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ABSTRACT

Unlike the foundation model scaling laws seen in natural language processing and com-
puter vision, biological foundation models scale relatively poorly. For example, the ESM-
2 family of protein language models plateaus at 650M-3B parameters on ProteinGym
benchmarks. We address this limitation by introducing Reverse Distillation, a principled
framework that decomposes large protein language model representations into orthogonal
subspaces guided by smaller models of the same family. We hypothesize that this de-
composition matches the natural hierarchy of protein properties, where broad features like
secondary structure are robustly captured by compact, smaller models while the residual
capacity of larger models specializes in protein-family specific functions. Our method
is theoretically grounded and enables monotonic scaling—Ilarger reverse-distilled models
consistently outperform their smaller counterparts, overcoming the scaling plateau. More-
over, on ProteinGym benchmarks, reverse-distilled ESM-2 variants broadly outperform
their respective baseline models at the same embedding dimensionality. Our approach of-
fers a generalizable framework for disentangling hierarchical feature spaces in foundation
model embeddings, with potential applications across biology and other domains where
scaling challenges persist.

1 INTRODUCTION

Protein language models (PLMs) have emerged as powerful representation learners, capturing evolutionary
patterns from millions of sequences and enabling unprecedented capabilities in structure prediction|Lin et al.
(2023)), function annotation [Yu et al.| (2023, and protein design [Ferruz et al.| (2022); |Devkota et al.| (2024)).
These models learn rich protein representations through self-supervised training on vast sequence databases.
However, unlike the predictable scaling laws observed in natural language processing Kaplan et al.| (2020);
Hoffmann et al.| (2022)), PLMs—and more broadly, biological foundation models—exhibit counterintuitive
scaling behavior: larger models often underperform smaller ones on functional prediction tasks |Li et al.
(2024). For example, on ProteinGym deep mutational scanning (DMS) benchmarks, the ESM-2 family
peaks at 650M-3B parameters, with the 15B model showing degraded performance.

This unexpected scaling behavior creates fundamental challenges. Given models M1, My with |Ms| >
| M| parameters, we observe non-monotonic performance: we often find the performance of the smaller
models outperform the bigger models on downstream tasks. Moreover, we cannot reliably predict which
biological tasks will exhibit poor scaling behavior, leading to difficulties in model selection for any spe-
cific task. A related limitation of PLMs is that embeddings across model scales are unrelated. In contrast,
Matryoshka-style embeddings [Kusupati et al.| (2024) in natural language processing are structured such
that their prefixes are also directly usable. With these embeddings, prefixes of an overall embedding are
themselves functional, albeit with some performance degradation. This enhances computational and storage
efficiency, enabling an “embed once, reuse prefixes as needed” paradigm. However, current PLM represen-
tations do not offer this advantage: representations of dimension k cannot be truncated to dimension k' < k
while maintaining smooth performance degradation.
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We interpret these scaling behaviors through a bias-variance lens. We hypothesize that small PLMs, con-
strained by capacity, preferentially encode frequent, low-complexity biological regularities, e.g., secondary
structure propensities, hydrophobicity etc. As capacity grows, models can represent rarer, higher-order phe-
nomena: family-specific patterns, epistatic interactions, allosteric signals, dynamics etc. However, when
these specialized signals are entangled with universal feature{] in a single representational space, they in-
crease variance in downstream linear evaluations that form the basis of most task-specific predictors. This
entanglement may explain why naive scaling fails: task-irrelevant specialized features add noise to the uni-
versal patterns that drive performance on most benchmarks.

We introduce Reverse Distillatiorﬂ a principled framework that systematically decomposes large PLM
representations into interpretable, orthogonal subspaces anchored by smaller models. Unlike traditional
knowledge distillation that compresses large models into small ones, our method identifies what unique
information each model scale contributes. The key insight is structural: by treating smaller model represen-
tations as a basis and extracting orthogonal residuals, we prevent destructive interference between universal
and specialized features.

Formally, given models M, and M, where |M,| < |M,|, with embedding dimensionality k, < k,,
we decompose representations as H, ~ [H,, H,.s] where H, € Rxkr captures universal patterns and
H,.; € R (kp=kr) captures specialized information orthogonal to H,.. We also prove this decomposition
is MSE-optimal among all k,-dim representations that fully encompass M, (i.e., the cylinder set of M, in
RF»),

Our contributions are:

* Hierarchical Decomposition: We show how to transform a family of PLM models such that they
follow a hierarchical structure where each higher scale adds orthogonal information. Our decom-
position is also guaranteed to approximate the original representation space well.

