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ABSTRACT

Missing values are a common problem that poses significant challenges to data
analysis and machine learning. This problem necessitates the development of an
effective imputation method to fill in the missing values accurately, thereby en-
hancing the overall quality and utility of the datasets. Existing imputation methods,
however, fall short of explicitly considering the ‘missingness’ information in the
data during the embedding initialization stage and modeling the entangled feature
and sample correlations during the learning process, thus leading to inferior perfor-
mance. We propose M3-Impute, which aims to explicitly leverage the missingness
information and such correlations with novel masking schemes. M3-Impute first
models the data as a bipartite graph and uses a graph neural network to learn node
embeddings, where the refined embedding initialization process directly incorpo-
rates the missingness information. They are then optimized through M3-Impute’s
novel feature correlation unit (FCU) and sample correlation unit (SCU) that effec-
tively captures feature and sample correlations for imputation. Experiment results
on 25 benchmark datasets under three different missingness settings show the
effectiveness of M3-Impute by achieving 20 best and 4 second-best MAE scores
on average.

1 INTRODUCTION

Missing values in a dataset are a pervasive issue in real-world data analysis. They arise for various
reasons, ranging from the limitations of data collection methods to errors during data transmission
and storage. Since many data analysis algorithms cannot directly handle missing values, the most
common way to deal with them is to discard the corresponding samples or features with missing
values, which would compromise the quality of data analysis. To tackle this problem, missing value
imputation algorithms have been proposed to preserve all samples and features by imputing missing
values with estimated ones based on the observed values in the dataset, so that the dataset can be
analyzed as a complete one without losing any information.

The imputation of missing values usually requires modeling of correlations between different features
and samples. Feature-wise correlations help predict missing values from other observed features
in the same sample, while sample-wise correlations help predict them in one sample from other
similar samples. It is thus important to jointly model the feature-wise and sample-wise correlations
in the dataset. In addition, the prediction of missing values also largely depends on the ‘missingness’
of the data, i.e., whether a certain feature value is observed or not in the dataset. Specifically,
the missingness information directly determines which observed feature values can be used for
imputation. For example, even if two samples are closely related, it may be less effective to use them
for imputation if they have missing values in exactly the same features. It still remains a challenging
problem how to jointly model feature-wise and sample-wise correlations with such data missingness.

Among existing methods for missing value imputation, traditional methods (Burgette & Reiter, 2010;
Hastie et al., 2015a; Mazumder et al., 2010a; García-Laencina et al., 2010; Honaker et al., 2011;
Mazumder et al., 2010c; Hastie et al., 2015b) extract data correlations with statistical models, which
are generally not flexible in handling mixed data types and struggle to scale up to large datasets.
Recent learning-based imputation methods (Li et al., 2019; Mattei & Frellsen, 2019; Yoon et al.,
2018; Kyono et al., 2021; Zheng & Charoenphakdee, 2022; Tashiro et al., 2021; Yoon & Sull, 2020;
Muzellec et al., 2020; Du et al., 2024), instead, take advantage of the strong expressiveness and
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scalability of machine/deep learning algorithms to model data correlations. However, most of them
are still built upon the raw tabular data structure as is, which greatly restricts them from jointly
modeling the feature-wise and sample-wise correlations. In light of this, graph-based methods (You
et al., 2020; Spinelli et al., 2020) have been proposed to model the raw data as a bipartite graph,
with samples and features being two different types of nodes. A sample node and a feature node are
connected if the feature value is observed in that sample. The missing values are then predicted as
the inner product between the embeddings of the corresponding sample and feature nodes. However,
this simple prediction does not explicitly consider the specific missingness information as mentioned
above.

In this work, we address these problems by proposing M3-Impute, a mask-guided representation
learning method for missing value imputation. The key idea behind M3-Impute is to explicitly utilize
the data-missingness information as model input with our proposed novel masking schemes so that it
can accurately learn feature-wise and sample-wise correlations in the presence of different kinds of
data missingness. M3-Impute first builds a bipartite graph from the data as used in You et al. (2020).
In the embedding initialization for graph representation learning, however, we not only use the the
relationships between samples and their associated features but also the missingness information so
as to initialize the embeddings of samples and features jointly and effectively. We then propose novel
feature correlation unit (FCU) and sample correlation unit (SCU) in M3-Impute to explicitly take
feature-wise and sample-wise correlations into account for imputation. FCU learns the correlations
between the target missing feature and observed features within each sample, which are then further
updated via a soft mask on the sample missingness information. SCU then computes the sample-wise
correlations with another soft mask on the missingness information for each pair of samples that have
values to impute. We then integrate the output embeddings of FCU and SCU to estimate the missing
values in a dataset. We carry out extensive experiments on 25 open datasets. The results show that
M3-Impute outperforms state-of-the-art methods in 20 of the 25 datasets on average under three
different settings of missing value patterns, achieving up to 22.22% improvement in MAE compared
to the second-best method.

2 RELATED WORK

Traditional methods: These imputation approaches include joint modeling with expectation-
maximization (EM) (Dempster et al., 1977; Ghahramani & Jordan, 1993; Honaker et al., 2011),
k-nearest neighbors (kNN) (García-Laencina et al., 2010; Troyanskaya et al., 2001), and matrix
completion (Hastie et al., 2015a; Cai et al., 2010; Candes & Recht, 2012; Mazumder et al., 2010b).
However, joint modeling with EM and matrix completion often lack the flexibility to handle data
with mixed modalities, while kNN faces scalability issues due to its high computational complexity.
In contrast, M3-Impute is scalable and adaptive to different data distributions.

Learning-based methods: Iterative imputation frameworks (Jarrett et al., 2022; Azur et al., 2011;
Kyono et al., 2021; van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven & Bühlmann, 2012;
Van Buuren et al., 2006), such as MICE (van Buuren & Groothuis-Oudshoorn, 2011) and HyperIm-
pute (Jarrett et al., 2022), have been extensively studied. These iterative frameworks apply different
imputation methods for each feature and iteratively estimate missing values until convergence. In
addition, for deep neural network learners, both generative models (Yoon et al., 2018; Mattei &
Frellsen, 2019; Yoon & Sull, 2020; Li et al., 2019; Rombach et al., 2022; Zheng & Charoenphakdee,
2022) and discriminative models (Kyono et al., 2021; Du et al., 2024; Wu et al., 2020) have also
been proposed. However, these methods are built upon raw tabular data structures, which may fall
short of capturing the complex correlations in features, samples, and their combination. In contrast,
M3-Impute is based on the bipartite graph modeling of the data, which is more suitable for learning
the data correlations for imputation.

Graph neural network-based methods: GNN-based methods (You et al., 2020; Spinelli et al.,
2020) are proposed to address the drawbacks mentioned above due to their effectiveness in modeling
complex relations between entities. Among them, GRAPE (You et al., 2020) transforms tabular
data into a bipartite graph where features are one type of nodes and samples are the other. A
sample node is connected to a feature node only if the corresponding feature value is present. This
transformation allows the imputation task to be framed as a link prediction problem, where the
inner product of the learned node embeddings is computed as the predicted values. However, these
methods do not explicitly encode the missingness information of different samples and features
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Figure 1: Overview of the M3-Impute model. The tabular data with missing values is first modeled as
a bipartite graph with our refined initialization unit, which incorporates the missingness information in
node embedding initialization. The graph is then processed with a GNN to update node embeddings.
After that, we apply our novel soft masking schemes on these node embeddings to further encode
correlation and missingness information in the learning process, using our novel components of
feature correlation unit (FCU) and sample correlation unit (SCU). Eventually, the missing value is
predicted with an MLP on the weighted sum of the outputs from FCU and SCU.

into the imputation process, which can impair their imputation accuracy. In contrast, M3-Impute
enables explicit modeling of missingness information through FCU and SCU as well as our novel
initialization unit so that feature-wise and sample-wise correlations can be accurately captured in the
imputation process.

3 M3-IMPUTE

3.1 OVERVIEW

We here provide an overview of M3-Impute to impute the missing value of feature f for a given
sample s, as depicted in Figure 1. Initially, the data matrix with missing values is modeled as an
undirected bipartite graph, and the missing value is imputed by predicting the edge weight êsf of
its corresponding missing edge (Section 3.2). M3-Impute next employs a GNN model, such as
GraphSAGE (Hamilton et al., 2017), on the bipartite graph to learn the embeddings of samples and
features. These embeddings, along with the known masks of the data matrix (used to indicate which
feature values are available in each sample), are then input into our novel feature correlation unit
(FCU) and sample correlation unit (SCU), which shall be explained in Section 3.3 and Section 3.4,
to obtain feature-wise and sample-wise correlations, respectively. Finally, M3-Impute takes the
feature-wise and sample-wise correlations into a multi-layer perceptron (MLP) to predict the missing
feature value êsf (Section 3.5). The whole process, including the embedding generation, is trained in
an end-to-end manner.

3.2 INITIALIZATION UNIT

Let A ∈ Rn×m be an n×m matrix that consists of n data samples and m features, where Aij denotes
the j-th feature value of the i-th data sample. We introduce an n×m mask matrix M ∈ {0, 1}n×m

for A to indicate that the value of Aij is observed when Mij = 1. In other words, the goal of
imputation here is to predict the missing feature values Aij for i and j such that Mij = 0. We
define the masked data matrix D to be D = A ⊙M, where ⊙ is the Hadamard product, i.e., the
element-wise multiplication of two matrices.

As used in recent studies (You et al., 2020), we model the masked data matrix D as a bipartite
graph and tackle the missing value imputation problem as a link prediction task on the bipartite
graph. Specifically, D is modeled as an undirected bipartite graph G = (S ∪ F , E), where S =
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{s1, s2, . . . , sn} is the set of ‘sample’ nodes and F = {f1, f2, . . . , fm} is the set of ‘feature’ nodes.
Also, E is the set of edges that only exist between sample node s and feature node f when Dsf ̸= 0,
and each edge (s, f) ∈ E is associated with edge weight esf , which is given by esf = Dsf . Then,
the missing value imputation problem becomes, for any missing entries in D (where Dsf = 0), to
predict their corresponding edge weights by developing a learnable mapping F (·), i.e.,

êsf = F (G, (s, f) ̸∈ E). (1)

The recent studies that use the bipartite graph modeling initialize all sample node embeddings
as all-one vectors and feature node embeddings as one-hot vectors, which have a value 1 in the
positions representing their respective features and 0’s elsewhere. We observe, however, that such an
initialization does not effectively utilize the information from the masked data matrix, which leads
to inferior imputation accuracy, as shall be demonstrated in Section 4.3. Thus, in M3-Impute, we
propose to initialize each sample node embedding based on its associated (initial) feature embeddings
instead of initializing them separately. While the feature embeddings are randomly initialized, the
sample node embeddings are initialized in a way that reflects the embeddings of the features whose
values are available in their corresponding samples.

Let h0
f be the initial embedding of feature f , which is a randomly initialized d-dimensional vector,

and define H0
F = [h0

f1
h0
f2
. . .h0

fm
] ∈ Rd×m. Also, let ds ∈ Rm be the s-th column vector of D⊤,

which is a vector of the feature values of sample s, and let ms ∈ Rm be its corresponding mask
vector, i.e., ms = cols(M⊤), where cols(·) denotes the s-th column vector of the matrix. We then
initialize the embedding h0

s of each sample node s as follows:

h0
s = ϕ

(
H0

F

[
ds + ϵ(1−ms)

])
, (2)

where 1 ∈ Rm is an all-one vector, and ϕ(·) is an MLP. Note that the term ds + ϵ(1−ms) indicates
a vector that consists of observable feature values of s and some small positive values ϵ in the places
where the feature values are unavailable (masked out).

3.3 FEATURE CORRELATION UNIT

To improve the accuracy of missing value imputation, we aim to fully exploit feature correlations
which often appear in the datasets. While the feature correlations are naturally captured by GNNs,
we observe that there is still room for improvement. We propose FCU as an integral component of
M3-Impute to fully exploit the feature correlations.

To impute the missing value of feature f for a given sample s, FCU begins by computing the
feature ‘context’ vector of sample s in the embedding space that reflects the correlations between
the target missing feature f and observed features. Let hf ∈ Rd be the learned embedding vector
of feature f from the GNN, and let HF be the d×m matrix that consists of all the learned feature
embedding vectors. We first obtain dot-product similarities between feature f and all the features
in the embedding space, i.e., H⊤

Fhf . We then mask out the similarity values with respect to non-
observed features in sample s. Here, instead of applying the mask vector ms of sample s directly,
we use a learnable ‘soft’ mask vector, denoted by m′

s, which is defined to be m′
s = σ1(ms) ∈ Rm,

where σ1(·) is an MLP with the GELU activation function (Hendrycks & Gimpel, 2016). In other
words, we obtain feature-wise similarities with respect to sample s, denoted by rfs , as follows:

rfs = σ2

(
(H⊤

Fhf )⊙m′
s

)
∈ Rd, (3)

where σ2(·) denotes another MLP with the GELU activation function. FCU next obtains the
Hadamard product between the learned embedding vector of sample s, hs, and the feature-wise
similarities with respect to sample s, rfs , to learn their joint representations in a multiplicative manner.
Specifically, FCU obtains the feature context vector of sample s, denoted by cfs , as follows:

cfs = σ3

(
hs ⊙ rfs

)
∈ Rd, (4)

where σ3(·) is also an MLP with the GELU activation function. That is, FCU fuses the representation
vector of s and the vector that has embedding similarity values between the target feature f and the
available features in s through the effective use of the soft mask m′

s. From (3) and (4), the operations
of FCU can be written as

cfs = FCU(hs,ms,HF ) = σ3

(
hs ⊙ σ2

(
(H⊤

Fhf )⊙ σ1(ms)
))

. (5)
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3.4 SAMPLE CORRELATION UNIT

To measure similarities between s and other samples, a common approach would be to use the
dot product or cosine similarity between their embedding vectors. This approach, however, fails
to take into account the observability or availability of each feature in a sample. It also does
not capture the fact that different observed features are of different importance to the target fea-
ture to impute when it comes to measuring the similarities. We introduce SCU as another in-
tegral component of M3-Impute to compute the sample ‘context’ vector of sample s by incor-
porating the embedding vectors of its similar samples as well as different weights of observed
features. SCU works based on the two novel masking schemes, which shall be explained shortly.

SCU

FCU FCU

dot product

weighted sum

MLP

masking

Figure 2: SCU.

Suppose we are to impute the missing value of feature f for a given sample
s. SCU aims to leverage the information from the samples that are similar
to s. As a first step to this end, we create a subset of samples P ⊂S that
are similar to s. Specifically, we randomly choose and put a sample into P
with probability that is proportional to the cosine similarity between s and
the sample. This operation is repeated without replacement until P reaches
a given size.

Mutual Sample Masking: Given a subset of samples P that include s,
we first compute the pairwise similarities between s and other samples
in the subset P . While they are computed in a similar way to FCU, we
only consider the commonly observed features (or the common ones that
have feature values) in both s and its peer p∈P \ {s}, to calculate their
pairwise similarity in the sense that the missing value of feature f is inferred.
Specifically, we compute the pairwise similarity between s and p∈P \ {s},
which is denoted by sim(s, p | f), as follows:

sim(s, p | f) = FCU(hs,mp,HF ) · FCU(hp,ms,HF ) ∈ R, (6)

where hs and hp are the learned embedding vectors of samples s and p from the GNN, respectively,
and ms and mp are their respective mask vectors. Note that the multiplication in the RHS of (6) is
the dot product.

Irrelevant Feature Masking: After we obtain the pairwise similarities between s and other samples
in P , it would be natural to consider a weighted sum of their corresponding embedding vectors, i.e.,∑

p∈P\{s} sim(s, p | f) hp, in imputing the value of the target feature f . However, we observe that
hp contains the information from the features whose values are available in p as well as possibly
other features as it is learned via the so-called neighborhood aggregation mechanism that is central to
GNNs, but some of the features may be irrelevant in inferring the value of feature f . Thus, instead
of using {hp} directly, we introduce a d-dimensional mask vector rfp for hp, which is to mask out
potentially irrelevant feature information in hp, when it comes to imputing the value of feature f .
Specifically, it is defined by

rfp = σ4 ([mp;mf ]) ∈ Rd, (7)

where mf is an m-dimensional one-hot vector that has a value 1 in the place of feature f and 0’s
elsewhere, [· ; ·] denotes the vector concatenation operation, and σ4(·) is an MLP with the GELU
activation function. Note that the rationale behind the design of rfp is to embed the information on the
features whose values are present in p as well as the information on the target feature f to impute.
The mask rfp is then applied to hp to obtain the masked embedding vector of p as follows:

ϕp(hp, r
f
p) = σ5

(
hp ⊙ rfp

)
∈ Rd, (8)

where σ5(·) is also an MLP with the GELU activation function. Once we have the masked embedding
vectors of samples (excluding s) in P , we finally compute the sample context vector of sample s,
denoted by zfs , which is a weighted sum of the masked embedding vectors with weights being the
pairwise similarity values, i.e.,

zfs = σ6

 ∑
p∈P\{s}

sim(s, p | f) ϕp(hp, r
f
p)

 ∈ Rd, (9)
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Algorithm 1 Forward computation of M3-Impute to impute the value of feature f for sample s.

