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ABSTRACT

Unlike the foundation model scaling laws seen in natural language processing and com-
puter vision, biological foundation models scale relatively poorly. For example, the ESM-
2 family of protein language models plateaus at 650M-3B parameters on ProteinGym
benchmarks. We address this limitation by introducing Reverse Distillation, a principled
framework that decomposes large protein language model representations into orthogonal
subspaces guided by smaller models of the same family. We hypothesize that this de-
composition matches the natural hierarchy of protein properties, where broad features like
secondary structure are robustly captured by compact, smaller models while the residual
capacity of larger models specializes in protein-family specific functions. Our method
is theoretically grounded and enables monotonic scaling—larger reverse-distilled models
consistently outperform their smaller counterparts, overcoming the scaling plateau. More-
over, on ProteinGym benchmarks, reverse-distilled ESM-2 variants broadly outperform
their respective baseline models at the same embedding dimensionality. Our approach of-
fers a generalizable framework for disentangling hierarchical feature spaces in foundation
model embeddings, with potential applications across biology and other domains where
scaling challenges persist.

1 INTRODUCTION

Protein language models (PLMs) have emerged as powerful representation learners, capturing evolutionary
patterns from millions of sequences and enabling unprecedented capabilities in structure prediction (Lin
et al., 2023), function annotation (Yu et al., 2023), and protein design (Ferruz et al., 2022; Devkota et al.,
2024). These models learn rich protein representations through self-supervised training on vast sequence
databases. However, unlike the predictable scaling laws observed in natural language processing (Ka-
plan et al., 2020; Hoffmann et al., 2022), PLMs—and more broadly, biological foundation models—exhibit
counterintuitive scaling behavior: larger models often underperform smaller ones on functional prediction
tasks (Li et al., 2024). For example, on ProteinGym deep mutational scanning (DMS) benchmarks, the
ESM-2 family peaks at 650M-3B parameters, with the 15B model showing degraded performance.

This unexpected scaling behavior creates fundamental challenges. Given models M1,M2 with |M2| >
|M1| parameters, we observe non-monotonic performance: we often find that smaller models outperform
larger models on downstream tasks. Moreover, we cannot reliably predict which biological tasks will ex-
hibit poor scaling behavior, leading to difficulties in model selection for any specific task. A related lim-
itation of PLMs is that embeddings across model scales are unrelated. In contrast, Matryoshka-style em-
beddings (Kusupati et al., 2024) in natural language processing are structured such that their prefixes are
also directly usable. With these embeddings, prefixes of an overall embedding are themselves functional,
albeit with some performance degradation. This enhances computational and storage efficiency, enabling
an “embed once, reuse prefixes as needed” paradigm. However, current PLM representations do not offer
this advantage: representations of dimension k cannot be truncated to dimension k′ < k while maintaining
smooth performance degradation.
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We interpret these scaling behaviors through a bias-variance lens. We hypothesize that small PLMs, con-
strained by capacity, preferentially encode frequent, low-complexity biological regularities, e.g., secondary
structure propensities, hydrophobicity etc. As capacity grows, models can represent rarer, higher-order phe-
nomena: family-specific patterns, epistatic interactions, allosteric signals, dynamics etc. However, when
these specialized signals are entangled with universal features1 in a single representational space, the en-
tanglement increases variance in downstream linear evaluations that form the basis of most task-specific
predictors. This entanglement may explain why naive scaling fails: task-irrelevant specialized features add
noise to the universal patterns that drive performance on most benchmarks.

We introduce Reverse Distillation2, a principled framework that systematically decomposes large PLM
representations into interpretable, orthogonal subspaces anchored by smaller models. Unlike traditional
knowledge distillation that compresses large models into small ones, our method identifies what unique
information each model scale contributes. The key insight is structural: by treating smaller model represen-
tations as a basis and extracting orthogonal residuals, we prevent destructive interference between universal
and specialized features.