* Matryoshka-style Embeddings and Monotonic Improvement: Reverse-distilled embeddings are
constructed such that nested embeddings of dimensionality d contain prefixes of sizes d; < dgy <
ds < d such that each prefix is the reverse-distilled embedding of the corresponding dimensionality.
Our decomposition thus provides controlled performance degradation as a function of embedding
size.

 Scaling Consistency: Reverse distillation scales nearly always, i.e., larger reverse-distilled models
consistently perform better than smaller ones.

¢ Improvement over Baseline: For the ESM-2 family, reverse-distilled models of the same embed-
ding size (e.g., 1280 for ESM-2 650M) broadly outperform their corresponding baselines.

2  METHOD

Motivation and Intuition The ESM-2 family spans embedding dimensions from 320 (8M parameters) to
5120 (15B parameters), providing a systematic testbed for analyzing PLM scaling behavior. Each model
learns residue co-evolution patterns through self-attention mechanisms, but capacity constraints induce dif-
ferent feature distributions across model scales. Small models operate under severe capacity constraints.
To minimize training perplexity, these models must prioritize the most frequently occurring co-evolutionary
patterns—those that maximize compression across the protein sequence distribution. We hypothesize these
patterns correspond to universal protein properties: secondary structure propensities, hydrophobicity pat-
terns, and conserved structural motifs. The 8M model lacks sufficient capacity to represent rare, family-

"We use “universal” and “specialized” as convenient descriptors, though these are necessarily approximations. The
boundary between these categories is fluid and context-dependent, but the distinction is useful for discussing scaling
behavior.

2The term “reverse distillation” has appeared in certain teacher-student architectures in ML literature. Our usage—
decomposing large models using smaller ones as a basis—is distinct and we believe intuitive from context.
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specific patterns; its limited parameters are allocated to features with the highest marginal utility across the
training distribution.

Large models possess capacity for both universal and specialized patterns. They can encode enzyme-
specific catalytic motifs, protein family-specific allosteric couplings, and higher-order interaction patterns.
However, as|Li et al.| (2024) demonstrated, downstream performance often relies on early, low-level features
rather than additional capacity; consequently, linear probes on larger, mixed representations frequently fail
to isolate task-relevant signal from task-irrelevant variance.

Our key intuition is that smaller models provide a natural basis for disentanglement. A smaller model
from the same family—trained on identical data with the same architecture—produces representations bi-
ased toward universal features due to capacity constraints. By computing the orthogonal complement of the
smaller model’s subspace within the larger model’s representation, we achieve partial separation of universal
and specialized features without requiring explicit feature identification. We employ linear decomposition
throughout our framework to maintain interpretability. Linear methods reveal directly accessible informa-
tion in representations without confounding from nonlinear prediction heads, and enable precise attribution
of information to specific model scales. While nonlinear methods might achieve higher downstream per-
formance, linear decomposition provides the analytical tractability necessary to characterize how biological
information distributes across the model hierarchy.

2.1 PROBLEM FORMULATION

Consider a hierarchy of protein language models M = {My, Ms, ..., M,,} ordered by parameter count.
Each model M; maps sequences to embeddings:

M; : P* — R™%i
where P is the amino acid alphabet, n varies per sequence, and k1 < k2 < ... < k,, are embedding
dimensions.

For the ESM-2 family, this hierarchy exists naturally: 8M (k; = 320), 35M (k2 = 480), 150M (k3 = 480),
650M (k4 = 1280), 3B (k5 = 2560), 15B (kg = 5120).

While our framework does not require monotonically increasing dimensions—appropriate dimensionality
reduction via PCA or variational autoencoders could enable reverse distillation between arbitrary model
pairs—the ESM-2 family’s architecture provides this structure directly, simplifying our implementation.