1: Input: Bipartite graph G, initial feature node embeddings H0
F , GNN model (e.g., GraphSAGE) GNN(·),

known mask matrix M, and a subset of samples P ⊂ S.
2: Output: Predicted missing feature value êsf .
3: Obtain initial sample node embeddings H0

S according to Equation (2).
4: HS ,HF = GNN(H0

S ,H
0
F ,G). ▷ Perform graph representation learning

5: cfs = FCU(hs,ms,HF ).
6: zfs = SCU(HP ,MP ,HF ).
7: Predict the missing feature value êsf using Equation (11).

where σ6(·) is again an MLP with the GELU activation function. From (6)–(9), the operations of
SCU can be written as

zfs = SCU(HP ,MP ,HF ) = σ6

 ∑
p∈P\{s}

sim(s, p | f) σ5 (hp ⊙ σ4 ([mp;mf ]))

 , (10)

where HP = {hp, p ∈ P} and MP = {mp, p ∈ P}.

3.5 IMPUTATION

For a given sample s, to impute the missing value of feature f , M3-Impute obtains its feature context
vector cfs and sample context vector zfs through FCU and SCU, respectively, which are then used for
imputation. Specifically, it is done by predicting the corresponding edge weight êsf as follows:

êsf = ϕα

(
(1− α)cfs + αzfs

)
, (11)

where ϕα(·) denotes an MLP with a non-linear activation function (i.e., ReLU for continuous
values and softmax for discrete ones), and α is a learnable scalar parameter. This scalar parameter
α is introduced to strike a balance between leveraging feature-wise correlation and sample-wise
correlation. It is necessary because the quality of zfs relies on the quality of the samples chosen in
P , so overly relying on zfs would backfire if their quality is not as desired. To address this problem,
instead of employing a fixed weight α, we make α learnable and adaptive in determining the weights
for cfs and zfs . Note that this kind of learnable parameter approach has been widely adopted in
natural language processing (See et al., 2017; Wang et al., 2019; Li et al., 2020; Paulus et al., 2018)
and computer vision (Dai et al., 2017; Zhu et al., 2019a;b), showing superior performance to its fixed
counterpart. In M3-Impute, the scalar parameter α is learned based on the similarity values between
s and its peer samples p ∈ P \ {s} as follows:

α = ϕγ

(
∥

p∈P\{s}

sim (s, p | f)
)
, (12)

where ∥ represents the concatenation operation, and ϕγ(·) is an MLP with the activation function
γ(x) = 1 − 1 / e|x|. The overall operation of M3-Impute is summarized in Algorithm 1. To learn
network parameters, we use cross-entropy loss and mean square error loss for imputing discrete and
continuous feature values, respectively.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets: We conduct experiments on 25 open datasets. These real-world datasets consist of mixed
data types with both continuous and discrete values and cover different domains including civil
engineering (CONCRETE, ENERGY), physics and chemistry (YACHT), thermal dynamics (NAVAL),
etc. Since the datasets are fully observed, we introduce missing values by applying a randomly
generated mask to the data matrix. Specifically, as used in prior studies (Jarrett et al., 2022; Kyono
et al., 2021), we apply three masking generation schemes, namely missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR).1 We use MCAR with

1More details about the datasets and mask generation for missing values can be found in Appendix.
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Table 1: Imputation accuracy in MAE. MAE scores are enlarged by 10 times.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 2.09 ± .04 0.98 ± .01 1.79 ± .01 1.85 ± .00 3.10 ± .04 2.31 ± .00 2.50 ± .00 1.68 ± .00
Svd 2.46 ± .16 0.92 ± .01 1.94 ± .02 1.53 ± .03 2.24 ± .06 0.50 ± .00 3.67 ± .06 2.33 ± .01
Spectral 2.64 ± .11 0.91 ± .01 1.98 ± .04 1.46 ± .03 2.26 ± .09 0.41 ± .00 2.80 ± .01 2.13 ± .01
Mice 1.68 ± .05 0.77 ± .00 1.34 ± .01 1.16 ± .03 1.53 ± .04 0.20 ± .01 2.50 ± .00 1.16 ± .01
Knn 1.67 ± .02 0.72 ± .00 1.16 ± .03 0.95 ± .01 1.81 ± .03 0.10 ± .00 2.77 ± .01 1.38 ± .01
Gain 2.26 ± .11 0.86 ± .00 1.67 ± .03 1.23 ± .02 1.99 ± .03 0.46 ± .02 2.70 ± .00 1.31 ± .05
Miwae 2.37 ± .01 1.00 ± .00 1.81 ± .01 1.74 ± .04 2.79 ± .04 2.37 ± .00 2.57 ± .00 1.72 ± .00
Grape 1.46 ± .01 0.60 ± .00 0.75 ± .01 0.64 ± .01 1.36 ± .01 0.07 ± .00 2.50 ± .00 1.00 ± .00
Miracle 3.84 ± .00 0.70 ± .00 1.71 ± .05 3.12 ± .00 3.94 ± .01 0.18 ± .00 2.49 ± .00 1.13 ± .01
HyperImpute 1.76 ± .03 0.67 ± .01 0.84 ± .02 0.82 ± .01 1.32 ± .02 0.04 ± .00 2.58 ± .05 1.06 ± .01

M3-Impute 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.59 ± .00 1.31 ± .01 0.06 ± .00 2.50 ± .00 0.99 ± .00

a missing ratio of 30%, unless otherwise specified. We follow the preprocessing steps adopted in
Grape (You et al., 2020) to scale feature values to [0, 1] with a MinMax scaler (Leskovec et al., 2014).
Due to the space limit, we below present the results of eight datasets that are used in Grape and report
other results in Appendix.

Baseline models: M3-Impute is compared against popular and state-of-the-art imputation methods,
including statistical methods, deep generative methods, and graph-based methods listed as follows:
MEAN: It imputes the missing value êsf as the mean of observed values in feature f from all
the samples. K-nearest neighbors (kNN) (Troyanskaya et al., 2001): It imputes the missing value
êsf using the kNNs that have observed values in feature f with weights that are based on the
Euclidean distance to sample s. Multivariate imputation by chained equations (Mice) (van Buuren
& Groothuis-Oudshoorn, 2011): This method runs multiple regressions where each missing value
is modeled upon the observed non-missing values. Iterative SVD (Svd) (Hastie et al., 2015a): It
imputes missing values by solving a matrix completion problem with iterative low-rank singular
value decomposition. Spectral regularization algorithm (Spectral) (Mazumder et al., 2010a): This
matrix completion algorithm uses the nuclear norm as a regularizer and imputes missing values with
iterative soft-thresholded SVD. Miwae (Mattei & Frellsen, 2019): It works based on an autoencoder
generative model trained to maximize a potentially tight lower bound of the log-likelihood of the
observed data and Monte Carlo techniques for imputation. Miracle (Kyono et al., 2021): It uses
the imputation results from naive methods such as MEAN and refines them iteratively by learning
a missingness graph (m-graph) and regularizing an imputation function. Gain (Yoon et al., 2018):
This method trains a data imputation generator with a generalized generative adversarial network
in which the discriminator aims to distinguish between real and imputed values. Grape (You et al.,
2020): It models the data as a bipartite graph and imputes missing values by predicting the weights
of the missing edges, each of which is done based on the inner product between the embeddings
of its corresponding sample and feature nodes. HyperImpute (Jarrett et al., 2022): HyperImpute
is a framework that conducts an extensive search among a set of imputation methods, selecting the
optimal imputation method with fine-tuned parameters for each feature in the dataset. We follow the
official implementations of all the baseline models and report their hyperparameters in Appendix.

M3-Impute configurations: Parameters of M3-Impute are updated by the Adam optimizer with a
learning rate of 0.001 for 40,000 epochs. For graph representation learning, we use a three-layer
GNN model, which is a variant of GraphSAGE (Hamilton et al., 2017) that not only learns node
embeddings but also edge embeddings via the neighborhood aggregation mechanism, as similarly
used in Grape (You et al., 2020). We employ mean-pooling as the aggregation function and use
ReLU as the activation function for the GNN layers. We set the embedding dimension d to 128. We
randomly drop 50% of observable edges during training to improve the model’s generalization ability.
For each experiment, we conduct five runs with different random seeds and report the average results.

4.2 OVERALL PERFORMANCE

We first compare the feature imputation performance of M3-Impute with popular and state-of-the-art
imputation methods. As shown in Table 1, M3-Impute achieves the lowest imputation MAE for
six out of the eight examined datasets and the second-best MAE scores in the other two, which
validates the effectiveness of M3-Impute. For KIN8NM dataset, M3-Impute underperforms Miracle.
It is mainly because each feature in KIN8NM is independent of the others, so none of the observed
features can help impute missing feature values. For NAVAL dataset, the only model that outperforms
M3-Impute is HyperImpute (Jarrett et al., 2022). In the NAVAL dataset, nearly every feature exhibits a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation study. M3-Uniform stands for M3-Impute with the uniform sampling strategy.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

HyperImpute 1.76 ± .03 0.67 ± .01 0.84 ± .02 0.82 ± .01 1.32 ± .02 0.04 ± .00 2.58 ± .05 1.06 ± .01
Grape 1.46 ± .01 0.60 ± .00 0.75 ± .01 0.64 ± .01 1.36 ± .01 0.07 ± .00 2.50 ± .00 1.00 ± .00

Architecture

Init Only 1.43 ± .01 0.60 ± .00 0.74 ± .00 0.63 ± .01 1.35 ± .01 0.06 ± .00 2.50 ± .00 0.99 ± .00
Init+FCU 1.35 ± .01 0.61 ± .00 0.72 ± .03 0.61 ± .02 1.32 ± .00 0.07 ± .01 2.50 ± .00 0.99 ± .00
Init+SCU 1.37 ± .01 0.60 ± .00 0.73 ± .00 0.63 ± .01 1.30 ± .00 0.09 ± .01 2.50 ± .00 1.00 ± .00
M3-Impute 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.59 ± .00 1.31 ± .01 0.06 ± .00 2.50 ± .00 0.99 ± .00

Sampling Strategy

M3-Uniform 1.34 ± .01 0.60 ± .00 0.73 ± .01 0.61 ± .00 1.31 ± .00 0.06 ± .00 2.50 ± .00 0.99 ± .00

strong linear correlation with the other features, i.e., every pair of features has correlation coefficient
close to one. This allows HyperImpute to readily select a linear model from its model pool for each
feature to impute. Nonetheless, M3-Impute exhibits overall superior performance to the baselines as
it can be well adapted to datasets with different levels of correlations over features and samples. In
other words, M3-Impute benefits from explicitly incorporating the missingness information with our
carefully designed masking schemes to better capture feature-wise and sample-wise correlations.

Furthermore, we evaluate the performance of M3-Impute under MAR and MNAR settings. We
observe that M3-Impute consistently outperforms all the baselines under all the eight datasets and
achieves an even larger margin in the improvement compared to the case with MCAR setting. This
implies that our explicit modeling of the missingness information through our novel soft masking
schemes in FCU and SCU as well as the initialization unit is effective in handling different patterns
of missing values in the input data. It is worth noting that some baseline models may perform worse
than simple imputers, such as Mean, on certain datasets, as similarly observed in recent studies (You
et al., 2020; Jarrett et al., 2022). It may be because these datasets are of relative small size, and the
number of samples and features is not sufficient to train the corresponding models. Comprehensive
results on all the datasets across different missing ratios are provided in Appendix.

4.3 ABLATION STUDY

To study the effectiveness of three integral components of M3-Impute, we consider three variants of
M3-Impute, each with a subset of the components, namely initialization only (Init Only), initialization
+ FCU (Init + FCU), and initialization + SCU (Init + SCU). The performance of these variants
are evaluated against the top-performing imputation baselines such as Grape and HyperImpute. As
shown in Table 2, the three variants derived from M3-Impute achieve lower MAE values than both
baselines in most datasets, demonstrating the effectiveness of our novel components in M3-Impute.

Specifically, for initialization only, the key difference between M3-Impute and Grape lies in our
refined initialization process to explicitly leverage missingness information in node embeddings. The
reduced MAE values observed by the Init Only variant demonstrate that our proposed initialization
process is more effective in utilizing information between samples and their associated features,
including missing ones, as compared to the basic initialization used in Grape (You et al., 2020).
In addition, we observe that when FCU or SCU is incorporated, MAE values are further reduced
for most datasets. This validates that explicitly modeling of missingness information through our
novel masking schemes in FCU and SCU indeed improves imputation accuracy. When all the three
components are combined together as in M3-Impute, they work synergistically to lower MAE values,
validating the efficacy of incorporating the missingness information when capturing sample-wise and
feature-wise correlations for missing data imputation.

4.4 ROBUSTNESS

Missing ratio: In practice, datasets may possess different missing ratios. To validate the model’s
robustness under such circumstances, we evaluate the performance of M3-Impute and other baseline
models with varying missing ratios, i.e., 0.1, 0.3, 0.5, and 0.7. Figure 3 shows their performance.
We use the MAE of HyperImpute (HI) as the reference performance and offset the performance of
each model by MAEx − MAEHI , where x represents the considered model. For clarity, we here
only report the results of four top-performing models. As shown in Figure 3, M3-Impute outperforms
other baseline models for almost all the cases, especially under YACHT, CONCRETE, ENERGY,
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Figure 3: Model performance vs. missing ratios. MAE scores are offset by HyperImpute.

and HOUSING datasets. It is worth noting that modeling feature correlations in these datasets is
particularly challenging due to the presence of considerable amounts of weakly correlated features,
along with a few strongly correlated ones. Nonetheless, FCU and SCU in M3-Impute are able to
better capture such correlations with our efficient masking schemes, thereby resulting in a large
improvement in imputation accuracy. In addition, for KIN8NM dataset, M3-Impute ties with the
second-best model, Grape. As mentioned in Section 4.2, each feature in KIN8NM is independent
of the others, so none of the observed features can help impute missing feature values. For NAVAL
dataset, where each feature strongly correlates with the others, M3-Impute surpasses Grape but falls
short of HyperImpute, due to the same reason as discussed in Section 4.2. Overall, M3-Impute is
robust to various missing ratios. Comprehensive results can be found in Appendix.

Sampling strategy in SCU: While SCU uses a sampling strategy based on pairwise cosine similarities
to construct a subset of samples P , the simplest sampling strategy to build P would be to choose
samples uniformly at random without replacement (M3-Uniform). Intuitively, this approach cannot
identify similar peer samples accurately and thus would lead to inferior performance. Nonetheless, as
shown in Table 2, even with this naive uniform sampling strategy, M3-Uniform still outperforms the
two leading imputation baselines.

Table 3: MAE scores for varying peer-sample size (|P|−1) and different values of ϵ.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Peer = 1 1.34 ± .00 0.60 ± .00 0.73 ± .00 0.61 ± .01 1.32 ± .00 0.06 ± .00 2.5 ± .00 0.99± .00
Peer = 2 1.35 ± .01 0.61 ± .00 0.72 ± .01 0.59 ± .01 1.32 ± .00 0.06 ± .00 2.5 ± .00 1.00 ± .00
Peer = 5 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.60 ± .00 1.32 ± .01 0.06 ± .00 2.5 ± .00 0.99± .00
Peer = 10 1.33 ± .01 0.61 ± .00 0.71 ± .01 0.60 ± .01 1.31 ± .01 0.07 ± .00 2.5 ± .00 1.00 ± .00
Peer = 15 1.34 ± .00 0.61 ± .00 0.72 ± .01 0.60 ± .00 1.31 ± .00 0.07 ± .00 2.5 ± .00 0.99 ± .00
Peer = 20 1.34 ± .04 0.61 ± .00 0.72 ± .01 0.60 ± .01 1.31 ± .00 0.07 ± .00 2.5 ± .00 1.00 ± .00

ϵ = 0 1.34 ± .01 0.61 ± .00 0.71 ± .01 0.60 ± .01 1.30 ± .00 0.06 ± .00 2.50 ± .00 0.99 ± .00
ϵ = 10−5 1.31 ± .01 0.61 ± .00 0.71 ± .00 0.60 ± .01 1.30 ± .00 0.07 ± .00 2.50 ± .00 1.00 ± .00
ϵ = 10−4 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.60 ± .00 1.30 ± .00 0.06 ± .00 2.50 ± .00 0.99 ± .00
ϵ = 10−3 1.33 ± .04 0.60 ± .00 0.72 ± .01 0.60 ± .01 1.30 ± .00 0.07 ± .01 2.50 ± .00 0.99 ± .00

Size of P in SCU: Intuitively, a proper peer size (|P|−1) should balance high-similarity peers and
potential peers that serve for regularization and generalization purposes. In general, the trend across
different datasets shows that a too-small peer size may only include high-similarity peers, while a
too-large peer size may include too many noisy nodes and incur higher computational overhead. As
shown in Table 3, the variation in performance is small, indicating that our method is relatively robust
to this parameter. From the extensive experiments on 25 datasets, we recommend a peer size of 5–10
for practical use.

Initialization parameter ϵ: We also evaluate whether a non-zero value of ϵ in the initialization unit
of M3-Impute indeed leads to an improvement in imputation accuracy. As shown in Table 3, for
YACHT and WINE datasets, the introduction of a non-zero value of ϵ results in lower MAE scores.
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Another insight that we have from Table 3 is that ϵ should not be set too large, as a large value of ϵ
might impose incorrect weights to the features with missing values. We observe that it is an overall
good choice to set ϵ to 1×10−5 or 1×10−4.

4.5 RUNNING TIME ANALYSIS

We present a running time comparison in Table 4. The results show that our method is both accurate
and time-efficient. For example, for inference with GPU, the time taken to impute all the missing
values for any dataset we tested is less than one second under the setting of MCAR with 30%
missingness. More results can be found in Appendix.

