1.62 ± 0.05	1.16 ± 0.05	1.95 ± 0.05	0.45 ± 0.01	2.74 ± 0.02
Miwae	2.39 ± 0.00	1.01 ± 0.04	1.93 ± 0.02	1.73 ± 0.01	3.30 ± 0.00	2.37 ± 0.00	2.57 ± 0.00
Grape	1.00 ± 0.00	0.48 ± 0.00	0.45 ± 0.01	0.49 ± 0.00	1.19 ± 0.00	0.05 ± 0.00	2.49 ± 0.00
Miracle	$\overline{3.87} \pm 0.01$	$\overline{0.62} \pm 0.00$	1.63 ± 0.01	$\overline{3.07} \pm 0.00$	4.04 ± 0.00	$\overline{0.12} \pm 0.00$	$\overline{2.48} \pm 0.01$
HyperImpute	1.50 ± 0.11	0.52 ± 0.00	0.51 ± 0.04	0.75 ± 0.04	$\underline{1.18}\pm0.05$	0.06 ± 0.04	2.50 ± 0.00
M ³ -Impute	$\textbf{0.96} \pm 0.00$	$\textbf{0.47} \pm 0.01$	$\textbf{0.41} \pm 0.01$	$\textbf{0.45} \pm 0.00$	$\textbf{1.15}\pm0.00$	$\underline{0.05} \pm 0.00$	2.49 ± 0.00
	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm
Missing 30%							
Mean	2.09 ± 0.04	0.98 ± 0.01	1.79 ± 0.01	1.85 ± 0.00	3.10 ± 0.04	2.31 ± 0.00	2.50 ± 0.00
Svd	2.46 ± 0.16	0.92 ± 0.01	1.94 ± 0.02	1.53 ± 0.03	2.24 ± 0.06	0.50 ± 0.00	$\overline{3.67} \pm 0.06$
Spectral	2.64 ± 0.11	0.91 ± 0.01	1.98 ± 0.04	1.46 ± 0.03	2.26 ± 0.09	0.41 ± 0.00	2.80 ± 0.01
Mice	1.68 ± 0.05	0.77 ± 0.00	1.34 ± 0.01	1.16 ± 0.03	1.53 ± 0.04	0.20 ± 0.01	2.50 ± 0.00
Knn	1.67 ± 0.02	0.72 ± 0.00	1.16 ± 0.03	0.95 ± 0.01	1.81 ± 0.03	0.10 ± 0.00	$\overline{2.77} \pm 0.01$
Gain	2.26 ± 0.11	0.86 ± 0.00	1.67 ± 0.03	1.23 ± 0.02	1.99 ± 0.03	0.46 ± 0.02	2.70 ± 0.00
Miwae	2.37 ± 0.01	1.00 ± 0.00	1.81 ± 0.01	1.74 ± 0.04	2.79 ± 0.04	2.37 ± 0.00	2.57 ± 0.00
Grape	1.46 ± 0.01	0.60 ± 0.00	0.75 ± 0.01	0.64 ± 0.01	1.36 ± 0.01	0.07 ± 0.00	2.50 ± 0.00
Miracle	$\overline{3.84} \pm 0.00$	0.70 ± 0.00	1.71 ± 0.05	$\overline{3.12} \pm 0.00$	3.94 ± 0.01	0.18 ± 0.00	$\overline{2.49} \pm 0.00$
HyperImpute	1.76 ± 0.03	$\underline{0.67} \pm 0.01$	0.84 ± 0.02	0.82 ± 0.01	$\underline{1.32} \pm 0.02$	$\textbf{0.04} \pm 0.00$	2.58 ± 0.05
M ³ -Impute	$\textbf{1.33} \pm 0.04$	$\textbf{0.60} \pm 0.00$	$\textbf{0.71} \pm 0.01$	$\textbf{0.59} \pm 0.00$	1.31 ± 0.01	$\underline{0.06} \pm 0.00$	$\underline{2.50} \pm 0.00$
	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm
Missing 50%							
Mean	2.12 ± 0.02	0.98 ± 0.01	1.81 ± 0.01	1.84 ± 0.01	3.08 ± 0.02	2.31 ± 0.00	2.50 ± 0.00
Svd	3.00 ± 0.11	1.18 ± 0.00	2.19 ± 0.01	1.88 ± 0.01	2.88 ± 0.04	0.87 ± 0.00	3.30 ± 0.01
Spectral	3.17 ± 0.13	1.13 ± 0.00	2.31 ± 0.01	1.76 ± 0.03	3.03 ± 0.02	0.46 ± 0.00	3.02 ± 0.00
Mice	1.99 ± 0.08	0.83 ± 0.00	1.59 ± 0.03	1.33 ± 0.02	2.13 ± 0.12	0.31 ± 0.01	2.50 ± 0.00
Knn	2.08 ± 0.02	0.98 ± 0.01	1.40 ± 0.02	1.37 ± 0.01	2.21 ± 0.01	0.76 ± 0.01	2.65 ± 0.00
Gain	2.33 ± 0.03	1.18 ± 0.15	2.20 ± 0.17	1.43 ± 0.09	2.58 ± 0.09	0.56 ± 0.03	2.86 ± 0.06
Miwae	2.41 ± 0.01	1.02 ± 0.00	1.87 ± 0.04	1.76 ± 0.01	3.23 ± 0.00	2.39 ± 0.01	2.58 ± 0.00
Grape	1.89 ± 0.02	0.75 ± 0.01	1.24 ± 0.00	0.83 ± 0.01	1.63 ± 0.01	0.09 ± 0.00	2.50 ± 0.00
Miracle	3.84 ± 0.00	0.81 ± 0.00	1.80 ± 0.00	3.07 ± 0.00	3.94 ± 0.00	0.24 ± 0.00	2.76 ± 0.00
HyperImpute	2.07 ± 0.11	0.85 ± 0.00	1.33 ± 0.08	1.06 ± 0.11	1.70 ± 0.05	0.07 ± 0.00	2.96 ± 0.04
M ³ -Impute	$\textbf{1.74} \pm 0.01$	$\textbf{0.74} \pm 0.00$	$\textbf{1.19}\pm0.02$	$\textbf{0.79} \pm 0.01$	$\textbf{1.57} \pm 0.00$	$\underline{0.08} \pm 0.00$	$\pmb{2.50} \pm 0.00$
	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm
Missing 70%							
Mean	2.16 ± 0.06	0.99 ± 0.00	1.81 ± 0.01	1.83 ± 0.02	3.08 ± 0.01	2.31 ± 0.00	2.50 ± 0.00
Svd	$\overline{3.78} \pm 0.06$	1.63 ± 0.02	2.53 ± 0.03	2.58 ± 0.07	3.65 ± 0.09	1.56 ± 0.00	$\overline{3.58} \pm 0.00$
Spectral	4.17 ± 0.10	1.67 ± 0.02	2.75 ± 0.01	2.59 ± 0.05	4.00 ± 0.03	1.04 ± 0.00	3.73 ± 0.01
Mice	2.21 ± 0.10	0.93 ± 0.01	1.72 ± 0.02	1.54 ± 0.04	2.71 ± 0.15	0.53 ± 0.00	2.62 ± 0.08
Knn	2.62 ± 0.08	1.05 ± 0.00	1.60 ± 0.01	1.43 ± 0.02	2.54 ± 0.04	1.08 ± 0.00	2.84 ± 0.01
Gain	3.07 ± 0.08	1.61 ± 0.15	2.84 ± 0.04	3.09 ± 0.04	3.83 ± 0.15	1.07 ± 0.02	3.31 ± 0.21
Miwae	2.40 ± 0.01	1.02 ± 0.03	1.86 ± 0.00	1.75 ± 0.00	3.20 ± 0.01	2.39 ± 0.01	2.58 ± 0.00
Grape	2.14 ± 0.01	0.88 ± 0.01	1.64 ± 0.02	1.12 ± 0.01	2.10 ± 0.01	0.17 ± 0.00	2.49 ± 0.00
10 1	2 99 1 0 00	0.00 ± 0.00	2.23 ± 0.00	3.05 ± 0.00	3.95 ± 0.00	0.48 ± 0.00	2.88 ± 0.00
Miracle	5.88 ± 0.00	0.90 ± 0.00	2.23 ± 0.00	5.05 ± 0.00	5.95 ± 0.00	0.40 ± 0.00	2.00 ± 0.00

Table 16: MAE scores under the MCAR setting across different levels of missingness.

	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Pow
Missing 10%								
Mean	$2.06 \pm .16$	$0.97 \pm .08$	$1.95 \pm .15$	$1.46 \pm .14$	$3.44 \pm .23$	$2.62 \pm .20$	$2.50 \pm .02$	1.82 ±
Svd	$2.61 \pm .16$	$1.18 \pm .07$	$2.26 \pm .20$	$1.34 \pm .16$	$3.37 \pm .28$	$0.65 \pm .19$	$2.64 \pm .02$	2.27 ±
Spectral	$2.36 \pm .32$	$0.86 \pm .11$	$1.93 \pm .18$	$1.19 \pm .10$	$2.24 \pm .35$	$0.45 \pm .22$	$3.12 \pm .04$	2.15 ±
Mice	$1.26 \pm .17$	$0.65 \pm .02$	$1.03 \pm .08$	$1.05 \pm .08$	$0.89 \pm .09$	$0.18 \pm .01$	$2.48 \pm .01$	$0.98 \pm$
Knn	$1.62 \pm .51$	$0.51 \pm .02$	$0.47 \pm .10$	$0.74 \pm .02$	$1.50 \pm .10$	$0.03 \pm .01$	$\overline{2.92} + .03$	0.84 +
Gain	2.00 ± 12	$\frac{1}{0.79} \pm 02$	1.72 ± 0.04	0.91 ± 13	151 ± 06	$\frac{1.52}{0.54} \pm 16$	2.77 ± 0.03	1 24 +
Miwae	$2.06 \pm .01$	$1.02 \pm .02$	1.88 ± 0.01	1.56 ± 01	3.82 ± 01	$2.92 \pm .00$	$2.57 \pm .03$	2.06 +
Grape	$0.75 \pm .01$	0.49 ± 0.01	$0.42 \pm .00$	$0.51 \pm .01$	$0.80 \pm .01$	$0.07 \pm .00$	$2.57 \pm .01$ $2.46 \pm .00$	0.70 +
Miracle	$\frac{0.75}{3.78} \pm .00$	$0.49 \pm .01$ 0.58 $\pm .04$	$\frac{0.42}{1.65} \pm .01$	$\frac{0.51}{2.21} \pm .02$	$3.45 \pm .01$	$0.07 \pm .02$ 0.16 \pm 01	$2.52 \pm .00$	0.81 -
HyperImpute	$1.22 \pm .13$	$0.53 \pm .04$ $0.51 \pm .01$	$0.49 \pm .03$	$0.82 \pm .16$	0.70 ± .14	$0.10 \pm .01$ $0.02 \pm .02$	$2.52 \pm .01$ $2.56 \pm .04$	0.01
M ³ -Impute	0.70 ± .01	0.49 ± .00	0.39 ± .01	0.44 ± .01	$0.85 \pm .00$	$0.07 \pm .00$	2.46 ± .00	0.69 ±
	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Pow
Missing 30%								
Mean	2.20 ± 13	$1.09 \pm .05$	1.70 ± 21	2.02 ± 20	3.26 ± 36	2.75 ± 11	2 4 9 ± 01	1 81 -
Sud	$2.20 \pm .13$ 2.64 \pm 22	$1.09 \pm .03$ $1.04 \pm .14$	$1.79 \pm .21$ $2.32 \pm .06$	$1.02 \pm .20$	$3.20 \pm .50$ $3.68 \pm .16$	$2.73 \pm .11$ 0.52 $\pm .11$	$2.49 \pm .01$ 2.60 $\pm .02$	2 27 1
Svu Snastral	$2.04 \pm .22$	$1.04 \pm .14$	$2.32 \pm .00$	$1./1 \pm .13$	$3.08 \pm .10$	$0.32 \pm .11$	$2.09 \pm .02$	2.37 1
Spectral	$5.00 \pm .11$	$0.91 \pm .13$	$2.12 \pm .17$	$1.64 \pm .26$	$2.86 \pm .53$	$1.29 \pm .47$	$5.30 \pm .01$	3.37 I
Mice	$1.79 \pm .10$	$0.79 \pm .01$	$1.27 \pm .08$	$1.22 \pm .05$	$1.12 \pm .07$	$\frac{0.27}{0.07} \pm .01$	$\frac{2.51}{2.04} \pm .03$	1.10 ±
Knn	$1.69 \pm .07$	$\frac{0.66}{1.12} \pm .07$	$\frac{0.89}{1.07} \pm .30$	$0.89 \pm .12$	$1.01 \pm .33$	$0.07 \pm .00$	$2.94 \pm .01$	1.11 ±
Gain	$2.07 \pm .02$	$1.13 \pm .20$	$1.87 \pm .16$	$0.92 \pm .05$	$2.26 \pm .14$	$0.91 \pm .07$	$2.93 \pm .02$	1.42 ±
Miwae	$2.17 \pm .01$	$0.98 \pm .01$	$1.80 \pm .04$	$1.54 \pm .00$	$3.91 \pm .01$	$2.80 \pm .01$	$2.58 \pm .01$	$2.05 \pm$
Grape	$1.20 \pm .03$	0.60 ± .00	$0.77 \pm .02$	$0.66 \pm .01$	$1.05 \pm .02$	0.07 ± .01	$2.49 \pm .00$	$1.06 \pm$
Miracle	$3.75 \pm .00$	$0.70 \pm .00$	$1.94 \pm .00$	$2.24 \pm .00$	$3.89 \pm .00$	$0.36 \pm .00$	$2.82 \pm .10$	$0.86 \pm$
Hyperimpute	$2.06 \pm .12$	$0.78 \pm .06$	$1.30 \pm .15$	$1.05 \pm .21$	$1.11 \pm .38$	$1.01 \pm .18$	$3.07 \pm .06$	1.07 ±
M ³ -Impute	$1.09 \pm .03$	$0.60 \pm .00$	$0.77 \pm .02$	0.60 ± .00	$0.98 \pm .02$	$0.07 \pm .00$	2.49 ± .00	<u>1.01</u> ±
	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Pow
Missing 50%								
Mean	$2.20 \pm .13$	$0.98 \pm .06$	$1.74 \pm .09$	$1.92 \pm .05$	$3.30 \pm .12$	$2.80 \pm .05$	2.49 ± .01	1.86 ±
Svd	$2.95 \pm .11$	$1.06 \pm .04$	$2.63 \pm .42$	$1.78 \pm .14$	$3.69 \pm .14$	$0.59 \pm .14$	$2.83 \pm .03$	2.64 ±
Spectral	$3.41 \pm .09$	$1.35 \pm .02$	$2.14 \pm .02$	$2.10 \pm .30$	$3.62 \pm .16$	$1.98 \pm .25$	$3.84 \pm .01$	$4.02 \pm$
Mice	$2.15 \pm .09$	$0.87 \pm .05$	$1.56 \pm .08$	$1.45 \pm .03$	$1.96 \pm .04$	$0.25 \pm .08$	$2.61 \pm .08$	1.35 +
Knn	$\frac{1}{245} \pm 19$	$\frac{0.01}{0.90} \pm 0.09$	1.04 ± 11	1.14 ± 26	1.64 ± 39	0.07 ± 0.03	$\frac{100}{300} \pm 01$	1 44 +
Gain	340 ± 08	$1.60 \pm .03$	213 ± 24	1.95 ± 10	$\frac{1.01}{3.04} \pm .35$	$\frac{0.07}{1.02} \pm .05$	$3.08 \pm .01$	1 69 -
Miwae	$2.40 \pm .00$ $2.31 \pm .01$	$1.00 \pm .03$	1.74 ± 0.03	$1.95 \pm .10$ $1.84 \pm .03$	$3.04 \pm .00$ $3.45 \pm .00$	$2.80 \pm .00$	$2.57 \pm .03$	1.05 -
Grape	$2.07 \pm .01$	$0.81 \pm .00$	$1.77 \pm .05$	$0.91 \pm .03$	1.73 ± 0.03	$0.10 \pm .01$	$2.07 \pm .01$ $2.49 \pm .00$	1 35 4
Miracle	$2.07 \pm .00$ $3.98 \pm .00$	$0.81 \pm .00$	$\frac{1.17}{2.50} \pm .01$	$\frac{0.91}{2.41} \pm .02$	$1.75 \pm .05$ $4.08 \pm .00$	$0.10 \pm .01$ $0.63 \pm .00$	$2.49 \pm .00$ 2.86 $\pm .00$	1.55 +
HyperImpute	$2.47 \pm .12$	$0.87 \pm .00$ $0.81 \pm .06$	$1.60 \pm .03$	$1.01 \pm .00$	$1.50 \pm .22$	$0.03 \pm .00$ $0.04 \pm .02$	$3.19 \pm .01$	1.35 ±
M ³ -Impute	2.07 ± .00	0.81 ± .00	<u>1.17</u> ± .01	0.84 ± .00	<u>1.64</u> ± .03	$0.10 \pm .00$	2.49 ± .00	<u>1.35</u> ±
	Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Pow
Missing 70%				0				
Mean	213 ± 12	$1.01 \pm .03$	1.85 ± 0.03	$1.01 \pm .06$	3.10 ± 0.07	$3.11 \pm .48$	2 49 ± 01	1 70 -
Sud	$2.10 \pm .12$ $2.10 \pm .12$	$1.01 \pm .03$ $1.26 \pm .02$	$1.05 \pm .05$ $2.47 \pm .00$	$1.21 \pm .00$	$3.19 \pm .07$ $4.22 \pm .29$	0.82 ± 0.2	$2.12 \pm .01$	2.70
Svu Smaatnal	$3.10 \pm .21$	$1.50 \pm .03$	$2.47 \pm .20$	$2.44 \pm .21$	$4.35 \pm .38$	$0.62 \pm .03$	$5.15 \pm .03$	2.70 ±
Spectral	$3.08 \pm .27$	$1.49 \pm .17$	$2.55 \pm .22$	$2.49 \pm .15$	$3.97 \pm .01$	$2.82 \pm .09$	$4.10 \pm .01$	4.23 ±
Mice	$2.28 \pm .12$	$0.97 \pm .03$	$1.76 \pm .08$	$1.81 \pm .01$	$2.81 \pm .18$	$0.50 \pm .03$	$\frac{2.62}{2.00} \pm .02$	1.38 ±
Knn	$2.02 \pm .34$	$1.15 \pm .05$	$1.54 \pm .06$	$1.63 \pm .25$	$1.65 \pm .28$	$0.19 \pm .04$	$2.98 \pm .01$	$1.23 \pm$
Gain	$3.64 \pm .27$	$1.94 \pm .05$	$2.59 \pm .11$	$2.74 \pm .09$	$4.40 \pm .04$	$0.69 \pm .05$	$4.00 \pm .04$	2.41 ±
Miwae	$2.31 \pm .01$	$1.08 \pm .01$	$1.89 \pm .00$	$1.84 \pm .02$	$3.18 \pm .00$	$2.95 \pm .00$	$2.58 \pm .00$	1.94 🗄
Grape	$2.06 \pm .00$	$0.94 \pm .01$	$1.69 \pm .03$	$1.20 \pm .01$	$2.23 \pm .02$	$0.17 \pm .00$	2.49 ± .00	1.42 ±
Miracle	$\overline{3.99} \pm .00$	$0.96 \pm .00$	$2.70 \pm .04$	$\overline{2.83} \pm .00$	$3.82 \pm .00$	$0.24 \pm .01$	$2.89 \pm .00$	1.61 ±
HyperImpute	$2.56 \pm .04$	$0.96 \pm .02$	$1.93 \pm .04$	$1.28 \pm .06$	$2.43 \pm .12$	$0.12 \pm .09$	$3.22 \pm .02$	1.36 +
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
M ³ -Impute	$2.06 \pm .00$	$0.92 \pm .00$	$1.68 \pm .01$	$1.13 \pm .01$	$2.16 \pm .00$	$0.17 \pm .00$	2.49 ± .00	1.42 ±