For a ProteinGym DMS Dataset D = {s;}¥, with sequence lengths {n;}, the total amino acid positions
L= vazl n; represents our effective sample size for learning linear relationships. This formulation (treat-
ing all positions as samples) enables data-efficient subspace learning. For training, we used N = 10, 000
sequences sampled randomly from UniRef50; all sequences had 30% or lower sequence identity to datasets
used in Section 3. Due to the simple linear transforms involved in this work, this /N was sufficient: as an
ablation, we computed the difference between the experimental results obtained from the reversed distilled
models trained on 10,000 vs 1,000 sequences; they differed by less than 0.01%.

Reverse Distillation Decomposition

Definition 1 (Reverse Distillation Decomposition). Given models M, and M, where r < p, we decompose
the representation space R™**v into orthogonal subspaces:

Sy =S @ Syes
where S, =2 R"*kr preserves M,.’s representations and Sy¢s = R (kp—kr) captures orthogonal residual
information.
We express any representation H), ¢ R™¥F» as:
H, ~ [H,, Hys]

where H, € R™**r comes directly from the smaller model M,., and H,., € R"*(k»=kr) represents the
unique contribution of the larger model.
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We preserve entire smaller models rather than selecting subsets of their dimensions. This choice, en-
abled by the natural progression of embedding sizes (320—640—1280—2560—5120 in ESM-2), main-
tains interpretability—we know H,. represents the complete “universal” feature space learned by the smaller
model, making the residual space S,..; directly interpretable as specialized features.

2.2 ALGORITHMS

Algorithm [T] presents our training procedure.
Algorithm 1 Reverse Distillation Algorithm (Pre-training)

Require: Dataset D = {s;}¥.; where |s;| = n;, models M., M, withr <p
Ensure: Subspace decomposition matrices W*, V..,

1: Phase 1: Compute Representations

2: fori =1to N do

3 HY = M,(s;) € R"<k {Variable length n;}

4 HY = My(s;) € Rixks

5: end for

6: Phase 2: Learn Linear Mappings

7: Define total length: L = Y2 | n;
8: Stack representations: H, = vstack(H", ..., HMN)) e RLxkr
9: Stack representations: ﬁp = vstack(HZ(jl), cee HI(,N)) € RExkp
10: Solve: W* = arg minw | H, — H,W|%
11: Compute residuals: R = H, — H,W* € REXF»
12: Phase 3: Subspace Identification
13: Apply SVD: R = UXVT
14: Select top (k, — k) components: V,..s = V[:,1: (k, — k)]
15: return W*, V.

Algorithm [2| shows inference. The decomposed representation H,.; = [H,, H,.s] is Matryoshka by
construction—prefixes correspond to valid smaller model outputs, enabling adaptive compute at deployment.

Algorithm 2 Reverse Distillation Inference

Require: New sequence s with |s| = n, learned matrices W*, V.., models M,., M,
Ensure: Decomposed representation H,.q € R™**»

H, = M,(s) € R™*" {Smaller model embedding}

H, = M,(s) € R"**» {Larger model embedding}

Hyreqa = HHW* € R"™*F» {Predicted large model embedding}

R = H, — Hpreq € R™*» {Unexplained residuals}

Hyes = RV, € R (kp—kr) {Projected residuals}

H,q = [H,, H,.s] € R"*» {Concatenate reference + residual }

return H,

AN A ol

Algorithm [3| extends to entire hierarchies. Chaining reveals hierarchical structure where each scale con-
tributes orthogonal information that cannot be linearly predicted from smaller models.

Theoretical Analysis Let M, C R*" be the manifold spanned by embeddings of M,.. Consider the set of
all k,-dimensional representations that preserve M,.’s embeddings in their first &,. coordinates:

C.={[H,,X]: H. € M,, X € REX(ko=kr)y
Our decomposition H,.; = [H,, H,.s] minimizes reconstruction error within this constrained space:

Theorem 1 (Optimal Constrained Approximation). Let H, » € REXF and H, € RY**r be stacked represen-
tations from models M, and M, respectively, where r < p. Among all representations of the form [H,, X|
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Algorithm 3 Chained Reverse Distillation

Require: Dataset D, model hierarchy { M1, ..., M,,}
Ensure: Decomposition components {W;, V,;}7,

I: Initialize: HY) = My (D), kL) = &y

2: for v =2tomdo

33 H; = M;(D)
Learn predictor: W; = arg minw || H; — Hite VW2,
Compute residuals: R; = H; — Hio VW,
Apply SVD: R; = U; 2, VT
Select components: V; = V;[:,1: (k; — kéi;”)]
Update: HY. = [HSe V), R V)]