Table 4: Running time (in seconds) for feature imputation using different methods at test time. (C)
represents CPU running time and (G) indicates GPU running time.

Model Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean (C) 0.0006 0.0018 0.0013 0.0018 0.0011 0.0105 0.0037 0.0020
kNN (C) 0.03 0.75 0.27 0.10 0.17 47.97 16.36 17.92
Mice (C) 0.03 0.13 0.04 0.07 0.05 1.21 0.16 0.05
Gain (C) 3.25 3.95 3.21 4.24 3.38 4.01 3.05 3.21
HyperImpute (C) 21.68 23.98 36.00 131.83 42.12 56.88 28.67 22.61
Miracle (C) 3.94 12.28 8.65 6.23 5.23 75.19 35.03 32.77
Miwae (C) 7.63 37.14 23.44 12.13 17.95 283.64 164.71 206.09
Grape (C) 0.05 0.26 0.12 0.10 0.09 3.32 1.14 0.63
Grape (G) 0.02 0.02 0.02 0.02 0.02 0.19 0.07 0.05

M3-Impute (C) 0.05 0.43 0.18 0.14 0.13 5.09 1.55 0.78
M3-Impute (G) 0.02 0.02 0.04 0.04 0.04 0.56 0.19 0.12

4.6 DIFFERENT GNN VARIANTS

We also conduct experiments using different GNN variants such as GraphSAGE, GAT, and GCN.
The results in Table 5 indicate that different aggregation mechanisms may introduce varying errors,
but our method consistently outperforms its Grape counterpart, demonstrating its effectiveness.

Table 5: MAE for different GNN variants under MCAR setting with 30% missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

M3-Impute w/ different GNN variants:
E-GraphSage 1.33 0.60 0.71 0.60 1.32 0.06 2.50 0.99
GCN 2.04 0.97 1.76 1.62 2.37 2.10 2.50 1.66
GAT 1.56 0.95 1.01 0.78 1.39 0.31 2.50 1.02
GraphSage 1.48 0.68 1.02 0.78 1.44 0.37 2.50 1.05

Grape w/ different GNN variants:
E-GraphSage 1.46 0.60 0.75 0.64 1.36 0.07 2.50 1.00
GCN 2.04 1.44 2.24 2.90 3.27 2.71 2.50 1.73
GAT 2.02 0.99 1.90 2.13 3.22 2.45 2.50 1.67
GraphSage 2.02 0.98 1.81 1.74 3.17 2.30 2.50 1.66

5 CONCLUSION

In this paper, we highlighted the importance of missingness information and presented M3-Impute,
a mask-guided representation learning method for missing value imputation. M3-Impute improved
the embedding initialization process by considering the relationships between samples and their
associated features (including missing ones). In addition, for more effective representation learning,
we introduced two novel components in M3-Impute – FCU and SCU, which explicitly model the
missingness information with our novel soft masking schemes to better capture data correlations
for imputation. Extensive experiment results on 25 open datasets demonstrate the effectiveness of
M3-Impute, where it achieves overall superior performance to popular and state-of-the-art methods,
with 20 best and 4 second-best MAE scores on average under three different settings of missing value
patterns. For reproducibility purpose, we have included the implementations of M3-Impute and all
the baseline models with detailed running instructions in the supplementary material.
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A APPENDIX

Table 6: Overview of datasets, which contains continuous features (Cont. F.) and discrete features
(Disc. F.).

Concrete Housing Wine Yacht Energy Kin8nm Naval Power

# Samples 1030 506 1599 308 768 8192 11934 9568
# Cont. F. 8 12 11 6 8 8 16 4
# Disc. F. 0 1 0 0 0 0 0 0
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Figure 4: Pearson correlation coefficients of UCI datasets.

In this section, we elaborate on extensive and comprehensive experiment results. We first provide an
overview of the dataset details in Section A.1, and present the performance of the imputation methods
under different missingness settings, namely MAR and MNAR, in Section A.2. We then provide
the comprehensive results across different missingness ratios in Section A.3. For more thorough
analysis, we extend our evaluation of M3-Impute on 17 additional datasets, totaling 25 datasets, in
Section A.4, and elaborate on the computational resources used in Section A.5. We further assess
the quality of imputed values generated by M3-Impute by leveraging them in downstream tasks in
Section A.6. Finally, we perform a sensitivity analysis on the hyperparameters of M3-Impute in
Section A.7, and provide the implementation details of baselines, including their hyperparameter
choices, in Section A.8.

A.1 DATASET DETAILS

Table 6 presents the statistics of the eight UCI datasets (Dua & Graff, 2017) used throughout Section 4.
Figure 4 illustrates the Pearson correlation coefficients among the features. In the Kin8nm dataset,
all features are linearly independent, whereas the Naval dataset exhibits strong correlations among
its features. Under the MCAR setting, M3-Impute performs comparably to the baseline imputation
methods on these two datasets (shown in Table 1). However, in real-world scenarios, features are not
always entirely independent or strongly correlated. In the other six datasets, we observe a mix of
weakly correlated features along with a few that are strongly correlated. In these cases, M3-Impute
consistently outperforms all baseline methods.

A.2 DETAILED RESULTS OF DIFFERENT MISSINGNESS SETTINGS

We adopt the same procedure outlined in Grape (You et al., 2020) to generate missing values under
different settings.

• MCAR: An n×m matrix is sampled from a uniform distribution. Positions with values no greater
than the ratio of missingness are viewed as missing and the remaining positions are observable.
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Table 7: MAE scores under MAR setting with 30% missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 2.20 ± .13 1.09 ± .05 1.79 ± .21 2.02 ± .20 3.26 ± .36 2.75 ± .11 2.49 ± .01 1.81 ± .25
Svd 2.64 ± .22 1.04 ± .14 2.32 ± .06 1.71 ± .15 3.68 ± .16 0.52 ± .11 2.69 ± .02 2.37 ± .62
Spectral 3.06 ± .11 0.91 ± .13 2.12 ± .17 1.84 ± .28 2.88 ± .35 1.29 ± .47 3.56 ± .01 3.37 ± .04
Mice 1.79 ± .10 0.79 ± .01 1.27 ± .08 1.22 ± .05 1.12 ± .07 0.27 ± .01 2.51 ± .03 1.16 ± .11
Knn 1.69 ± .07 0.66 ± .07 0.89 ± .30 0.89 ± .12 1.61 ± .35 0.07 ± .00 2.94 ± .01 1.11 ± .04
Gain 2.07 ± .02 1.13 ± .20 1.87 ± .16 0.92 ± .05 2.26 ± .14 0.91 ± .07 2.93 ± .02 1.42 ± .01
Miwae 2.17 ± .02 0.98 ± .02 1.80 ± .01 1.53 ± .05 3.91 ± .04 2.91 ± .07 2.58 ± .02 2.05 ± .01
Grape 1.20 ± .03 0.60 ± .00 0.77 ± .02 0.66 ± .01 1.05 ± .02 0.07 ± .01 2.49 ± .00 1.06 ± .04
Miracle 3.75 ± .00 0.70 ± .00 1.94 ± .00 2.24 ± .00 3.89 ± .00 0.36 ± .00 2.82 ± .10 0.86 ± .01
Hyperimpute 2.06 ± .12 0.78 ± .06 1.30 ± .15 1.05 ± .21 1.11 ± .38 1.01 ± .18 3.07 ± .06 1.07 ± .14

M3-Impute 1.09 ± .03 0.60 ± .00 0.77 ± .02 0.60 ± .00 0.98 ± .02 0.07 ± .00 2.49 ± .00 1.01 ± .00

Table 8: MAE scores under MNAR setting with 30% missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 2.18 ± .09 1.04 ± .02 1.80 ± .09 1.95 ± .13 3.17 ± .22 2.60 ± .07 2.49 ± .01 1.76 ± .14
Svd 2.61 ± .13 1.06 ± .07 2.24 ± .05 1.58 ± .06 3.55 ± .09 0.53 ± .05 2.69 ± .02 2.27 ± .25
Spectral 2.75 ± .14 1.01 ± .08 1.86 ± .03 1.60 ± .22 2.50 ± .15 1.35 ± .21 3.34 ± .00 3.14 ± .41
Mice 1.91 ± .10 0.77 ± .07 1.37 ± .05 1.22 ± .06 1.57 ± .03 0.21 ± .07 2.50 ± .00 1.08 ± .02
Knn 1.92 ± .10 0.75 ± .05 1.15 ± .32 0.95 ± .11 1.96 ± .11 0.08 ± .02 3.06 ± .02 1.65 ± .07
Gain 2.34 ± .12 0.92 ± .05 1.80 ± .05 1.08 ± .05 1.92 ± .06 1.12 ± .03 2.78 ± .03 1.22 ± .03
Miwae 2.17 ± .00 0.99 ± .01 1.81 ± .03 1.60 ± .02 3.63 ± .00 2.63 ± .03 2.55 ± .02 1.95 ± .03
Grape 1.23 ± .03 0.61 ± .00 0.73 ± .01 0.61 ± .01 1.16 ± .01 0.08 ± .01 2.46 ± .01 1.02 ± .01
Miracle 3.85 ± .00 0.70 ± .00 1.87 ± .00 2.51 ± .00 3.86 ± .00 0.30 ± .00 2.64 ± .00 1.06 ± .00
Hyperimpute 1.95 ± .10 0.72 ± .03 0.88 ± .02 0.85 ± .03 1.19 ± .24 0.85 ± .04 2.71 ± .06 1.09 ± .06

M3-Impute 1.15 ± .02 0.60 ± .00 0.68 ± .02 0.54 ± .01 1.09 ± .01 0.08 ± .00 2.46 ± .00 1.00 ± .00

• MAR: A subset of features is randomly selected to be fully observed. The values for the remaining
features are removed according to a logistic model with random weights, using the fully observed
feature values as input. The desired rate of missingness is achieved by adjusting the bias term.

• MNAR: This is done by first applying the MAR mechanism above. Then, the remaining feature
values are masked out using the MCAR mechanism.

In addition to the results for MCAR setting presented in Table 4.2, Tables 7 and 8 present the MAE
scores under MAR and MNAR settings, respectively. M3-Impute consistently outperforms all the
baseline methods in both scenarios.

A.3 ROBUSTNESS AGAINST VARIOUS MISSINGNESS SETTINGS

Tables 16, 17, and 18 present the performance of various imputation methods under different levels of
missingness across MCAR, MAR, and MNAR settings, respectively. M3-Impute achieves the lowest
MAE scores in most cases and the second-best MAE scores in the remaining ones.

A.4 FURTHER EVALUATION ON 17 ADDITIONAL DATASETS

Table 9: Overview of 17 additional datasets, which contains continuous features (Cont. F.) and
discrete features (Disc. F.).

AIrfoil BLood Wine-White IOnosphere BReast IRis DIabetes PRotein SPam

# Samples 1503 748 4899 351 569 150 442 45730 4601
# Cont. F. 5 4 12 34 30 4 10 9 57
# Disc. F. 1 0 0 0 0 0 0 0 0

LEtter ABalone Ai4i CMC GErman STeel LIbras California-Housing

# Samples 20000 4177 10000 1473 1000 1941 360 20640
# Cont. F. 16 7 7 8 13 33 91 9
# Disc. F. 0 1 5 1 7 0 0 0

In this experiment, we further evaluate M3-Impute on 17 datasets: Airfoil (Brooks et al., 2014),
Blood (Yeh, 2008), Wine-White (Cortez et al., 2009), Ionosphere (Sigillito et al., 1988), Breast
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Figure 5: Pearson correlation coefficient of 17 additional datasets.

Cancer (Wolberg et al., 1995), Iris (Fisher, 1936), Diabetes (Efron et al., 2004), Protein, Spam,
Letter (Slate, 1991), Abalone, Ai4i, CMC (Lim, 1999), German (Hofmann, 1994), Steel, Libras, and
California-housing. An overview of the dataset details is provided in Table 9, and feature correlations
are illustrated in Figure 5. We conduct experiments with missingness in data under MCAR, MAR, and
MNAR settings, each with missing ratios of {0.1, 0.3, 0.5, 0.7}. Results are presented in Tables 19,
20, and 21 for MCAR, MAR, and MNAR settings, respectively. Across all three types of missingness
for the 17 datasets, M3-Impute achieves 13 best and 3 second-best MAE scores on average.

A.5 COMPUTATIONAL RESOURCES

All our experiments are conducted on a GPU server running Ubuntu 22.04, with PyTorch 2.1.0
and CUDA 12.1. We train and test M3-Impute using a single NVIDIA A100 80G GPU. With the
experimental setup described in Section 4.1, the total running time (including both training and
testing) for each of the five repeated runs ranged from 1 to 5 hours, depending on the scale of the
datasets. In Section 4.5, we report the running time of M3-Impute on eight datasets. Here we extend
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Table 10: Running time (in seconds) for feature imputation using different methods at test time. (C)
represents CPU running time and (G) indicates GPU running time.

Model Protein Spam Letter Libras California-housing

Mean (C) 0.0187 0.0151 0.0162 0.0073 0.0090
Knn (C) 523.68 18.50 126.43 0.63 103.14
Svd (C) 0.61 5.29 0.61 0.16 0.48
Mice (C) 1.36 8.99 2.21 14.45 0.35
Spectral (C) 3.13 1.61 3.24 0.55 1.62
Gain (C) 5.07 5.71 4.28 8.94 3.73
HyperImpute (C) 37.89 183.68 26.25 26.67 35.03
Miracle (C) 173.69 91.53 110.45 34.24 81.48
Miwae (C) 982.18 147.75 443.49 17.80 454.16
Grape (C) 6.97 4.33 5.25 0.84 3.13
Grape (G) 0.37 0.24 0.28 0.05 0.18

M3-Impute (C) 10.27 7.53 7.80 1.51 4.61
M3-Impute (G) 0.99 0.69 0.76 0.19 0.51

our investigation to larger datasets with more samples and features. As shown in Table 10. M3-Impute
also demonstrates efficiency on these datasets. When using a GPU, the time required to impute
all missing values for any dataset is less than one second under the setting of MCAR with 30%
missingness.

A.6 DOWNSTREAM TASK PERFORMANCE

We further evaluate the quality of imputed values from different imputation methods by performing a
downstream label prediction task. In particular, each sample in the eight examined datasets contains
a continuous label, and the task is to predict the label using the feature values. Starting with an
input data matrix with 30% missingness, we first impute the data using the corresponding imputation
methods, and then do linear regression on the completed data matrix to predict labels. As shown in
Table 11, M3-Impute consistently achieves good performance across different datasets, with six best
performance and two second best, indicating its effectiveness in the missing value imputation.

Table 11: MAE scores of label prediction under the MCAR setting with 30% missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 9.08 0.54 10.50 4.44 4.29 0.0065 0.18 6.31
Svd 9.12 0.55 10.90 4.26 3.40 0.0058 0.19 6.93
Spectral 8.98 0.54 10.50 4.33 3.42 0.0057 0.19 6.67
Mice 8.95 0.54 10.20 3.99 2.84 0.0044 0.18 4.99
Knn 8.91 0.53 9.95 4.17 3.04 0.0049 0.18 5.68
Gain 9.82 0.53 10.60 4.20 2.79 0.0060 0.18 5.08
Miwae 9.40 0.54 10.60 5.43 3.65 0.0065 0.18 5.50
Grape 8.96 0.52 9.17 3.66 2.61 0.0038 0.18 4.83
Miracle 9.70 0.55 10.50 5.01 4.37 0.0039 0.18 4.93
HyperImpute 9.58 0.51 9.94 3.87 2.49 0.0032 0.18 4.69

M3-Impute 8.82 0.51 9.04 3.60 2.57 0.0036 0.18 4.69

A.7 ANALYSIS OF HYPERPARAMETERS IN M3-IMPUTE

In this experiment, we evaluate the sensitivity of M3-Impute to various hyperparameter settings.
Tables 12, 13, and 14 summarize the performance of M3-Impute across different hidden dimensions,
GNN layer counts, and edge dropout ratios. Overall, the results show that M3-Impute is robust
to different hyperparameter settings across the tested datasets. Based on these observations, we

Table 12: MAE of M3-Impute with varying embedding dimensions under the MCAR setting with
30% missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

d=32 1.38 0.63 0.89 0.71 1.32 0.18 2.50 1.02
d=64 1.34 0.62 0.78 0.63 1.31 0.11 2.50 1.01
d=128 1.33 0.60 0.71 0.60 1.32 0.06 2.50 0.99
d=256 1.37 0.61 0.68 0.60 1.33 0.06 2.50 0.99
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Table 13: MAE of M3-Impute with varying numbers of GNN layers (L) under the MCAR setting
with 30% missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

L = 1 1.43 0.62 0.82 0.65 1.30 0.12 2.50 1.01
L = 2 1.36 0.61 0.77 0.62 1.31 0.09 2.50 1.01
L = 3 1.33 0.60 0.71 0.60 1.32 0.06 2.50 0.99
L = 4 1.35 0.60 0.71 0.61 1.32 0.06 2.50 0.99

Table 14: MAE of M3-Impute with varying edge dropout ratios under MCAR setting with 30%
missingness.

Drop % Yacht Wine Concrete Housing Energy Naval Kin8nm Power

90% 1.53 0.66 0.94 0.69 1.35 0.13 2.50 1.03
70% 1.35 0.62 0.75 0.62 1.33 0.08 2.50 1.00
50% 1.33 0.60 0.71 0.60 1.32 0.06 2.50 0.99
30% 1.38 0.61 0.73 0.60 1.31 0.06 2.50 1.00

recommend setting the hidden dimension to 128, the number of GNN layers to 3, and the edge
dropout ratio to 50% as a general guideline.