Table 17: MAE scores under the MAR setting across different levels of missingness.

Yacht

Missing 10%

Wine

1141				
1141	-1	-1	11	4
			4	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
	Mean	$2.20 \pm .10$	$0.97 \pm .02$	$1.88 \pm .01$	$1.75 \pm .12$	$3.12 \pm .07$	$2.48 \pm .05$	$2.51 \pm .01$	$1.72 \pm .05$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Svd	$2.64 \pm .01$	$1.09 \pm .06$	$2.14 \pm .03$	$1.31 \pm .03$	$3.45 \pm .23$	$0.75 \pm .03$	$2.63 \pm .01$	$2.08 \pm .05$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Spectral	$2.23 \pm .03$	$0.83 \pm .05$	$1.97 \pm .02$	$1.18 \pm .05$	$1.86 \pm .05$	$0.30 \pm .05$	$3.00 \pm .01$	$2.36 \pm .22$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mice	$1.41 \pm .05$	$0.65 \pm .01$	$1.07 \pm .03$	$0.93 \pm .01$	$1.33 \pm .14$	$0.12 \pm .00$	$2.51 \pm .02$	$1.04 \pm .02$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Knn	$1.44 \pm .14$	$0.53 \pm .03$	$0.54 \pm .04$	$0.60 \pm .04$	$1.64 \pm .11$	0.03 ± .00	$3.00 \pm .03$	$1.55 \pm .02$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gain	$2.39 \pm .03$	$0.86 \pm .01$	$1.66 \pm .04$	$1.05 \pm .08$	$1.94 \pm .04$	$0.42 \pm .01$	$2.74 \pm .01$	$1.23 \pm .02$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Miwae	$2.23 \pm .01$	$1.01 \pm .02$	$1.92 \pm .03$	$1.50 \pm .01$	$3.25 \pm .01$	$2.50 \pm .01$	$2.59 \pm .00$	$1.83 \pm .01$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grape	$1.13 \pm .01$	0.49 ± .00	$0.46 \pm .01$	$0.55 \pm .01$	$1.14 \pm .00$	$0.04 \pm .00$	$2.51 \pm .00$	$0.88 \pm .00$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Miracle	$3.87 \pm .00$	$0.62 \pm .00$	$1.70 \pm .04$	$2.51 \pm .00$	$4.05 \pm .00$	$0.11 \pm .01$	2.51 ± .02	$1.01 \pm .03$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HyperImpute	$1.51 \pm .07$	$0.55 \pm .01$	$0.58 \pm .02$	$0.73 \pm .04$	$1.11 \pm .06$	$0.03 \pm .00$	2.51 ± .01	$\underline{0.85} \pm .00$
YachtWineConcreteHousingEnergyNavalKin8amPowdissing 30%Mean2.18 ± .091.04 ± .021.80 ± .091.95 ± .133.17 ± .222.60 ± .07 $\frac{2.49}{2.99} \pm .01$ 1.76 ±Svd2.61 ± .131.06 ± .072.24 ± .051.58 ± .063.55 ± .09 $0.53 \pm .05$ $2.26 \oplus \pm .02$ 2.27 ±Spectral2.75 ± .141.01 ± .081.86 ± .031.60 ± .222.50 ± .151.35 ± .05 $2.00 \pm .03$ 1.08 ±Kinn1.92 ± .100.77 ± .071.37 ± .051.12 ± .061.57 ± .03 $2.78 \pm .03$ 1.02 ±1.65 ± .02Gain2.24 ± .120.92 ± .051.80 ± .051.08 ± .051.92 ± .061.12 ± .032.78 ± .031.25 ± .02Grape1.23 ± .030.61 ± .000.73 ± .010.61 ± .011.16 ± .010.08 ± .022.66 ± .032.55 ± .021.06 ± .03Miracle3.85 ± .000.70 ± .000.73 ± .010.61 ± .011.19 ± .240.88 ± .042.71 ± .061.09 ± .01M ³ -Impute1.15 ± .020.60 ± .000.68 ± .020.54 ± .011.09 ± .010.08 ± .002.46 ± .001.00 ± .04 ± .00M ³ -Impute1.15 ± .020.60 ± .000.68 ± .020.54 ± .011.09 ± .010.88 ± .002.46 ± .011.00 ± .02 ± .05 ± .03M ³ -Impute1.15 ± .020.60 ± .010.61 ± .01 ± .061.89 ± .133.27 ± .102.66 ± .112.49 ± .011.77 ± .02 ± .02 ± .02 ± .02 ± .02 ± .03 ± .03 ± .02 ± .03 ± .02 ± .02 ± .02 ± .02 ± .0	M ³ -Impute	$1.08 \pm .00$	$0.49 \pm .00$	$0.44 \pm .01$	$0.50 \pm .01$	$1.10 \pm .00$	$\underline{0.04} \pm .00$	$2.51 \pm .00$	$0.84 \pm .01$
fissing 30% Mean $2.18 \pm .09$ $1.04 \pm .02$ $1.80 \pm .09$ $1.95 \pm .13$ $3.17 \pm .22$ $2.60 \pm .07$ $2.49 \pm .01$ $1.76 \pm .07$ Syed $2.75 \pm .14$ $1.01 \pm .06$ $1.76 \pm .07$ $1.58 \pm .06$ $3.55 \pm .09$ $0.53 \pm .05$ $2.69 \pm .02$ $2.27 \pm .05$ Kan $1.92 \pm .10$ $0.77 \pm .05$ $1.15 \pm .21$ $2.06 \pm .15$ $1.35 \pm .21$ $3.34 \pm .00$ $3.14 \pm .01$ Gian $2.34 \pm .12$ $0.92 \pm .05$ $1.15 \pm .02$ $0.95 \pm .01$ $1.81 \pm .03$ $0.22 \pm .05$ $1.80 \pm .05$ $1.92 \pm .06$ $1.12 \pm .03$ $2.78 \pm .03$ $1.22 \pm .03$ $2.06 \pm .01$ $1.06 \pm .01$ $1.06 \pm .01$ $2.06 \pm .03 \pm .02$ $2.64 \pm .01$ $1.02 \pm .05$ $1.81 \pm .03$ $1.92 \pm .06$ $1.22 \pm .03 \pm .02$ $2.64 \pm .01$ $1.09 \pm .06$ $1.26 \pm .01$ $1.06 \pm .01$ $2.08 \pm .00$ $2.64 \pm .01$ $1.09 \pm .01$ $0.88 \pm .01$ $2.66 \pm .01$ $2.46 \pm .00$ $1.00 \pm .01$ $0.88 \pm .01$ $2.46 \pm .01$ $1.09 \pm .01$ $0.88 \pm .01$ $2.46 \pm .01$ $1.09 \pm .01$ $0.88 \pm .01$ $2.46 \pm .01$ $1.09 \pm .01$ $0.88 \pm .01$ $2.46 \pm .01$ <td></td> <td>Yacht</td> <td>Wine</td> <td>Concrete</td> <td>Housing</td> <td>Energy</td> <td>Naval</td> <td>Kin8nm</td> <td>Power</td>		Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
$ \begin{array}{c} \mbox{Mean} & 2.18 \pm .09 & 1.04 \pm .02 & 1.80 \pm .09 & 1.95 \pm .13 & 3.17 \pm .22 & 2.60 \pm .07 & 2.49 \pm .01 & 1.76 \pm .07 \\ \mbox{Spectral} & 2.75 \pm .14 & 1.01 \pm .08 & 1.86 \pm .03 & 1.60 \pm .22 & 2.50 \pm .15 & 1.35 \pm .05 & 2.69 \pm .02 & 2.27 \pm .07 \\ \mbox{Mire} & 1.91 \pm .10 & 0.77 \pm .07 & 1.37 \pm .05 & 1.22 \pm .06 & 1.57 \pm .03 & 0.21 \pm .07 & 2.50 \pm .00 & 1.84 \pm .08 \\ \mbox{Mire} & 1.91 \pm .10 & 0.77 \pm .05 & 1.15 \pm .21 & 2.05 \pm .11 & 1.96 \pm .11 & 0.068 \pm .02 & 2.06 \pm .15 & 1.35 \pm .21 \\ \mbox{Gain} & 2.34 \pm .12 & 0.92 \pm .05 & 1.80 \pm .05 & 1.08 \pm .05 & 1.92 \pm .06 & 1.12 \pm .03 & 2.78 \pm .03 & 1.22 \pm .06 \\ \mbox{Gain} & 2.34 \pm .12 & 0.92 \pm .05 & 1.81 \pm .03 & 1.60 \pm .02 & 3.63 \pm .00 & 2.63 \pm .00 & 2.64 \pm .01 & 1.06 \pm .01 \\ \mbox{Miracle} & 1.23 \pm .03 & 0.61 \pm .00 & 0.72 \pm .01 & 0.81 \pm .00 & 2.36 \pm .00 & 0.30 \pm .00 & 2.64 \pm .00 & 1.06 \pm .01 \\ \mbox{Miracle} & 1.95 \pm .10 & 0.72 \pm .03 & 0.88 \pm .02 & 0.85 \pm .03 & 1.19 \pm .24 & 0.85 \pm .04 & 2.71 \pm .06 & 1.09 \pm .01 \\ \mbox{M}^3 \mbox{-Inpute} & 1.15 \pm .02 & 0.60 \pm .00 & 0.68 \pm .02 & 0.54 \pm .01 & 1.09 \pm .01 & 0.08 \pm .00 & 2.64 \pm .00 & 1.09 \pm .01 \\ \mbox{M}^3 \mbox{-Inpute} & 1.15 \pm .02 & 0.60 \pm .00 & 0.68 \pm .02 & 0.54 \pm .01 & 1.09 \pm .01 & 0.08 \pm .00 & 2.46 \pm .00 & 1.09 \pm .01 \\ \mbox{M}^3 \mbox{-Inpute} & 1.15 \pm .02 & 0.60 \pm .00 & 0.68 \pm .02 & 0.54 \pm .01 & 1.09 \pm .01 & 0.08 \pm .00 & 2.46 \pm .00 & 1.09 \pm .01 \\ \mbox{M}^3 \mbox{-Inpute} & 1.15 \pm .02 & 1.60 \pm .15 & 1.90 \pm .16 & 3.56 \pm .25 & 0.58 \pm .09 & 2.83 \pm .02 & 2.62 \pm .02 & 1.35 \pm .03 \\ \mbox{M}^3 \mbox{-Inpute} & 1.31 \pm .02 \pm .10 & 1.55 \pm .33 & 2.51 \pm .10 & 3.26 \pm .10 & 3.03 \pm .01 & 1.69 \pm .01 \\ \mbox{M}^3 \mbox{-Inpute} & 1.01 \pm .06 & 1.85 \pm .09 & 1.89 \pm .13 & 3.27 \pm .10 & 2.66 \pm .11 & 2.49 \pm .01 & 1.77 \pm .02 \\ \mbox{M}^3 \\mbox{-Inpute} & 2.17 \pm .00 & 1.64 \pm .15 & 1.99 \pm .14 & 3.27 \pm .10 & 2.66 \pm .11 & 2.49 \pm .01 & 1.77 \pm .02 \\ \mbox{M}^3 \\mbox{-Inpute} & 2.33 \pm .00 & 0.24 \pm .00 & 1.23 \pm .00 & 0.24 \pm .00 & 1.24 \pm .00 & 1.24 \pm .00 \\ \mbox{M}^3 \\mbox{-Inpute} & 2.33 \pm .00 & 0.24 \pm .00 & 1.24 \pm .00 & 1.65 \pm .10 \\ \mbox{M}^3 \\mbo$	fissing 30%								
	Mean	$2.18\pm.09$	$1.04\pm.02$	$1.80\pm.09$	$1.95\pm.13$	$3.17\pm.22$	$2.60\pm.07$	$2.49 \pm .01$	$1.76\pm.14$
Spectral $2.75 \pm .14$ $1.01 \pm .08$ $1.86 \pm .03$ $1.60 \pm .22$ $2.50 \pm .15$ $1.35 \pm .21$ $3.34 \pm .00$ $3.14 \pm .12$ Mice $1.91 \pm .10$ $0.77 \pm .05$ $1.15 \pm .32$ $0.95 \pm .11$ $1.96 \pm .11$ $0.08 \pm .02$ $3.06 \pm .02$ $1.65 \pm .01$ Gain $2.34 \pm .12$ $0.92 \pm .05$ $1.18 \pm .03$ $1.06 \pm .02$ $3.63 \pm .00$ $2.63 \pm .03$ $2.55 \pm .01$ $1.22 \pm .03$ $2.78 \pm .03$ $2.25 \pm .01$ $1.22 \pm .03$ $2.55 \pm .01$ $1.22 \pm .05$ $2.51 \pm .01$ $0.26 \pm .00$ $2.65 \pm .01$ $1.22 \pm .05$ $2.51 \pm .01$ $0.26 \pm .01$ $1.02 \pm .05$ $1.00 \pm .07 \pm .03$ $0.88 \pm .02$ $0.85 \pm .03$ $1.19 \pm .24$ $0.85 \pm .04$ $2.71 \pm .06$ $1.06 \pm .52$ $0.54 \pm .01$ $1.09 \pm .01$ $0.88 \pm .02$ $0.85 \pm .03$ $1.91 \pm .06$ $1.85 \pm .09$ $1.89 \pm .13$ 3	Svd	$2.61 \pm .13$	$1.06 \pm .07$	$2.24 \pm .05$	$1.58 \pm .06$	$3.55 \pm .09$	$0.53 \pm .05$	$2.69 \pm .02$	$2.27 \pm .25$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Spectral	$2.75 \pm .14$	$1.01 \pm .08$	$1.86 \pm .03$	$1.60 \pm .22$	$2.50 \pm .15$	$1.35 \pm .21$	$3.34 \pm .00$	$3.14 \pm .41$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mice	$1.91 \pm .10$	$0.77 \pm .07$	$1.37 \pm .05$	$1.22 \pm .06$	$1.57 \pm .03$	$0.21 \pm .07$	$2.50 \pm .00$	$1.08 \pm .02$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Knn	$1.92 \pm .10$	$0.75 \pm .05$	$1.15 \pm .32$	$0.95 \pm .11$	$1.96 \pm .11$	$0.08 \pm .02$	$3.06 \pm .02$	$1.65 \pm .07$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gain	$2.34 \pm .12$	$0.92 \pm .05$	$1.80 \pm .05$	$1.08 \pm .05$	$1.92 \pm .06$	$1.12 \pm .03$	$2.78 \pm .03$	$1.22 \pm .03$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Miwae	$2.17 \pm .00$	$0.99 \pm .01$	$1.81 \pm .03$	$1.60 \pm .02$	$3.63 \pm .00$	$2.63 \pm .03$	$2.55 \pm .02$	$1.95 \pm .03$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grape	$1.23 \pm .03$	$0.61 \pm .00$	$0.73 \pm .01$	$0.61 \pm .01$	$1.16 \pm .01$	0.08 ± .01	$2.46 \pm .01$	$1.02 \pm .01$
Hyperimpute $1.95 \pm .10$ $0.72 \pm .03$ $0.88 \pm .02$ $0.85 \pm .03$ $1.19 \pm .24$ $0.85 \pm .04$ $2.71 \pm .06$ $1.09 \pm .01$ M ³ -Impute $1.15 \pm .02$ $0.60 \pm .00$ $0.68 \pm .02$ $0.54 \pm .01$ $1.09 \pm .01$ $0.08 \pm .00$ $2.46 \pm .00$ $1.00 \pm .01$ Main Wine Concrete Housing Energy Naval Kin8nm Pow Mise $2.17 \pm .08$ $1.01 \pm .06$ $1.85 \pm .09$ $1.89 \pm .13$ $3.27 \pm .10$ $2.66 \pm .11$ $2.49 \pm .01$ $1.77 \pm .02$ $2.62 \pm .02$ $1.31 \pm .02$ $2.66 \pm .15$ $1.99 \pm .06$ $1.50 \pm .14$ $2.39 \pm .35$ $0.27 \pm .02$ $2.62 \pm .02$ $1.35 \pm .02$ $2.62 \pm .02$ $1.35 \pm .02$ $2.62 \pm .02$ $1.35 \pm .02$ $1.59 \pm .06$ $1.50 \pm .14$ $2.39 \pm .35$ $0.27 \pm .02$ $2.62 \pm .02$ $1.31 \pm .12$ $1.02 \pm .07$ $1.59 \pm .06$ $1.55 \pm .33$ $2.51 \pm .02$ $2.62 \pm .02$ $1.31 \pm .12$ $1.02 \pm .07$ $1.59 \pm .06$ $1.56 \pm .13$ $0.37 \pm .02$ $2.62 \pm .02$ $1.31 \pm .12$ $1.02 \pm .07$ $1.59 \pm .06$ $1.50 \pm .14$ $2.39 \pm .10$ $0.39 \pm .18$ $3.03 \pm .01$ 1.6	Miracle	$3.85 \pm .00$	$0.70 \pm .00$	$1.87 \pm .00$	$2.51 \pm .00$	$3.86 \pm .00$	$0.30 \pm .00$	$2.64 \pm .00$	$1.06 \pm .00$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hyperimpute	$1.95 \pm .10$	$0.72 \pm .03$	$0.88 \pm .02$	$0.85 \pm .03$	$1.19 \pm .24$	$0.85 \pm .04$	$2.71 \pm .06$	$1.09 \pm .06$