9:  Update: kt(fc)c =k;
10: end for
11: return {W,, V;}",

® Nk

where X € REX(ko=kr) the representation H,q = [ﬁT,HTES] with H,.s derived from the top (k, — k)
singular vectors of the residual R = H, — H, W™ minimizes:
min H, — [H,, X]A|?
min |, — [, X]AJ;
Proof. The proof directly follows from the Eckart-Young theorem. The optimal linear predictor is W* =
(HI'H,)"'HT H,, minimizing the reconstruction error over all W € R¥**k»_ The residual R = H,, —

H,W* contains information orthogonal to H,.. For R = UX VT, the optimal rank-(k, —k,) approximation
uses the top (k, — k) singular vectors.

3 EXPERIMENTS
3.1 INITIAL EXPLORATION OF MODEL CHAIN CONFIGURATION

We began by investigating the optimal chaining of small models into larger models. For three ProteinGym
DMS datasets, we evaluated a range of chain configurations. Let K = {ko, k1, ..., k,} denote the n + 1
model sizes from a model family (for ESM-2: K = {8M,35M,150M,650M,3B}). For a target embed-
ding k; with ¢ € [0, n], the chain configuration was defined as follows:

1. for each k; € [0,n] with ¢ < t, a direct chain k; — k;
2. longest chain: kg — ko — -+ = k

As shown in Table 1, a consistent trend emerged in which longer incremental chains yielded improved
performance. Consequently, we concentrated our comprehensive experiments on the results obtained from
reverse distillation of the two largest models.

In the rest of the paper, we denote the chain kgpy — - - - — kgsoas as rd.650 and the chain kgpy — -+ —
ksp as rd.3B.

3.2 PROTEINGYM DMS ANALYSIS

For a comprehensive analysis, we obtained ProteinGym datasets with at least one double- or multi-mutation
variant. We excluded datasets with fewer than 100 single-mutation variants, to ensure that our evaluation es-
timates were reliable. Given an embedding scheme, for each protein in the dataset, we loaded the embedding
of the wild-type sequence and the embeddings of the mutated sequence. For each mutation, we computed
the embedding difference vector between the mutated sequence and the corresponding wild-type sequence
at the mutated position, feeding it into a ridge regression classifier. For rows with multiple mutations, the



Under review as a conference paper at ICLR 2026

Table 1: Test Spearman correlation for ESM models

ARGR_ECOLI DN7A _SACS2 ILF3_HUMAN
ESM Models Tsuboyama_2023_.1A0Y  Tsuboyama_2023_1JIC  Tsuboyama_2023_2L33
SM 0.771 0.746 0.670
35M 0.767 0.806 0.692
rd: 8—35M 0.776 0.793 0.701
150M 0.799 0.786 0.760
rd: 35—150M 0.811 0.791 0.772
rd: 8—150M 0.820 0.792 0.779
650M 0.834 0.868 0.712
rd: 8—650M 0.849 0.878 0.765
rd: 35—650M 0.835 0.881 0.759
rd: 150—650M 0.845 0.866 0.751
rd: 8—35—150—650M (rd: 650M) 0.858 0.867 0.786
3B 0.845 0.880 0.749
rd: 8—3B 0.852 0.898 0.780
rd: 35—3B 0.844 0.894 0.777
rd: 150—3B 0.853 0.886 0.775
rd: 650M—3B 0.859 0.880 0.751
rd: 8—35—150—650—3B (rd: 3B) 0.873 0.890 0.801

differences are first averaged across all mutated positions. We fitted the ridge regression on 80% of the
single-mutational variants using leave-one-out cross-validation. The fitted model was used to predict for all
multiple-mutants and the remaining single-mutant cases. Note that since rd.650M is a prefix of rd.3B by
construction (the first 1280 dimensions are identical), any cases where rd.3B underperforms rd.650M likely
reflect ridge regression artifacts rather than representational limitations.