A.8 BASELINE CONFIGURATION

For Mean, Svd, Spectral, and Knn, we follow the widely adopted implementation in Grape (You
et al., 2020). For Gain (Yoon et al., 2018), Miwae (Mattei & Frellsen, 2019), Grape (You et al.,
2020), Miracle (Kyono et al., 2021), and HyperImpute (Jarrett et al., 2022), we use their official
implementations. By default, we follow the optimal parameter settings provided in the original
papers. However, we observe that part of the baselines do not perform well with their default
parameters on certain datasets. To ensure a fair comparison, we conduct a grid search over the
hyperparameters and report the best results achieved across all our experiments. The search ranges
for these hyperparameters are detailed in Table 15.

Table 15: Hyperparameter search space.

Model Hyperparameters

Svd rank = {3, 5, 10, 20}
max_iters = {200, 1000, 2000}

Spectral max_iters = {100, 200, 500}

Mice max_iter = {10, 30, 50, 100}

Knn K = {3, 5, 10, 20}

Gain n_epochs = {1000, 2000, 3000}

Miwae n_epochs = {1000, 2000, 3000}
K = {5, 10, 15, 20}

Grape hidden_dim = {64, 128, 256}
edge_dropout_ratio = {0.1, 0.3, 0.5}

Miracle

n_hidden = {8, 16, 32, 64}
reg_lambda = range(0.1, 1, 0.1)
reg_beta = range(0.1, 1, 0.1)
max_steps = {500, 1000, 2000}
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Table 16: MAE scores under the MCAR setting across different levels of missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 10%

Mean 2.22 ± 0.05 0.96 ± 0.02 1.81 ± 0.02 1.84 ± 0.01 3.09 ± 0.07 2.30 ± 0.01 2.50 ± 0.01 1.68 ± 0.00
Svd 1.92 ± 0.16 0.88 ± 0.03 2.04 ± 0.04 1.69 ± 0.11 1.75 ± 0.10 0.34 ± 0.00 5.04 ± 0.06 2.26 ± 0.04
Spectral 2.24 ± 0.12 0.76 ± 0.02 1.84 ± 0.05 1.28 ± 0.04 1.76 ± 0.08 0.38 ± 0.01 2.71 ± 0.02 1.77 ± 0.02
Mice 1.38 ± 0.13 0.62 ± 0.01 0.97 ± 0.04 0.98 ± 0.04 1.28 ± 0.07 0.13 ± 0.00 2.50 ± 0.01 1.01 ± 0.01
Knn 1.40 ± 0.17 0.49 ± 0.01 0.58 ± 0.05 0.74 ± 0.04 1.42 ± 0.05 0.03 ± 0.00 2.53 ± 0.01 1.26 ± 0.00
Gain 2.30 ± 0.04 0.83 ± 0.04 1.62 ± 0.05 1.16 ± 0.05 1.95 ± 0.05 0.45 ± 0.01 2.74 ± 0.02 1.22 ± 0.00
Miwae 2.39 ± 0.00 1.01 ± 0.04 1.93 ± 0.02 1.73 ± 0.01 3.30 ± 0.00 2.37 ± 0.00 2.57 ± 0.00 1.72 ± 0.00
Grape 1.00 ± 0.00 0.48 ± 0.00 0.45 ± 0.01 0.49 ± 0.00 1.19 ± 0.00 0.05 ± 0.00 2.49 ± 0.00 0.85 ± 0.03
Miracle 3.87 ± 0.01 0.62 ± 0.00 1.63 ± 0.01 3.07 ± 0.00 4.04 ± 0.00 0.12 ± 0.00 2.48 ± 0.01 0.99 ± 0.00
HyperImpute 1.50 ± 0.11 0.52 ± 0.00 0.51 ± 0.04 0.75 ± 0.04 1.18 ± 0.05 0.06 ± 0.04 2.50 ± 0.00 0.84± 0.00

M3-Impute 0.96 ± 0.00 0.47 ± 0.01 0.41 ± 0.01 0.45 ± 0.00 1.15 ± 0.00 0.05 ± 0.00 2.49 ± 0.00 0.84 ± 0.01

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 30%

Mean 2.09 ± 0.04 0.98 ± 0.01 1.79 ± 0.01 1.85 ± 0.00 3.10 ± 0.04 2.31 ± 0.00 2.50 ± 0.00 1.68 ± 0.00
Svd 2.46 ± 0.16 0.92 ± 0.01 1.94 ± 0.02 1.53 ± 0.03 2.24 ± 0.06 0.50 ± 0.00 3.67 ± 0.06 2.33 ± 0.01
Spectral 2.64 ± 0.11 0.91 ± 0.01 1.98 ± 0.04 1.46 ± 0.03 2.26 ± 0.09 0.41 ± 0.00 2.80 ± 0.01 2.13 ± 0.01
Mice 1.68 ± 0.05 0.77 ± 0.00 1.34 ± 0.01 1.16 ± 0.03 1.53 ± 0.04 0.20 ± 0.01 2.50 ± 0.00 1.16 ± 0.01
Knn 1.67 ± 0.02 0.72 ± 0.00 1.16 ± 0.03 0.95 ± 0.01 1.81 ± 0.03 0.10 ± 0.00 2.77 ± 0.01 1.38 ± 0.01
Gain 2.26 ± 0.11 0.86 ± 0.00 1.67 ± 0.03 1.23 ± 0.02 1.99 ± 0.03 0.46 ± 0.02 2.70 ± 0.00 1.31 ± 0.05
Miwae 2.37 ± 0.01 1.00 ± 0.00 1.81 ± 0.01 1.74 ± 0.04 2.79 ± 0.04 2.37 ± 0.00 2.57 ± 0.00 1.72 ± 0.00
Grape 1.46 ± 0.01 0.60 ± 0.00 0.75 ± 0.01 0.64 ± 0.01 1.36 ± 0.01 0.07 ± 0.00 2.50 ± 0.00 1.00 ± 0.00
Miracle 3.84 ± 0.00 0.70 ± 0.00 1.71 ± 0.05 3.12 ± 0.00 3.94 ± 0.01 0.18 ± 0.00 2.49 ± 0.00 1.13 ± 0.01
HyperImpute 1.76 ± 0.03 0.67 ± 0.01 0.84 ± 0.02 0.82 ± 0.01 1.32 ± 0.02 0.04 ± 0.00 2.58 ± 0.05 1.06 ± 0.01

M3-Impute 1.33 ± 0.04 0.60 ± 0.00 0.71 ± 0.01 0.59 ± 0.00 1.31 ± 0.01 0.06 ± 0.00 2.50 ± 0.00 0.99 ± 0.00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 50%

Mean 2.12 ± 0.02 0.98 ± 0.01 1.81 ± 0.01 1.84 ± 0.01 3.08 ± 0.02 2.31 ± 0.00 2.50 ± 0.00 1.67 ± 0.00
Svd 3.00 ± 0.11 1.18 ± 0.00 2.19 ± 0.01 1.88 ± 0.01 2.88 ± 0.04 0.87 ± 0.00 3.30 ± 0.01 2.92 ± 0.02
Spectral 3.17 ± 0.13 1.13 ± 0.00 2.31 ± 0.01 1.76 ± 0.03 3.03 ± 0.02 0.46 ± 0.00 3.02 ± 0.00 2.98 ± 0.02
Mice 1.99 ± 0.08 0.83 ± 0.00 1.59 ± 0.03 1.33 ± 0.02 2.13 ± 0.12 0.31 ± 0.01 2.50 ± 0.00 1.32 ± 0.01
Knn 2.08 ± 0.02 0.98 ± 0.01 1.40 ± 0.02 1.37 ± 0.01 2.21 ± 0.01 0.76 ± 0.01 2.65 ± 0.00 1.80 ± 0.01
Gain 2.33 ± 0.03 1.18 ± 0.15 2.20 ± 0.17 1.43 ± 0.09 2.58 ± 0.09 0.56 ± 0.03 2.86 ± 0.06 1.36 ± 0.00
Miwae 2.41 ± 0.01 1.02 ± 0.00 1.87 ± 0.04 1.76 ± 0.01 3.23 ± 0.00 2.39 ± 0.01 2.58 ± 0.00 1.73 ± 0.02
Grape 1.89 ± 0.02 0.75 ± 0.01 1.24 ± 0.00 0.83 ± 0.01 1.63 ± 0.01 0.09 ± 0.00 2.50 ± 0.00 1.19 ± 0.00
Miracle 3.84 ± 0.00 0.81 ± 0.00 1.80 ± 0.00 3.07 ± 0.00 3.94 ± 0.00 0.24 ± 0.00 2.76 ± 0.00 1.29 ± 0.00
HyperImpute 2.07 ± 0.11 0.85 ± 0.00 1.33 ± 0.08 1.06 ± 0.11 1.70 ± 0.05 0.07 ± 0.00 2.96 ± 0.04 1.29 ± 0.01

M3-Impute 1.74 ± 0.01 0.74 ± 0.00 1.19 ± 0.02 0.79 ± 0.01 1.57 ± 0.00 0.08 ± 0.00 2.50 ± 0.00 1.19 ± 0.00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 70%

Mean 2.16 ± 0.06 0.99 ± 0.00 1.81 ± 0.01 1.83 ± 0.02 3.08 ± 0.01 2.31 ± 0.00 2.50 ± 0.00 1.67 ± 0.00
Svd 3.78 ± 0.06 1.63 ± 0.02 2.53 ± 0.03 2.58 ± 0.07 3.65 ± 0.09 1.56 ± 0.00 3.58 ± 0.00 3.88 ± 0.01
Spectral 4.17 ± 0.10 1.67 ± 0.02 2.75 ± 0.01 2.59 ± 0.05 4.00 ± 0.03 1.04 ± 0.00 3.73 ± 0.01 4.33 ± 0.01
Mice 2.21 ± 0.10 0.93 ± 0.01 1.72 ± 0.02 1.54 ± 0.04 2.71 ± 0.15 0.53 ± 0.00 2.62 ± 0.08 1.46 ± 0.00
Knn 2.62 ± 0.08 1.05 ± 0.00 1.60 ± 0.01 1.43 ± 0.02 2.54 ± 0.04 1.08 ± 0.00 2.84 ± 0.01 2.73 ± 0.00
Gain 3.07 ± 0.08 1.61 ± 0.15 2.84 ± 0.04 3.09 ± 0.04 3.83 ± 0.15 1.07 ± 0.02 3.31 ± 0.21 1.51 ± 0.05
Miwae 2.40 ± 0.01 1.02 ± 0.03 1.86 ± 0.00 1.75 ± 0.00 3.20 ± 0.01 2.39 ± 0.01 2.58 ± 0.00 1.73 ± 0.04
Grape 2.14 ± 0.01 0.88 ± 0.01 1.64 ± 0.02 1.12 ± 0.01 2.10 ± 0.01 0.17 ± 0.00 2.49 ± 0.00 1.37 ± 0.00
Miracle 3.88 ± 0.00 0.90 ± 0.00 2.23 ± 0.00 3.05 ± 0.00 3.95 ± 0.00 0.48 ± 0.00 2.88 ± 0.00 1.54 ± 0.00
HyperImpute 2.49 ± 0.08 0.92 ± 0.02 1.71 ± 0.01 1.12 ± 0.13 2.16 ± 0.06 0.15 ± 0.00 3.15 ± 0.03 1.54 ± 0.02

M3-Impute 2.14 ± 0.00 0.87 ± 0.00 1.56 ± 0.01 1.08 ± 0.00 2.05 ± 0.00 0.17 ± 0.00 2.49 ± 0.00 1.37 ± 0.00
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Table 17: MAE scores under the MAR setting across different levels of missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 10%

Mean 2.06 ± .16 0.97 ± .08 1.95 ± .15 1.46 ± .14 3.44 ± .23 2.62 ± .20 2.50 ± .02 1.82 ± .16
Svd 2.61 ± .16 1.18 ± .07 2.26 ± .20 1.34 ± .16 3.37 ± .28 0.65 ± .19 2.64 ± .02 2.27 ± .29
Spectral 2.36 ± .32 0.86 ± .11 1.93 ± .18 1.19 ± .10 2.24 ± .35 0.45 ± .22 3.12 ± .04 2.15 ± .26
Mice 1.26 ± .17 0.65 ± .02 1.03 ± .08 1.05 ± .08 0.89 ± .09 0.18 ± .01 2.48 ± .01 0.98 ± .09
Knn 1.62 ± .51 0.51 ± .02 0.47 ± .10 0.74 ± .02 1.50 ± .10 0.03 ± .01 2.92 ± .03 0.84 ± .10
Gain 2.00 ± .12 0.79 ± .02 1.72 ± .04 0.91 ± .13 1.51 ± .06 0.54 ± .16 2.77 ± .03 1.24 ± .08
Miwae 2.06 ± .01 1.02 ± .00 1.88 ± .00 1.56 ± .01 3.82 ± .01 2.92 ± .00 2.57 ± .01 2.06 ± .01
Grape 0.75 ± .00 0.49 ± .01 0.42 ± .01 0.51 ± .02 0.89 ± .01 0.07 ± .02 2.46 ± .00 0.70 ± .03
Miracle 3.78 ± .00 0.58 ± .04 1.65 ± .00 2.21 ± .00 3.45 ± .00 0.16 ± .01 2.52 ± .01 0.81 ± .00
HyperImpute 1.22 ± .13 0.51 ± .01 0.49 ± .03 0.82 ± .16 0.70 ± .14 0.02 ± .02 2.56 ± .04 0.77 ± .06

M3-Impute 0.70 ± .01 0.49 ± .00 0.39 ± .01 0.44 ± .01 0.85 ± .00 0.07 ± .00 2.46 ± .00 0.69 ± .01

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 30%

Mean 2.20 ± .13 1.09 ± .05 1.79 ± .21 2.02 ± .20 3.26 ± .36 2.75 ± .11 2.49 ± .01 1.81 ± .25
Svd 2.64 ± .22 1.04 ± .14 2.32 ± .06 1.71 ± .15 3.68 ± .16 0.52 ± .11 2.69 ± .02 2.37 ± .62
Spectral 3.06 ± .11 0.91 ± .13 2.12 ± .17 1.84 ± .28 2.88 ± .35 1.29 ± .47 3.56 ± .01 3.37 ± .04
Mice 1.79 ± .10 0.79 ± .01 1.27 ± .08 1.22 ± .05 1.12 ± .07 0.27 ± .01 2.51 ± .03 1.16 ± .11
Knn 1.69 ± .07 0.66 ± .07 0.89 ± .30 0.89 ± .12 1.61 ± .35 0.07 ± .00 2.94 ± .01 1.11 ± .04
Gain 2.07 ± .02 1.13 ± .20 1.87 ± .16 0.92 ± .05 2.26 ± .14 0.91 ± .07 2.93 ± .02 1.42 ± .01
Miwae 2.17 ± .01 0.98 ± .01 1.80 ± .04 1.54 ± .00 3.91 ± .01 2.80 ± .01 2.58 ± .01 2.05 ± .02
Grape 1.20 ± .03 0.60 ± .00 0.77 ± .02 0.66 ± .01 1.05 ± .02 0.07 ± .01 2.49 ± .00 1.06 ± .04
Miracle 3.75 ± .00 0.70 ± .00 1.94 ± .00 2.24 ± .00 3.89 ± .00 0.36 ± .00 2.82 ± .10 0.86 ± .01
Hyperimpute 2.06 ± .12 0.78 ± .06 1.30 ± .15 1.05 ± .21 1.11 ± .38 1.01 ± .18 3.07 ± .06 1.07 ± .14

M3-Impute 1.09 ± .03 0.60 ± .00 0.77 ± .02 0.60 ± .00 0.98 ± .02 0.07 ± .00 2.49 ± .00 1.01 ± .00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 50%

Mean 2.20 ± .13 0.98 ± .06 1.74 ± .09 1.92 ± .05 3.30 ± .12 2.80 ± .05 2.49 ± .01 1.86 ± .03
Svd 2.95 ± .11 1.06 ± .04 2.63 ± .42 1.78 ± .14 3.69 ± .14 0.59 ± .14 2.83 ± .03 2.64 ± .27
Spectral 3.41 ± .09 1.35 ± .02 2.14 ± .02 2.10 ± .30 3.62 ± .16 1.98 ± .25 3.84 ± .01 4.02 ± .32
Mice 2.15 ± .09 0.87 ± .05 1.56 ± .08 1.45 ± .03 1.96 ± .04 0.25 ± .08 2.61 ± .08 1.35 ± .14
Knn 2.45 ± .19 0.90 ± .09 1.04 ± .11 1.14 ± .26 1.64 ± .39 0.07 ± .03 3.00 ± .01 1.44 ± .23
Gain 3.40 ± .08 1.60 ± .33 2.13 ± .24 1.95 ± .10 3.04 ± .35 1.02 ± .05 3.08 ± .08 1.69 ± .09
Miwae 2.31 ± .01 1.09 ± .03 1.74 ± .03 1.84 ± .03 3.45 ± .00 2.89 ± .01 2.57 ± .01 1.95 ± .01
Grape 2.07 ± .00 0.81 ± .00 1.17 ± .01 0.91 ± .02 1.73 ± .03 0.10 ± .01 2.49 ± .00 1.35 ± .00
Miracle 3.98 ± .00 0.87 ± .00 2.50 ± .00 2.41 ± .00 4.08 ± .00 0.63 ± .00 2.86 ± .00 1.55 ± .00
HyperImpute 2.47 ± .12 0.81 ± .06 1.60 ± .03 1.01 ± .09 1.50 ± .22 0.04 ± .02 3.19 ± .01 1.27 ± .15