YachtWineConcreteHousingEnergyNavalKin8nmPowiissing 50%Mean $2.17 \pm .08$ $1.01 \pm .06$ $1.85 \pm .09$ $1.89 \pm .13$ $3.27 \pm .10$ $2.66 \pm .11$ $2.49 \pm .01$ $1.77 \pm .02$ Svd $3.08 \pm .10$ $1.15 \pm .12$ $2.46 \pm .15$ $1.90 \pm .16$ $3.56 \pm .25$ $0.58 \pm .09$ $2.83 \pm .02$ $2.62 \pm .26 \pm $	M ³ -Impute	$\textbf{1.15} \pm .02$	$0.60 \pm .00$	$0.68 \pm .02$	0.54 ± .01	$1.09 \pm .01$	0.08 ± .00	$2.46 \pm .00$	1.00 ± .00
Atissing 50% Mean $2.17 \pm .08$ $1.01 \pm .06$ $1.85 \pm .09$ $1.89 \pm .13$ $3.27 \pm .10$ $2.66 \pm .11$ $2.49 \pm .01$ $1.77 \pm .02$ Syd $3.08 \pm .10$ $1.15 \pm .12$ $2.46 \pm .15$ $1.90 \pm .16$ $3.56 \pm .25$ $0.58 \pm .09$ $2.83 \pm .02$ $2.62 \pm .02$ Spectral $3.38 \pm .04$ $1.31 \pm .02$ $2.36 \pm .15$ $1.91 \pm .11$ $3.49 \pm .29$ $1.99 \pm .08$ $3.82 \pm .01$ $4.19 \pm .02$ Knn $2.31 \pm .10$ $1.02 \pm .07$ $1.35 \pm .10$ $1.55 \pm .33$ $2.51 \pm .19$ $0.39 \pm .18$ $3.03 \pm .01$ $1.69 \pm .01$ Gain $3.22 \pm .07$ $1.26 \pm .12$ $1.96 \pm .08$ $1.76 \pm .07$ $3.16 \pm .13$ $0.74 \pm .09$ $3.12 \pm .13$ $1.72 \pm .13$ Grape $2.09 \pm .00$ $0.82 \pm .00$ $1.23 \pm .00$ $0.90 \pm .01$ $1.69 \pm .01$ $0.10 \pm .02$ $2.48 \pm .00$ $1.32 \pm .13$ Miracle $3.97 \pm .00$ $0.88 \pm .00$ $1.21 \pm .01$ $0.87 \pm .01$ $1.62 \pm .18$ $0.05 \pm .02$ $3.17 \pm .05$ $1.29 \pm .03$ M ³ -Impute $2.09 \pm .00$ $0.81 \pm .00$ $1.21 \pm .01$ $0.87 \pm .$		Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4issing 50%								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean	$2.17 \pm .08$	$1.01 \pm .06$	$1.85 \pm .09$	$1.89 \pm .13$	$3.27 \pm .10$	$2.66 \pm .11$	$2.49 \pm .01$	$1.77 \pm .06$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Svd	$3.08 \pm .10$	$1.15 \pm .12$	$2.46 \pm .15$	$1.90 \pm .16$	$3.56 \pm .25$	$0.58 \pm .09$	$2.83 \pm .02$	$2.62 \pm .12$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Spectral	$3.38 \pm .04$	$1.31 \pm .02$	$2.36 \pm .15$	$1.91 \pm .11$	$3.49 \pm .29$	$1.99 \pm .08$	$3.82 \pm .01$	$4.19 \pm .35$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mice	$2.17 \pm .07$	$0.90 \pm .07$	$1.59 \pm .06$	$1.50 \pm .14$	$2.39 \pm .35$	$0.27 \pm .02$	$2.62 \pm .02$	$1.35 \pm .09$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Knn	$2.31 \pm .10$	$1.02 \pm .07$	$1.35 \pm .10$	$1.55 \pm .33$	$2.51 \pm .19$	$0.39 \pm .18$	$3.03 \pm .01$	$1.69 \pm .26$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gain	$3.22 \pm .07$	$1.26 \pm .12$	$1.96 \pm .08$	$1.76 \pm .07$	$3.16 \pm .13$	$0.74 \pm .09$	$3.12 \pm .13$	$1.72 \pm .24$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Miwae	$2.32 \pm .00$	$1.08 \pm .02$	$1.78 \pm .02$	$1.87 \pm .02$	$3.40 \pm .00$	$2.80 \pm .02$	$2.58 \pm .00$	$1.91 \pm .03$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Grape	2.09 ± .00	$0.82 \pm .00$	$1.23 \pm .00$	$0.90 \pm .01$	$1.69 \pm .01$	$0.10 \pm .00$	$2.49 \pm .00$	$1.33 \pm .00$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Miracle	$3.97 \pm .00$	$0.88 \pm .00$	$2.43 \pm .00$	$2.53 \pm .00$	$3.81 \pm .00$	$0.59 \pm .00$	$2.84 \pm .05$	$1.55 \pm .00$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HyperImpute	$2.39 \pm .10$	$0.83 \pm .06$	$1.56 \pm .04$	$0.99 \pm .06$	$1.62 \pm .18$	0.05 ± .02	$3.17 \pm .05$	1.29 ± .12
Yacht Wine Concrete Housing Energy Naval Kin8nm Pow dissing 70% Mean $2.25 \pm .21$ $1.01 \pm .02$ $1.83 \pm .08$ $1.96 \pm .10$ $3.22 \pm .13$ $2.81 \pm .08$ $2.49 \pm .00$ $1.78 \pm .03$ Svd $3.11 \pm .05$ $1.38 \pm .03$ $2.68 \pm .21$ $2.32 \pm .15$ $4.19 \pm .30$ $1.79 \pm .39$ $3.16 \pm .03$ $2.87 \pm .03$ Spectral $3.63 \pm .10$ $1.68 \pm .11$ $2.73 \pm .04$ $2.29 \pm .26$ $3.68 \pm .18$ $2.83 \pm .66$ $4.15 \pm .01$ $4.35 \pm .01$ Mice $2.22 \pm .17$ $0.93 \pm .03$ $1.80 \pm .03$ $1.75 \pm .15$ $2.66 \pm .29$ $0.56 \pm .04$ $2.64 \pm .02$ $1.41 \pm .05$ Knn $\underline{2.09 \pm .31}$ $1.15 \pm .03$ $1.92 \pm .13$ $1.80 \pm .23$ $2.36 \pm .39$ $0.83 \pm .10$ $3.02 \pm .00$ $1.60 \pm .03$ Gain $3.70 \pm .31$ $1.06 \pm .19$ $2.57 \pm .03$ $1.81 \pm .03$ $2.27 \pm .01$ $0.18 \pm .00$ $2.49 \pm .00$ $1.60 \pm .27$ $1.89 \pm .01$ $3.56 \pm .27$ $1.89 \pm .01$ 3.56	M ³ -Impute	$2.09 \pm .00$	$0.81 \pm .00$	$1.21 \pm .01$	$0.87 \pm .01$	$1.62 \pm .01$	$\underline{0.10}\pm.00$	$2.48 \pm .00$	$\underline{1.32} \pm .00$
Missing 70% Mean $2.25 \pm .21$ $1.01 \pm .02$ $1.83 \pm .08$ $1.96 \pm .10$ $3.22 \pm .13$ $2.81 \pm .08$ $2.49 \pm .00$ $1.78 \pm .03$ Svd $3.11 \pm .05$ $1.38 \pm .03$ $2.68 \pm .21$ $2.32 \pm .15$ $4.19 \pm .30$ $1.79 \pm .39$ $3.16 \pm .03$ $2.87 \pm .03$ Spectral $3.63 \pm .10$ $1.68 \pm .11$ $2.73 \pm .04$ $2.29 \pm .26$ $3.68 \pm .18$ $2.83 \pm .66$ $4.15 \pm .01$ $4.35 \pm .03$ Mice $2.22 \pm .17$ $0.93 \pm .03$ $1.80 \pm .03$ $1.75 \pm .15$ $2.66 \pm .29$ $0.56 \pm .04$ $2.64 \pm .02$ $1.41 \pm .05$ Gain $3.70 \pm .31$ $1.16 \pm .19$ $2.57 \pm .09$ $2.77 \pm .14$ $4.27 \pm .08$ $0.42 \pm .01$ $3.56 \pm .27$ $1.80 \pm .03$ $1.80 \pm .23$ $2.32 \pm .01$ $3.56 \pm .27$ $1.80 \pm .03$ $1.80 \pm .23$ $2.32 \pm .01$ $3.56 \pm .27$ $1.80 \pm .03$ $1.80 \pm .23$ $2.32 \pm .01$ $3.56 \pm .27$ $1.80 \pm .03$ $1.80 \pm .23$ $2.32 \pm .01$ $3.56 \pm .27$ $1.80 \pm .03$ $1.80 \pm .03$ $1.80 \pm .23$ $2.32 \pm .01$ $3.56 \pm .27$ <td></td> <td>Yacht</td> <td>Wine</td> <td>Concrete</td> <td>Housing</td> <td>Energy</td> <td>Naval</td> <td>Kin8nm</td> <td>Power</td>		Yacht	Wine	Concrete	Housing	Energy	Naval	Kin8nm	Power
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lissing 70%								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean	$2.25\pm.21$	$1.01\pm.02$	$1.83\pm.08$	$1.96 \pm .10$	$3.22\pm.13$	$2.81\pm.08$	$2.49 \pm .00$	$1.78\pm.05$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Svd	$3.11 \pm .05$	$1.38 \pm .03$	$2.68 \pm .21$	$2.32 \pm .15$	$4.19 \pm .30$	$1.79 \pm .39$	$3.16 \pm .03$	$2.87 \pm .22$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Spectral	$3.63 \pm .10$	$1.68 \pm .11$	$2.73 \pm .04$	$2.29 \pm .26$	$3.68 \pm .18$	$2.83 \pm .66$	$4.15 \pm .01$	$4.35 \pm .30$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mice	$2.22 \pm .17$	$0.93 \pm .03$	$1.80 \pm .03$	$1.75 \pm .15$	$2.66 \pm .29$	$0.56 \pm .04$	$2.64 \pm .02$	$1.41 \pm .13$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Knn	$2.09 \pm .31$	$1.15 \pm .03$	$1.92 \pm .13$	$1.80 \pm .23$	$2.36 \pm .39$	$0.83 \pm .10$	$3.02 \pm .00$	$1.60 \pm .07$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gain	$3.70 \pm .31$	$1.66 \pm .19$	$2.57 \pm .09$	$2.77 \pm .14$	$4.27 \pm .08$	$0.42 \pm .01$	$3.56 \pm .27$	$1.89 \pm .28$
Grape $2.08 \pm .00$ $0.94 \pm .01$ $1.73 \pm .03$ $1.22 \pm .01$ $2.27 \pm .01$ $0.18 \pm .00$ $2.49 \pm .00$ $1.43 \pm .01$ Miracle $3.99 \pm .00$ $0.95 \pm .00$ $2.66 \pm .02$ $2.88 \pm .00$ $2.85 \pm .00$ $0.91 \pm .01$ $2.82 \pm .00$ $1.61 \pm .01$ HyperImpute $2.42 \pm .16$ $0.94 \pm .03$ $1.86 \pm .05$ $1.22 \pm .02$ $2.41 \pm .06$ $0.14 \pm .00$ $3.19 \pm .02$ $1.36 \pm .02$ M ³ -Impute $2.08 \pm .00$ $0.92 \pm .00$ $1.70 \pm .02$ $1.15 \pm .02$ $2.19 \pm .02$ $0.18 \pm .00$ $2.49 \pm .00$ $1.41 \pm .01$	Miwae	$2.32 \pm .01$	$1.07 \pm .02$	$1.90 \pm .03$	$1.83 \pm .02$	$3.17 \pm .02$	$2.92 \pm .03$	$2.57 \pm .00$	$1.90 \pm .00$
Miracle $3.99 \pm .00$ $\overline{0.95} \pm .00$ $\overline{2.66} \pm .02$ $\overline{2.88} \pm .00$ $\overline{2.85} \pm .00$ $\overline{0.91} \pm .01$ $2.82 \pm .00$ $1.61 \pm .01$ HyperImpute $2.42 \pm .16$ $0.94 \pm .03$ $1.86 \pm .05$ $1.22 \pm .02$ $2.41 \pm .06$ $0.14 \pm .00$ $3.19 \pm .02$ $1.36 \pm .03$ M ³ -Impute $2.08 \pm .00$ $0.92 \pm .00$ $1.70 \pm .02$ $1.15 \pm .02$ $2.19 \pm .02$ $0.18 \pm .00$ $2.49 \pm .00$ $1.41 \pm .04$	Grape	$2.08 \pm .00$	$0.94 \pm .01$	$1.73 \pm .03$	$1.22 \pm .01$	$2.27 \pm .01$	$0.18 \pm .00$	2.49 ± .00	$1.43 \pm .00$
HyperImpute $2.42 \pm .16$ $0.94 \pm .03$ $1.86 \pm .05$ $1.22 \pm .02$ $2.41 \pm .06$ $0.14 \pm .00$ $3.19 \pm .02$ $1.36 \pm .03$ M ³ -Impute $2.08 \pm .00$ $0.92 \pm .00$ $1.70 \pm .02$ $1.15 \pm .02$ $2.19 \pm .02$ $0.18 \pm .00$ $2.49 \pm .00$ $1.41 \pm .04$	Miracle	$3.99 \pm .00$	$0.95 \pm .00$	$\overline{2.66} \pm .02$	$\overline{2.88} \pm .00$	$\overline{2.85} \pm .00$	$0.91 \pm .01$	$2.82 \pm .00$	$1.61 \pm .00$
M ³ -Impute 2.08 \pm .00 0.92 \pm .00 1.70 \pm .02 1.15 \pm .02 2.19 \pm .02 0.18 \pm .00 2.49 \pm .00 1.41 \pm	HyperImpute	$2.42 \pm .16$	$\underline{0.94} \pm .03$	$1.86 \pm .05$	$1.22 \pm .02$	$2.41 \pm .06$	0.14 ± .00	3.19 ± .02	1.36 ± .13
	M ³ -Impute	2.08 ± .00	0.92 ± .00	1.70 ± .02	1.15 ± .02	2.19 ± .02	$0.18 \pm .00$	2.49 ± .00	$1.41 \pm .00$

Table 18: MAE scores under the MNAR setting across different levels of missingness.

Housing

Energy

Naval

Kin8nm

Power

Concrete

 Table 19: MAE scores under the **MCAR** setting across different levels of missingness on the extra 17 datasets. **AI** is short for **AI**rfoil. Please refer to Table 9 for dataset names.

