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Abstract
Pretrained language models have significantly001
advanced performance across various natural002
language processing tasks. However, adver-003
sarial attacks continue to pose a critical chal-004
lenge to system built using these models, as005
they can be exploited with carefully crafted006
adversarial texts. Inspired by the ability of dif-007
fusion models to predict and reduce noise in008
computer vision, we propose a novel and flex-009
ible adversarial defense method for language010
classification tasks, DiffuseDef, which incor-011
porates a diffusion layer as a denoiser between012
the encoder and the classifier. During inference,013
the adversarial hidden state is first combined014
with sampled noise, then denoised iteratively015
and finally ensembled to produce a robust text016
representation. By integrating adversarial train-017
ing, denoising, and ensembling techniques, we018
show that DiffuseDef improves over differ-019
ent existing adversarial defense methods and020
achieves state-of-the-art performance against021
common adversarial attacks.022

1 Introduction023

Pretrained language models (PLM) have signifi-024

cantly advanced the performance of various natural025

language processing (NLP) tasks. Despite such im-026

provements, current NLP systems remain suscep-027

tible to adversarial attacks where carefully crafted028

text perturbations can lead to incorrect model out-029

puts (Alzantot et al., 2018; Jin et al., 2020; Li et al.,030

2020). In order to improve robustness to adversar-031

ial attacks, various defense methods have been pro-032

posed, such as adversarial training (Zhu et al., 2020;033

Si et al., 2021; Zhou et al., 2021; Xi et al., 2022),034

text denoising (Nguyen Minh and Luu, 2022; Wang035

et al., 2023), ensembling (Zhou et al., 2021; Zeng036

et al., 2023; Li et al., 2023), etc. However, exist-037

ing defense methods either assume the test-time038

perturbation/attack set is similar to that used in039

training (Li et al., 2021), or are limited to specific040

architectures (Xi et al., 2022), or at inference time041

require large computational cost, thereby limiting 042

their practical applicability. 043

Diffusion models are commonly used in com- 044

puter vision (CV) to generate high-quality images 045

by predicting and removing noise from a sampled 046

noisy image. Therefore, they can be adopted to 047

remove noise from adversarial images and thus im- 048

prove robustness to attacks (Nie et al., 2022). How- 049

ever, in NLP very limited research has investigated 050

adversarial defense with diffusion models due to 051

the discrete and contextual nature of text data. Li 052

et al. (2023) adopt the idea of iterative denoising 053

and reconstruct adversarial texts from masked texts, 054

while Yuan et al. (2024) use a diffusion model as 055

a classifier and perform reverse diffusion steps on 056

the label vector, conditioning on the input text. In- 057

spired by the general noise prediction and reduc- 058

tion capability of diffusion models, we propose 059

DiffuseDef, a novel adversarial defense method 060

which employs diffusion training to denoise hidden 061

representations of adversarial texts. Unlike Li et al. 062

(2023) and Yuan et al. (2024) which apply diffusion 063

on texts or labels, DiffuseDef directly removes 064

noise to the hidden states, providing a more effec- 065

tive and robust text representation to defend against 066

adversarial texts. Compared to diffusion-based de- 067

fense in CV (Nie et al., 2022), DiffuseDef further 068

enhances robustness with ensembling and improves 069

efficiency with fewer diffusion steps. 070

DiffuseDef combines adversarial training with 071

diffusion training, where the diffusion layer is 072

trained to predict randomly sampled noise at a 073

given timestep. During inference, the diffusion 074

layer serves as a denoiser, iteratively removing 075

noise from adversarial hidden states to yield a ro- 076

bust hidden representation. Moreover, we adopt the 077

ensembling strategy by first adding random noise 078

to text hidden states to create multiple variants then 079

denoising them via the diffusion layer. The model 080

output is made by averaging all denoised hidden 081

states. Since ensembling happens solely at the dif- 082
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fusion layer, DiffuseDef is more efficient than083