M3-Impute 2.07 ± .00 0.81 ± .00 1.17 ± .01 0.84 ± .00 1.64 ± .03 0.10 ± .00 2.49 ± .00 1.35 ± .00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 70%

Mean 2.13 ± .12 1.01 ± .03 1.85 ± .03 1.91 ± .06 3.19 ± .07 3.11 ± .48 2.49 ± .01 1.79 ± .07
Svd 3.10 ± .21 1.36 ± .03 2.47 ± .20 2.44 ± .21 4.33 ± .38 0.82 ± .03 3.13 ± .03 2.70 ± .22
Spectral 3.68 ± .27 1.49 ± .17 2.55 ± .22 2.49 ± .15 3.97 ± .01 2.82 ± .69 4.10 ± .01 4.23 ± .34
Mice 2.28 ± .12 0.97 ± .03 1.76 ± .08 1.81 ± .01 2.81 ± .18 0.50 ± .03 2.62 ± .02 1.38 ± .17
Knn 2.02 ± .34 1.15 ± .05 1.54 ± .06 1.63 ± .25 1.65 ± .28 0.19 ± .04 2.98 ± .01 1.23 ± .06
Gain 3.64 ± .27 1.94 ± .05 2.59 ± .11 2.74 ± .09 4.40 ± .04 0.69 ± .05 4.00 ± .04 2.41 ± .42
Miwae 2.31 ± .01 1.08 ± .01 1.89 ± .00 1.84 ± .02 3.18 ± .00 2.95 ± .00 2.58 ± .00 1.94 ± .01
Grape 2.06 ± .00 0.94 ± .01 1.69 ± .03 1.20 ± .01 2.23 ± .02 0.17 ± .00 2.49 ± .00 1.42 ± .00
Miracle 3.99 ± .00 0.96 ± .00 2.70 ± .04 2.83 ± .00 3.82 ± .00 0.24 ± .01 2.89 ± .00 1.61 ± .00
HyperImpute 2.56 ± .04 0.96 ± .02 1.93 ± .04 1.28 ± .06 2.43 ± .12 0.12 ± .09 3.22 ± .02 1.36 ± .18

M3-Impute 2.06 ± .00 0.92 ± .00 1.68 ± .01 1.13 ± .01 2.16 ± .00 0.17 ± .00 2.49 ± .00 1.42 ± .00
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Table 18: MAE scores under the MNAR setting across different levels of missingness.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 10%

Mean 2.20 ± .10 0.97 ± .02 1.88 ± .01 1.75 ± .12 3.12 ± .07 2.48 ± .05 2.51 ± .01 1.72 ± .05
Svd 2.64 ± .01 1.09 ± .06 2.14 ± .03 1.31 ± .03 3.45 ± .23 0.75 ± .03 2.63 ± .01 2.08 ± .05
Spectral 2.23 ± .03 0.83 ± .05 1.97 ± .02 1.18 ± .05 1.86 ± .05 0.30 ± .05 3.00 ± .01 2.36 ± .22
Mice 1.41 ± .05 0.65 ± .01 1.07 ± .03 0.93 ± .01 1.33 ± .14 0.12 ± .00 2.51 ± .02 1.04 ± .02
Knn 1.44 ± .14 0.53 ± .03 0.54 ± .04 0.60 ± .04 1.64 ± .11 0.03 ± .00 3.00 ± .03 1.55 ± .02
Gain 2.39 ± .03 0.86 ± .01 1.66 ± .04 1.05 ± .08 1.94 ± .04 0.42 ± .01 2.74 ± .01 1.23 ± .02
Miwae 2.23 ± .01 1.01 ± .02 1.92 ± .03 1.50 ± .01 3.25 ± .01 2.50 ± .01 2.59 ± .00 1.83 ± .01
Grape 1.13 ± .01 0.49 ± .00 0.46 ± .01 0.55 ± .01 1.14 ± .00 0.04 ± .00 2.51 ± .00 0.88 ± .00
Miracle 3.87 ± .00 0.62 ± .00 1.70 ± .04 2.51 ± .00 4.05 ± .00 0.11 ± .01 2.51 ± .02 1.01 ± .03
HyperImpute 1.51 ± .07 0.55 ± .01 0.58 ± .02 0.73 ± .04 1.11 ± .06 0.03 ± .00 2.51 ± .01 0.85 ± .00

M3-Impute 1.08 ± .00 0.49 ± .00 0.44 ± .01 0.50 ± .01 1.10 ± .00 0.04 ± .00 2.51 ± .00 0.84 ± .01

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 30%

Mean 2.18 ± .09 1.04 ± .02 1.80 ± .09 1.95 ± .13 3.17 ± .22 2.60 ± .07 2.49 ± .01 1.76 ± .14
Svd 2.61 ± .13 1.06 ± .07 2.24 ± .05 1.58 ± .06 3.55 ± .09 0.53 ± .05 2.69 ± .02 2.27 ± .25
Spectral 2.75 ± .14 1.01 ± .08 1.86 ± .03 1.60 ± .22 2.50 ± .15 1.35 ± .21 3.34 ± .00 3.14 ± .41
Mice 1.91 ± .10 0.77 ± .07 1.37 ± .05 1.22 ± .06 1.57 ± .03 0.21 ± .07 2.50 ± .00 1.08 ± .02
Knn 1.92 ± .10 0.75 ± .05 1.15 ± .32 0.95 ± .11 1.96 ± .11 0.08 ± .02 3.06 ± .02 1.65 ± .07
Gain 2.34 ± .12 0.92 ± .05 1.80 ± .05 1.08 ± .05 1.92 ± .06 1.12 ± .03 2.78 ± .03 1.22 ± .03
Miwae 2.17 ± .00 0.99 ± .01 1.81 ± .03 1.60 ± .02 3.63 ± .00 2.63 ± .03 2.55 ± .02 1.95 ± .03
Grape 1.23 ± .03 0.61 ± .00 0.73 ± .01 0.61 ± .01 1.16 ± .01 0.08 ± .01 2.46 ± .01 1.02 ± .01
Miracle 3.85 ± .00 0.70 ± .00 1.87 ± .00 2.51 ± .00 3.86 ± .00 0.30 ± .00 2.64 ± .00 1.06 ± .00
Hyperimpute 1.95 ± .10 0.72 ± .03 0.88 ± .02 0.85 ± .03 1.19 ± .24 0.85 ± .04 2.71 ± .06 1.09 ± .06

M3-Impute 1.15 ± .02 0.60 ± .00 0.68 ± .02 0.54 ± .01 1.09 ± .01 0.08 ± .00 2.46 ± .00 1.00 ± .00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 50%

Mean 2.17 ± .08 1.01 ± .06 1.85 ± .09 1.89 ± .13 3.27 ± .10 2.66 ± .11 2.49 ± .01 1.77 ± .06
Svd 3.08 ± .10 1.15 ± .12 2.46 ± .15 1.90 ± .16 3.56 ± .25 0.58 ± .09 2.83 ± .02 2.62 ± .12
Spectral 3.38 ± .04 1.31 ± .02 2.36 ± .15 1.91 ± .11 3.49 ± .29 1.99 ± .08 3.82 ± .01 4.19 ± .35
Mice 2.17 ± .07 0.90 ± .07 1.59 ± .06 1.50 ± .14 2.39 ± .35 0.27 ± .02 2.62 ± .02 1.35 ± .09
Knn 2.31 ± .10 1.02 ± .07 1.35 ± .10 1.55 ± .33 2.51 ± .19 0.39 ± .18 3.03 ± .01 1.69 ± .26
Gain 3.22 ± .07 1.26 ± .12 1.96 ± .08 1.76 ± .07 3.16 ± .13 0.74 ± .09 3.12 ± .13 1.72 ± .24
Miwae 2.32 ± .00 1.08 ± .02 1.78 ± .02 1.87 ± .02 3.40 ± .00 2.80 ± .02 2.58 ± .00 1.91 ± .03
Grape 2.09 ± .00 0.82 ± .00 1.23 ± .00 0.90 ± .01 1.69 ± .01 0.10 ± .00 2.49 ± .00 1.33 ± .00
Miracle 3.97 ± .00 0.88 ± .00 2.43 ± .00 2.53 ± .00 3.81 ± .00 0.59 ± .00 2.84 ± .05 1.55 ± .00
HyperImpute 2.39 ± .10 0.83 ± .06 1.56 ± .04 0.99 ± .06 1.62 ± .18 0.05 ± .02 3.17 ± .05 1.29 ± .12

M3-Impute 2.09 ± .00 0.81 ± .00 1.21 ± .01 0.87 ± .01 1.62 ± .01 0.10 ± .00 2.48 ± .00 1.32 ± .00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 70%

Mean 2.25 ± .21 1.01 ± .02 1.83 ± .08 1.96 ± .10 3.22 ± .13 2.81 ± .08 2.49 ± .00 1.78 ± .05
Svd 3.11 ± .05 1.38 ± .03 2.68 ± .21 2.32 ± .15 4.19 ± .30 1.79 ± .39 3.16 ± .03 2.87 ± .22
Spectral 3.63 ± .10 1.68 ± .11 2.73 ± .04 2.29 ± .26 3.68 ± .18 2.83 ± .66 4.15 ± .01 4.35 ± .30
Mice 2.22 ± .17 0.93 ± .03 1.80 ± .03 1.75 ± .15 2.66 ± .29 0.56 ± .04 2.64 ± .02 1.41 ± .13
Knn 2.09 ± .31 1.15 ± .03 1.92 ± .13 1.80 ± .23 2.36 ± .39 0.83 ± .10 3.02 ± .00 1.60 ± .07
Gain 3.70 ± .31 1.66 ± .19 2.57 ± .09 2.77 ± .14 4.27 ± .08 0.42 ± .01 3.56 ± .27 1.89 ± .28
Miwae 2.32 ± .01 1.07 ± .02 1.90 ± .03 1.83 ± .02 3.17 ± .02 2.92 ± .03 2.57 ± .00 1.90 ± .00
Grape 2.08 ± .00 0.94 ± .01 1.73 ± .03 1.22 ± .01 2.27 ± .01 0.18 ± .00 2.49 ± .00 1.43 ± .00
Miracle 3.99 ± .00 0.95 ± .00 2.66 ± .02 2.88 ± .00 2.85 ± .00 0.91 ± .01 2.82 ± .00 1.61 ± .00
HyperImpute 2.42 ± .16 0.94 ± .03 1.86 ± .05 1.22 ± .02 2.41 ± .06 0.14 ± .00 3.19 ± .02 1.36 ± .13

M3-Impute 2.08 ± .00 0.92 ± .00 1.70 ± .02 1.15 ± .02 2.19 ± .02 0.18 ± .00 2.49 ± .00 1.41 ± .00

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 19: MAE scores under the MCAR setting across different levels of missingness on the extra 17
datasets. AI is short for AIrfoil. Please refer to Table 9 for dataset names.

Dataset Mean Knn Svd Mice Spectral HI Gain Miracle Miwae Grape M3 -Impute

Missing 10%

AI 2.32 ± .03 1.59 ± .04 2.67 ± .08 1.83 ± .01 2.16 ± .03 0.59 ± .03 2.18 ± .02 1.81 ± .01 2.30 ± .02 0.61 ± .00 0.55 ± .01
BL 1.16 ± .02 0.96 ± .03 0.90 ± .02 0.61 ± .02 0.90 ± .05 0.53 ± .02 1.26 ± .07 1.48 ± .05 1.98 ± .05 0.51 ± .00 0.51 ± .00
WW 0.76 ± .01 0.38 ± .00 0.86 ± .01 0.50 ± .00 0.69 ± .01 0.44 ± .01 0.70 ± .02 0.49 ± .00 0.78 ± .01 0.43 ± .00 0.42 ± .00
IO 2.00 ± .02 1.02 ± .03 1.21 ± .05 1.20 ± .06 1.30 ± .03 1.14 ± .04 1.39 ± .06 5.66 ± .00 5.12 ± .02 1.04 ± .01 0.96 ± .02
BR 1.08 ± .02 0.50 ± .01 0.57 ± .00 0.25± .01 0.31 ± .00 0.28 ± .00 0.47 ± .02 1.40 ± .00 1.90 ± .02 0.31 ± .00 0.30 ± .01
IR 2.18 ± .09 1.25 ± .22 1.67 ± .25 0.94 ± .13 1.43 ± .22 0.97 ± .12 1.27 ± .17 3.20 ± .00 4.80 ± .25 0.71 ± .01 0.69 ± .02
DI 1.80 ± .11 1.51 ± .07 1.68 ± .04 1.17 ± .08 1.38 ± .07 1.09 ± .04 1.47 ± .12 2.82 ± .00 5.23 ± .16 1.12 ± .02 1.08 ± .02
PR 0.91 ± .01 0.26 ± .00 0.98 ± .00 0.28 ± .00 0.80 ± .00 0.20 ± .00 0.51 ± .00 0.27 ± .00 0.94 ± .01 0.22 ± .02 0.20 ± .00
SP 0.23 ± .00 0.14 ± .01 0.30 ± .01 0.19 ± .00 0.16 ± .00 0.17 ± .02 0.22 ± .01 0.19 ± .01 0.16 ± .00 0.17 ± .00 0.16 ± .01
LE 1.28 ± .01 0.32 ± .00 1.25 ± .01 0.88 ± .00 1.26 ± .01 0.49 ± .00 1.07 ± .01 0.76 ± .01 1.37 ± .01 0.42 ± .00 0.41 ± .01
AB 2.50 ± .03 2.06 ± .06 2.41 ± .04 2.01 ± .02 2.29 ± .02 1.71 ± .14 2.23 ± .05 3.68 ± .00 2.57 ± .03 1.84 ± .03 1.71 ± .02
A4 1.06 ± .02 1.08 ± .02 1.14 ± .02 0.78 ± .02 1.22 ± .02 0.67 ± .01 1.23 ± .02 0.81 ± .04 1.09 ± .04 0.71 ± .01 0.70 ± .00
CM 2.31 ± .07 2.19 ± .11 2.43 ± .10 1.97 ± .08 2.62 ± .05 1.98 ± .15 2.35 ± .17 1.86 ± .00 2.35 ± .08 1.75 ± .01 1.68 ± .02
GE 2.50 ± .03 2.06 ± .06 2.41 ± .04 2.01 ± .02 2.29 ± .02 1.71 ± .14 2.23 ± .05 3.68 ± .00 2.57 ± .03 1.85 ± .02 1.68 ± .02
ST 1.78 ± .02 0.55 ± .00 1.27 ± .01 0.70 ± .02 0.87 ± .01 0.59 ± .00 0.96 ± .02 0.74 ± .00 1.68 ± .02 0.34 ± .01 0.29 ± .01
LI 1.82 ± .01 0.19 ± .01 0.36 ± .00 0.05 ± .00 0.14 ± .00 0.06 ± .00 0.37 ± .00 6.05 ± .00 2.16 ± .01 0.10 ± .00 0.10 ± .00
CH 1.13 ± .00 0.78 ± .01 1.30 ± .00 0.56 ± .00 1.26 ± .01 0.42 ± .00 1.07 ± .03 0.53 ± .00 1.15 ± .01 0.40 ± .00 0.40 ± .00