Formally, given models Mr and Mp where |Mr| < |Mp|, with embedding dimensionality kr < kp,
we decompose representations as Hp ≈ [Hr, Hres] where Hr ∈ Rn×kr captures universal patterns and
Hres ∈ Rn×(kp−kr) captures specialized information orthogonal to Hr. We also prove this decomposition
is MSE-optimal among all kp-dim representations that fully encompass Mr (i.e., the cylinder set of Mr in
Rkp ).

Our contributions are:

• Hierarchical Decomposition: We show how to transform a family of PLM models such that they
follow a hierarchical structure where each higher scale adds orthogonal information. Our decom-
position is also guaranteed to approximate the original representation space well.

• Matryoshka-style Embeddings and Monotonic Improvement: Reverse-distilled embeddings are
constructed such that nested embeddings of dimensionality d contain prefixes of sizes d1 < d2 <
d3 < d such that each prefix is the reverse-distilled embedding of the corresponding dimensionality.
Our decomposition thus provides controlled performance degradation as a function of embedding
size.

• Scaling Consistency: Reverse distillation scales nearly always, i.e., larger reverse-distilled models
consistently perform better than smaller ones.

• Improvement over Baseline: For the ESM-2 family, reverse-distilled models of the same em-
bedding size (e.g., 1280 for ESM-2 650M) generally outperform their corresponding baselines,
particularly for tasks requiring specialized features.

2 METHOD

Motivation and Intuition The ESM-2 family spans embedding dimensions from 320 (8M parameters) to
5120 (15B parameters), providing a systematic testbed for analyzing PLM scaling behavior. Each model
learns residue co-evolution patterns through self-attention mechanisms, but capacity constraints induce dif-
ferent feature distributions across model scales. Small models operate under severe capacity constraints.
To minimize training perplexity, these models must prioritize the most frequently occurring co-evolutionary
patterns—those that maximize compression across the protein sequence distribution. We hypothesize these

1We use “universal” and “specialized” as convenient descriptors, though these are necessarily approximations. The
boundary between these categories is fluid and context-dependent, but the distinction is useful for discussing scaling
behavior.

2The term “reverse distillation” has appeared in certain teacher-student architectures in ML literature. Our usage—
decomposing large models using smaller ones as a basis—is distinct and we believe intuitive from context.
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Figure 1: Overview of Reverse Distillation Large protein language models (e.g., ESM23B) entangle universal and
specialized features in a single representational space, hindering the performance of downstream linear probes. Reverse
distillation constructs a product space by preserving the smaller model’s representation (capturing universal features)
and extracting orthogonal residuals via SVD (capturing specialized features unique to the larger model). Iterating this
process across a model family yields Matryoshka-style embeddings where each prefix corresponds to a valid reverse-
distilled representation at that scale.

patterns correspond to universal protein properties: secondary structure propensities, hydrophobicity pat-
terns, and conserved structural motifs. The 8M model lacks sufficient capacity to represent rare, family-
specific patterns; its limited parameters are allocated to features with the highest marginal utility across the
training distribution.

Large models possess capacity for both universal and specialized patterns. They can encode enzyme-
specific catalytic motifs, protein family-specific allosteric couplings, and higher-order interaction patterns.
However, as Li et al. (2024) demonstrated, downstream performance often relies on early, low-level features
rather than additional capacity; consequently, linear probes on larger, mixed representations frequently fail
to isolate task-relevant signal from task-irrelevant variance.

Our key intuition is that smaller models provide a natural basis for disentanglement (Fig. 1). A smaller
model from the same family—trained on identical data with the same architecture—produces representations
biased toward universal features due to capacity constraints. By computing the orthogonal complement of the
smaller model’s subspace within the larger model’s representation, we achieve partial separation of universal
and specialized features without requiring explicit feature identification. We employ linear decomposition
throughout our framework to maintain interpretability. Linear methods reveal directly accessible informa-
tion in representations without confounding from nonlinear prediction heads, and enable precise attribution
of information to specific model scales. While nonlinear methods might achieve higher downstream per-
formance, linear decomposition provides the analytical tractability necessary to characterize how biological
information distributes across the model hierarchy.