traditional ensembling-based methods (Ye et al.,084

2020; Zeng et al., 2023), which require a full for-085

ward pass through all model parameters.086

Through systematic experimentation, we demon-087

strate that DiffuseDef outperforms strong defense088

methods and is able to defend against multiple089

types of adversarial attacks, while preserving per-090

formance on clean texts. Our analysis also reveals091

that the ensembling diffused representations pro-092

vides a stronger defense against finding vulnerable093

words to attack and can reduce the distance in la-094

tent space between adversarial texts and their clean095

text counterpart.096

Our contributions can be summarised as follows:097

• We propose DiffuseDef, a novel and flexi-098

ble adversarial defense method that can be099

added on top of any existing adversarial de-100

fense methods to further improve robustness101

to adversarial attacks.102

• DiffuseDef outperforms existing adversarial103

methods and achieves state-of-the-art perfor-104

mance against prevalent adversarial attacks.105

• Through extensive analysis, we demon-106

strate the effectiveness of the ensem-107

bling diffused representation and the effi-108

ciency of DiffuseDef compared to existing109

ensembling-based methods.110

2 Related Work111

2.1 Textual Adversarial Attacks112

Textual adversarial attacks focus on constructing113

adversarial examples from an original text that max-114

imise the likelihood of incorrect predictions by a115

neural network. These attacks require adversarial116

examples to be perceptually similar to the original117

text, which is typically achieved by introducing118

subtle perturbations to the original text, such as119

character swapping (Gao et al., 2018; Ebrahimi120

et al., 2018), synonym-substitutions (Ren et al.,121

2019; Yoo and Qi, 2021), and paraphrasing (Gan122

and Ng, 2019; Huang and Chang, 2021). Taking123

the text classification task as an example, given124

a classifier C(x) that maps an input sequence of125

words x = [w1, w2, ..., wL] to its designated label126

y, the goal of the attack model is to construct an127

adversarial example x′ = x + δ to fool the clas-128

sifier, where δ is a subtle adversarial perturbation129

constrained by ||δ|| < ω. The adversarial example130

x′ is considered a successful attack if it leads to an 131

incorrect prediction C(x′) ̸= y. The attacker can 132

iteratively generate multiple adversarial examples 133

and query the classifier to obtain a successful at- 134

tack, whereas the classifier must consistently return 135

the correct prediction within a specified number of 136

query attempts to be considered robust. 137

Common textual adversarial attack methods 138

adopt a two-stage process to construct effective 139

adversarial examples: word importance ranking 140

and word substitution. In the first stage, words or 141

subwords are ranked based on their influence on 142

the model’s prediction. This is measured by lever- 143

aging either gradient information (Liu et al., 2022) 144

or changes in prediction probabilities when words 145

are removed (Jin et al., 2020) or masked (Ren et al., 146

2019; Li et al., 2020). In the second stage, candi- 147

date words are substituted with synonyms (Zang 148

et al., 2020), perturbed variants (Gao et al., 2018), 149

or outputs from masked language models (Garg 150

and Ramakrishnan, 2020; Li et al., 2020). The sub- 151

stitution process is guided by various constraints to 152

ensure the adversarial example remains natural and 153

semantically equivalent to the original text. Com- 154

mon constraints include thresholding the similar- 155

ity between the replacement word embedding and 156

the substituted word embedding, or ensuring the 157

semantic similarity between sentence vectors mod- 158

eled from Universal Sentence Encoder (Cer et al., 159

2018). Despite these constraints, current textual 160

adversarial attacks still pose significant challenges 161

to NLP models (Liu et al., 2022; Xu et al., 2021; 162

Yuan et al., 2023), highlighting the necessity for 163

defense methods for better adversarial robustness. 164

2.2 Adversarial Defense Methods 165

To mitigate the performance degradation caused 166

by adversarial attacks, various adversarial de- 167

fense methods have been developed. They can 168

be grouped into three categories: training-based, 169

ensembling-based, and denoising-based methods. 170

Adversarial training improves the robustness of the 171

model to adversarial examples through strategies 172

like data augmentation (Si et al., 2021) and adver- 173

sarial regularisation (Madry et al., 2018; Zhu et al., 174

2020; Wang et al., 2021; Xi et al., 2022; Gao et al., 175

2023). However, adversarial training methods are 176

limited as they assumes similar train-test adversar- 177

ial examples, and thus tend to overfit to specific 178

types of adversarial attacks. Ensembling-based 179

methods generate multiple variants of the input text 180

at inference time and ensemble model predictions 181
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over all the variants (Ye et al., 2020; Zhou et al.,182