Missing 30%

AI 2.32 ± .05 2.18 ± .04 2.76 ± .05 1.97 ± .04 2.30 ± .07 1.09 ± .02 2.22 ± .06 1.97 ± .00 2.36 ± .06 1.16 ± .02 1.09 ± .03
BL 1.14 ± .01 0.93 ± .01 0.97 ± .04 0.69 ± .01 0.94 ± .03 0.63 ± .02 1.26 ± .04 1.50 ± .00 2.03 ± .05 0.68 ± .00 0.67 ± .00
WW 0.76 ± .00 0.64 ± .01 0.87 ± .00 0.61 ± .01 0.78 ± .01 0.55 ± .00 0.73 ± .01 0.58 ± .00 0.77 ± .00 0.52 ± .00 0.52 ± .00
IO 2.01 ± .03 1.07 ± .03 1.26 ± .03 1.37 ± .03 1.38 ± .02 1.18 ± .04 1.50 ± .01 5.56 ± .00 5.14 ± .06 1.08 ± .01 1.01 ± .01
BR 1.06 ± .00 0.53 ± .01 0.58 ± .00 0.34 ± .01 0.38 ± .00 0.33 ± .01 0.51 ± .01 1.42 ± .00 1.89 ± .02 0.37 ± .00 0.36 ± .01
IR 2.15 ± .09 1.54 ± .22 1.70 ± .07 1.07 ± .09 1.48 ± .13 1.04 ± .11 1.29 ± .07 3.22 ± .00 4.60 ± .17 0.82 ± .00 0.82 ± .00
DI 1.78 ± .03 1.71 ± .04 1.76 ± .02 1.29 ± .05 1.48 ± .03 1.17 ± .02 1.47 ± .06 2.69 ± .00 5.05 ± .04 1.31 ± .00 1.29 ± .01
PR 0.91 ± .00 0.58 ± .01 1.00 ± .00 0.33 ± .00 1.14 ± .00 0.25 ± .00 0.72 ± .06 0.32 ± .00 0.94 ± .00 0.25 ± .02 0.24 ± .00
SP 0.23 ± .00 0.17 ± .00 0.31 ± .00 0.22 ± .00 0.16 ± .00 0.18 ± .01 0.21 ± .00 0.19 ± .00 0.16 ± .00 0.17 ± .01 0.16 ± .00
LE 1.28 ± .00 0.89 ± .01 1.29 ± .00 1.00 ± .00 1.75 ± .01 0.61 ± .01 1.09 ± .01 1.06 ± .01 1.33 ± .04 0.53 ± .00 0.52 ± .00
AB 2.52 ± .02 2.34 ± .02 2.60 ± .04 2.26 ± .04 2.45 ± .02 2.05 ± .25 2.27 ± .09 3.67 ± .00 2.59 ± .01 2.01 ± .00 1.84 ± .02
A4 1.07 ± .00 1.17 ± .00 1.18 ± .01 0.87 ± .01 1.58 ± .01 0.75 ± .02 1.03 ± .02 0.84 ± .02 1.12 ± .01 0.79 ± .00 0.76 ± .00
CM 2.35 ± .03 2.32 ± .04 2.52 ± .05 2.06 ± .02 2.96 ± .01 1.91 ± .03 2.33 ± .15 2.01 ± .00 2.37 ± .04 1.87 ± .00 1.81 ± .01
GE 2.52 ± .02 2.34 ± .02 2.60 ± .04 2.26 ± .04 2.45 ± .02 2.05 ± .25 2.27 ± .09 3.67 ± .00 2.59 ± .01 2.01 ± .01 1.87 ± .02
ST 1.80 ± .01 0.78 ± .02 1.37 ± .01 0.95 ± .02 1.10 ± .01 0.72 ± .01 1.03 ± .02 0.95 ± .03 1.70 ± .01 0.45 ± .00 0.39 ± .00
LI 1.82 ± .01 0.25 ± .00 0.37 ± .00 0.11 ± .00 0.18 ± .00 0.11 ± .00 0.46 ± .00 5.61 ± .00 2.13 ± .02 0.10 ± .00 0.10 ± .00
CH 1.13 ± .00 1.17 ± .00 1.35 ± .01 0.69 ± .00 1.50 ± .00 0.57 ± .01 1.07 ± .03 0.67 ± .00 1.16 ± .00 0.54 ± .00 0.54 ± .01

Missing 50%

AI 2.32 ± .02 2.30 ± .04 2.93 ± .01 2.17 ± .04 2.45 ± .06 1.59 ± .04 2.30 ± .04 2.17 ± .05 2.34 ± .04 1.68 ± .01 1.66 ± .02
BL 1.15 ± .02 1.14 ± .06 1.12 ± .02 0.86 ± .04 1.11 ± .02 0.82 ± .02 1.31 ± .07 1.48 ± .09 1.98 ± .01 0.78 ± .00 0.78 ± .00
WW 0.76 ± .00 0.85 ± .00 0.91 ± .00 0.67 ± .00 0.96 ± .00 0.69 ± .01 0.99 ± .01 0.68 ± .01 0.76 ± .00 0.61 ± .00 0.61 ± .00
IO 2.02 ± .02 1.33 ± .03 1.40 ± .01 1.58 ± .01 1.54 ± .01 1.37 ± .02 2.44 ± .38 5.46 ± .00 5.10 ± .04 1.18 ± .00 1.11 ± .01
BR 1.07 ± .00 0.77 ± .00 0.62 ± .00 0.47 ± .01 0.48 ± .00 0.41 ± .00 0.87 ± .07 1.43 ± .00 1.89 ± .01 0.44 ± .00 0.44 ± .00
IR 2.19 ± .06 1.75 ± .07 2.19 ± .03 1.44 ± .12 2.13 ± .03 1.34 ± .12 1.49 ± .08 3.22 ± .00 4.78 ± .08 1.05 ± .01 1.05 ± .00
DI 1.78 ± .02 1.96 ± .02 1.86 ± .00 1.55 ± .03 1.69 ± .00 1.38 ± .01 1.58 ± .01 2.74 ± .00 5.01 ± .02 1.44 ± .01 1.44 ± .00
PR 0.91 ± .00 0.64 ± .00 1.04 ± .00 0.42 ± .00 1.56 ± .00 0.33 ± .00 1.00 ± .02 0.39 ± .01 0.94 ± .00 0.30 ± .00 0.30 ± .00
SP 0.23 ± .00 0.21 ± .00 0.32 ± .00 0.23 ± .00 0.17 ± .00 0.19 ± .00 0.21 ± .00 0.21 ± .00 0.16 ± .00 0.17 ± .01 0.16 ± .00
LE 1.28 ± .00 1.39 ± .00 1.37 ± .00 1.07 ± .00 2.35 ± .00 0.81 ± .00 2.20 ± .04 1.17 ± .01 1.32 ± .02 0.69 ± .00 0.69 ± .01
AB 2.52 ± .01 2.56 ± .03 2.90 ± .05 2.39 ± .03 2.64 ± .01 2.15 ± .20 2.83 ± .07 3.63 ± .00 2.65 ± .01 2.19 ± .00 2.00 ± .03
A4 1.07 ± .00 1.20 ± .02 1.28 ± .01 0.96 ± .01 1.95 ± .00 0.86 ± .02 1.38 ± .04 1.00 ± .00 1.12 ± .01 0.87 ± .00 0.85 ± .00
CM 2.36 ± .01 2.43 ± .06 2.65 ± .01 2.33 ± .03 3.50 ± .04 2.18 ± .02 2.50 ± .16 2.24 ± .03 2.40 ± .02 2.01 ± .02 1.94 ± .02
GE 2.52 ± .01 2.56 ± .03 2.90 ± .05 2.38 ± .03 2.64 ± .01 2.15 ± .20 2.83 ± .07 3.63 ± .00 2.65 ± .01 2.17 ± .01 2.03 ± .01
ST 1.80 ± .00 1.41 ± .01 1.54 ± .01 1.19 ± .01 1.42 ± .00 0.89 ± .01 1.67 ± .01 1.22 ± .05 1.70 ± .01 0.61 ± .01 0.56 ± .01
LI 1.82 ± .01 0.35 ± .00 0.39 ± .00 0.26 ± .01 0.27 ± .00 0.17 ± .00 0.97 ± .12 5.30 ± .00 2.08 ± .00 0.14 ± .01 0.13 ± .01
CH 1.13 ± .00 1.21 ± .00 1.45 ± .00 0.84 ± .00 1.74 ± .00 0.74 ± .00 1.33 ± .07 0.83 ± .00 1.16 ± .00 0.70 ± .00 0.70 ± .00

Missing 70%

AI 2.32 ± .01 2.45 ± .05 3.02 ± .03 2.26 ± .02 2.67 ± .03 2.26 ± .03 2.36 ± .03 2.31 ± .02 2.37 ± .01 2.06 ± .01 2.07 ± .01
BL 1.15 ± .01 1.18 ± .02 1.27 ± .02 0.99 ± .04 1.30 ± .01 0.99 ± .03 1.32 ± .05 1.47 ± .01 1.97 ± .01 0.93 ± .00 0.92 ± .00
WW 0.76 ± .00 0.92 ± .01 1.02 ± .00 0.72 ± .00 1.31 ± .00 0.82 ± .02 1.49 ± .11 0.72 ± .05 0.79 ± .01 0.68± .00 0.68 ± .00
IO 2.02 ± .01 2.21 ± .04 1.90 ± .05 1.83 ± .04 1.94 ± .04 1.54 ± .01 3.47 ± .47 5.31 ± .00 5.12 ± .02 1.29 ± .00 1.27 ± .01
BR 1.07 ± .00 1.07 ± .01 0.73 ± .00 0.79 ± .07 0.65 ± .01 0.52 ± .00 1.10 ± .07 1.45 ± .00 1.88 ± .01 0.55 ± .00 0.55 ± .00
IR 2.22 ± .03 2.48 ± .14 2.87 ± .03 1.79 ± .07 2.91 ± .05 1.57 ± .13 1.66 ± .07 3.20 ± .00 4.71 ± .10 1.34 ± .00 1.33 ± .02
DI 1.81 ± .00 2.05 ± .03 2.05 ± .02 1.69 ± .03 2.06 ± .01 1.65 ± .01 2.44 ± .20 2.76 ± .00 5.02 ± .03 1.61 ± .01 1.58 ± .00
PR 0.91 ± .00 0.75 ± .00 1.16 ± .00 0.61 ± .03 1.94 ± .00 0.47 ± .00 1.48 ± .12 0.54 ± .01 0.94 ± .00 0.43 ± .01 0.42 ± .00
SP 0.23 ± .00 0.24 ± .00 0.35 ± .01 0.23 ± .01 0.17 ± .00 0.20 ± .00 0.17 ± .01 0.22 ± .00 0.16 ± .00 0.17 ± .01 0.16 ± .00
LE 1.28 ± .00 1.47 ± .00 1.58 ± .00 1.19 ± .01 2.95 ± .00 1.12 ± .02 1.61 ± .07 1.31 ± .02 1.32 ± .01 0.94 ± .00 0.94 ± .01
AB 2.53 ± .01 2.61 ± .03 3.31 ± .07 2.51 ± .06 2.96 ± .01 2.31 ± .29 3.21 ± .15 3.63 ± .00 2.69 ± .01 2.36 ± .02 2.24 ± .01
A4 1.06 ± .00 1.27 ± .04 1.53 ± .01 1.02 ± .01 2.30 ± .00 0.99 ± .01 2.31 ± .03 1.04 ± .02 1.22 ± .01 0.96 ± .00 0.92 ± .00
CM 2.38 ± .01 2.68 ± .06 3.11 ± .04 2.37 ± .04 4.24 ± .01 1.99 ± .03 4.06 ± .07 2.40 ± .01 2.40 ± .01 2.17 ± .00 2.13 ± .02
GE 2.53 ± .01 2.61 ± .03 3.31 ± .07 2.51 ± .06 2.96 ± .01 2.31 ± .29 3.21 ± .15 3.63 ± .00 2.69 ± .01 2.35 ± .01 2.22 ± .02
ST 1.80 ± .00 1.75 ± .01 1.85 ± .02 1.56 ± .08 1.88 ± .00 1.14 ± .00 2.42 ± .16 1.50 ± .00 1.70 ± .01 0.93 ± .01 0.88 ± .01
LI 1.82 ± .00 0.74 ± .00 0.50 ± .01 0.71 ± .01 0.55 ± .01 0.33 ± .01 3.84 ± .27 4.90 ± .00 2.05 ± .01 0.22 ± .01 0.21 ± .01
CH 1.13 ± .00 1.27 ± .00 1.61 ± .00 0.99 ± .00 2.02 ± .00 0.94 ± .01 2.27 ± .02 0.98 ± .02 1.16 ± .00 0.89 ± .00 0.88 ± .00
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Table 20: MAE scores under the MAR setting across different levels of missingness on the extra 17
datasets. Please refer to Table 9 for dataset names.

Dataset Mean Knn Svd Mice Spectral HI Gain Miracle Miwae Grape M3 -Impute

Missing 10%

AI 2.40 ± .19 1.87 ± .24 2.37 ± .34 1.85 ± .18 2.01 ± .28 0.56 ± .16 2.17 ± .09 1.22 ± .05 2.57 ± .05 0.75 ± .02 0.68 ± .02
BL 1.12 ± .43 0.55 ± .30 1.05 ± .35 0.63 ± .52 0.79 ± .31 0.59 ± .18 1.07 ± .10 1.14 ± .00 1.99 ± .10 0.21 ± .00 0.20 ± .00
WW 0.74 ± .12 0.36 ± .01 0.86 ± .04 0.45 ± .06 0.71 ± .11 0.39 ± .01 0.60 ± .02 0.44 ± .01 0.69 ± .01 0.38 ± .00 0.37 ± .00
IO 2.11 ± .02 1.19 ± .04 1.41 ± .01 1.44 ± .14 1.41 ± .06 1.32 ± .03 1.36 ± .02 5.41 ± .00 6.09 ± .09 1.19 ± .03 1.04 ± .02
BR 1.18 ± .03 0.53 ± .04 0.59 ± .02 0.29 ± .03 0.34 ± .01 0.30 ± .01 0.50 ± .03 1.40 ± .00 2.18 ± .03 0.34 ± .01 0.34 ± .00
IR 2.33 ± .56 0.97 ± .10 1.31 ± .18 0.88 ± .14 0.99 ± .29 0.89 ± .06 1.23 ± .14 2.19 ± .00 3.41 ± .36 0.87 ± .01 0.86 ± .01
DI 1.78 ± .38 1.11 ± .03 1.84 ± .42 1.26 ± .40 1.69 ± .41 0.93 ± .02 1.16 ± .03 2.41 ± .00 4.20 ± .09 0.87 ± .01 0.87 ± .02
PR 0.92 ± .09 0.23 ± .04 1.47 ± .15 0.30 ± .08 0.59 ± .32 0.19 ± .01 0.58 ± .13 0.17 ± .02 0.99 ± .05 0.20 ± .01 0.19 ± .00
SP 0.23 ± .01 0.14 ± .02 0.50 ± .15 0.20 ± .01 0.18 ± .00 0.15 ± .01 0.22 ± .00 0.18 ± .00 0.15 ± .01 0.14 ± .00 0.14 ± .00
LE 1.35 ± .08 0.31 ± .03 1.36 ± .09 0.88 ± .12 1.43 ± .20 0.45 ± .07 0.96 ± .06 0.66 ± .03 1.56 ± .01 0.44 ± .01 0.40 ± .00
AB 2.63 ± .28 2.21 ± .24 2.37 ± .24 1.93 ± .13 2.45 ± .08 2.16 ± .29 2.06 ± .06 3.09 ± .00 2.54 ± .04 1.91 ± .02 1.79 ± .02
A4 1.23 ± .20 0.61 ± .23 1.38 ± .15 0.93 ± .39 1.12 ± .34 0.48 ± .42 1.27 ± .22 0.40 ± .02 1.53 ± .06 1.14 ± .01 1.10 ± .01
CM 2.17 ± .07 2.33 ± .11 2.37 ± .30 2.19 ± .14 2.97 ± .09 1.64 ± .19 2.04 ± .15 1.84 ± .00 1.97 ± .07 1.63 ± .01 1.56 ± .01
GE 2.63 ± .28 2.21 ± .24 2.37 ± .24 1.93 ± .13 2.45 ± .08 2.16 ± .29 2.06 ± .06 3.09 ± .00 2.54 ± .04 1.92 ± .00 1.83 ± .01
ST 1.76 ± .18 0.52 ± .07 1.30 ± .16 0.64 ± .10 1.07 ± .17 0.25 ± .06 0.76 ± .03 0.60 ± .03 1.48 ± .02 0.28 ± .01 0.21 ± .00
LI 1.88 ± .02 0.26 ± .00 0.36 ± .01 0.04 ± .00 0.15 ± .00 0.10 ± .00 0.34 ± .01 5.88 ± .00 2.26 ± .04 0.11 ± .00 0.10 ± .01
CH 1.18 ± .41 0.53 ± .13 1.53 ± .26 0.67 ± .12 1.21 ± .12 0.40 ± .09 1.11 ± .23 0.37 ± .01 1.02 ± .04 0.27 ± .00 0.27 ± .00

Missing 30%

AI 2.33 ± .14 1.59 ± .70 2.99 ± .83 2.16 ± .28 2.01 ± .60 1.21 ± .21 2.29 ± .09 2.23 ± .00 2.56 ± .01 1.57 ± .02 1.54 ± .02
BL 0.91 ± .02 0.90 ± .25 0.91 ± .07 1.00 ± .40 1.22 ± .36 0.88 ± .33 1.01 ± .15 1.14 ± .00 2.03 ± .03 0.29 ± .01 0.28 ± .01
WW 0.87 ± .01 0.53 ± .02 0.78 ± .05 0.63 ± .04 0.99 ± .23 0.57 ± .08 0.65 ± .11 0.60 ± .05 0.69 ± .01 0.48 ± .00 0.48 ± .00
IO 2.02 ± .08 1.09 ± .03 1.40 ± .08 1.43 ± .08 1.50 ± .02 1.30 ± .03 1.71 ± .10 5.28 ± .00 6.10 ± .04 1.17 ± .03 1.07 ± .01
BR 1.13 ± .03 0.53 ± .03 0.61 ± .03 0.32 ± .07 0.46 ± .04 0.34 ± .02 0.69 ± .05 1.33 ± .00 2.17 ± .03 0.39 ± .00 0.37 ± .01
IR 1.99 ± .25 0.91 ± .08 1.85 ± .42 0.85 ± .09 1.62 ± .13 1.05 ± .11 1.25 ± .04 2.38 ± .00 3.46 ± .13 0.86 ± .02 0.82 ± .03
DI 1.74 ± .33 1.43 ± .23 2.09 ± .02 1.33 ± .23 1.32 ± .20 1.46 ± .10 1.34 ± .04 2.56 ± .00 4.26 ± .06 1.12 ± .01 1.07 ± .00
PR 0.91 ± .03 0.22 ± .02 1.32 ± .20 0.35 ± .06 1.77 ± .26 0.23 ± .01 0.88 ± .02 0.27 ± .04 0.97 ± .01 0.20 ± .01 0.20 ± .00
SP 0.23 ± .01 0.16 ± .01 0.40 ± .06 0.24 ± .01 0.19 ± .02 0.18 ± .00 0.16 ± .01 0.20 ± .00 0.15 ± .00 0.15 ± .01 0.14 ± .00
LE 1.36 ± .02 0.42 ± .05 1.56 ± .29 1.07 ± .02 2.42 ± .21 0.58 ± .11 1.28 ± .13 0.97 ± .04 1.56 ± .01 0.57 ± .01 0.54 ± .00
AB 2.53 ± .08 2.43 ± .19 2.65 ± .16 2.26 ± .27 2.72 ± .35 2.25 ± .10 2.21 ± .08 3.06 ± .00 2.59 ± .02 2.08 ± .03 1.91 ± .02
A4 1.35 ± .19 0.79 ± .04 1.12 ± .19 0.94 ± .20 1.72 ± .76 0.88 ± .27 0.77 ± .12 0.90 ± .05 1.44 ± .02 1.11 ± .00 1.08 ± .00
CM 2.41 ± .21 2.11 ± .09 2.60 ± .10 2.02 ± .21 3.71 ± .74 2.02 ± .03 2.18 ± .11 2.21 ± .00 2.08 ± .02 1.83 ± .01 1.74 ± .01
GE 2.53 ± .08 2.43 ± .19 2.65 ± .16 2.26 ± .27 2.72 ± .35 2.25 ± .10 2.21 ± .08 3.07 ± .00 2.59 ± .02 2.06 ± .02 1.91 ± .02
ST 1.79 ± .17 0.77 ± .10 1.58 ± .42 0.91 ± .12 1.32 ± .35 0.48 ± .03 1.25 ± .09 0.84 ± .02 1.48 ± .01 0.45 ± .01 0.42 ± .02
LI 1.91 ± .01 0.48 ± .01 0.40 ± .00 0.07 ± .00 0.30 ± .01 0.15 ± .00 0.96 ± .01 5.07 ± .00 2.24 ± .03 0.15 ± .01 0.11 ± .01
CH 1.04 ± .23 0.83 ± .07 1.65 ± .20 0.71 ± .25 2.61 ± .24 0.47 ± .10 1.29 ± .15 0.42 ± .03 1.02 ± .03 0.32 ± .00 0.32 ± .00