2.1 PROBLEM FORMULATION

Consider a hierarchy of protein language models M = {M1,M2, . . . ,Mm} ordered by parameter count.
Each model Mi maps sequences to embeddings:

Mi : P∗ → Rn×ki

where P is the amino acid alphabet, n varies per sequence, and k1 < k2 < . . . < km are embedding
dimensions.

For the ESM-2 family, this hierarchy exists naturally: 8M (k1 = 320), 35M (k2 = 480), 150M (k3 = 480),
650M (k4 = 1280), 3B (k5 = 2560), 15B (k6 = 5120).

While our framework does not require monotonically increasing dimensions—appropriate dimensionality
reduction via PCA or variational autoencoders could enable reverse distillation between arbitrary model
pairs—the ESM-2 family’s architecture provides this structure directly, simplifying our implementation.

For a ProteinGym DMS Dataset D = {si}Ni=1 with sequence lengths {ni}, the total amino acid positions
L =

∑N
i=1 ni represents our effective sample size for learning linear relationships. This formulation (treat-
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ing all positions as samples) enables data-efficient subspace learning. For training, we used N = 10, 000
sequences sampled randomly from UniRef50; all sequences had 30% or lower sequence identity to datasets
used in Section 3. Due to the simple linear transforms involved in this work, this N was sufficient: as an
ablation, we computed the difference between the experimental results obtained from the reversed distilled
models trained on 10,000 vs 1,000 sequences; they differed by less than 0.01% in Spearman correlation.

Reverse Distillation Decomposition
Definition 1 (Reverse Distillation Decomposition). Given models Mr and Mp where r < p, we decompose
the representation space Rn×kp into orthogonal subspaces:

Sp = Sr ⊕ Sres

where Sr
∼= Rn×kr preserves Mr’s representations and Sres

∼= Rn×(kp−kr) captures orthogonal residual
information.

We express any representation Hp ∈ Rn×kp as:

Hp ≈ [Hr, Hres]

where Hr ∈ Rn×kr comes directly from the smaller model Mr, and Hres ∈ Rn×(kp−kr) represents the
unique contribution of the larger model.

We preserve entire smaller models rather than selecting subsets of their dimensions. This choice, en-
abled by the natural progression of embedding sizes (320→640→1280→2560→5120 in ESM-2), main-
tains interpretability—we know Hr represents the complete “universal” feature space learned by the smaller
model, making the residual space Sres directly interpretable as specialized features.

2.2 ALGORITHMS

Algorithm 1 presents our training procedure.
Algorithm 1 Reverse Distillation Algorithm (Pre-training)
Require: Dataset D = {si}Ni=1 where |si| = ni, models Mr, Mp with r < p
Ensure: Subspace decomposition matrices W∗, Vres

1: Phase 1: Compute Representations
2: for i = 1 to N do
3: H

(i)
r = Mr(si) ∈ Rni×kr {Variable length ni}

4: H
(i)
p = Mp(si) ∈ Rni×kp

5: end for
6: Phase 2: Learn Linear Mappings
7: Define total length: L =

∑N
i=1 ni

8: Stack representations: H̃r = vstack(H(1)
r , . . . ,H

(N)
r ) ∈ RL×kr

9: Stack representations: H̃p = vstack(H(1)
p , . . . ,H

(N)
p ) ∈ RL×kp

10: Solve: W∗ = argminW ∥H̃p − H̃rW∥2F
11: Compute residuals: R = H̃p − H̃rW

∗ ∈ RL×kp

12: Phase 3: Subspace Identification
13: Apply SVD: R = UΣVT

14: Select top (kp − kr) components: Vres = V[:, 1 : (kp − kr)]
15: return W∗, Vres

Algorithm 2 shows inference. The decomposed representation Hrd = [Hr, Hres] is Matryoshka by
construction—prefixes correspond to valid smaller model outputs, enabling adaptive compute at deployment.

Algorithm 3 extends to entire hierarchies. Chaining reveals hierarchical structure where each scale con-
tributes orthogonal information that cannot be linearly predicted from smaller models.