2021; Zeng et al., 2023; Li et al., 2023), but they183

can be inefficient given that model predictions are184

needed on every ensemble, increasing the inference185

time with the number of ensembles. More recently,186

denoising-based methods have been proposed to187

improve adversarial robustness by mapping the vec-188

tor representation of the adversarial text to another189

point in the latent space that is close to the clean190

text (Nguyen Minh and Luu, 2022; Wang et al.,191

2023; Moon et al., 2023; Yuan et al., 2024). The192

denoised representation makes it more difficult to193

find vulnerable words to attack, thus improving194

adversarial robustness (Wang et al., 2023). Nev-195

ertheless, denoising might lead to very different196

representations of clean text and adversarial text,197

therefore changing the semantic meanings.198

The proposed DiffuseDef builds on these three199

approaches and can use any adversarially trained200

classifier as the base, applying denoising via a dif-201

fusion layer, and ensembling the diffused repre-202

sentations with a small number of ensembles. Us-203

ing a diffusion layer as a denoiser addresses the204

overfitting problem from adversarial training and205

mitigates the efficiency problem by performing en-206

sembling only at the diffusion layer. By averag-207

ing denoised hidden states across all ensembles,208

DiffuseDef also addresses the issue stemming209

from denoising, maintaining good performance on210

clean texts.211

3 DiffuseDef212

3.1 Training213

The proposed diffusion defense model consists214

of a pretrained encoder for feature extraction, a215

transformer-based diffusion layer for noise predic-216

tion and reduction, and a classifier layer for output217

generation. The training process is split into two218

stages: adversarial training and diffusion training219

(Figure 1). The adversarial training stage em-220

ploys any neural network-based adversarial train-221

ing methods like FreeLB++ (Li et al., 2021) and222

RSMI (Moon et al., 2023), which optimise the en-223

coder and classifier for robustness by perturbing224

the latent representation of the text input.225

In the diffusion training stage, only the diffu-226

sion layer is trained to predict random noise added227

to the clean text hidden state at different timesteps,228

enabling it to denoise the adversarial hidden state229

at inference time. The pretrained encoder, however230

is frozen during this stage. Since the pretrained231

encoder is only used for feature extraction, the 232

diffusion training method is compatible with any 233

neural network-based adversarial training method. 234

Given an input sequence of tokens x ∈ RL, the 235

pretrained encoder extracts the hidden state h ∈ 236

RL×D. A random Gaussian noise ϵ is sampled to 237

perturb hidden state h. Sohl-Dickstein et al. (2015) 238

define the forward diffusion process as a Markov 239

Chain where at each timestep a Gaussian noise is 240

sampled and added to the previous latent feature: 241

ht =
√
1− βtht−1 +

√
βϵ, where ϵ ∈ N (0, I), 242

ht is the noisy hidden state at step t and β is a 243

pre-calculated variance schedule changing with t. 244

As shown by Ho et al. (2020), this equation can 245

be reformulated to calculate ht directly from h by 246

defining αt = 1− βt and ᾱ =
∏t

i=1 αi, thus 247

ht =
√
ᾱth+

√
1− ᾱtϵ (1) 248

At each training step, a random forward diffu- 249