Table 2: ESM - Model Performance Comparison

% ProteinGym DMS Datasets where one
ProteinGym DMS Datasets # model outperforms another

rd.650M > 650M rd.3B > 3B | 3B > 650M rd.3B > rd.650M
ProteinGym DMS Datasets with 1 and 2 mutations

1 mut 28 64.28% 89.28 % 57.14% 96.42%
2 mut 28 64.28% 71.42% 53.57% 71.00%
ProteinGym DMS Datasets with >2 mutations

1 mut 6 66.66 % 50.00% 100.00 % 100.00 %
2 mut 6 66.66% 83.33% 50.00% 100.00%
3 mut 6 66.66 % 66.66 % 50.00% 100.00%
4 mut 6 66.66 % 66.66 % 50.00% 88.33%

For each ProteinGym DMS dataset, we computed the Spearman correlation between our predicted scores
and the ground truth; we followed the ProteinGym creators in our choice of the Spearman metric. In Tables
2 and 3, we report an estimated per-dataset measure of improvement, asking “in how many datasets does
model M outperfom Ms” along with the mean and standard deviations of these correlations for the ESM-2
family of models as well as their reverse-distilled version.
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Table 3: ESM - Test Spearman Correlation Results

# Test Spearman correlation
ProteinGym DMS Datasets (mean =+ std)
650M rd.650M | 3B rd.3B

ProteinGym DMS Datasets with 1 and 2 mutations

1 mut 28 0.881 (4 0.040)  0.888 (= 0.045) | 0.882 (£ 0.040)  0.896 (£ 0.040)
2 mut 28 0.684 (£ 0.13) 0.707 (£ 0.11) 0.689 (£ 0.12) 0.720 (£ 0.10)
ProteinGym DMS Datasets with >2 mutations

1 mut 6 0.445 (£ 0.30) 0.427 (£ 0.36) 0.520 (£ 0.25) 0.470 (£ 0.33)
2 mut 6 0.520 (£ 0.21) 0.547 (£ 0.20) 0.546 (£ 0.21) 0.585 (£ 0.21)
3 mut 6 0.509 (£ 0.14) 0.506 (£ 0.13) 0.515 (£ 0.13) 0.548 (£ 0.15)
4 mut 6 0.492 (£ 0.12) 0.466 (£ 0.12) 0.484 (£ 0.12) 0.496 (£ 0.13)

Additional Evaluations

We evaluated our reverse-distilled models on BioMap datasets where the predic-

tion task directly corresponded to structural and functional features: metal ion binding, localization pre-
diction, fold prediction and SSP 3. Training was analogous to the previous setting. The reverse-distilled
models outperformed the base models in all cases and demonstrated consistent scaling, with rd.3B always
outperforming rd.650M.

Inference time On an Nvidia A6000 GPU, embedding a protein sequence (mean length = 536) took 0.09s
and 0.249s for the ESM-2 650M and 3B models respectively. Even though rd.650M involves four ESM
model-invocations (8M, 35M, 150M and 650M) it only took 2.95x the time (=0.278s) as the smaller models
have faster inference. Similarly, rd.3B makes five model-invocations but took only 2.32x (=0.579s) the time
compared to baseline ESM-2 3B. Thus reverse distillation does not have a prohibitive inference overhead.
We also note the prefix structure of the embeddings that enhances reusability.

Table 4: ESM-2 on BioMap

Dataset 650M rd:650M 3B rd:3B
SSP Q3 0.666 0.683 0.662  0.706
Metal Ion Binding 0.512 0.519 0.573  0.576
Fold Prediction 0.640 0.642 0.655  0.655
Localization Prediction  0.692 0.699 0.691 0.722

4 RELATED WORK

ProteinGym analyses argue that performance gains plateau around the 1-4B range |Notin| (2025) and that
hybrids leveraging MSAs/structure often win on zero-shot fitness, indicating a mismatch between current
pretraining objectives and many downstream tasks. Li et al. show that improvements with scale are largely
task-dependent—structure prediction aligns with pretraining, but many other tasks draw mainly on features
learned early, so linear probes on large, mixed representations struggle to isolate task-relevant signal |Li
et al.| (2024). Zhang et al. introduced the categorical Jacobian and estimated that an ESM-2 3B model
delivers contact-recovery signals comparable to the 15B variant, reinforcing diminishing returns past a few
billion parameters/Zhang et al.|(2024). Consistent with this, Vieira et al. find medium-sized models (approx.
600-650M) perform competitively in realistic transfer settings|Vieira et al.|(2025)). Recently, Hou et al. link
downstream variant-effect accuracy to an intermediate model perplexity band (roughly “medium” pseudo-
/perplexity): models that are too uncertain or too certain both degrade discrimination, which helps explain
why very large models can underperform Hou et al.|(2025).