4
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Algorithm 2 Reverse Distillation Inference
Require: New sequence s with |s| = n, learned matrices W∗, Vres, models Mr, Mp

Ensure: Decomposed representation Hrd ∈ Rn×kp

1: Hr = Mr(s) ∈ Rn×kr {Smaller model embedding}
2: Hp = Mp(s) ∈ Rn×kp {Larger model embedding}
3: Hpred = HrW

∗ ∈ Rn×kp {Predicted large model embedding}
4: R = Hp −Hpred ∈ Rn×kp {Unexplained residuals}
5: Hres = RVres ∈ Rn×(kp−kr) {Projected residuals}
6: Hrd = [Hr, Hres] ∈ Rn×kp {Concatenate reference + residual}
7: return Hrd

Algorithm 3 Chained Reverse Distillation
Require: Dataset D, model hierarchy {M1, . . . ,Mm}
Ensure: Decomposition components {Wi,Vi}mi=2

1: Initialize: H(1)
acc = M1(D), k(1)acc = k1

2: for i = 2 to m do
3: Hi = Mi(D)

4: Learn predictor: Wi = argminW ∥Hi −H
(i−1)
acc W∥2F

5: Compute residuals: Ri = Hi −H
(i−1)
acc Wi

6: Apply SVD: Ri = UiΣiV
T
i

7: Select components: Vi = Vi[:, 1 : (ki − k
(i−1)
acc )]

8: Update: H(i)
acc = [H

(i−1)
acc , RiVi]

9: Update: k(i)acc = ki
10: end for
11: return {Wi,Vi}mi=2

Theoretical Analysis Let Mr ⊂ Rkr be the manifold spanned by embeddings of Mr. To enable scala-
bility and flexibility in our representation space, it is desirable to enforce the Matryoshka property on our
embeddings. Thus, we consider the set of all kp-dimensional representations that preserve Mr’s embeddings
in their first kr coordinates:

Cr = {[Hr, X] : Hr ∈ Mr, X ∈ RL×(kp−kr)}

Our decomposition Hrd = [Hr, Hres] minimizes reconstruction error within this constrained space:

Theorem 1 (Optimal Constrained Approximation). Let H̃p ∈ RL×kp and H̃r ∈ RL×kr be stacked represen-
tations from models Mp and Mr respectively, where r < p. Among all representations of the form [H̃r, X]

where X ∈ RL×(kp−kr), the representation Hrd = [H̃r, Hres] with Hres derived from the top (kp − kr)

singular vectors of the residual R = H̃p − H̃rW
∗ minimizes:

min
A∈Rkp×kp

∥H̃p − [H̃r, X]A∥2F

Proof. The proof directly follows from the Eckart-Young theorem. The optimal linear predictor is W∗ =
(H̃T

r H̃r)
−1H̃T

r H̃p, minimizing the reconstruction error over all W ∈ Rkr×kp . The residual R = H̃p −
H̃rW

∗ contains information orthogonal to H̃r. For R = UΣVT , the optimal rank-(kp−kr) approximation
uses the top (kp − kr) singular vectors.

5
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3 EXPERIMENTS

3.1 INITIAL EXPLORATION OF MODEL CHAIN CONFIGURATION

We began by investigating the optimal chaining of small models into larger models. For three ProteinGym
DMS datasets, we evaluated a range of chain configurations. Let K = {k0, k1, . . . , kn} denote the n + 1
model sizes from a model family (for ESM-2: K = {8M, 35M, 150M, 650M, 3B, 15B}). For a target
embedding kt with t ∈ [0, n], the chain configuration was defined as follows:

1. for each ki ∈ [0, n] with i < t, a direct chain ki → kt

2. longest chain: k0 → k0 → · · · → kt

As shown in Table 1, a consistent trend emerged in which longer incremental chains yielded improved
performance. Consequently, we concentrated our comprehensive experiments on the results obtained from
reverse distillation of the two largest models.

Table 1: Progressive chain vs. direct chain. Our approach supports reverse distillation of any smaller model
into any larger model. However, we find empirically that the best performance comes from progressively
distilling up a “chain” of models. This progressive chain is what we refer to as rd.650M, rd.3B, and rd.15B
in the rest of the manuscript.