Dataset	Mean	Knn	Svd	Mice	Spectral	HI	Gain	Miracle	Miwae	Grape	M ³ -Impute
Missing 10%					-						
AI BL WW IO BR IR DI PR SP LE AB A4 CM GE ST LI CH	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 1.59 \pm .04 \\ 0.96 \pm .03 \\ 0.38 \pm .00 \\ 1.02 \pm .03 \\ 0.50 \pm .01 \\ 1.55 \pm .22 \\ 1.51 \pm .07 \\ 0.26 \pm .00 \\ 0.16 \pm .01 \\ 0.32 \pm .00 \\ 2.06 \pm .06 \\ 1.08 \pm .02 \\ 2.19 \pm .11 \\ 2.06 \pm .06 \\ 0.55 \pm .00 \\ 0.19 \pm .01 \\ 0.78 \pm .01 \end{array}$	$\begin{array}{c} 2.67 \pm .08 \\ 0.90 \pm .02 \\ 0.86 \pm .01 \\ 1.21 \pm .05 \\ 0.57 \pm .00 \\ 1.67 \pm .25 \\ 1.68 \pm .04 \\ 0.98 \pm .00 \\ 0.30 \pm .01 \\ 1.25 \pm .01 \\ 2.41 \pm .04 \\ 1.14 \pm .02 \\ 2.43 \pm .10 \\ 2.41 \pm .04 \\ 1.27 \pm .01 \\ 0.36 \pm .00 \\ 1.30 \pm .00 \end{array}$	$\begin{array}{c} 1.83 \pm .01 \\ 0.61 \pm .02 \\ 0.50 \pm .00 \\ 1.20 \pm .06 \\ 0.25 \pm .01 \\ 0.94 \pm .13 \\ 1.17 \pm .08 \\ 0.28 \pm .00 \\ 0.19 \pm .00 \\ 0.88 \pm .00 \\ 0.19 \pm .02 \\ 0.78 \pm .02 \\ 0.71 \pm .02 \\ 0.70 \pm .02 \\ 0.70 \pm .02 \\ 0.70 \pm .02 \\ 0.70 \pm .02 \\ 0.05 \pm .00 \\ 0.56 \pm .00 \end{array}$	$\begin{array}{c} 2.16 \pm .03 \\ 0.90 \pm .05 \\ 0.69 \pm .01 \\ 1.30 \pm .03 \\ 0.31 \pm .00 \\ 1.43 \pm .22 \\ 1.38 \pm .07 \\ 0.80 \pm .00 \\ 0.16 \pm .00 \\ 1.26 \pm .01 \\ 2.29 \pm .02 \\ 2.62 \pm .05 \\ 2.29 \pm .02 \\ 0.87 \pm .01 \\ 0.14 \pm .00 \\ 1.26 \pm .01 \end{array}$	$\begin{array}{c} 0.59 \pm .03 \\ \underline{0.53} \pm .02 \\ 0.44 \pm .01 \\ 1.14 \pm .04 \\ 0.28 \pm .00 \\ 0.97 \pm .12 \\ 1.09 \pm .04 \\ 0.20 \pm .00 \\ 0.17 \pm .02 \\ 0.49 \pm .00 \\ 1.71 \pm .14 \\ 0.67 \pm .01 \\ 1.98 \pm .15 \\ \underline{1.71} \pm .14 \\ 0.59 \pm .00 \\ 0.06 \pm .00 \\ \underline{0.42} \pm .00 \end{array}$	$\begin{array}{c} 2.18 \pm .02 \\ 1.26 \pm .07 \\ 0.70 \pm .02 \\ 1.39 \pm .06 \\ 0.47 \pm .02 \\ 1.27 \pm .17 \\ 1.47 \pm .12 \\ 0.51 \pm .00 \\ 0.22 \pm .01 \\ 1.07 \pm .01 \\ 2.23 \pm .05 \\ 1.23 \pm .02 \\ 2.35 \pm .17 \\ 2.23 \pm .05 \\ 0.96 \pm .02 \\ 0.37 \pm .00 \\ 1.07 \pm .03 \end{array}$	$\begin{array}{c} 1.81 \pm .01 \\ 1.48 \pm .05 \\ 0.49 \pm .00 \\ 5.66 \pm .00 \\ 1.40 \pm .00 \\ 0.22 \pm .00 \\ 0.27 \pm .00 \\ 0.19 \pm .01 \\ 0.76 \pm .01 \\ 3.68 \pm .00 \\ 0.84 \pm .04 \\ 1.86 \pm .00 \\ 0.74 \pm .00 \\ 0.68 \pm .00 \\ 0.53 \pm .00 \\ 0.53 \pm .00 \end{array}$	$\begin{array}{c} 2.30 \pm .02 \\ 1.98 \pm .05 \\ 0.78 \pm .01 \\ 5.12 \pm .02 \\ 1.90 \pm .02 \\ 4.80 \pm .25 \\ 5.23 \pm .16 \\ 0.94 \pm .01 \\ 0.16 \pm .00 \\ 1.37 \pm .01 \\ 2.57 \pm .03 \\ 1.68 \pm .02 \\ 2.57 \pm .03 \\ 1.68 \pm .02 \\ 2.16 \pm .01 \\ 1.15 \pm .01 \end{array}$	$\begin{array}{c} \underline{0.61} \pm .00 \\ \hline 0.51 \pm .00 \\ 0.51 \pm .00 \\ 0.43 \pm .00 \\ 1.04 \pm .01 \\ 0.31 \pm .00 \\ \hline 0.71 \pm .01 \\ \hline 1.12 \pm .02 \\ 0.22 \pm .02 \\ 0.17 \pm .00 \\ 0.42 \pm .00 \\ 0.42 \pm .00 \\ \hline 1.85 \pm .02 \\ 0.34 \pm .01 \\ 1.85 \pm .02 \\ 0.34 \pm .01 \\ 0.10 \pm .00 \\ \hline 0.40 \pm .00 \\ \hline 0.40 \pm .00 \end{array}$	$\begin{array}{c} \textbf{0.55} \pm .01 \\ \textbf{0.51} \pm .00 \\ \textbf{0.42} \pm .00 \\ \textbf{0.96} \pm .02 \\ \textbf{0.30} \pm .01 \\ \textbf{0.69} \pm .02 \\ \textbf{0.30} \pm .01 \\ \textbf{0.69} \pm .02 \\ \textbf{0.20} \pm .00 \\ \textbf{0.16} \pm .01 \\ \textbf{0.41} \pm .01 \\ \textbf{0.70} \pm .00 \\ \textbf{0.70} \pm .00 \\ \textbf{1.68} \pm .02 \\ \textbf{0.70} \pm .00 \\ \textbf{1.68} \pm .02 \\ \textbf{0.70} \pm .00 \\ \textbf{0.16} \pm .01 \\ \textbf{0.70} \pm .00 \\ \textbf{0.70}$
Missing 30%											
AI BL WW IO BR IR DI PR SP LE AB A4 CM GE ST LI CH	$\begin{array}{c} 2.32 \pm .05 \\ 1.14 \pm .01 \\ 0.76 \pm .00 \\ 2.01 \pm .03 \\ 1.06 \pm .00 \\ 2.15 \pm .09 \\ 1.78 \pm .03 \\ 0.91 \pm .00 \\ 0.23 \pm .00 \\ 1.28 \pm .00 \\ 2.52 \pm .02 \\ 1.07 \pm .00 \\ 2.35 \pm .03 \\ 2.52 \pm .02 \\ 1.80 \pm .01 \\ 1.82 \pm .01 \\ 1.82 \pm .01 \\ 1.13 \pm .00 \end{array}$	$\begin{array}{c} 2.18 \pm .04 \\ 0.93 \pm .01 \\ 0.64 \pm .01 \\ 1.07 \pm .03 \\ 0.53 \pm .01 \\ 1.58 \pm .02 \\ 1.71 \pm .04 \\ 0.58 \pm .01 \\ 0.89 \pm .01 \\ 2.34 \pm .02 \\ 1.77 \pm .00 \\ 2.32 \pm .04 \\ 2.34 \pm .02 \\ 0.78 \pm .02 $	$\begin{array}{c} 2.76 \pm .05\\ 0.97 \pm .04\\ 0.87 \pm .00\\ 1.26 \pm .03\\ 0.58 \pm .00\\ 1.76 \pm .02\\ 1.76 \pm .02\\ 1.00 \pm .00\\ 0.31 \pm .00\\ 1.29 \pm .00\\ 2.60 \pm .04\\ 1.18 \pm .01\\ 2.52 \pm .05\\ 2.60 \pm .04\\ 1.37 \pm .01\\ 0.37 \pm .00\\ 1.35 \pm .01\\ \end{array}$	$\begin{array}{c} 1.97 \pm .04 \\ 0.69 \pm .01 \\ 0.61 \pm .01 \\ 1.37 \pm .03 \\ 0.34 \pm .01 \\ 1.07 \pm .09 \\ 1.29 \pm .05 \\ 0.33 \pm .00 \\ 0.22 \pm .00 \\ 1.00 \pm .00 \\ 2.26 \pm .04 \\ 0.87 \pm .01 \\ 2.26 \pm .04 \\ 0.95 \pm .02 \\ 0.11 \pm .00 \\ 0.69 \pm .00 \end{array}$	$\begin{array}{c} 2.30 \pm .07\\ 0.94 \pm .03\\ 0.78 \pm .01\\ 1.38 \pm .02\\ 0.38 \pm .00\\ 1.48 \pm .13\\ 1.48 \pm .03\\ 1.14 \pm .00\\ 0.16 \pm .00\\ 1.75 \pm .01\\ 2.45 \pm .02\\ 1.58 \pm .01\\ 2.45 \pm .02\\ 1.10 \pm .01\\ 0.18 \pm .00\\ 1.50 \pm .00\\ \end{array}$	$\begin{array}{c} 1.09 \pm .02 \\ 0.63 \pm .02 \\ 0.55 \pm .00 \\ 0.33 \pm .01 \\ 1.18 \pm .04 \\ 0.33 \pm .01 \\ 1.04 \pm .11 \\ 1.04 \pm .11 \\ 1.17 \pm .02 \\ 0.25 \pm .00 \\ 0.18 \pm .01 \\ 0.61 \pm .01 \\ 2.05 \pm .25 \\ 0.75 \pm .02 \\ 1.91 \pm .03 \\ 2.05 \pm .25 \\ 0.72 \pm .01 \\ 0.11 \pm .00 \\ 0.57 \pm .01 \\ \end{array}$	$\begin{array}{c} 2.22 \pm .06 \\ 1.26 \pm .04 \\ 0.73 \pm .01 \\ 1.50 \pm .01 \\ 0.51 \pm .01 \\ 1.29 \pm .07 \\ 1.47 \pm .06 \\ 0.21 \pm .00 \\ 1.09 \pm .01 \\ 2.27 \pm .09 \\ 1.03 \pm .02 \\ 2.33 \pm .15 \\ 2.27 \pm .09 \\ 1.03 \pm .02 \\ 0.46 \pm .00 \\ 1.07 \pm .03 \end{array}$	$\begin{array}{c} 1.97 \pm .00\\ 1.50 \pm .00\\ 5.56 \pm .00\\ 5.56 \pm .00\\ 3.22 \pm .00\\ 3.22 \pm .00\\ 0.32 \pm .00\\ 0.32 \pm .00\\ 0.19 \pm .00\\ 1.06 \pm .01\\ 3.67 \pm .00\\ 0.84 \pm .02\\ 2.01 \pm .00\\ 3.67 \pm .00\\ 3.67 \pm .00\\ 0.95 \pm .03\\ 5.61 \pm .00\\ 0.67 \pm .00\\ \end{array}$	$\begin{array}{c} 2.36 \pm .06 \\ 2.03 \pm .05 \\ 0.77 \pm .00 \\ 5.14 \pm .06 \\ 1.89 \pm .02 \\ 4.60 \pm .17 \\ 5.05 \pm .04 \\ 0.94 \pm .00 \\ 0.16 \pm .00 \\ 1.33 \pm .04 \\ 2.59 \pm .01 \\ 1.22 \pm .01 \\ 2.37 \pm .04 \\ 2.59 \pm .01 \\ 1.70 \pm .01 \\ 2.13 \pm .02 \\ 1.16 \pm .00 \end{array}$	$\begin{array}{c} \underline{1.16} \pm .02\\ 0.68 \pm .00\\ 0.52 \pm .00\\ 0.52 \pm .00\\ 0.37 \pm .00\\ 0.82 \pm .01\\ 0.37 \pm .00\\ 0.82 \pm .02\\ 0.131 \pm .00\\ 0.25 \pm .02\\ 0.17 \pm .01\\ 0.53 \pm .00\\ 0.79 \pm .00\\ 0.79 \pm .00\\ 0.79 \pm .00\\ 0.19 \pm .01\\ 0.45 \pm .00\\ 0.54 \pm .00\\ 0.54 \pm .00\\ \end{array}$	$\begin{array}{c} 1.09 \pm .03 \\ 0.67 \pm .00 \\ 0.52 \pm .00 \\ 0.52 \pm .00 \\ 0.52 \pm .00 \\ 0.36 \pm .01 \\ 0.36 \pm .01 \\ 0.29 \pm .01 \\ 0.24 \pm .00 \\ 0.52 \pm .00 \\ 0.52 \pm .00 \\ 0.54 \pm .01 \\ 1.87 \pm .02 \\ 0.36 \pm .01 \\ 1.87 \pm .02 \\ 0.39 \pm .00 \\ 0.54 \pm .01 \\ 0.54 \pm .01 \\ \end{array}$
Missing 50%											