sion timestep t is sampled from a uniform distribu- 250

tion. Therefore, the noisy hidden state ht is created 251

from h, t, and ϵ. The diffusion layer θ consists 252

of a time embedding and a transformer layer. The 253

time embedding receives the diffusion timestep t 254

as input and produces an embedding et, which is 255

added to ht as input for the transformer layer. Fi- 256

nally, the transformer layer outputs the predicted 257

noise ϵθ(ht, t), and mean square error is used to 258

compute the loss between predicted noise ϵθ(ht, t) 259

and actual sampled noise ϵ. 260

L = Et,h,ϵ

[∥∥ϵ− ϵθ(
√
ᾱth+

√
1− ᾱtϵ)

∥∥2] (2) 261

3.2 Inference 262

Leveraging the diffusion layer’s ability to predict 263

noise at a given timestep t, we utilise it as a de- 264

noiser during inference by iteratively performing 265

the reverse diffusion steps, which sample from 266

pθ(ht−1|ht) = N (ht−1;µθ(ht, t),Σθ(ht, t)) to 267

produce the denoised hidden state 268

µθ(ht, t) =
1

√
αt

(
ht −

1− αt√
1− ᾱt

ϵt

)
(3) 269

Σθ(ht, t) = σ2
t I (4) 270

where ϵt is the predicted noise from diffusion layer 271

and σ2
t = βt. The denoised hidden state can thus 272

be computed with 273

ht−1 =
1

√
αt

(
ht −

1− αt√
1− ᾱt

ϵt

)
+ σtz (5) 274

where z ∈ N (0, I). 275
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Figure 1: Training and inference of DiffuseDef model. The adversarial training stage trains the pretrained encoder
and classifier with perturbed input for adversarial robustness. The diffusion training trains the diffusion layer to
predict injected noise at a given timestep t. At inference time, the text hidden state is first noised by 1 step and then
denoised by t′ steps to create the denoised hidden states, which are ensembled to make the final prediction.

Inference in DiffuseDef combines a one-step276

noising, a multi-step denoising, and an ensem-277

bling step. After the pretrained encoder extracts278

its hidden state h, a set of k Gaussian noise vec-279

tors E = [ϵ0, ϵ1, ..., ϵk] are sampled to perform a280

single forward diffusion step. These noise vectors281

E are then added to the hidden state h following282

equation 1, resulting in a set of noisy hidden states283

Ht′ = [h0t′ , h
1
t′ , ..., h

k
t′ ], where t′ denotes the num-284

ber of denoising steps. The noisy hidden states Ht′285

are subsequently denoised through t′ reverse diffu-286

sion steps, where noise is predicted by the diffusion287

layer and subtracted from the previous noisy hidden288

states. Unlike Ho et al. (2020) where the reverse289

diffusion step starts with pure noise sampled from290

standard normal distribution, we assume the noisy291

hidden state Ht′ is already an intermediate state in292

the reverse diffusion steps. This allows us to use a293

smaller number of t′ than the training timestep t to294

prevent the denoised hidden states from diverging295

substantially from the initial hidden state h. This296

sequence of denoising steps creates the final de-297

noised hidden states H0 = [h00, h
1
0, ..., h

k
0], which298

are averaged and used by the classifier to output the299

final predicted label. This process is summarised300

in Algorithm 1.301

4 Experiments302

Datasets We focus on two common NLP tasks303

in our experiments: topic classification and natural304

Algorithm 1: Inference of DiffuseDef
Data: Input text x
Result: Predicted label y′

1 h← Enc(x);
2 Sample E = [ϵ0, ϵ1, ..., ϵk], ϵ ∼ N (0, I);
3 Ht′ ←

√
ᾱ1h+

√
1− ᾱ1E;