ESM Models
ARGR ECOLI

Tsuboyama 2023 1AOY
DN7A SACS2

Tsuboyama 2023 1JIC
ILF3 HUMAN

Tsuboyama 2023 2L33

8M 0.771 0.746 0.670

35M 0.767 0.806 0.692
rd: 8M→35M 0.776 0.793 0.701

150M 0.799 0.786 0.760
rd: 35M→150M 0.811 0.791 0.772
rd: 8M→150M 0.820 0.792 0.779

650M 0.834 0.868 0.712
rd: 8M→650M 0.849 0.878 0.765
rd: 35M→650M 0.835 0.881 0.759
rd: 150M→650M 0.845 0.866 0.751
rd: 8M→35→150→650M (rd.650M) 0.858 0.867 0.786
3B 0.845 0.880 0.749
rd: 8M→3B 0.852 0.898 0.780
rd: 35M→3B 0.844 0.894 0.777
rd: 150M→3B 0.853 0.886 0.775
rd: 650M→3B 0.859 0.880 0.751
rd: 8→35→150→650→3B (rd.3B) 0.873 0.890 0.801
In the rest of the paper, we denote the chain k8M → · · · → k650M as rd.650, the chain k8M → · · · → k3B

as rd.3B, and the chain k8M → · · · → k15B as rd.15B.

3.2 PROTEINGYM DMS ANALYSIS

For a comprehensive analysis, we obtained ProteinGym datasets with at least one double- or multi-mutation
variant. We excluded datasets with fewer than 100 single-mutation variants, to ensure that our evaluation
estimates were reliable. Given an embedding scheme, for each protein in the dataset, we loaded the em-
bedding of the wild-type sequence and the embeddings of the mutated sequence. For each mutation, we
computed the embedding difference vector between the mutated sequence and the corresponding wild-type
sequence at the mutated position, feeding it into a ridge regression classifier. For variants with multiple mu-
tations, we first average the differences across all mutated positions. We fitted the ridge regression on 80%
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of the single-mutational variants using leave-one-out cross-validation. The fitted model was used to predict
for all multiple-mutants and the remaining single-mutant cases. Note that since rd.650M (rd.3B) is a prefix
of rd.3B (rd.15B) by construction (the first 1280 (2560) dimensions are identical), any cases where rd.3B
(rd.15B) underperforms rd.650M (rd.3B) likely reflect ridge regression artifacts rather than representational
limitations.

Table 2: Reverse Distillation restores scaling on ProteinGym benchmarks. We show that not only do
rd.650M, rd.3B, and rd.15B consistently outperform their baseline counterparts, but that reverse distillation
preserves expected scaling, i.e. larger models more frequently outperform smaller models.

# % ProteinGym DMS Datasets where one model outperforms another
ProteinGym

DMS Datasets
rd.650M > 650M rd.3B > 3B rd.15B > 15B 3B > 650M 15B > 3B rd.3B > rd.650M rd.15B > rd.3B

ProteinGym DMS Datasets with 1 and 2 mutations
1 mut 28 50.00% 75.00% 64.29% 60.71% 89.29% 92.86% 92.86%
2 mut 28 50.00% 53.57% 57.14% 57.14% 82.14% 64.29% 78.57%

ProteinGym DMS Datasets with >2 mutations
1 mut 6 33.33% 16.67% 83.33% 100.00% 16.67% 100.00% 83.33%
2 mut 6 66.66% 66.66% 83.33% 16.67% 100.00% 66.67% 100.00%
3 mut 6 66.66% 66.66% 83.33% 16.67% 100.00% 66.67% 100.00%
4 mut 6 50.66% 66.66% 66.66% 33.33% 66.67% 66.67% 83.33%

For each ProteinGym DMS dataset, we computed the Spearman correlation between our predicted scores
and the ground truth; we followed the ProteinGym creators in our choice of the Spearman metric. In Tables
2 and 3, we report an estimated per-dataset measure of improvement, asking “in how many datasets does
model M1 outperfom M2” along with the mean and standard deviations of these correlations for the ESM-2
family of models as well as their reverse-distilled version.