Several works have analyzed the structure and redundancy of protein representations. [Lu et al.| (2025)
show that embeddings can be significantly compressed along both sequence length and feature dimensions
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without losing predictive power. Devkota et al.| (2024)) provide complementary evidence for representational
redundancy through alternative compression schemes. These compression results suggest that large PLMs
learn representations with substantial redundancy, motivating approaches that can selectively extract and
combine the most informative components across model scales.

Traditional knowledge distillation Hinton et al.| (2015) focuses on transferring knowledge from large
teacher models to smaller student models. However, our approach is fundamentally different: instead of
compressing a large model into a small one, we systematically decompose large representations to under-
stand and leverage the unique contributions of each model scale. Recent work on model combination Worts-
man et al.| (2022) and ensemble methods provides related techniques, but typically lacks the theoretical
guarantees and systematic subspace analysis that our approach provides.

We note that this approach is similar to but distinct from methods that inspect individual attention heads in
large models (“BERTology”) or seek feature interpretability via sparse autoencoders (SAEs). Attention-head
analyses probe what heads encode without decomposing the representation itself|[Rogers et al.| (2020); Clark
et al.| (2019); |Vig et al| (2021), while SAE studies in proteins aim to enumerate latent features explicitly,
e.g., Gujral et al. or Adams et al. Gujral et al.| (2025); |Adams et al.| (2025). However, mapping SAE latents
to task-relevant biological features generally demands heavy manual annotation; our method avoids this by
operating implicitly, without pre-defining or cataloging features.

5 CONCLUSION

We introduce reverse distillation, a principled method for addressing scaling challenges in protein language
models (PLMs) through structured subspace decomposition. This approach not only provides theoretical
guarantees for the quality of approximation but also offers practical, parameter-efficient implementation
benefits. By shifting the focus from “when do large models help?” to ”how can we systematically extract
and combine the unique contributions of models at different scales?”, our work opens up new research
avenues in representation analysis and lays the groundwork for more effective PLM scaling strategies.

The success of our linear decomposition method indicates that many scaling challenges in PLMs result

from inefficient use of representational capacity rather than fundamental limits in model expressiveness. By
providing structured ways to combine multi-scale representations, we enable better utilization of computa-
tional resources while highlighting more efficient scaling paradigms.
Limitations and Future Work To further advance this research, future work will explore several key di-
rections. We plan to investigate non-linear scaling methods to capture more complex relationships between
model representations, moving beyond our current linear approach. Additionally, we will explore enhanced
dimensionality reduction techniques. For instance, we could first reduce the dimension space of the ESM2-
8M model, a strategy that would also be valuable for other models using the same embedding dimension for
different model sizes, allowing our approach to remain effective across various architectures. We also aim
to overcome GPU memory constraints to include larger models, specifically by integrating the ESM2-15B
model, which is currently not included, into our framework.

To facilitate generative use-cases, we plan to use parameter-efficient fine-tuning (PEFT) methods, such
as LoRA, to finetune a large model against the reverse distilled embeddings. This would provide a more
efficient pipeline for downstream applications without needing the original large models. Additionally,
we will explore the effect of reverse distillation on other biological foundation models beyond ESM-2 to
test the adaptability and generalizability of our approach. This includes investigating other PLMs (such
as autoregressive models like Progen) as well as models for genomics and drug discovery. Furthermore,
we will explore the application of reverse distillation to foundation models outside the biological domain,
such as those for natural language processing or computer vision. The core principle of our method—
leveraging a smaller model to systematically extract and combine the contributions of larger models—might
be a fundamental property of models in general, not just those in biology. This broader exploration could
reveal new insights into model scaling and representation learning that are applicable across diverse scientific
and technological domains, highlighting the universal potential of our approach.
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6 REPRODUCIBILITY STATEMENT

To facilitate easy verification and replication of our results, we have modularized our source code, added
README documentation as well as example invocation scripts. We also provide information on how to
train the reverse distillation models from scratch. We will share our code during the discussion period of the
conference.
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