AI BL WW IO BR DI PR SP LE AB A4 CM GE ST LI CH	$\begin{array}{c} 2.32 \pm .02 \\ 1.15 \pm .02 \\ 0.76 \pm .00 \\ 2.02 \pm .02 \\ 1.07 \pm .00 \\ 2.19 \pm .06 \\ 1.78 \pm .02 \\ 0.91 \pm .06 \\ 0.23 \pm .00 \\ 2.52 \pm .01 \\ 1.25 \pm .01 \\ 2.36 \pm .01 \\ 2.36 \pm .01 \\ 1.80 \pm .00 \\ 1.82 \pm .01 \\ 1.13 \pm .00 \end{array}$	$\begin{array}{c} 2.30 \pm .04 \\ 1.14 \pm .06 \\ 0.85 \pm .00 \\ 1.33 \pm .03 \\ 0.77 \pm .00 \\ 1.75 \pm .07 \\ 1.96 \pm .02 \\ 0.64 \pm .00 \\ 0.21 \pm .00 \\ 1.39 \pm .00 \\ 2.56 \pm .03 \\ 1.20 \pm .02 \\ 2.43 \pm .06 \\ 2.56 \pm .03 \\ 1.41 \pm .01 \\ 0.35 \pm .00 \\ 1.21 \pm .00 \end{array}$	$\begin{array}{c} 2.93 \pm .01 \\ 1.12 \pm .02 \\ 0.91 \pm .00 \\ 1.40 \pm .01 \\ 0.62 \pm .00 \\ 2.19 \pm .03 \\ 1.86 \pm .00 \\ 0.32 \pm .00 \\ 1.37 \pm .00 \\ 2.90 \pm .05 \\ 1.28 \pm .01 \\ 2.65 \pm .01 \\ 2.90 \pm .05 \\ 1.54 \pm .01 \\ 0.39 \pm .00 \\ 1.45 \pm .00 \end{array}$	$\begin{array}{c} 2.17 \pm .04 \\ 0.86 \pm .04 \\ 0.67 \pm .00 \\ 1.58 \pm .01 \\ 0.47 \pm .01 \\ 1.55 \pm .03 \\ 0.42 \pm .00 \\ 0.23 \pm .00 \\ 1.07 \pm .00 \\ 2.39 \pm .03 \\ 0.96 \pm .01 \\ 2.33 \pm .03 \\ 1.19 \pm .01 \\ 0.26 \pm .01 \\ 0.26 \pm .01 \\ 0.84 \pm .00 \end{array}$	$\begin{array}{c} 2.45 \pm .06 \\ 1.11 \pm .02 \\ 0.96 \pm .00 \\ 1.54 \pm .01 \\ 0.48 \pm .00 \\ 2.13 \pm .03 \\ 1.69 \pm .00 \\ 2.15 \pm .00 \\ 2.35 \pm .00 \\ 2.35 \pm .00 \\ 2.35 \pm .00 \\ 2.35 \pm .00 \\ 3.50 \pm .04 \\ 2.64 \pm .01 \\ 1.92 \pm .00 \\ 1.74 \pm .00 \\ 1.74 \pm .00 \end{array}$	$\begin{array}{c} 1.59 \pm .04\\ 0.82 \pm .02\\ 0.69 \pm .01\\ 1.37 \pm .02\\ 0.41 \pm .00\\ 1.34 \pm .12\\ 1.38 \pm .01\\ 0.19 \pm .00\\ 0.19 \pm .00\\ 0.19 \pm .00\\ 0.18 \pm .00\\ 2.15 \pm .20\\ 0.86 \pm .02\\ 2.18 \pm .02\\ 2.18 \pm .02\\ 0.89 \pm .01\\ 0.17 \pm .00\\ 0.74 \pm .00\\ \end{array}$	$\begin{array}{c} 2.30 \pm .04 \\ 1.31 \pm .07 \\ 0.99 \pm .01 \\ 2.44 \pm .38 \\ 0.87 \pm .07 \\ 1.49 \pm .08 \\ 0.87 \pm .07 \\ 1.49 \pm .08 \\ 1.58 \pm .01 \\ 1.00 \pm .02 \\ 0.21 \pm .00 \\ 2.20 \pm .04 \\ 2.83 \pm .07 \\ 1.38 \pm .04 \\ 2.50 \pm .16 \\ 2.83 \pm .07 \\ 1.67 \pm .01 \\ 0.97 \pm .12 \\ 1.33 \pm .07 \end{array}$	$\begin{array}{c} 2.17 \pm .05 \\ 1.48 \pm .09 \\ 0.68 \pm .01 \\ 5.46 \pm .00 \\ 3.22 \pm .00 \\ 2.74 \pm .00 \\ 0.39 \pm .01 \\ 0.21 \pm .00 \\ 1.17 \pm .01 \\ 3.63 \pm .00 \\ 1.00 \pm .00 \\ 1.22 \pm .05 \\ 5.30 \pm .00 \\ 0.83 \pm .00 \end{array}$	$\begin{array}{c} 2.34 \pm .04 \\ 1.98 \pm .01 \\ 0.76 \pm .00 \\ 5.10 \pm .04 \\ 1.89 \pm .01 \\ 4.78 \pm .08 \\ 5.01 \pm .02 \\ 0.94 \pm .00 \\ 0.16 \pm .00 \\ 0.14 \pm .02 \\ 2.65 \pm .01 \\ 1.12 \pm .01 \\ 2.40 \pm .02 \\ 2.65 \pm .01 \\ 1.70 \pm .01 \\ 2.08 \pm .00 \\ 1.16 \pm .00 \end{array}$	$\begin{array}{c} 1.68 \pm .01 \\ \textbf{0.78} \pm .00 \\ \textbf{0.61} \pm .01 \\ \textbf{1.05} \pm .01 \\ \textbf{1.05} \pm .01 \\ \textbf{0.30} \pm .00 \\ \textbf{0.77} \pm .01 \\ \textbf{0.69} \pm .00 \\ \textbf{2.19} \pm .00 \\ \textbf{0.77} \pm .01 \\ \textbf{0.69} \pm .00 \\ \textbf{2.17} \pm .01 \\ \textbf{0.61} \pm .01 \\ \textbf{0.61} \pm .01 \\ \textbf{0.70} \pm .01 \end{array}$	$\begin{array}{c} \underline{1.66} \pm .02\\ 0.78 \pm .00\\ 0.61 \pm .00\\ 1.11 \pm .01\\ 0.61 \pm .00\\ 1.05 \pm .00\\ 1.05 \pm .00\\ 0.30 \pm .00\\ 0.30 \pm .00\\ 0.30 \pm .00\\ 0.6 \pm .01\\ 2.00 \pm .03\\ 0.85 \pm .00\\ 0.85 \pm .00\\ 0.66 \pm .01\\ 0.56 \pm .01\\ 0.13 \pm .01\\ 0.70 \pm .00\\ \end{array}$
Missing 70%											
AI BL WW IO BR DI PR SP LE AB A4 CM GE ST LI U	$\begin{array}{c} 2.32 \pm .01 \\ 1.15 \pm .01 \\ 0.76 \pm .00 \\ 2.02 \pm .01 \\ 1.07 \pm .00 \\ 2.22 \pm .03 \\ 1.81 \pm .00 \\ 0.91 \pm .00 \\ 0.23 \pm .00 \\ 2.53 \pm .01 \\ 1.28 \pm .00 \\ 2.38 \pm .01 \\ 2.38 \pm .01 \\ 1.80 \pm .00 \\ 1.82 \pm .00 \\ 1.82 \pm .00 \\ 1.82 \pm .00 \end{array}$	$\begin{array}{c} 2.45 \pm .05 \\ 1.18 \pm .02 \\ 0.92 \pm .01 \\ 2.21 \pm .04 \\ 1.07 \pm .01 \\ 2.48 \pm .14 \\ 2.05 \pm .03 \\ 0.75 \pm .00 \\ 0.24 \pm .00 \\ 2.61 \pm .03 \\ 1.27 \pm .04 \\ 2.68 \pm .06 \\ 2.61 \pm .03 \\ 1.75 \pm .01 \\ 0.74 \pm .00 \\ 2.61 \pm .03 \\ 1.75 \pm .01 \\ 0.74 \pm .00 \\ 1.75 \pm .01 \\ 0.75 \pm .01 $	$\begin{array}{c} 3.02\pm.03\\ 1.27\pm.02\\ 1.02\pm.00\\ 1.90\pm.05\\ 0.73\pm.00\\ 2.87\pm.00\\ 2.87\pm.00\\ 2.87\pm.02\\ 1.16\pm.00\\ 3.31\pm.07\\ 3.53\pm.01\\ 3.31\pm.07\\ 1.53\pm.01\\ 3.11\pm.04\\ 3.31\pm.07\\ 1.53\pm.02\\ 0.50\pm.01\\ 1.16\pm.02\\ 1.16\pm.02\\$	$\begin{array}{c} 2.26\pm.02\\ 0.99\pm.04\\ 0.72\pm.00\\ 1.83\pm.04\\ 0.79\pm.07\\ 1.79\pm.07\\ 1.69\pm.03\\ 0.61\pm.03\\ 0.61\pm.03\\ 0.61\pm.03\\ 1.19\pm.01\\ 2.51\pm.06\\ 1.02\pm.01\\ 2.37\pm.04\\ 2.51\pm.06\\ 1.56\pm.08\\ 0.71\pm.01\\ 0.09\pm.00\\ 0.09\pm.00\\ 0.00\pm.00\\ 0.00\pm.00\pm.00\\ 0.00\pm.00\\ 0.00\pm.00\\ 0.00\pm.00\\ 0.00\pm.00\\ 0.00\pm.00\\ 0.00\pm$	$\begin{array}{c} 2.67 \pm .03 \\ 1.30 \pm .01 \\ 1.31 \pm .00 \\ 1.94 \pm .04 \\ 0.65 \pm .01 \\ 2.91 \pm .05 \\ 2.06 \pm .01 \\ 2.91 \pm .05 \\ 2.06 \pm .01 \\ 1.94 \pm .00 \\ 2.95 \pm .00 \\ 2.96 \pm .01 \\ 2.30 \pm .00 \\ 4.24 \pm .01 \\ 2.96 \pm .01 \\ 1.88 \pm .00 \\ 0.55 \pm .01 \\ 1.88 \pm .00 $	$\begin{array}{c} 2.26 \pm .03 \\ 0.99 \pm .03 \\ 0.82 \pm .02 \\ 1.54 \pm .01 \\ 0.52 \pm .00 \\ 1.57 \pm .13 \\ 1.65 \pm .01 \\ 0.47 \pm .00 \\ 0.20 \pm .00 \\ 1.12 \pm .02 \\ 2.31 \pm .29 \\ 0.99 \pm .01 \\ 1.99 \pm .03 \\ 2.31 \pm .29 \\ 1.14 \pm .00 \\ 0.33 \pm .01 \\ 0.94 \pm .01 \end{array}$	$\begin{array}{c} 2.36 \pm .03 \\ 1.32 \pm .05 \\ 1.49 \pm .11 \\ 3.47 \pm .47 \\ 1.10 \pm .07 \\ 1.66 \pm .07 \\ 2.44 \pm .20 \\ 1.48 \pm .12 \\ 0.17 \pm .01 \\ 1.61 \pm .07 \\ 3.21 \pm .15 \\ 2.31 \pm .03 \\ 4.06 \pm .07 \\ 3.21 \pm .15 \\ 2.42 \pm .16 \\ 3.84 \pm .27 \\ 2.27 \pm .02 \end{array}$	$\begin{array}{c} 2.31 \pm .02 \\ 1.47 \pm .01 \\ 0.72 \pm .05 \\ \overline{5.31} \pm .00 \\ 3.20 \pm .00 \\ 2.76 \pm .00 \\ 2.76 \pm .00 \\ 0.54 \pm .01 \\ 0.22 \pm .00 \\ 0.54 \pm .01 \\ 0.22 \pm .00 \\ 1.61 \pm .02 \\ 3.63 \pm .00 \\ 1.04 \pm .02 \\ 2.40 \pm .01 \\ 3.63 \pm .00 \\ 1.50 \pm .00 \\ 4.90 \pm .00 \\ 9.90 \pm .00 \\ 9.90 \pm .00 \\ 9.90 \pm .00 \end{array}$	$\begin{array}{c} 2.37 \pm .01 \\ 1.97 \pm .01 \\ 0.79 \pm .01 \\ 5.12 \pm .02 \\ 1.88 \pm .01 \\ 4.71 \pm .10 \\ 5.02 \pm .03 \\ 0.94 \pm .00 \\ 0.94 \pm .00 \\ 0.94 \pm .01 \\ 2.69 \pm .01 \\ 1.22 \pm .01 \\ 2.40 \pm .01 \\ 2.40 \pm .01 \\ 2.69 \pm .01 \\ 1.70 \pm .01 \\ 2.65 \pm .01 \\ 1.70 \pm .01 \\ 2.05 \pm .01 \\ 1.6 \pm .00 \end{array}$	$\begin{array}{c} \textbf{2.06} \pm .01\\ \textbf{0.93} \pm .00\\ \textbf{0.68} \pm .00\\ \textbf{1.29} \pm .00\\ \textbf{1.29} \pm .00\\ \textbf{1.34} \pm .00\\ \textbf{1.34} \pm .00\\ \textbf{1.61} \pm .01\\ \textbf{0.17} \pm .01\\ \textbf{0.17} \pm .01\\ \textbf{0.94} \pm .00\\ \textbf{2.36} \pm .02\\ \textbf{2.17} \pm .00\\ \textbf{2.35} \pm .01\\ \textbf{0.217} \pm .00\\ \textbf{2.35} \pm .01\\ \textbf{0.22} \pm .01\\ \textbf{0.22} \pm .01\\ \textbf{0.22} \pm .01\\ \textbf{0.29} \pm .00\\ \textbf{0.29} \pm .01\\ \textbf{0.29} \pm .01\\ \textbf{0.29} \pm .01\\ \textbf{0.29} \pm .01\\ \textbf{0.29} \pm .00\\ \textbf{0.29} \pm .01\\ \textbf{0.29} \pm .01$	$\begin{array}{c} \underline{2.07} \pm .01\\ 0.92 \pm .00\\ 0.68 \pm .00\\ 1.27 \pm .01\\ 0.55 \pm .00\\ 1.33 \pm .02\\ 1.58 \pm .00\\ 0.42 \pm .00\\ 0.42 \pm .01\\ 0.94 \pm .01\\ 2.24 \pm .01\\ 0.94 \pm .01\\ 2.24 \pm .01\\ 0.94 \pm .$