Table 3: Spearman correlation of predicted mutational effect on ProteinGym benchmarks. rd.15B
achieves the strongest performance out of any model tested, and the reverse distilled models generally out-
perform their baseline counterparts.

Test Spearman correlation
# ProteinGym
DMS Datasets (mean ± std)

650M rd.650M 3B rd.3B 15B rd.15B
ProteinGym DMS Datasets with 1 and 2 mutations
1 mut 28 0.881 (± 0.040) 0.884 (± 0.038) 0.884 (± 0.043) 0.893 (± 0.039) 0.899 (± 0.036) 0.904 (± 0.037)
2 mut 28 0.677 (± 0.140) 0.678 (± 0.133) 0.682 (± 0.128) 0.697 (± 0.115) 0.714 (± 0.115) 0.720 (± 0.120)
ProteinGym DMS Datasets with >2 mutations
1 mut 6 0.458 (± 0.302) 0.457 (± 0.307) 0.501 (± 0.304) 0.475 (± 0.311) 0.480 (± 0.321) 0.495 (± 0.312)
2 mut 6 0.532 (± 0.227) 0.529 (± 0.229) 0.527 (± 0.236) 0.553 (± 0.235) 0.560 (± 0.242) 0.591 (± 0.240)
3 mut 6 0.510 (± 0.155) 0.500 (± 0.160) 0.494 (± 0.166) 0.524 (± 0.168) 0.524 (± 0.183) 0.569 (± 0.175)
4 mut 6 0.497 (± 0.137) 0.466 (± 0.134) 0.462 (± 0.145) 0.485 (± 0.139) 0.498 (± 0.160) 0.540 (± 0.131)

3.3 ADDITIONAL PROTEIN PROPERTY PREDICTION

We evaluated our reverse-distilled models on several downstream protein property prediction tasks where
the prediction task directly corresponded to protein structural, functional, and dynamic features. We utilized
the 3-class secondary structure prediction (SSP Q3), 8-class secondary structure prediction (SSP Q8), metal
ion binding (MIB), structural fold prediction (FOLD), and localization prediction (LOC) benchmarks from
Biomap Research, and R2/R1 prediction from RelaxDB (Wayment-Steele et al., 2025). Training was per-
formed analogously to the previous setting. The reverse-distilled models frequently outperformed the base
models (Table 4) and demonstrated consistent scaling, with rd.3B always outperforming rd.650M and the
baseline ESM models.

7
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Figure 2: Reverse Distillation embeddings capture more specific GO terms. (a)SAE features from the rd.35M
model are enriched for more GO terms than those from the base model. (b) The sets of GO terms for each model
are equally compact, measured by pairwise shortest path on the GO tree. (c) The sets of GO terms for rd.35M are
significantly more specific, measured by the depth of the pairwise least common ancestor on the GO tree.

These results provide indirect support for our hypothesis about hierarchical feature organization. Tasks
requiring specialized or higher-order features—metal ion binding and protein dynamics (R2/R1)—show
substantially larger gains from scaling (MIB: +0.066; R2/R1: +0.026). Notably, for R2/R1, the gap between
3B and rd.3B (0.369 to 0.425) exceeds the gap between 650M and 3B (0.343 to 0.369), suggesting that
disentanglement via reverse distillation is particularly beneficial for tasks that rely on specialized features.

3.4 PROBING EMBEDDINGS WITH SPARSE AUTOENCODERS

Finally, we sought to explore whether our reverse-distilled embeddings were capturing more “specialized”
biological features by training sparse autoencoders (SAE). We followed the analysis of Gujral et al. (2025),
training an SAE on embeddings from both the base ESM2 35M and our rd.35M model. Using a set of
18,142 proteins from the Uniprot database, we identified the proteins significantly associated with each
sparse feature, then performed a GO enrichment analysis using annotations for the proteins (Ashburner
et al., 2000) to identify the set of GO terms associated with each sparse feature. We found that the SAE
trained on rd.35M embeddings contained more enriched GO terms (40 GO terms for the average rd.35M
SAE feature, vs. 32 for the average ESM2 35M SAE feature) indicating that these embeddings capture more
functional features than those from the base model (Figure 2a).