4 for i← 0 to t′ − 1 do
5 Et′−i ← ϵθ(Ht′−i, t

′ − i);
6 Ht′−i−1 ←

1√
αt′−i

(
Ht′−i −

1−αt′−i√
1−ᾱt′−i

Et′−i

)
+

σt′−iz;
7 end
8 y′ ← CLS (avg(H0));

language inference (NLI). In the text classification 305

task, we compare our method with other defense 306

algorithms on two standard datasets for adversarial 307

defense: AG News (Zhang et al., 2015a) and IMDB 308

(Maas et al., 2011a) datasets. In the NLI task, we 309

perform an ablation analysis with the Question- 310

answering NLI (QNLI) dataset (Wang et al., 2018). 311

We randomly split AGNews, IMDB, and QNLI 312

datasets into train, validation, and test splits. 313

Evaluation Following previous work on adver- 314

sarial defense, we use three benchmarking attack 315

methods to evaluate the robustness of DiffuseDef: 316

TextFooler (TF) (Jin et al., 2020), TextBugger (TB) 317

(Li et al., 2019), and Bert-Attack (BA) (Li et al., 318

2020). The three attack methods create adver- 319

sarial attacks in different granularities: character- 320
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level perturbation (TextBugger), word substitution321

(TextFooler), and subword substitution (BertAt-322

tack). Regarding evaluation metrics, we measure323

the clean accuracy (Clean%) on the test set, the324

accuracy under attack (AUA%), and the number325

of adversarial queries (#Query) needed for a suc-326

cessful attack. Higher scores on the three metrics327

denote a better robustness performance of a defense328

method. The accuracy on clean data is measured329

across the entire test set. The accuracy under attack330

and number of queries, due to the lengthy attack-331

ing process, is measured on a randomly sampled332

subset of 1000 examples from the test set. We use333

the TextAttack library as the adversarial evalua-334

tion framework. To ensure a fair comparison and335

high-quality adversarial examples, we follow the336

same evaluation constraints as in Li et al. (2021).337

The evaluation metrics are averaged based on ex-338

periments run with 5 random seeds.339

4.1 Comparison to SOTA340

We compare our proposed method with state-of-the-341

art adversarial defense approaches, trained using342

both BERT (Devlin et al., 2019) and RoBERTa343

(Liu et al., 2019) as backbones: Fine-tune: Fine-344

tuning pretrained models on downstream task with345

no defense method applied1. InfoBERT (Wang346

et al., 2021): Applying mutual-information-based347

regularizers during fine-tuning of pretrained mod-348

els to improve robustness. FreeLB++ (Li et al.,349

2021): An adversarial training method improving350

on FreeLB(Zhu et al., 2020), which adds adversar-351

ial perturbations to word embedding during fine-352

tuning. EarlyRobust2 (Xi et al., 2022): Extract-353

ing early-bird subnetworks and pruning pretrained354

models for efficient adversarial training. RSMI355

(Moon et al., 2023): A two-stage training method356

that combines randomised smoothing and masked357

inference to improve adversarial robustness.358

4.2 Implementation and Settings359

We train two DiffuseDef variants using FreeLB++360

and RSMI models as base models considering their361

robust adversarial defense capabilities. In the dif-362

fusion layer, only one transformer encoder layer363

(Vaswani et al., 2017) is used. The maximum nois-364

ing timestep t during training is set to 30 for AG-365

News and QNLI datasets, and 10 for IMDB dataset,366

1"Fine-tune" is a baseline approach used to illustrate the
effect of adversarial attacks.

2We only run EarlyRobust with BERT as its implementa-
tion with RoBERTa has not been released.