Missing 50%

AI 2.47 ± .17 2.13 ± .79 3.42 ± .64 2.18 ± .14 2.52 ± .34 2.03 ± .11 2.18 ± .16 2.16 ± .00 2.27 ± .01 1.86 ± .01 1.86 ± .01
BL 1.22 ± .20 1.26 ± .18 0.78 ± .05 0.80 ± .12 1.11 ± .45 0.96 ± .08 1.24 ± .05 1.39 ± .00 2.31 ± .04 0.73 ± .00 0.73 ± .00
WW 0.77 ± .04 0.68 ± .09 0.88 ± .08 0.69 ± .00 1.08 ± .15 0.75 ± .03 1.40 ± .05 0.74 ± .00 0.82 ± .02 0.65 ± .00 0.65 ± .00
IO 2.04 ± .03 1.06 ± .01 1.55 ± .09 1.70 ± .10 1.79 ± .08 1.43 ± .04 2.54 ± .10 5.43 ± .00 5.31 ± .03 1.20 ± .00 1.13 ± .02
BR 1.13 ± .03 0.62 ± .01 0.65 ± .04 0.42 ± .02 0.61 ± .08 0.43 ± .02 0.93 ± .11 1.37 ± .00 2.09 ± .01 0.42 ± .00 0.42 ± .00
IR 2.50 ± .23 1.62 ± .54 2.34 ± .53 1.53 ± .28 2.62 ± .27 1.36 ± .35 1.74 ± .29 3.07 ± .00 4.03 ± .30 0.84 ± .01 0.84 ± .01
DI 1.82 ± .25 1.76 ± .22 1.82 ± .17 1.53 ± .24 1.84 ± .21 1.37 ± .16 2.20 ± .05 2.88 ± .00 5.79 ± .02 1.65 ± .01 1.60 ± .02
PR 1.03 ± .06 0.38 ± .03 1.11 ± .07 0.41 ± .04 1.72 ± .31 0.27 ± .02 1.09 ± .18 0.38 ± .00 0.95 ± .01 0.23 ± .00 0.23 ± .00
SP 0.23 ± .01 0.17 ± .00 0.37 ± .02 0.22 ± .01 0.16 ± .02 0.19 ± .01 0.16 ± .00 0.20 ± .00 0.16 ± .00 0.16 ± .01 0.15 ± .00
LE 1.28 ± .07 0.86 ± .03 1.61 ± .06 1.05 ± .04 2.61 ± .11 0.92 ± .03 1.90 ± .10 1.27 ± .00 1.36 ± .02 0.71 ± .02 0.69 ± .01
AB 2.39 ± .16 2.44 ± .26 3.19 ± .30 2.51 ± .04 2.83 ± .15 2.27 ± .14 2.66 ± .23 3.65 ± .00 2.58 ± .04 2.19 ± .02 2.04 ± .01
A4 1.17 ± .11 1.11 ± .37 1.29 ± .02 0.87 ± .29 1.90 ± .34 0.87 ± .04 1.50 ± .16 1.10 ± .04 1.17 ± .01 0.87 ± .01 0.84 ± .00
CM 2.37 ± .06 2.28 ± .18 2.67 ± .11 2.38 ± .05 4.27 ± .47 1.86 ± .08 3.39 ± .01 2.54 ± .00 2.43 ± .01 2.17 ± .01 2.04 ± .02
GE 2.39 ± .16 2.44 ± .26 3.19 ± .30 2.51 ± .04 2.83 ± .15 2.27 ± .14 2.66 ± .23 3.65 ± .00 2.58 ± .04 2.23 ± .03 2.05 ± .03
ST 1.72 ± .11 0.83 ± .03 1.89 ± .23 1.18 ± .14 1.59 ± .21 0.83 ± .05 2.04 ± .24 1.13 ± .00 1.52 ± .02 0.64 ± .01 0.57 ± .01
LI 1.89 ± .02 0.58 ± .00 0.44 ± .01 0.16 ± .04 0.43 ± .01 0.21 ± .01 2.11 ± .08 4.25 ± .00 2.31 ± .04 0.22 ± .02 0.13 ± .01
CH 1.09 ± .18 0.88 ± .12 1.51 ± .02 1.03 ± .13 1.78 ± .42 0.81 ± .08 1.74 ± .19 0.78 ± .00 1.06 ± .02 0.67 ± .00 0.66 ± .00

Missing 70%

AI 2.50 ± .19 2.31 ± .55 3.21 ± .96 2.24 ± .16 2.47 ± .22 2.06 ± .11 2.32 ± .22 2.25 ± .00 2.26 ± .01 1.96 ± .00 1.95 ± .00
BL 1.27 ± .31 1.13 ± .17 1.00 ± .29 0.93 ± .15 0.94 ± .51 1.01 ± .08 1.18 ± .09 1.40 ± .00 2.33 ± .03 0.80 ± .01 0.80 ± .01
WW 0.81 ± .02 0.88 ± .02 0.92 ± .01 0.71 ± .03 1.35 ± .21 0.85 ± .02 1.56 ± .06 0.81 ± .00 0.84 ± .00 0.72 ± .00 0.71 ± .00
IO 2.08 ± .03 1.48 ± .08 2.03 ± .10 1.90 ± .05 2.37 ± .13 1.60 ± .01 3.52 ± .32 5.44 ± .00 5.28 ± .05 1.29 ± .00 1.29 ± .01
BR 1.13 ± .04 0.68 ± .01 0.73 ± .02 0.74 ± .07 0.73 ± .03 0.54 ± .02 1.13 ± .07 1.40 ± .00 2.00 ± .01 0.55 ± .00 0.54 ± .01
IR 2.48 ± .13 1.56 ± .13 1.89 ± .46 1.89 ± .60 2.94 ± .52 1.39 ± .20 1.86 ± .24 3.07 ± .00 4.03 ± .29 0.85 ± .01 0.85 ± .01
DI 1.91 ± .04 1.96 ± .07 2.01 ± .09 1.77 ± .05 2.26 ± .08 1.52 ± .10 2.90 ± .13 2.96 ± .00 5.03 ± .05 1.68 ± .00 1.68 ± .01
PR 1.05 ± .05 0.53 ± .02 1.18 ± .07 0.57 ± .17 2.02 ± .18 0.44 ± .00 1.32 ± .27 0.60 ± .08 1.01 ± .01 0.40 ± .00 0.40 ± .00
SP 0.23 ± .01 0.20 ± .01 0.38 ± .01 0.24 ± .00 0.17 ± .00 0.21 ± .00 0.16 ± .01 0.22 ± .00 0.16 ± .00 0.16 ± .01 0.16 ± .00
LE 1.30 ± .08 1.30 ± .14 1.72 ± .13 1.25 ± .04 3.16 ± .10 1.21 ± .03 1.67 ± .14 1.30 ± .02 1.32 ± .05 0.98 ± .00 0.98 ± .01
AB 2.59 ± .09 2.47 ± .06 3.53 ± .23 2.63 ± .05 3.12 ± .17 2.93 ± .16 3.08 ± .07 3.54 ± .00 2.68 ± .01 2.46 ± .01 2.33 ± .03
A4 1.14 ± .02 1.13 ± .11 1.17 ± .02 0.98 ± .11 2.45 ± .29 0.86 ± .04 1.67 ± .18 1.16 ± .00 1.21 ± .09 0.94 ± .01 0.90 ± .01
CM 2.43 ± .05 2.46 ± .20 3.13 ± .10 2.53 ± .06 4.32 ± .41 2.14 ± .03 4.24 ± .29 2.58 ± .00 2.40 ± .02 2.10 ± .00 2.05 ± .03
GE 2.59 ± .09 2.47 ± .06 3.53 ± .23 2.63 ± .05 3.12 ± .17 2.93 ± .16 3.08 ± .07 3.54 ± .00 2.68 ± .01 2.43 ± .00 2.34 ± .03
ST 1.75 ± .12 1.07 ± .05 1.88 ± .08 1.61 ± .10 2.10 ± .12 1.12 ± .04 2.36 ± .06 1.31 ± .00 1.55 ± .03 0.82 ± .01 0.76 ± .00
LI 1.90 ± .01 0.71 ± .03 0.57 ± .01 0.55 ± .02 0.89 ± .02 0.36 ± .01 3.18 ± .09 4.92 ± .00 2.10 ± .01 0.28 ± .01 0.23 ± .01
CH 1.12 ± .06 1.23 ± .06 1.75 ± .08 1.01 ± .08 1.74 ± .08 0.91 ± .06 2.18 ± .07 1.02 ± .01 1.21 ± .00 0.88 ± .00 0.87 ± .00
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Table 21: MAE scores under the MNAR setting across different levels of missingness on the extra 17
datasets. Please refer to Table 9 for dataset names.

Dataset Mean Knn Svd Mice Spectral HI Gain Miracle Miwae Grape M3 -Impute

Missing 10%

AI 2.46 ± .12 1.93 ± .10 2.81 ± .19 1.83 ± .13 2.39 ± .33 0.68 ± .03 2.24 ± .03 1.70 ± .04 2.38 ± .03 0.75 ± .01 0.69 ± .02
BL 1.05 ± .05 1.07 ± .13 1.01 ± .18 0.62 ± .12 1.01 ± .12 0.56 ± .09 1.22 ± .05 1.34 ± .00 1.98 ± .06 0.39 ± .00 0.39 ± .00
WW 0.78 ± .04 0.41 ± .01 0.88 ± .04 0.51 ± .02 0.67 ± .05 0.45 ± .01 0.68 ± .00 0.49 ± .00 0.77 ± .00 0.44 ± .00 0.44 ± .00
IO 2.07 ± .05 1.10 ± .02 1.29 ± .04 1.41 ± .09 1.38 ± .01 1.24 ± .04 1.46 ± .04 5.45 ± .00 5.49 ± .12 1.17 ± .01 1.08 ± .00
BR 1.10 ± .02 0.50 ± .01 0.58 ± .01 0.26 ± .01 0.33 ± .01 0.28 ± .01 0.46 ± .01 1.34 ± .00 1.92 ± .01 0.31 ± .00 0.31 ± .00
IR 2.20 ± .12 1.21 ± .16 1.67 ± .16 0.89 ± .04 1.32 ± .03 0.91 ± .02 1.30 ± .05 2.79 ± .00 4.18 ± .09 0.75 ± .01 0.73 ± .01
DI 1.79 ± .13 1.51 ± .05 1.72 ± .12 1.13 ± .16 1.44 ± .09 1.02 ± .07 1.39 ± .02 2.74 ± .00 4.59 ± .09 1.20 ± .03 1.18 ± .01
PR 0.91 ± .03 0.32 ± .02 1.03 ± .09 0.27 ± .01 0.80 ± .08 0.21 ± .02 0.57 ± .02 0.25 ± .01 0.99 ± .04 0.19 ± .00 0.19 ± .00
SP 0.23 ± .01 0.15 ± .00 0.37 ± .02 0.20 ± .01 0.16 ± .00 0.18 ± .00 0.21 ± .01 0.18 ± .00 0.16 ± .00 0.16 ± .00 0.15 ± .00
LE 1.31 ± .02 0.34 ± .01 1.32 ± .02 0.90 ± .03 1.29 ± .04 0.50 ± .01 1.07 ± .01 0.74 ± .00 1.40 ± .01 0.44 ± .00 0.43 ± .00
AB 2.53 ± .12 2.06 ± .12 2.63 ± .11 2.04 ± .12 2.31 ± .03 1.95 ± .09 2.23 ± .05 3.43 ± .00 2.56 ± .03 1.83 ± .00 1.66 ± .02
A4 1.07 ± .08 1.05 ± .07 1.21 ± .09 0.84 ± .15 1.23 ± .15 0.65 ± .11 0.65 ± .11 0.79 ± .02 1.24 ± .02 0.86 ± .00 0.84 ± .00
CM 2.45 ± .08 2.19 ± .12 2.49 ± .06 2.06 ± .04 2.68 ± .10 1.74 ± .11 2.49 ± .04 2.07 ± .04 2.38 ± .00 1.91 ± .00 1.83 ± .00
GE 2.53 ± .12 2.06 ± .12 2.63 ± .11 2.04 ± .12 2.31 ± .03 1.95 ± .09 2.23 ± .05 3.43 ± .00 2.56 ± .03 1.84 ± .02 1.67 ± .00
ST 1.71 ± .05 0.54 ± .03 1.30 ± .02 0.71 ± .02 0.90 ± .00 0.60 ± .03 0.93 ± .04 0.71 ± .02 1.60 ± .01 0.35 ± .01 0.30 ± .01
LI 1.84 ± .01 0.20 ± .00 0.37 ± .00 0.05 ± .00 0.14 ± .00 0.06 ± .00 0.38 ± .00 5.62 ± .00 2.16 ± .02 0.11 ± .01 0.09 ± .00
CH 1.07 ± .04 0.87 ± .06 1.24 ± .05 0.60 ± .05 1.42 ± .04 0.45 ± .04 1.22 ± .16 0.49 ± .01 1.09 ± .01 0.37 ± .00 0.37 ± .00

Missing 30%

AI 2.36 ± .11 2.11 ± .27 2.98 ± .52 2.07 ± .14 2.64 ± .18 1.23 ± .04 2.21 ± .05 1.72 ± .00 2.47 ± .03 1.46 ± .03 1.46 ± .01
BL 0.98 ± .05 1.04 ± .12 0.98 ± .09 0.76 ± .17 1.40 ± .18 0.82 ± .18 1.09 ± .06 1.24 ± .00 1.99 ± .04 0.42 ± .00 0.41 ± .00
WW 0.82 ± .01 0.60 ± .02 0.82 ± .04 0.62 ± .02 0.88 ± .13 0.58 ± .05 0.69 ± .01 0.59 ± .01 0.72 ± .00 0.49 ± .00 0.49 ± .00
IO 2.04 ± .06 1.12 ± .03 1.36 ± .07 1.44 ± .07 1.46 ± .02 1.28 ± .02 1.55 ± .03 5.39 ± .00 5.66 ± .02 1.15 ± .01 1.06 ± .02
BR 1.11 ± .02 0.55 ± .02 0.60 ± .03 0.33 ± .02 0.41 ± .03 0.36 ± .03 0.62 ± .02 1.35 ± .00 2.05 ± .00 0.38 ± .00 0.36 ± .01
IR 2.06 ± .09 1.53 ± .52 1.66 ± .20 0.99 ± .11 1.35 ± .11 1.07 ± .07 1.26 ± .04 2.67 ± .00 3.98 ± .32 0.89 ± .02 0.87 ± .00
DI 1.77 ± .20 1.60 ± .17 1.93 ± .02 1.27 ± .16 1.51 ± .13 1.30 ± .19 1.43 ± .06 2.60 ± .00 4.62 ± .08 1.21 ± .01 1.19 ± .00
PR 0.93 ± .02 0.55 ± .05 1.17 ± .08 0.38 ± .05 1.66 ± .12 0.23 ± .01 0.60 ± .19 0.28 ± .06 0.96 ± .01 0.21 ± .01 0.21 ± .00
SP 0.23 ± .01 0.18 ± .01 0.40 ± .07 0.26 ± .02 0.16 ± .01 0.17 ± .00 0.18 ± .00 0.19 ± .00 0.15 ± .00 0.15 ± .00 0.14 ± .00
LE 1.32 ± .08 0.59 ± .05 1.56 ± .29 0.94 ± .01 1.95 ± .14 0.58 ± .07 1.30 ± .08 0.96 ± .01 1.48 ± .01 0.54 ± .01 0.52 ± .00
AB 2.49 ± .14 2.46 ± .11 2.67 ± .07 2.25 ± .06 2.55 ± .10 2.36 ± .13 2.37 ± .03 3.27 ± .00 2.60 ± .04 2.03 ± .01 1.89 ± .03
A4 1.01 ± .26 1.27 ± .13 0.99 ± .18 0.88 ± .15 1.98 ± .03 0.84 ± .22 0.81 ± .07 1.12 ± .06 1.35 ± .03 1.04 ± .00 1.02 ± .01
CM 2.37 ± .10 2.23 ± .03 2.54 ± .07 2.36 ± .13 2.95 ± .05 1.91 ± .07 2.13 ± .03 2.06 ± .00 2.15 ± .05 1.82 ± .01 1.71 ± .02
GE 2.49 ± .14 2.46 ± .11 2.67 ± .07 2.25 ± .06 2.55 ± .10 2.36 ± .13 2.37 ± .03 3.27 ± .00 2.60 ± .04 2.04 ± .02 1.88 ± .02
ST 1.75 ± .08 0.79 ± .13 1.58 ± .14 0.91 ± .11 1.24 ± .11 0.69 ± .04 1.27 ± .09 0.89 ± .04 1.56 ± .01 0.42 ± .00 0.39 ± .01
LI 1.85 ± .03 0.37 ± .00 0.38 ± .01 0.09 ± .00 0.22 ± .00 0.12 ± .01 0.62 ± .03 5.29 ± .00 2.21 ± .02 0.12 ± .01 0.12 ± .01
CH 0.95 ± .10 1.19 ± .14 1.52 ± .15 0.62 ± .14 1.69 ± .42 0.53 ± .06 1.09 ± .17 0.54 ± .02 1.06 ± .01 0.42 ± .00 0.42 ± .00