Table 20: MAE scores under the **MAR** setting across different levels of missingness on the extra 17 datasets. Please refer to Table 9 for dataset names.

1253	Dataset	Maan	Knn	Swd	Mice	Spactral	ы	Gain	Miracla	Miwaa	Grana	M ³ Imputa
1254	Missing 10%	Mean	Knn	Sva	wice	spectral	п	Gain	wiracie	wnwae	Grape	wi -impute
1255 1256 1257 1258 1259 1260 1261 1262	AI BL WW IO BR IR DI PR SP LE AB A4 CM GE ST LI CH	$\begin{array}{c} 2.40 \pm .19 \\ 1.12 \pm .43 \\ 0.74 \pm .12 \\ 2.11 \pm .02 \\ 1.18 \pm .03 \\ 2.33 \pm .56 \\ 1.78 \pm .38 \\ 0.92 \pm .09 \\ 0.23 \pm .01 \\ 1.35 \pm .08 \\ 1.23 \pm .20 \\ 2.17 \pm .07 \\ 2.63 \pm .28 \\ 1.76 \pm .18 \\ 1.88 \pm .02 \\ 1.18 \pm .41 \end{array}$	$\begin{array}{c} 1.87 \pm .24 \\ 0.55 \pm .30 \\ 0.36 \pm .01 \\ 1.19 \pm .04 \\ 0.97 \pm .10 \\ 1.11 \pm .03 \\ 0.23 \pm .04 \\ 0.61 \pm .02 \\ 0.31 \pm .03 \\ 2.21 \pm .24 \\ 0.61 \pm .23 \\ 2.33 \pm .11 \\ 2.21 \pm .24 \\ 0.52 \pm .07 \\ 0.26 \pm .00 \\ 0.53 \pm .13 \end{array}$	$\begin{array}{c} 2.37 \pm .34 \\ 1.05 \pm .35 \\ 0.86 \pm .04 \\ 1.41 \pm .01 \\ 1.51 \pm .18 \\ 1.84 \pm .42 \\ 1.47 \pm .15 \\ 0.50 \pm .15 \\ 1.36 \pm .09 \\ 2.37 \pm .24 \\ 1.38 \pm .15 \\ 2.37 \pm .30 \\ 2.37 \pm .24 \\ 1.30 \pm .16 \\ 0.36 \pm .01 \\ 1.53 \pm .26 \end{array}$	$\begin{array}{c} 1.85 \pm .18 \\ 0.63 \pm .52 \\ 0.45 \pm .06 \\ 1.44 \pm .14 \\ 0.29 \pm .03 \\ 0.88 \pm .14 \\ 1.26 \pm .40 \\ 0.30 \pm .08 \\ 0.20 \pm .01 \\ 0.88 \pm .12 \\ 1.93 \pm .13 \\ 0.93 \pm .39 \\ 2.19 \pm .14 \\ 1.93 \pm .13 \\ 0.64 \pm .00 \\ 0.04 \pm .00 \\ 0.67 \pm .12 \end{array}$	$\begin{array}{c} 2.01 \pm .28 \\ 0.79 \pm .31 \\ 0.71 \pm .11 \\ .11 \pm .06 \\ 0.34 \pm .01 \\ 0.99 \pm .29 \\ 1.69 \pm .41 \\ 0.59 \pm .32 \\ 0.18 \pm .00 \\ 1.43 \pm .20 \\ 0.18 \pm .00 \\ 1.43 \pm .20 \\ 2.45 \pm .08 \\ 1.02 \pm .34 \\ 0.77 \pm .09 \\ 2.45 \pm .08 \\ 1.07 \pm .17 \\ .015 \pm .00 \\ 1.21 \pm .12 \end{array}$	$\begin{array}{c} \textbf{0.56} \pm .16\\ 0.59 \pm .18\\ 0.39 \pm .01\\ 1.32 \pm .03\\ 0.39 \pm .06\\ 0.93 \pm .02\\ 0.19 \pm .01\\ 0.489 \pm .06\\ 0.93 \pm .02\\ 0.15 \pm .01\\ 0.45 \pm .07\\ 2.16 \pm .29\\ 0.48 \pm .42\\ 1.64 \pm .19\\ 2.16 \pm .29\\ 0.25 \pm .06\\ 0.10 \pm .00\\ 0.40 \pm .09\\ \end{array}$	$\begin{array}{c} 2.17 \pm .09 \\ 1.07 \pm .10 \\ 0.60 \pm .02 \\ 1.36 \pm .02 \\ 0.50 \pm .03 \\ 1.23 \pm .14 \\ 1.16 \pm .03 \\ 0.58 \pm .13 \\ 0.22 \pm .00 \\ 0.96 \pm .06 \\ 1.27 \pm .22 \\ 2.04 \pm .15 \\ 2.06 \pm .06 \\ 0.76 \pm .03 \\ 0.34 \pm .01 \\ 1.11 \pm .23 \end{array}$	$\begin{array}{c} 1.22 \pm .05 \\ 1.14 \pm .00 \\ 0.44 \pm .01 \\ 5.41 \pm .00 \\ 2.19 \pm .00 \\ 2.19 \pm .00 \\ 2.41 \pm .00 \\ 0.17 \pm .02 \\ 0.18 \pm .00 \\ 0.66 \pm .03 \\ 3.09 \pm .00 \\ 0.60 \pm .03 \\ 3.09 \pm .00 \\ 0.60 \pm .03 \\ 5.88 \pm .00 \\ 0.37 \pm .01 \end{array}$	$\begin{array}{c} 2.57 \pm .05 \\ 1.99 \pm .10 \\ 6.09 \pm .09 \\ 2.18 \pm .03 \\ 3.41 \pm .36 \\ 4.20 \pm .09 \\ 9.99 \pm .05 \\ 0.15 \pm .01 \\ 1.56 \pm .01 \\ 2.54 \pm .04 \\ 1.53 \pm .06 \\ 1.97 \pm .07 \\ 2.54 \pm .04 \\ 1.48 \pm .02 \\ 2.26 \pm .04 \\ 1.02 \pm .04 \end{array}$	$\begin{array}{c} 0.75 \pm .02 \\ 0.21 \pm .00 \\ 0.38 \pm .00 \\ 1.19 \pm .03 \\ 0.34 \pm .01 \\ 0.87 \pm .01 \\ 0.87 \pm .01 \\ 0.20 \pm .01 \\ 0.44 \pm .00 \\ 0.44 \pm .01 \\ 0.14 \pm .00 \\ 0.44 \pm .01 \\ 1.91 \pm .02 \\ 1.14 \pm .01 \\ 1.92 \pm .00 \\ 0.28 \pm .01 \\ 1.92 \pm .00 \\ 0.28 \pm .01 \\ 0.11 \pm .00 \\ 0.27 \pm .00 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1263	Missing 30%											
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274	AI BL WW O BR IR DI PR SP LE AB A4 CM GE ST LI CH Missing 50% AI BL WW IO BR	$\begin{array}{c} 2.33 \pm .14\\ 0.91 \pm .02\\ 0.97 \pm .01\\ 2.02 \pm .08\\ 1.33 \pm .03\\ 1.93 \pm .25\\ 1.74 \pm .33\\ 0.91 \pm .25\\ 1.74 \pm .33\\ 0.91 \pm .03\\ 1.36 \pm .02\\ 2.53 \pm .08\\ 1.35 \pm .09\\ 1.35 \pm .01\\ 1.45 \pm .01\\ 1.04 \pm .23\\ 1.04 \pm .01\\ 1.04 \pm .23\\ 1.04 \pm .01\\ 1.04 \pm .01\\$	$\begin{array}{c} 1.59 \pm 70\\ 0.90 \pm 25\\ 0.90 \pm 25\\ 1.09 \pm 0.3\\ 1.09 \pm 0.3\\ 1.09 \pm 0.0\\ 1.09 \pm 0.00 \pm 0.0\\ 1.09 \pm $	$\begin{array}{c} 2.99 \pm .83 \\ 0.91 \pm .67 \\ 0.91 \pm .67 \\ 0.91 \pm .07 \\ 0.91 \pm .07 \\ 0.91 \pm .07 \\ 0.91 \pm .02 $	$\begin{array}{c} 2.16 \pm 2.8 \\ 1.00 \pm .40 \\ 0.63 \pm .64 \\ 1.43 \pm .08 \\ 0.32 \pm .07 \\ 0.85 \pm .09 \\ 1.33 \pm .23 \\ 0.35 \pm .06 \\ 0.24 \pm .01 \\ 1.07 \pm .02 \\ 2.26 \pm .27 \\ 0.94 \pm .02 \\ 0.94 \pm .02 \\ 0.94 \pm .02 \\ 0.71 \pm .25 \\ 0.71 \pm .25 \\ 0.71 \pm .25 \\ 0.71 \pm .12 \\ 0.85 \pm .10 \\ 0.85 \pm .10 \\ 0.85 \pm .10 \\ 0.85 \pm .08 \\ 0.71 \pm .25 \\ 0.72 \pm .25 \\ 0.71 \pm .25 $	$\begin{array}{c} 2.01 \pm 60 \\ 1.02 \pm 3.6 \\ 0.09 \pm 2.3 \\ 1.50 \pm 0.2 \\ 0.64 \pm 1.41 \\ 1.62 \pm 1.41 \\ 1.62 \pm 1.41 \\ 1.72 \pm 2.6 \\ 0.17 \pm 2.6 \\ 0.17 \pm 2.6 \\ 0.17 \pm 7.6 \\ 1.72 \pm 3.5 \\ 0.30 \pm 0.1 \\ 2.61 \pm 2.4 \\ 0.61 \pm 2.44 \\ 0.61 \pm 0.61 \\ 0.61 \pm $	$\begin{array}{c} \textbf{121} \pm 2\\ \textbf{121} \pm 2\\ \textbf{088} \pm .33\\ \textbf{088} \pm .33\\ \textbf{130} \pm .03\\ \textbf{034} \pm .02\\ \textbf{0.34} \pm .01\\ \textbf{0.34} \pm .01\\ \textbf{0.28} \pm .01\\ \textbf{0.28} \pm .01\\ \textbf{0.28} \pm .01\\ \textbf{0.58} \pm .03\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .01\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.43} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.43} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.43} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.43} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.43} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .04\\ \textbf{0.96} \pm .08\\ \textbf{0.47} \pm .03\\ \textbf{0.47} \pm .04\\ \textbf{0.47} \pm$	$\begin{array}{c} 229 \pm .09 \\ 1.01 \pm .15 \\ 0.65 \pm .11 \\ 1.71 \pm .10 \\ 0.9 \pm .05 \\ 1.25 \pm .04 \\ 1.34 \pm .04 \\ 1.34 \pm .04 \\ 1.34 \pm .04 \\ 1.28 \pm .02 \\ 1.21 \pm .08 \\ 0.77 \pm .12 \\ 2.18 \pm .11 \\ 2.21 \pm .08 \\ 0.77 \pm .12 \\ 2.18 \pm .11 \\ 1.29 \pm .09 \\ 1.29 \pm .15 \\ \end{array}$	$\begin{array}{c} 2.23 \pm .00\\ 1.14 \pm .00\\ 0.60 \pm .05\\ 5.28 \pm .00\\ 1.33 \pm .00\\ 2.38 \pm .00\\ 2.38 \pm .00\\ 2.38 \pm .00\\ 2.26 \pm .00\\ 0.27 \pm .04\\ 0.27 \pm .04\\ 0.097 \pm .04\\ 3.06 \pm .00\\ 0.97 \pm .04\\ 3.06 \pm .00\\ 0.97 \pm .04\\ 3.06 \pm .00\\ 0.97 \pm .04\\ 3.04 \pm .02\\ 5.07 \pm .00\\ 0.42 \pm .03\\ 0.42 \pm .03$	$\begin{array}{c} 256 \pm 01\\ 2.03 \pm 03\\ 0.09 \pm 01\\ 6.10 \pm 0.4\\ 3.46 \pm 1.03\\ 3.46 \pm 1.03\\ 3.46 \pm 1.06\\ 0.97 \pm 0.1\\ 0.97 \pm 0.1\\ 0.97 \pm 0.1\\ 0.97 \pm 0.1\\ 1.56 \pm 0.0\\ 1.56 \pm 0.1\\ 2.28 \pm 0.2\\ 1.48 \pm 0.0\\ 1.62 \pm 0.03\\ 1.02 \pm 0.03\\ 1$	$\begin{array}{c} 1.57 \pm .02\\ 0.29 \pm .01\\ 0.48 \pm .00\\ 1.18 \pm .00\\ 0.86 \pm .02\\ 1.12 \pm .01\\ 0.26 \pm .01\\ 0.26 \pm .01\\ 0.57 \pm .01\\ 2.08 \pm .03\\ 1.18 \pm .01\\ 0.157 \pm .01\\ 2.08 \pm .03\\ 1.18 \pm .01\\ 0.157 \pm .01\\ 2.08 \pm .03\\ 1.18 \pm .01\\ 0.152 \pm .01\\ 0.05 \pm .01\\ 0.02 \pm .00\\ 0.00\\ 0.00 \pm .00\\ 0.00\\ 0.00 \pm .00\\ 0.00\\ 0.00 \pm .00\\ 0.$	$\begin{array}{c} 1 \\ \underline{154} \pm .02 \\ 0.28 \pm .01 \\ 0.27 \pm .01 \\ 0.37 \pm .01 \\ 0.48 \pm .02 \pm .03 \\ 0.48 \pm .00 \\ 0.54 \pm .00 \\$
1275 1276 1277 1278 1279	IK DI PR SP LE AB A4 CM GE ST LI CH Missing 70%	$\begin{array}{c} 2.30 \pm .23 \\ 1.82 \pm .25 \\ 1.03 \pm .06 \\ 0.23 \pm .01 \\ 1.28 \pm .07 \\ 2.39 \pm .16 \\ 1.17 \pm .11 \\ 2.37 \pm .06 \\ 2.39 \pm .16 \\ 1.72 \pm .11 \\ 1.89 \pm .02 \\ 1.09 \pm .18 \end{array}$	$\begin{array}{c} 1.76 \pm .22 \\ 0.38 \pm .03 \\ 0.17 \pm .00 \\ 0.86 \pm .03 \\ 2.44 \pm .26 \\ 1.11 \pm .37 \\ 2.28 \pm .18 \\ 2.44 \pm .26 \\ 0.83 \pm .03 \\ 0.58 \pm .00 \\ 0.88 \pm .12 \end{array}$	$\begin{array}{cccc} 2.3 \pm & 2.3 \\ 1.82 \pm & 17 \\ 1.11 \pm & 07 \\ 0.37 \pm & 02 \\ 1.61 \pm & 06 \\ 3.19 \pm & .30 \\ 1.29 \pm & 02 \\ 2.67 \pm & .11 \\ 3.19 \pm & .30 \\ 1.89 \pm & .23 \\ 0.44 \pm & .01 \\ 1.51 \pm & .02 \end{array}$	$\begin{array}{c} 1.53 \pm .24 \\ \hline 0.41 \pm .04 \\ 0.22 \pm .01 \\ 1.05 \pm .04 \\ 2.51 \pm .04 \\ 2.51 \pm .04 \\ 2.51 \pm .04 \\ 1.05 \pm .04 \\ 1.18 \pm .14 \\ 0.16 \pm .04 \\ 1.03 \pm .13 \end{array}$	$\begin{array}{c} 2.62 \pm .21 \\ 1.84 \pm .21 \\ 1.72 \pm .31 \\ 0.16 \pm .02 \\ 2.61 \pm .11 \\ 2.83 \pm .15 \\ 1.90 \pm .34 \\ 4.27 \pm .47 \\ 2.83 \pm .15 \\ 1.59 \pm .21 \\ 0.43 \pm .01 \\ 1.78 \pm .42 \end{array}$	$\begin{array}{c} 1.33 \pm16 \\ 0.27 \pm .02 \\ 0.19 \pm .01 \\ 0.92 \pm .03 \\ 2.27 \pm .04 \\ 0.82 \pm .03 \\ 2.27 \pm .14 \\ 0.83 \pm .05 \\ 0.21 \pm .01 \\ 0.81 \pm .08 \end{array}$	$\begin{array}{c} 1.74 \pm .05\\ 2.20 \pm .05\\ 1.09 \pm .18\\ \underline{0.16} \pm .00\\ 1.90 \pm .10\\ 2.66 \pm .23\\ 1.50 \pm .16\\ 3.39 \pm .01\\ 2.66 \pm .23\\ 2.04 \pm .24\\ 2.11 \pm .08\\ 1.74 \pm .19\\ \end{array}$	$\begin{array}{c} 3.07 \pm .00\\ 2.88 \pm .00\\ 0.20 \pm .00\\ 1.27 \pm .00\\ 3.65 \pm .00\\ 1.10 \pm .04\\ 2.54 \pm .00\\ 3.65 \pm .00\\ 1.13 \pm .00\\ 4.25 \pm .00\\ 0.78 \pm .00\\ \end{array}$	$\begin{array}{c} 4.03 \pm .00 \\ 5.79 \pm .01 \\ 0.95 \pm .01 \\ 0.16 \pm .00 \\ 1.36 \pm .02 \\ 2.58 \pm .04 \\ 1.17 \pm .01 \\ 2.43 \pm .01 \\ 2.58 \pm .04 \\ 1.52 \pm .02 \\ 2.31 \pm .04 \\ 1.06 \pm .02 \end{array}$	$\begin{array}{c} 0.63 \pm .01 \\ 0.23 \pm .00 \\ 0.16 \pm .01 \\ 0.71 \pm .02 \\ \hline 2.19 \pm .02 \\ \hline 0.87 \pm .01 \\ 2.17 \pm .01 \\ 2.23 \pm .03 \\ \hline 0.64 \pm .01 \\ 0.22 \pm .02 \\ \hline 0.67 \pm .00 \\ \hline \end{array}$	$\begin{array}{c} \textbf{0.64} \pm .01\\ \textbf{1.60} \pm .02\\ \textbf{0.23} \pm .00\\ \textbf{0.15} \pm .00\\ \textbf{0.69} \pm .01\\ \textbf{2.04} \pm .01\\ \textbf{2.04} \pm .01\\ \textbf{2.04} \pm .02\\ \textbf{2.05} \pm .03\\ \textbf{0.57} \pm .01\\ \textbf{0.13} \pm .01\\ \textbf{0.66} \pm .00\\ \end{array}$
1280 1281 1282 1283 1283 1284 1285 1286 1287	AI BL WW IO BR IR DI PR SP LE AB A4 CM GE ST LI LI	$\begin{array}{c} 2.50 \pm .19 \\ 1.27 \pm .31 \\ 0.81 \pm .02 \\ 0.08 \pm .03 \\ 1.13 \pm .04 \\ 2.48 \pm .13 \\ 1.91 \pm .04 \\ 1.05 \pm .05 \\ 0.23 \pm .01 \\ 1.30 \pm .08 \\ 2.59 \pm .09 \\ 1.14 \pm .02 \\ 2.43 \pm .05 \\ 2.59 \pm .09 \\ 1.75 \pm .12 \\ 1.90 \pm .01 \\ 1.12 \pm .06 \end{array}$	$\begin{array}{c} 2.31 \pm .55 \\ 1.13 \pm .17 \\ 0.88 \pm .02 \\ 0.88 \pm .02 \\ 1.48 \pm .08 \\ 0.68 \pm .01 \\ 1.56 \pm .13 \\ 1.96 \pm .07 \\ 0.53 \pm .02 \\ 0.20 \pm .01 \\ 1.30 \pm .14 \\ 2.47 \pm .06 \\ 1.13 \pm .11 \\ 2.46 \pm .20 \\ 2.47 \pm .06 \\ 1.07 \pm .05 \\ 0.71 \pm .03 \\ 1.23 \pm .06 \end{array}$	$\begin{array}{c} 3.21 \pm .96 \\ 1.00 \pm .29 \\ 0.92 \pm .01 \\ 2.03 \pm .10 \\ 0.73 \pm .02 \\ 1.89 \pm .46 \\ 2.01 \pm .09 \\ 1.18 \pm .07 \\ 0.38 \pm .01 \\ 1.72 \pm .13 \\ 3.53 \pm .23 \\ 1.17 \pm .02 \\ 3.13 \pm .10 \\ 3.53 \pm .23 \\ 1.88 \pm .08 \\ 0.57 \pm .01 \\ 1.75 \pm .08 \end{array}$	$\begin{array}{c} 2.24 \pm .16 \\ \underline{0.93} \pm .15 \\ 0.71 \pm .03 \\ 1.90 \pm .05 \\ 0.74 \pm .07 \\ 1.89 \pm .60 \\ 1.77 \pm .05 \\ 0.57 \pm .17 \\ 0.24 \pm .00 \\ 1.25 \pm .04 \\ 2.63 \pm .05 \\ 0.98 \pm .11 \\ 2.53 \pm .06 \\ 2.63 \pm .05 \\ 1.61 \pm .10 \\ 0.55 \pm .02 \\ 1.61 \pm .02 \\ 1.01 \pm .08 \end{array}$	$\begin{array}{c} 2.47 \pm .22 \\ 0.94 \pm .51 \\ 1.35 \pm .21 \\ 2.37 \pm .13 \\ 0.73 \pm .03 \\ 2.94 \pm .52 \\ 2.26 \pm .08 \\ 2.02 \pm .18 \\ 0.17 \pm .00 \\ 3.16 \pm .10 \\ 3.12 \pm .17 \\ 2.45 \pm .29 \\ 4.32 \pm .41 \\ 3.12 \pm .17 \\ 2.10 \pm .12 \\ 0.89 \pm .02 \\ 1.74 \pm .08 \end{array}$	$\begin{array}{c} 2.06 \pm .11 \\ 1.01 \pm .08 \\ 0.85 \pm .02 \\ 1.60 \pm .01 \\ 0.54 \pm .02 \\ 1.39 \pm .20 \\ 1.52 \pm .10 \\ 0.24 \pm .00 \\ 0.21 \pm .00 \\ 0.21 \pm .00 \\ 0.21 \pm .00 \\ 0.86 \pm .04 \\ 2.14 \pm .03 \\ 2.93 \pm .16 \\ 1.12 \pm .04 \\ 0.36 \pm .01 \\ 0.91 \pm .06 \end{array}$	$\begin{array}{c} 2.32 \pm .22 \\ 1.18 \pm .09 \\ 1.56 \pm .06 \\ 3.52 \pm .32 \\ 1.13 \pm .07 \\ 1.86 \pm .24 \\ 2.90 \pm .13 \\ .32 \pm .27 \\ 0.16 \pm .01 \\ 1.67 \pm .14 \\ 3.08 \pm .07 \\ 1.67 \pm .18 \\ 4.24 \pm .29 \\ 3.08 \pm .07 \\ 2.36 \pm .06 \\ 3.18 \pm .09 \\ 2.18 \pm .07 \end{array}$	$\begin{array}{c} 2.25 \pm .00 \\ 1.40 \pm .00 \\ 0.81 \pm .00 \\ 5.44 \pm .00 \\ 3.07 \pm .00 \\ 2.96 \pm .00 \\ 0.60 \pm .08 \\ 0.22 \pm .00 \\ 1.30 \pm .02 \\ 3.54 \pm .00 \\ 1.36 \pm .02 \\ 3.58 \pm .00 \\ 3.58 \pm .00 \\ 1.31 \pm .00 \\ 4.92 \pm .01 \end{array}$	$\begin{array}{c} 2.26 \pm .01 \\ 2.33 \pm .03 \\ 0.84 \pm .00 \\ 5.28 \pm .05 \\ 2.00 \pm .01 \\ 4.03 \pm .29 \\ 5.03 \pm .05 \\ 1.01 \pm .01 \\ 0.16 \pm .00 \\ 1.32 \pm .05 \\ 2.68 \pm .01 \\ 1.21 \pm .09 \\ 2.40 \pm .02 \\ 2.68 \pm .01 \\ 1.55 \pm .03 \\ 2.10 \pm .01 \\ 1.21 \pm .00 \end{array}$	$\begin{array}{c} \underline{1.96} \pm .00 \\ 0.80 \pm .01 \\ 0.72 \pm .00 \\ 1.29 \pm .00 \\ 0.55 \pm .00 \\ 0.85 \pm .01 \\ 0.40 \pm .00 \\ 0.40 \pm .00 \\ 0.40 \pm .00 \\ 0.98 \pm .00 \\ \underline{2.46} \pm .01 \\ \underline{2.10} \pm .00 \\ 0.94 \pm .01 \\ \underline{2.10} \pm .00 \\ 0.82 \pm .01 \\ 0.82 \pm .01 \\ 0.88 \pm .00 \end{array}$	$\begin{array}{c} \textbf{1.95}\pm.00\\ \textbf{0.80}\pm.01\\ \textbf{0.71}\pm.00\\ \textbf{1.29}\pm.01\\ \textbf{0.54}\pm.01\\ \textbf{0.85}\pm.01\\ \textbf{0.46}\pm.01\\ \textbf{0.46}\pm.01\\ \textbf{0.46}\pm.00\\ \textbf{0.98}\pm.01\\ \textbf{2.33}\pm.03\\ \textbf{0.92}\pm.01\\ \textbf{2.34}\pm.03\\ \textbf{0.76}\pm.00\\ \textbf{0.76}\pm.00\\ \textbf{0.76}\pm.00\\ \textbf{0.87}\pm.00\\ \textbf{0.87}\pm.00$

Table 21: MAE scores under the **MNAR** setting across different levels of missingness on the extra 17 datasets. Please refer to Table 9 for dataset names.