In addition, the DAG relationship between GO terms allows us to probe the relationships within each
functional set. Following Gujral et al. (2025) we compute “monospecificity,” the inverse of average shortest
pairwise distance between GO terms in the same set, and “generality,” the depth of the least common ances-
tor (LCA) of each pair of terms in the set. A high monospecificity means that SAE features capture a more
compact set of features, while a high generality means that SAE features capture broader biological func-
tion. While rd.35M and ESM2 35M embeddings have similar levels of monspecificity (Figure 2b), rd.35M
embeddings are significantly less general, lending support to our hypothesis that reverse distillation helps to
extract more “specialized” biological features.

3.5 INFERENCE TIME

On an Nvidia A6000 GPU, embedding a protein sequence (mean length = 536) took 0.09s and 0.249s for
the ESM-2 650M and 3B models respectively. Even though rd.650M involves four ESM model-invocations
(8M, 35M, 150M and 650M) it only took 1.69x(=0.152s) the time as the smaller models have faster infer-
ence. Similarly, rd.3B makes five model-invocations but took only 1.53x (=0.380s) the time compared to
baseline ESM-2 3B, and the six model-invocations of rd.15B take only 1.70x as long as the base model.

8
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Thus reverse distillation does not have a prohibitive inference overhead. We also note the prefix structure of
the embeddings that enhances reusability.

Table 4: Reverse distillation of ESM-2 improves performance on downstream protein property predic-
tion tasks. We evaluate ESM2 650M, 3B and their corresponding reverse-distilled versions on data sets from
Biomap Research and two protein-dynamics benchmarks. We find across all data sets that rd.3B achieves
the strongest performance.

Dataset 650M rd.650M 3B rd.3B

SSP Q3 0.742 0.741 0.751 0.762
SSP Q8 0.691 0.691 0.703 0.714
MIB 0.511 0.506 0.577 0.577
FOLD 0.638 0.655 0.658 0.661
LOC 0.695 0.690 0.691 0.707
R2/R1 0.343 0.405 0.369 0.425

4 RELATED WORK

ProteinGym analyses argue that performance gains plateau around the 1–4B range (Notin, 2025) and that
hybrids leveraging MSAs/structure often win on zero-shot fitness, indicating a mismatch between current
pretraining objectives and many downstream tasks. Li et al. (2024) show that improvements with scale
are largely task-dependent—structure prediction aligns with pretraining, but many other tasks draw mainly
on features learned early, so linear probes on large, mixed representations struggle to isolate task-relevant
signal. Zhang et al. (2024) introduced the categorical Jacobian and estimated that an ESM-2 3B model
delivers contact-recovery signals comparable to the 15B variant, reinforcing diminishing returns past a few
billion parameters. Consistent with this, Vieira et al. (2025) find medium-sized models (approx. 600–650M)
perform competitively in realistic transfer settings. Recently, Hou et al. (2025) link downstream variant-
effect accuracy to an intermediate model perplexity band (roughly “medium” pseudo-/perplexity): models
that are too uncertain or too certain both degrade discrimination, which helps explain why very large models
can underperform.

Several works have analyzed the structure and redundancy of protein representations. Lu et al. (2025)
show that embeddings can be significantly compressed along both sequence length and feature dimensions
without losing predictive power. Devkota et al. (2024) provide complementary evidence for representational
redundancy through alternative compression schemes. These compression results suggest that large PLMs
learn representations with substantial redundancy, motivating approaches that can selectively extract and
combine the most informative components across model scales.