Missing 50%

AI 2.39 ± .11 2.37 ± .68 3.04 ± .23 2.35 ± .09 2.82 ± .08 2.02 ± .02 2.13 ± .11 2.17 ± .00 2.27 ± .03 1.86 ± .00 1.86 ± .00
BL 1.22 ± .23 1.24 ± .09 1.06 ± .31 0.87 ± .13 1.19 ± .41 0.94 ± .07 1.24 ± .04 1.39 ± .00 2.26 ± .03 0.77 ± .00 0.77 ± .00
WW 0.70 ± .07 0.78 ± .04 0.96 ± .08 0.72 ± .04 1.13 ± .10 0.74 ± .03 1.24 ± .04 0.73 ± .00 0.83 ± .02 0.65 ± .00 0.65 ± .00
IO 2.06 ± .03 1.20 ± .02 1.54 ± .02 1.61 ± .07 1.74 ± .04 1.43 ± .07 2.59 ± .15 5.43 ± .00 5.27 ± .01 1.18 ± .00 1.15 ± .00
BR 1.12 ± .03 0.66 ± .01 0.67 ± .03 0.46 ± .02 0.55 ± .03 0.43 ± .01 0.87 ± .09 1.40 ± .00 2.05 ± .02 0.44 ± .01 0.43 ± .01
IR 2.42 ± .09 1.58 ± .10 2.19 ± .26 1.30 ± .17 2.27 ± .05 1.38 ± .32 1.61 ± .23 3.10 ± .00 4.16 ± .30 0.96 ± .01 0.96 ± .01
DI 1.99 ± .04 1.70 ± .03 1.92 ± .07 1.69 ± .07 1.80 ± .19 1.39 ± .15 1.99 ± .07 2.86 ± .00 5.64 ± .04 1.60 ± .02 1.60 ± .00
PR 1.04 ± .10 0.66 ± .09 1.06 ± .03 0.45 ± .07 1.75 ± .17 0.30 ± .01 1.26 ± .15 0.40 ± .00 0.95 ± .01 0.25 ± .02 0.25 ± .00
SP 0.23 ± .00 0.19 ± .00 0.38 ± .03 0.23 ± .02 0.16 ± .02 0.19 ± .00 0.19 ± .01 0.20 ± .00 0.16 ± .00 0.17 ± .00 0.15 ± .00
LE 1.32 ± .02 1.26 ± .11 1.61 ± .04 1.08 ± .03 2.62 ± .10 0.92 ± .03 1.62 ± .15 1.24 ± .00 1.34 ± .02 0.72 ± .00 0.70 ± .01
AB 2.41 ± .06 2.47 ± .04 3.14 ± .23 2.34 ± .11 2.65 ± .19 2.37 ± .13 2.92 ± .22 3.63 ± .00 2.60 ± .01 2.23 ± .03 2.03 ± .02
A4 1.17 ± .09 1.25 ± .22 1.37 ± .26 0.85 ± .11 2.44 ± .19 0.75 ± .14 1.46 ± .10 1.17 ± .00 1.17 ± .02 0.88 ± .00 0.84 ± .00
CM 2.40 ± .07 2.34 ± .07 2.82 ± .22 2.30 ± .10 4.13 ± .24 1.90 ± .09 3.29 ± .27 2.51 ± .00 2.43 ± .02 2.10 ± .00 1.98 ± .03
GE 2.41 ± .06 2.47 ± .04 3.14 ± .23 2.34 ± .11 2.65 ± .19 2.37 ± .13 2.92 ± .22 3.63 ± .00 2.60 ± .01 2.19 ± .03 2.01 ± .05
ST 1.76 ± .09 0.96 ± .06 1.71 ± .10 1.27 ± .09 1.67 ± .07 0.85 ± .01 1.88 ± .07 1.17 ± .00 1.56 ± .02 0.63 ± .01 0.59 ± .01
LI 1.87 ± .01 0.52 ± .01 0.44 ± .01 0.18 ± .01 0.40 ± .01 0.21 ± .00 1.68 ± .08 4.39 ± .00 2.26 ± .02 0.20 ± .02 0.14 ± .01
CH 1.12 ± .12 1.11 ± .11 1.66 ± .11 0.88 ± .13 1.82 ± .23 0.80 ± .07 1.94 ± .26 0.78 ± .00 1.08 ± .02 0.68 ± .00 0.67 ± .00

Missing 70%

AI 2.36 ± .18 2.33 ± .43 3.26 ± .67 2.33 ± .09 2.84 ± .13 2.11 ± .12 2.25 ± .14 2.29 ± .00 2.28 ± .01 2.01 ± .02 1.99 ± .02
BL 1.22 ± .19 1.05 ± .23 1.25 ± .29 0.93 ± .13 1.36 ± .19 1.01 ± .08 1.16 ± .05 1.40 ± .00 2.29 ± .03 0.82 ± .01 0.82 ± .00
WW 0.79 ± .01 0.90 ± .02 0.96 ± .00 0.75 ± .01 1.47 ± .12 0.87 ± .02 1.53 ± .11 0.80 ± .00 0.84 ± .00 0.72 ± .00 0.71 ± .00
IO 2.07 ± .01 1.67 ± .08 2.11 ± .01 1.92 ± .05 2.29 ± .07 1.57 ± .02 4.02 ± .46 5.43 ± .00 5.27 ± .04 1.31 ± .01 1.28 ± .02
BR 1.15 ± .03 0.93 ± .04 0.79 ± .06 0.83 ± .09 0.75 ± .05 0.55 ± .01 1.16 ± .06 1.40 ± .00 1.97 ± .01 0.55 ± .00 0.55 ± .01
IR 2.46 ± .10 1.57 ± .18 2.21 ± .30 2.58 ± .99 2.78 ± .52 1.28 ± .16 1.69 ± .13 3.07 ± .00 4.13 ± .29 1.01 ± .01 1.01 ± .01
DI 1.86 ± .03 1.96 ± .13 2.06 ± .05 1.67 ± .17 2.45 ± .05 1.58 ± .10 2.41 ± .19 2.95 ± .00 5.01 ± .03 1.67 ± .02 1.66 ± .02
PR 1.04 ± .05 0.63 ± .02 1.19 ± .06 0.59 ± .17 1.17 ± .09 0.46 ± .01 1.44 ± .14 0.62 ± .05 1.00 ± .01 0.41 ± .00 0.41 ± .00
SP 0.23 ± .01 0.23 ± .00 0.38 ± .00 0.23 ± .00 0.17 ± .00 0.21 ± .00 0.19 ± .03 0.22 ± .00 0.16 ± .00 0.17 ± .01 0.16 ± .00
LE 1.33 ± .04 1.48 ± .03 1.75 ± .11 1.25 ± .01 3.05 ± .01 1.21 ± .02 1.63 ± .08 1.24 ± .04 1.34 ± .02 0.98 ± .00 0.98 ± .00
AB 2.61 ± .07 2.51 ± .07 3.52 ± .17 2.56 ± .04 2.99 ± .10 2.36 ± .35 3.13 ± .06 3.55 ± .00 2.66 ± .02 2.47 ± .02 2.34 ± .03
A4 1.13 ± .01 1.20 ± .10 1.53 ± .30 1.04 ± .13 2.55 ± .09 1.09 ± .13 1.60 ± .19 1.18 ± .00 1.22 ± .09 0.95 ± .00 0.91 ± .01
CM 2.38 ± .13 2.52 ± .07 3.16 ± .17 2.38 ± .11 4.62 ± .24 2.15 ± .06 4.00 ± .23 2.55 ± .00 2.40 ± .02 2.12 ± .04 2.02 ± .02
GE 2.61 ± .07 2.51 ± .07 3.52 ± .17 2.56 ± .04 2.99 ± .10 2.36 ± .35 3.13 ± .06 3.55 ± .00 2.66 ± .02 2.46 ± .02 2.33 ± .05
ST 1.74 ± .11 1.45 ± .03 2.05 ± .12 1.55 ± .12 2.16 ± .05 1.25 ± .09 2.35 ± .15 1.31 ± .00 1.58 ± .03 0.83 ± .01 0.78 ± .01
LI 1.89 ± .01 0.71 ± .01 0.60 ± .05 0.62 ± .03 0.92 ± .01 0.37 ± .01 3.67 ± .29 4.93 ± .00 2.09 ± .01 0.27 ± .02 0.24 ± .00
CH 1.22 ± .05 1.27 ± .07 1.81 ± .06 0.99 ± .06 1.95 ± .11 0.91 ± .03 2.02 ± .10 1.02 ± .03 1.20 ± .00 0.89 ± .00 0.88 ± .00
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B ADDITIONAL EXPERIMENTS DURING THE REBUTTAL PERIOD
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Figure 6: MAE scores and feature importance scores calculated from FCU when imputing two
missing entries in a sample. FCU dynamically adjusts the importance of observed features within the
sample when imputing different feature values.

In this section, we provide further clarification on the working mechanism and effectiveness of the
Feature Correlation Unit (FCU) and the Sample Correlation Unit (SCU) in M3-Impute, supported by
illustrative experiment results. In Section B.1, we show that the FCU dynamically adjusts the feature
correlations by considering both the imputation targets and the missingness patterns. In Section B.2,
we highlight that the SCU introduces an improved measure of sample correlations which results in
enhanced imputation performance compared to the one with the standard cosine similarity measure.

B.1 FCU ADJUSTS FEATURE IMPORTANCE WHEN IMPUTING DIFFERENT TARGETS

The FCU in M3-Impute is designed to fully exploit feature correlations when imputing a missing
entry by adjusting the importance of observed features. In the following experiments, we demonstrate
how the FCU adaptively weighs observable features based on both the imputation targets and the
missingness patterns across different samples. Specifically, we first show that when imputing different
missing values within a sample, the FCU adjusts the importance of observable features according to
the specific imputation targets. In addition, we demonstrate that when imputing missing values in
the same feature across different samples, the FCU adaptively learns the importance of observable
features by considering the unique missingness patterns of each sample.

Suppose we are to impute the missing value of feature f for a sample s. We compute the feature-wise
similarities between f and the observed features in s, which are given by (H⊤

Fhf ) ⊙ m′
s, as in

Equation 3 . We then take the absolute values of the feature-wise similarities and normalize the
values such that their sum becomes one. We here use the resulting normalized scores to represent the
importance of each observed feature in s when imputing the feature f .

In Figure 6, we show a heatmap on how the FCU dynamically adjusts the importance of observed
features when imputing different missing feature values in a sample from the Wine dataset. The
sample contains two missing values in Feature 2 and Feature 3. Missingness is represented by black
cells, while the target feature value to impute at each step is marked with a star. Each row of the
heatmap represents the importance scores of observable features when imputing the corresponding
target feature value on the same row, which are derived from FCU. In the first row, when imputing
the second feature (volatile_acidity), the FCU identifies the fourth feature (residual_sugar) and
the last feature (alcohol) as the most important features, while assigning low importance to other
observable features such as fixed_acidty (feature 1) and density (feature 8). This makes sense
as fixed acids such as tartaric acid, malic acid, and citric acid are non-volatile and do not easily
evaporate. In addition, density is primarily determined by sugar and alcohol levels, with no direct
correlation to volatile acidity. Consequently, these two features offer limited information in imputing
the missing feature volatile_acidity. In the second row, when imputing the third feature (citric_acid),
the FCU considers the first feature (fixed_acidity) to be more important than the other features such
as free_sulfur_dioxide (Feature 6) and sulphates (Feature 10). This again demonstrates that the FCU
can effectively adjust the importance of observed features within the same sample when imputing
different missing values.

In addition, we fix the target imputation feature and analyze how the FCU adjusts feature importance
based on the missingness patterns across different samples. As shown in Figure 7, each row represents
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Figure 7: MAE scores and feature importance for the same imputation target across different samples.
The number in parentheses indicates the sample index. FCU dynamically adjusts the importance of
observed features under varying missingness patterns.

a different sample, and the missingness patterns vary in different samples. For the first sample (first
row), when imputing the missing value in the first feature (fixed_acidity), the FCU assigns the
highest importance to the tenth feature (sulphates). In the second sample, where the tenth feature
is missing, the FCU considers the fourth feature (residual_sugar) as the most important feature for
imputation. For the third sample, both the fourth and tenth features are observed. Thus, they have
similar importance, followed by the third feature (citric_acid). In the fourth sample, when the tenth
feature is missing, the FCU considers the third and fourth features as the most important features.
Finally, for the fifth sample, where both the fourth and tenth features are missing, the FCU assigns
the highest importance to the third feature (citric_acid) when imputing the missing value in the first
feature (fixed_acidity). This example clearly demonstrates that the FCU is effective in dynamically
assigning feature importance under varying missingness patterns across different samples.

B.2 SCU IS SUPERIOR AT CAPTURING SAMPLE CORRELATIONS

A common approach to compute sample correlations would be to use the dot product or cosine
similarity between their embedding vectors. This approach, however, fails to take into account the
missingness pattern in a sample. It also does not consider the fact that different observed features are
of different importance to the target feature to impute when it comes to measuring the similarities.
To address these limitations, in SCU, we introduce the mutual sample masking mechanism and
integrate it with the FCU to jointly consider the commonly observed features between samples and
their importance in imputing different targets. While the details of SCU are explained in Section 3.4,
the key computation of pairwise similarity in SCU is given by Equation 6.

We first introduce a variant of M3-Impute, denoted as “SCU (cos sim)”, in which we change
Equation 6 with cosine similarity while keeping the remaining computations in M3-Impute untouched.
The updated equation is now defined as:

sim(s, p | f) = cos(hs, hp), (13)
where s and p represent two samples, and hs and hp denote their respective sample embeddings. For
imputation, SCU (cos sim) computes the similarities between the target sample and a subset of peers,
as done in SCU. We below evaluate the impact of the peer similarities by SCU and SCU (cos sim) on
the imputation performance, where the averaged absolute similarity score is used per imputation.

In Figure 8, we summarize the MAE scores of M3-Impute with our SCU and SCU (cos sim) under
different peer similarity scores when imputing all the missing values in the Wine dataset. The MAE
scores of both methods decrease as peer similarity increases. This is intuitive, as similar peers can
provide more relevant information for imputation, resulting in lower imputation errors. However,
M3-Impute consistently achieves lower mean MAE scores, demonstrating the effectiveness of our
novel similarity measure.

To better quantify the improvements achieved by the enhanced similarity measure in SCU, we present
comprehensive results in terms of MAE scores for M3-Impute and SCU (cos sim) in Table 22.
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Table 22: MAE scores of SCU (cos sim) and SCU in M3-Impute under the MCAR setting with 30%
missingness.

Steel Naval Breast Airfoil Concrete Ionosphere Yacht Abalone

SCU (cos sim) 0.46 0.07 0.38 1.16 0.75 1.06 1.37 1.88
M3-Impute 0.39 0.06 0.36 1.09 0.71 1.01 1.33 1.84
Improv. Ratio 14.47% 10.04% 6.25% 6.03% 5.71% 4.72% 2.92% 2.13%

Wine CMC Diabetes Housing Energy Power German Kin8nm

SCU (cos sim) 0.61 1.84 1.31 0.60 1.32 1.00 1.88 2.50
M3-Impute 0.60 1.81 1.29 0.59 1.31 0.99 1.87 2.50
Improv. Ratio 2.12% 1.63% 1.53% 1.01% 0.76% 0.70% 0.53% 0.00%
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Figure 8: MAE scores and peer similarity scores measured by two methods. Data are missing under
the MCAR setting with 30% missingness.

The results show that M3-Impute consistently outperforms SCU (cos sim), with up to 14.47%
improvement on the steel dataset. These findings highlight the effectiveness of the proposed SCU,
which incorporates the mutual sample masking mechanism and the explicit consideration of feature
importance through FCU to measure peer similarity more effectively.
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