Dataset	Mean	Knn	Svd	Mice	Spectral	н	Gain	Miracle	Miwae	Grape	M ³ -Impute
Missing 10%											1
AI BL WW IO BR IR DI PR SP LE AB A4 CM GE ST LI CH	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 1.93 \pm .10 \\ 1.07 \pm .13 \\ 0.41 \pm .01 \\ 1.10 \pm .02 \\ 0.50 \pm .01 \\ 1.21 \pm .16 \\ 0.32 \pm .02 \\ 0.15 \pm .00 \\ 0.34 \pm .01 \\ 2.06 \pm .12 \\ 0.05 \pm .07 \\ 2.19 \pm .12 \\ 2.06 \pm .12 \\ 0.24 \pm .03 \\ 0.20 \pm .00 \\ 0.87 \pm .06 \end{array}$	$\begin{array}{c} 2.81 \pm .19 \\ 1.01 \pm .18 \\ 0.88 \pm .04 \\ 1.29 \pm .04 \\ 0.58 \pm .01 \\ 1.67 \pm .16 \\ 1.67 \pm .02 \\ 1.03 \pm .09 \\ 0.37 \pm .02 \\ 1.32 \pm .02 \\ 2.63 \pm .11 \\ 1.21 \pm .09 \\ 2.49 \pm .06 \\ 2.63 \pm .11 \\ 1.30 \pm .02 \\ 0.37 \pm .00 \\ 1.24 \pm .05 \end{array}$	$\begin{array}{c} 1.83 \pm .13 \\ \underline{0.62} \pm .12 \\ 0.51 \pm .02 \\ 1.41 \pm .09 \\ 0.26 \pm .01 \\ 0.89 \pm .04 \\ 1.13 \pm .16 \\ 0.27 \pm .01 \\ 0.90 \pm .03 \\ 0.20 \pm .01 \\ 0.90 \pm .03 \\ 2.04 \pm .12 \\ 0.84 \pm .15 \\ 2.06 \pm .04 \\ 2.04 \pm .12 \\ 0.71 \pm .02 \\ 0.05 \pm .00 \\ 0.60 \pm .05 \end{array}$	$\begin{array}{c} 2.39 \pm .33 \\ 1.01 \pm .12 \\ 0.67 \pm .05 \\ 1.38 \pm .01 \\ 0.33 \pm .01 \\ 1.32 \pm .03 \\ 1.44 \pm .09 \\ 0.80 \pm .08 \\ 0.16 \pm .00 \\ 1.29 \pm .04 \\ 2.31 \pm .03 \\ 1.23 \pm .15 \\ 2.68 \pm .10 \\ 2.31 \pm .03 \\ 0.90 \pm .00 \\ 0.14 \pm .00 \\ 1.42 \pm .04 \end{array}$	$\begin{array}{c} \textbf{0.68} \pm .03 \\ 0.56 \pm .09 \\ 0.45 \pm .01 \\ 1.24 \pm .04 \\ 0.91 \pm .02 \\ \textbf{1.91} \pm .02 \\ \textbf{1.92} \pm .01 \\ \textbf{1.92} \pm .02 \\ \textbf{1.92} \pm .02 \\ \textbf{1.92} \pm .02 \\ \textbf{1.95} \pm .09 \\ \textbf{0.65} \pm .11 \\ \textbf{1.95} \pm .09 \\ \textbf{0.66} \pm .01 \\ \textbf{1.95} \pm .03 \\ 0.06 \pm .00 \\ \textbf{0.45} \pm .04 \end{array}$	$\begin{array}{c} 2.24 \pm .03 \\ 1.22 \pm .05 \\ 0.68 \pm .00 \\ 1.46 \pm .04 \\ 0.46 \pm .01 \\ 1.39 \pm .02 \\ 0.57 \pm .02 \\ 0.21 \pm .01 \\ 1.07 \pm .01 \\ 2.23 \pm .05 \\ 0.65 \pm .11 \\ 2.49 \pm .04 \\ 2.23 \pm .05 \\ 0.93 \pm .04 \\ 0.38 \pm .00 \\ 1.22 \pm .16 \end{array}$	$\begin{array}{c} 1.70 \pm .04 \\ 1.34 \pm .00 \\ 0.49 \pm .00 \\ 5.45 \pm .00 \\ 1.34 \pm .00 \\ 2.79 \pm .00 \\ 2.79 \pm .00 \\ 2.74 \pm .00 \\ 0.25 \pm .01 \\ 0.18 \pm .00 \\ 0.74 \pm .00 \\ 0.74 \pm .00 \\ 0.79 \pm .02 \\ 2.77 \pm .04 \\ 3.43 \pm .00 \\ 0.71 \pm .02 \\ 5.62 \pm .00 \\ 0.49 \pm .01 \end{array}$	$\begin{array}{c} 2.38 \pm .03 \\ 1.98 \pm .06 \\ 0.77 \pm .00 \\ 5.49 \pm .12 \\ 1.92 \pm .01 \\ 4.18 \pm .09 \\ 4.59 \pm .09 \\ 0.99 \pm .04 \\ 0.16 \pm .00 \\ 1.40 \pm .01 \\ 2.56 \pm .03 \\ 1.24 \pm .02 \\ 2.38 \pm .00 \\ 2.56 \pm .03 \\ 1.60 \pm .01 \\ 2.16 \pm .02 \\ 1.09 \pm .01 \end{array}$	$\begin{array}{c} 0.75 \pm .01 \\ \textbf{0.39} \pm .00 \\ 0.44 \pm .00 \\ 1.17 \pm .01 \\ 0.31 \pm .00 \\ 0.75 \pm .01 \\ 1.20 \pm .03 \\ \textbf{0.19} \pm .00 \\ 0.46 \pm .00 \\ 0.86 \pm .00 \\ 1.83 \pm .00 \\ 0.86 \pm .00 \\ 1.91 \pm .00 \\ 1.84 \pm .02 \\ 0.35 \pm .01 \\ 0.37 \pm .00 \end{array}$	$\begin{array}{c} \underline{0.69} \pm .02 \\ 0.39 \pm .00 \\ 0.44 \pm .00 \\ 0.73 \pm .01 \\ 0.73 \pm .01 \\ 0.19 \pm .00 \\ 0.19 \pm .00 \\ 0.19 \pm .00 \\ 0.43 \pm .00 \\ 0.43 \pm .00 \\ 1.66 \pm .02 \\ 0.84 \pm .00 \\ 1.67 \pm .00 \\ 0.30 \pm .01 \\ 0.09 \pm .00 \\ 0.37 \pm .00 \\ \end{array}$
Missing 30%											
AI BL WW IO BR DI PR SP LE AB A4 CM GE ST LI CH	$\begin{array}{c} 2.36 \pm .11 \\ 0.98 \pm .05 \\ 0.82 \pm .01 \\ 2.04 \pm .06 \\ 1.11 \pm .02 \\ 2.06 \pm .09 \\ 0.73 \pm .02 \\ 0.23 \pm .01 \\ 1.32 \pm .08 \\ 2.49 \pm .14 \\ 1.01 \pm .26 \\ 2.37 \pm .10 \\ 2.49 \pm .14 \\ 1.75 \pm .08 \\ 1.85 \pm .03 \\ 0.95 \pm .10 \end{array}$	$\begin{array}{c} 2.11 \pm .27 \\ 1.04 \pm .12 \\ 0.60 \pm .02 \\ 1.12 \pm .03 \\ 0.55 \pm .02 \\ 1.60 \pm .17 \\ 0.55 \pm .05 \\ 0.18 \pm .01 \\ 0.59 \pm .05 \\ 2.46 \pm .11 \\ 1.27 \pm .13 \\ 2.23 \pm .03 \\ 2.46 \pm .11 \\ 0.79 \pm .13 \\ 0.37 \pm .00 \\ 1.19 \pm .14 \end{array}$	$\begin{array}{c} 2.98 \pm .52 \\ 0.98 \pm .09 \\ 0.82 \pm .04 \\ 1.36 \pm .07 \\ 0.60 \pm .03 \\ 1.66 \pm .20 \\ 1.93 \pm .02 \\ 1.17 \pm .08 \\ 0.40 \pm .07 \\ 1.56 \pm .29 \\ 2.67 \pm .07 \\ 2.67 \pm .07 \\ 2.54 \pm .07 \\ 2.54 \pm .07 \\ 1.58 \pm .01 \\ 1.52 \pm .15 \end{array}$	$\begin{array}{c} 2.07 \pm .14 \\ 0.76 \pm .17 \\ 0.62 \pm .02 \\ 1.44 \pm .07 \\ 0.33 \pm .02 \\ 0.99 \pm .11 \\ 1.27 \pm .16 \\ 0.38 \pm .05 \\ 0.26 \pm .02 \\ 0.94 \pm .01 \\ 2.25 \pm .06 \\ 0.88 \pm .15 \\ 2.36 \pm .13 \\ 2.25 \pm .06 \\ 0.91 \pm .11 \\ 0.09 \pm .00 \\ 0.62 \pm .14 \end{array}$	$\begin{array}{c} 2.64 \pm .18 \\ 1.40 \pm .18 \\ 0.88 \pm .13 \\ 1.46 \pm .02 \\ 0.81 \pm .13 \\ 1.35 \pm .11 \\ 1.51 \pm .13 \\ 1.66 \pm .12 \\ 0.16 \pm .01 \\ 1.95 \pm .14 \\ 2.55 \pm .10 \\ 1.98 \pm .03 \\ 2.95 \pm .05 \\ 2.55 \pm .10 \\ 1.24 \pm .11 \\ 0.22 \pm .00 \\ 1.69 \pm .42 \end{array}$	$\begin{array}{c} \textbf{1.23} \pm .04 \\ 0.82 \pm .18 \\ 0.58 \pm .05 \\ \textbf{1.28} \pm .05 \\ \textbf{1.28} \pm .02 \\ \textbf{0.36} \pm .03 \\ \textbf{1.07} \pm .07 \\ \textbf{1.30} \pm .19 \\ \textbf{0.23} \pm .01 \\ \textbf{0.17} \pm .00 \\ 0.58 \pm .07 \\ \textbf{2.36} \pm .13 \\ \textbf{0.69} \pm .04 \\ \textbf{0.12} \pm .01 \\ \textbf{0.12} \pm .01 \\ \textbf{0.12} \pm .01 \\ \textbf{0.53} \pm .06 \end{array}$	$\begin{array}{c} 2.21 \pm .05 \\ 1.09 \pm .06 \\ 0.69 \pm .01 \\ 1.55 \pm .03 \\ 0.62 \pm .02 \\ 1.26 \pm .04 \\ 1.43 \pm .06 \\ 0.60 \pm .19 \\ 0.18 \pm .00 \\ 1.30 \pm .08 \\ 2.37 \pm .03 \\ 0.81 \pm .07 \\ 2.13 \pm .03 \\ 1.27 \pm .03 $	$\begin{array}{c} 1.72 \pm .00 \\ 1.24 \pm .00 \\ 0.59 \pm .01 \\ 5.39 \pm .00 \\ 1.35 \pm .00 \\ 2.60 \pm .00 \\ 0.26 \pm .00 \\ 0.96 \pm .01 \\ 3.27 \pm .00 \\ 1.12 \pm .06 \\ 2.06 \pm .00 \\ 3.27 \pm .00 \\ 0.89 \pm .04 \\ 0.54 \pm .02 \end{array}$	$\begin{array}{c} 2.47 \pm .03 \\ 1.99 \pm .04 \\ 0.72 \pm .00 \\ 5.66 \pm .02 \\ 2.05 \pm .00 \\ 3.98 \pm .32 \\ 4.62 \pm .08 \\ 0.96 \pm .01 \\ 1.48 \pm .01 \\ 1.35 \pm .03 \\ 2.15 \pm .05 \\ 2.60 \pm .04 \\ 1.56 \pm .01 \\ 2.61 \pm .04 \\ 1.56 \pm .01 \\ 2.21 \pm .05 \\ 1.06 \pm .01 \\ \end{array}$	$\begin{array}{c} \underline{1.46} \pm .03 \\ \underline{0.42} \pm .00 \\ 0.49 \pm .00 \\ 1.15 \pm .01 \\ 0.38 \pm .00 \\ 0.38 \pm .02 \\ \underline{1.21} \pm .01 \\ 0.21 \pm .01 \\ 0.21 \pm .01 \\ \underline{0.254} \pm .01 \\ 2.03 \pm .01 \\ \underline{2.04} \pm .01 \\ \underline{1.04} \pm .00 \\ \underline{1.82} \pm .01 \\ \underline{1.04} \pm .00 \\ \underline{1.82} \pm .01 \\ \underline{0.42} \pm .00 \\ 0.12 \pm .01 \\ 0.42 \pm .00 \end{array}$	$\begin{array}{c} \underline{1.46} \pm .01 \\ 0.41 \pm .00 \\ 0.49 \pm .00 \\ 1.06 \pm .02 \\ 0.36 \pm .01 \\ 0.87 \pm .00 \\ 0.19 \pm .00 \\ 0.14 \pm .00 \\ 0.52 \pm .00 \\ 0.52 \pm .01 \\ 1.89 \pm .03 \\ 1.02 \pm .01 \\ 1.71 \pm .02 \\ 0.39 \pm .01 \\ 0.12 \pm .01 \\ 0.12 \pm .01 \\ 0.42 \pm .00 \end{array}$
Missing 50%											
AI BL WW IO BR IR DI PR SP LE AB A4 CM GE ST LI CH	$\begin{array}{c} 2.39 \pm .11 \\ 1.22 \pm .23 \\ 0.70 \pm .07 \\ 2.06 \pm .03 \\ 1.12 \pm .03 \\ 1.12 \pm .03 \\ 2.42 \pm .09 \\ 1.99 \pm .04 \\ 1.04 \pm .10 \\ 0.23 \pm .00 \\ 1.32 \pm .02 \\ 2.41 \pm .06 \\ 1.17 \pm .09 \\ 2.40 \pm .07 \\ 2.41 \pm .06 \\ 1.76 \pm .09 \\ 1.87 \pm .01 \\ 1.12 \pm .12 \end{array}$	$\begin{array}{c} 2.37 \pm .68 \\ 1.24 \pm .09 \\ 0.78 \pm .04 \\ 1.20 \pm .02 \\ 0.66 \pm .01 \\ 1.58 \pm .10 \\ 1.70 \pm .03 \\ 0.66 \pm .09 \\ 0.19 \pm .00 \\ 1.26 \pm .11 \\ 2.47 \pm .04 \\ 1.25 \pm .22 \\ 2.34 \pm .07 \\ 2.47 \pm .04 \\ 0.96 \pm .06 \\ 0.52 \pm .01 \\ 1.11 \pm .11 \end{array}$	$\begin{array}{c} 3.04\pm2.3\\ 1.06\pm3.1\\ 0.96\pm.08\\ 1.54\pm.02\\ 0.67\pm.03\\ 2.19\pm2.6\\ 1.92\pm.07\\ 1.06\pm.03\\ 0.38\pm.03\\ 1.61\pm.04\\ 3.14\pm.23\\ 1.37\pm.26\\ 2.82\pm.22\\ 3.14\pm.23\\ 1.71\pm.10\\ 0.44\pm.01\\ 1.66\pm.11\\ \end{array}$	$\begin{array}{c} -2.35 \pm .09 \\ 0.87 \pm .13 \\ 0.72 \pm .04 \\ 1.61 \pm .07 \\ 0.46 \pm .02 \\ 1.30 \pm .17 \\ 1.69 \pm .07 \\ 0.45 \pm .07 \\ 0.45 \pm .07 \\ 0.23 \pm .02 \\ 1.08 \pm .03 \\ 2.34 \pm .11 \\ 0.85 \pm .11 \\ 2.30 \pm .10 \\ 2.34 \pm .11 \\ 1.27 \pm .09 \\ 0.18 \pm .01 \\ 0.88 \pm .13 \end{array}$	$\begin{array}{c} -2.82 \pm .08 \\ 1.19 \pm .41 \\ 1.13 \pm .10 \\ 1.74 \pm .04 \\ 0.55 \pm .03 \\ 2.27 \pm .05 \\ 1.80 \pm .19 \\ 1.75 \pm .17 \\ 0.16 \pm .02 \\ 2.62 \pm .10 \\ 2.62 \pm .10 \\ 2.65 \pm .19 \\ 2.44 \pm .19 \\ 1.43 \pm .24 \\ 2.65 \pm .19 \\ 1.67 \pm .07 \\ 0.40 \pm .01 \\ 1.82 \pm .23 \end{array}$	$\begin{array}{c} \underline{2.02} \pm .02 \\ 0.94 \pm .07 \\ 0.74 \pm .03 \\ 1.43 \pm .07 \\ 0.43 \pm .01 \\ 1.38 \pm .32 \\ 1.39 \pm .15 \\ 0.39 \pm .01 \\ 0.19 \pm .00 \\ 0.92 \pm .03 \\ 2.37 \pm .13 \\ 0.75 \pm .14 \\ 1.90 \pm .09 \\ 2.37 \pm .13 \\ 0.85 \pm .01 \\ 0.21 \pm .00 \\ 0.80 \pm .07 \end{array}$	$\begin{array}{c} 2.13 \pm .11 \\ 1.24 \pm .04 \\ 2.59 \pm .15 \\ 0.87 \pm .09 \\ 1.61 \pm .23 \\ 1.99 \pm .07 \\ 1.26 \pm .15 \\ 0.19 \pm .01 \\ 1.62 \pm .15 \\ 2.92 \pm .22 \\ 1.46 \pm .10 \\ 3.29 \pm .27 \\ 2.92 \pm .22 \\ 1.88 \pm .07 \\ 1.68 \pm .08 \\ 1.94 \pm .26 \end{array}$	$\begin{array}{c} -2.17 \pm .00 \\ 1.39 \pm .00 \\ 0.73 \pm .00 \\ 5.43 \pm .00 \\ 1.40 \pm .00 \\ 3.10 \pm .00 \\ 2.86 \pm .00 \\ 0.20 \pm .00 \\ 0.20 \pm .00 \\ 1.24 \pm .00 \\ 3.63 \pm .00 \\ 1.17 \pm .00 \\ 3.63 \pm .00 \\ 1.17 \pm .00 \\ 4.39 \pm .00 \\ 0.78 \pm .00 \end{array}$	$\begin{array}{c} -2.27 \pm .03 \\ 2.26 \pm .03 \\ 0.83 \pm .02 \\ 5.27 \pm .01 \\ 2.05 \pm .02 \\ 4.16 \pm .30 \\ 5.64 \pm .04 \\ 0.95 \pm .01 \\ 0.16 \pm .00 \\ 1.34 \pm .02 \\ 2.60 \pm .01 \\ 1.17 \pm .02 \\ 2.60 \pm .01 \\ 1.56 \pm .02 \\ 2.26 \pm .02 \\ 1.08 \pm .02 \end{array}$	$\begin{array}{c} \textbf{1.86} \pm .00 \\ \textbf{0.77} \pm .00 \\ \textbf{0.65} \pm .00 \\ \textbf{1.18} \pm .00 \\ \textbf{0.46} \pm .01 \\ \textbf{0.96} \pm .01 \\ \textbf{0.96} \pm .01 \\ \textbf{0.96} \pm .01 \\ \textbf{0.25} \pm .02 \\ \textbf{0.17} \pm .00 \\ \textbf{0.223} \pm .03 \\ \textbf{0.72} \pm .00 \\ \textbf{0.72} \pm .01 \\ \textbf{0.20} \pm .01 \\ \textbf{0.20} \pm .01 \\ \textbf{0.20} \pm .00 \\ \textbf{0.26} \pm .00 \\ 0.26$	$\begin{array}{c} 1.86 \pm .00 \\ 0.77 \pm .00 \\ 0.65 \pm .00 \\ 1.15 \pm .00 \\ 0.43 \pm .01 \\ 0.96 \pm .01 \\ 0.25 \pm .00 \\ 0.25 \pm .00 \\ 0.75 \pm .00 \\ 0.75 \pm .00 \\ 0.79 \pm .01 \\ 0.84 \pm .00 \\ 0.98 \pm .01 \\ 0.98 \pm .03 \\ 2.01 \pm .05 \\ 0.59 \pm .01 \\ 0.14 \pm .01 \\ 0.67 \pm .00 \\ 0.44 \pm .01 \\ 0.67 \pm .00 \\ 0.67$
Missing 70%											
AI BL WW IO BR DI PR LE AB A4 CM GE ST LI	$\begin{array}{c} 2.36 \pm .18 \\ 1.22 \pm .19 \\ 0.79 \pm .01 \\ 2.07 \pm .01 \\ 1.15 \pm .03 \\ 2.46 \pm .10 \\ 1.86 \pm .03 \\ 1.04 \pm .05 \\ 0.23 \pm .01 \\ 1.33 \pm .04 \\ 2.61 \pm .07 \\ 1.13 \pm .01 \\ 2.38 \pm .13 \\ 2.61 \pm .07 \\ 1.74 \pm .11 \\ 1.89 \pm .01 \end{array}$	$\begin{array}{c} 2.33 \pm .43 \\ 1.05 \pm .23 \\ 0.90 \pm .02 \\ 1.67 \pm .08 \\ 1.97 \pm .04 \\ 1.57 \pm .18 \\ 1.96 \pm .13 \\ 0.63 \pm .02 \\ 0.23 \pm .00 \\ 1.48 \pm .03 \\ 2.51 \pm .07 \\ 1.20 \pm .10 \\ 2.51 \pm .07 \\ 1.21 \pm .07 \\ 1.51 \pm .07 $	$\begin{array}{c} 3.26 \pm .67 \\ 1.25 \pm .29 \\ 0.96 \pm .00 \\ 2.11 \pm .01 \\ 0.79 \pm .06 \\ 2.21 \pm .30 \\ 2.06 \pm .05 \\ 1.19 \pm .06 \\ 0.38 \pm .00 \\ 1.75 \pm .11 \\ 3.52 \pm .17 \\ 1.53 \pm .30 \\ 3.16 \pm .17 \\ 3.52 \pm .17 \\ 2.05 \pm .12 \\ 0.05 \pm .05 \end{array}$	$\begin{array}{c} 2.33 \pm .09\\ 0.93 \pm .13\\ 0.75 \pm .01\\ 1.92 \pm .05\\ 0.83 \pm .09\\ 2.58 \pm .99\\ 1.67 \pm .17\\ 0.59 \pm .17\\ 0.59 \pm .17\\ 0.23 \pm .00\\ 1.25 \pm .01\\ 2.56 \pm .04\\ 1.04 \pm .13\\ 2.38 \pm .11\\ 2.56 \pm .04\\ 1.55 \pm .12\\ 0.62 \pm .03\end{array}$	$\begin{array}{c} 2.84 \pm .13 \\ 1.36 \pm .19 \\ 1.47 \pm .12 \\ 2.29 \pm .07 \\ 0.75 \pm .05 \\ 2.78 \pm .52 \\ 2.45 \pm .05 \\ 1.17 \pm .09 \\ 0.17 \pm .00 \\ 3.05 \pm .01 \\ 2.99 \pm .10 \\ 2.55 \pm .09 \\ 4.62 \pm .24 \\ 2.99 \pm .10 \\ 2.16 \pm .05 \\ 0.92 \pm .01 \end{array}$	$\begin{array}{c} 2.11 \pm .12 \\ 1.01 \pm .08 \\ 0.87 \pm .02 \\ 1.57 \pm .02 \\ 0.55 \pm .01 \\ \underline{1.28} \pm .16 \\ 1.58 \pm .10 \\ 0.24 \pm .01 \\ 0.21 \pm .00 \\ \underline{2.36} \pm .35 \\ 1.09 \pm .13 \\ .15 \pm .06 \\ \underline{2.36} \pm .35 \\ 1.25 \pm .09 \\ 0.37 \pm .01 \end{array}$	$\begin{array}{c} 2.25 \pm .14 \\ 1.16 \pm .05 \\ 1.53 \pm .11 \\ 4.02 \pm .46 \\ 1.69 \pm .13 \\ 2.41 \pm .19 \\ 1.41 \pm .14 \\ 0.19 \pm .03 \\ 1.63 \pm .08 \\ 3.13 \pm .06 \\ 1.60 \pm .13 \\ 3.13 \pm .06 \\ 1.60 \pm .19 \\ 3.13 \pm .06 \\ 2.35 \pm .15 \\ 3.67 \pm .29 \end{array}$	$\begin{array}{c} 2.29 \pm .00 \\ 1.40 \pm .00 \\ 0.80 \pm .00 \\ 5.43 \pm .00 \\ 1.40 \pm .00 \\ 3.07 \pm .00 \\ 2.95 \pm .00 \\ 0.62 \pm .05 \\ 0.22 \pm .00 \\ 1.24 \pm .04 \\ 3.55 \pm .00 \\ 1.84 \pm .00 \\ 1.35 \pm .00 \\ 1.31 \pm .00 \end{array}$	$\begin{array}{c} 2.28 \pm .01 \\ 2.29 \pm .03 \\ 0.84 \pm .00 \\ 5.27 \pm .04 \\ 1.97 \pm .01 \\ 4.13 \pm .29 \\ 5.01 \pm .03 \\ 1.00 \pm .01 \\ 0.16 \pm .00 \\ 1.34 \pm .02 \\ 2.66 \pm .02 \\ 1.22 \pm .09 \\ 1.24 \pm .02 \\ 2.66 \pm .02 \\ 1.58 \pm .03 \\ 2.09 \pm .01 \end{array}$	$\begin{array}{c} \underline{2.01} \pm .02 \\ 0.82 \pm .01 \\ 0.72 \pm .00 \\ \underline{1.31} \pm .01 \\ 1.01 \pm .01 \\ 1.01 \pm .01 \\ 1.01 \pm .01 \\ 0.041 \pm .00 \\ 0.041 \pm .00 \\ 0.98 \pm .00 \\ 2.47 \pm .02 \\ 0.98 \pm .00 \\ 2.47 \pm .02 \\ 0.98 \pm .00 \\ 2.46 \pm .02 \\ 0.83 \pm .01 \\ 0.27 \pm .02 \end{array}$	$\begin{array}{c} 1.99 \pm .02\\ 0.82 \pm .00\\ 0.71 \pm .00\\ 1.52 \pm .01\\ 1.52 \pm .02\\ 0.55 \pm .01\\ 1.01 \pm .01\\ 1.06 \pm .02\\ 0.41 \pm .00\\ 0.98 \pm .00\\ 2.34 \pm .03\\ 0.91 \pm .01\\ 2.02 \pm .02\\ 2.33 \pm .05\\ 0.78 \pm .01\\ 0.78 \pm .01\\ 0.24 \pm .00\\ 0.24 \pm .00\\$