Traditional knowledge distillation (Hinton et al., 2015) focuses on transferring knowledge from large
teacher models to smaller student models. However, our approach is fundamentally different: instead of
compressing a large model into a small one, we systematically decompose large representations to under-
stand and leverage the unique contributions of each model scale. Recent work on model combination (Worts-
man et al., 2022) and ensemble methods provides related techniques, but typically lacks the theoretical guar-
antees and systematic subspace analysis that our approach provides. Our approach is also related to, but
distinct from, methods for continual learning like o-LoRA (Wang et al., 2023) or Adaptive SVD (Nayak
et al., 2025). While these focus on maintaining model performance with adaptation to new tasks by en-
suring orthogonal subspaces of weights are updated, our approach provides a task-agnostic framework for
extracting representations from multi-scale model families by maximizing residual information gain.

We note that this approach is similar to but distinct from methods that inspect individual attention heads in
large models (“BERTology”) or seek feature interpretability via sparse autoencoders (SAEs). Attention-head
analyses probe what heads encode without decomposing the representation itself (Rogers et al., 2020; Clark
et al., 2019; Vig et al., 2021), while SAE studies in proteins aim to enumerate latent features explicitly, e.g.,
Gujral et al. (2025) or Adams et al. (2025). However, mapping SAE latents to task-relevant biological fea-
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tures generally demands heavy manual annotation; our method avoids this by operating implicitly, without
pre-defining or cataloging features.

5 CONCLUSION

We introduce reverse distillation, a principled method for addressing scaling challenges in protein language
models (PLMs) through structured subspace decomposition. This approach not only provides theoretical
guarantees for the quality of approximation but also offers practical, parameter-efficient implementation
benefits. By shifting the focus from “when do large models help?” to “how can we systematically extract
and combine the unique contributions of models at different scales?”, our work opens up new research
avenues in representation analysis and lays the groundwork for more effective PLM scaling strategies.

The success of our linear decomposition method indicates that many scaling challenges in PLMs result
from inefficient use of representational capacity rather than fundamental limits in model expressiveness. By
providing structured ways to combine multi-scale representations, we enable better utilization of computa-
tional resources while highlighting more efficient scaling paradigms.

Limitations and Future Work To further advance this research, future work will explore several key
directions. We plan to investigate non-linear scaling methods to capture more complex relationships be-
tween model representations, moving beyond our current linear approach. Initial explorations of non-linear
methods show improved mapping from low- to high-dimensional embeddings (8M → 35M R2 = 0.528
vs. 0.422, 650M → 3B R2 = 0.400 vs. 0.261), showing promise to further extract unique features of the
larger models. Additionally, we will explore enhanced dimensionality reduction techniques. For instance,
we could first reduce the dimension space of the ESM2-8M model, a strategy that would also be valuable for
other models using the same embedding dimension for different model sizes, allowing our approach to re-
main effective across various architectures. A non-linear dimensionality reduction such as UMAP (McInnes
et al., 2018) could more effectively disentangle the residual features.

We also plan to use parameter-efficient fine-tuning (PEFT) methods such as LoRA to finetune a large
model, directly producing the reverse-distilled embeddings at the last layer. This would facilitate generative
use-cases of the model and enable likelihood- and logit-based probing methods. While our current approach
introduces only a small-constant linear slowdown over the baseline methods, this approach would also pro-
vide a more efficient pipeline for downstream applications by requiring only a single forward pass, thereby
completely erasing any slowdown. Additionally, we will explore the effect of reverse distillation on other
biological foundation models beyond ESM-2 to test the generalizability of our approach. This includes in-
vestigating other PLMs (such as autoregressive models like Progen) as well as models for genomics and drug
discovery. Furthermore, we will explore the application of reverse distillation to foundation models outside
the biological domain, such as those for natural language processing or computer vision. The core principle
of our method—leveraging a smaller model to systematically extract and combine the contributions of larger
models—might be a fundamental property of models in general, not just those in biology. This broader ex-
ploration could reveal new insights into model scaling and representation learning that are applicable across
diverse scientific and technological domains, highlighting the universal potential of our approach.

6 REPRODUCIBILITY STATEMENT

To facilitate easy verification and replication of our results, we have modularized our source code,
added README documentation and provided information on how to train the reverse distillation models.
Anonymized code is available as Supplementary Material in a zip format.
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