1350 B ADDITIONAL EXPERIMENTS DURING THE REBUTTAL PERIOD

Figure 6: MAE scores and feature importance scores calculated from FCU when imputing two missing entries in a sample. FCU dynamically adjusts the importance of observed features within the sample when imputing different feature values.

In this section, we provide further clarification on the working mechanism and effectiveness of the Feature Correlation Unit (FCU) and the Sample Correlation Unit (SCU) in M³-Impute, supported by illustrative experiment results. In Section B.1, we show that the FCU dynamically adjusts the feature correlations by considering both the imputation targets and the missingness patterns. In Section B.2, we highlight that the SCU introduces an improved measure of sample correlations which results in enhanced imputation performance compared to the one with the standard cosine similarity measure.

1371

1373

1352

1353

1354

1359

1360 1361

1362

1363

1364

1372 B.1 FCU ADJUSTS FEATURE IMPORTANCE WHEN IMPUTING DIFFERENT TARGETS

The FCU in M³-Impute is designed to fully exploit feature correlations when imputing a missing 1374 entry by adjusting the importance of observed features. In the following experiments, we demonstrate 1375 how the FCU adaptively weighs observable features based on both the imputation targets and the 1376 missingness patterns across different samples. Specifically, we first show that when imputing different 1377 missing values within a sample, the FCU adjusts the importance of observable features according to 1378 the specific imputation targets. In addition, we demonstrate that when imputing missing values in 1379 the same feature across different samples, the FCU adaptively learns the importance of observable 1380 features by considering the unique missingness patterns of each sample. 1381

Suppose we are to impute the missing value of feature f for a sample s. We compute the feature-wise similarities between f and the observed features in s, which are given by $(\mathbf{H}_F^{\top}\mathbf{h}_f) \odot \mathbf{m}'_s$, as in Equation 3. We then take the absolute values of the feature-wise similarities and normalize the values such that their sum becomes one. We here use the resulting normalized scores to represent the importance of each observed feature in s when imputing the feature f.

In Figure 6, we show a heatmap on how the FCU dynamically adjusts the importance of observed 1387 features when imputing different missing feature values in a sample from the Wine dataset. The 1388 sample contains two missing values in Feature 2 and Feature 3. Missingness is represented by black 1389 cells, while the target feature value to impute at each step is marked with a star. Each row of the 1390 heatmap represents the importance scores of observable features when imputing the corresponding 1391 target feature value on the same row, which are derived from FCU. In the first row, when imputing 1392 the second feature (volatile_acidity), the FCU identifies the fourth feature (residual_sugar) and 1393 the last feature (alcohol) as the most important features, while assigning low importance to other 1394 observable features such as fixed_acidty (feature 1) and density (feature 8). This makes sense 1395 as fixed acids such as tartaric acid, malic acid, and citric acid are non-volatile and do not easily evaporate. In addition, density is primarily determined by sugar and alcohol levels, with no direct 1396 correlation to volatile acidity. Consequently, these two features offer limited information in imputing the missing feature volatile_acidity. In the second row, when imputing the third feature (*citric_acid*), 1398 the FCU considers the first feature (*fixed_acidity*) to be more important than the other features such 1399 as free_sulfur_dioxide (Feature 6) and sulphates (Feature 10). This again demonstrates that the FCU 1400 can effectively adjust the importance of observed features within the same sample when imputing 1401 different missing values. 1402

1403 In addition, we fix the target imputation feature and analyze how the FCU adjusts feature importance based on the missingness patterns across different samples. As shown in Figure 7, each row represents

Figure 7: MAE scores and feature importance for the same imputation target across different samples.
The number in parentheses indicates the sample index. FCU dynamically adjusts the importance of observed features under varying missingness patterns.

1421 a different sample, and the missingness patterns vary in different samples. For the first sample (first 1422 row), when imputing the missing value in the first feature (*fixed_acidity*), the FCU assigns the 1423 highest importance to the tenth feature (sulphates). In the second sample, where the tenth feature 1424 is missing, the FCU considers the fourth feature (*residual_sugar*) as the most important feature for 1425 imputation. For the third sample, both the fourth and tenth features are observed. Thus, they have 1426 similar importance, followed by the third feature (*citric_acid*). In the fourth sample, when the tenth 1427 feature is missing, the FCU considers the third and fourth features as the most important features. 1428 Finally, for the fifth sample, where both the fourth and tenth features are missing, the FCU assigns 1429 the highest importance to the third feature (*citric_acid*) when imputing the missing value in the first feature (fixed_acidity). This example clearly demonstrates that the FCU is effective in dynamically 1430 assigning feature importance under varying missingness patterns across different samples. 1431

1432 1433

1404

1405

1406

1407

1408

1409 1410

1411 1412

1413 1414

1415

1416

1417

B.2 SCU IS SUPERIOR AT CAPTURING SAMPLE CORRELATIONS

1434 A common approach to compute sample correlations would be to use the dot product or cosine 1435 similarity between their embedding vectors. This approach, however, fails to take into account the 1436 missingness pattern in a sample. It also does not consider the fact that different observed features are 1437 of different importance to the target feature to impute when it comes to measuring the similarities. 1438 To address these limitations, in SCU, we introduce the mutual sample masking mechanism and 1439 integrate it with the FCU to jointly consider the commonly observed features between samples and 1440 their importance in imputing different targets. While the details of SCU are explained in Section 3.4, 1441 the key computation of pairwise similarity in SCU is given by Equation 6.

We first introduce a variant of M³-Impute, denoted as "SCU (cos sim)", in which we change Equation 6 with cosine similarity while keeping the remaining computations in M³-Impute untouched. The updated equation is now defined as:

1445 1446

$$\operatorname{im}(s, p \mid f) = \cos(\mathbf{h_s}, \ \mathbf{h_p}), \tag{13}$$

where s and p represent two samples, and \mathbf{h}_s and \mathbf{h}_p denote their respective sample embeddings. For imputation, SCU (cos sim) computes the similarities between the target sample and a subset of peers, as done in SCU. We below evaluate the impact of the peer similarities by SCU and SCU (cos sim) on the imputation performance, where the averaged absolute similarity score is used per imputation.

In Figure 8, we summarize the MAE scores of M³-Impute with our SCU and SCU (cos sim) under different peer similarity scores when imputing all the missing values in the Wine dataset. The MAE scores of both methods decrease as peer similarity increases. This is intuitive, as similar peers can provide more relevant information for imputation, resulting in lower imputation errors. However, M³-Impute consistently achieves lower mean MAE scores, demonstrating the effectiveness of our novel similarity measure.

¹⁴⁵⁷ To better quantify the improvements achieved by the enhanced similarity measure in SCU, we present comprehensive results in terms of MAE scores for M³-Impute and SCU (cos sim) in Table 22.

1458Table 22: MAE scores of SCU (cos sim) and SCU in M³-Impute under the MCAR setting with 30%
missingness.

Figure 8: MAE scores and peer similarity scores measured by two methods. Data are missing under the MCAR setting with 30% missingness.

The results show that M³-Impute consistently outperforms SCU (cos sim), with up to 14.47% improvement on the steel dataset. These findings highlight the effectiveness of the proposed SCU, which incorporates the mutual sample masking mechanism and the explicit consideration of feature importance through FCU to measure peer similarity more effectively.