while at inference time, we only apply 5 denoising 367

steps for t′. We follow (Ho et al., 2020) to use a 368

linear βt schedule from β1 = 10−4 to βt = 0.02. 369

The diffusion layer is trained for 100 epochs, with 370

the base classifier parameters frozen for efficiency. 371

During the diffusion training stage, the same train- 372

dev splits are used as in the adversarial training 373

stage, thus ensuring no data leakage. At infer- 374

ence time, the number of ensembles is set to 10. 375

Appendix C lists the hyper-parameters for each 376

dataset. 377

5 Results and Analysis 378

5.1 Adversarial Robustness 379

In Table 1, we compare the adversarial robustness 380

of DiffuseDef with baselines and SOTA methods 381

on AGNews and IMDB datasets trained with BERT 382

and RoBERTa. DiffuseDef consistently outper- 383

forms all other methods on both datasets across 384

both PLMs, exhibiting substantial improvements 385

in accuracy under attack. After applying diffusion 386

training, the AUA score for both FreeLB++ and 387

RSMI models improves significantly, with an aver- 388

age increase of 30% AUA against the three attack 389

methods. Note that despite the robust adversarial 390

performance of the RSMI model, especially when 391

trained with RoBERTa on the IMDB dataset, it still 392

benefits from DiffuseDef. When comparing the 393

clean accuracies to its base model (i.e. FreeLB++ 394

and RSMI), DiffuseDef only shows a minor de- 395

cline, between 0.2 and 0.7 accuracy score, which 396

indicates that it can preserve the clean text per- 397

formance while improving adversarial robustness. 398

Moreover, models trained with DiffuseDef show 399

a much smaller gap between clean accuracy and 400

accuracy under attack, and such difference can be 401

reduced to less than 10% AUA. 402

Another benefit of DiffuseDef is the increased 403

number of adversarial queries needed to obtain a 404

successful attack. Models applying DiffuseDef 405

require over twice the number of queries on both 406

datasets compared to the other methods. This in- 407

crease is even larger on the IMDB dataset due to 408

the longer text length. For example, DiffuseDef 409

model requires on average over 3000 queries to 410

achieve a successful attack while FreeLB++ only 411

needs 400 to 800 queries. The substantial increase 412

suggests that even if the attackers manage to con- 413

struct a successful adversarial attack, they need 2x 414

to 3x more time to find the attack on DiffuseDef 415

than other models, affirming the improved robust- 416
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Dataset PLM Method Clean% AUA% #Query
TF TB BA TF TB BA

AGNews

BERT-base

Fine-Tuned 94.4 10.2 25.4 27.1 348 372 379
InfoBERT 95.0 35.5 39.1 42.6 377 397 397
FreeLB++ 95.0 54.7 56.5 44.6 426 430 390
EarlyRobust 94.4 35.6 37.2 45.7 475 516 533
RSMI 94.3 52.6 56.7 55.4 680 737 687
DiffuseDef-FreeLB++ (Ours) 94.8 84.5 86.0 84.6 877 972 910
DiffuseDef-RSMI (Ours) 93.8 82.7 83.3 84.4 894 1029 930

RoBERTa-base

Fine-Tuned 94.9 34.1 36.9 43.6 372 396 410
InfoBERT 95.5 40.2 45.2 48.6 392 421 430
FreeLB++ 95.4 57.5 62.9 55.9 444 467 447
RSMI 93.1 64.2 66.4 67.4 774 861 808
DiffuseDef-FreeLB++ (Ours) 95.3 85.6 87.6 85.3 880 976 906
DiffuseDef-RSMI (Ours) 92.9 82.9 83.5 82.2 905 925 1047

IMDB

BERT-base

Fine-Tuned 93.3 7.7 8.3 10.5 540 534 378
InfoBERT 93.9 29.2 25.4 30.7 642 644 390
FreeLB++ 94.3 44.2 39.6 40.6 784 829 426
EarlyRobust 92.7 49.7 46.8 43.8 2267 2788 1841
RSMI 90.9 60.0 54.4 51.1 2840 3455 2070
DiffuseDef-FreeLB++ (Ours) 94.4 82.1 83.0 84.0 3174 4348 2842
DiffuseDef-RSMI (Ours) 90.2 80.9 79.8 79.8 3590 4748 2901

RoBERTa-base

Fine-Tuned 94.6 21.3 17.9 13.6 587 671 493
InfoBERT 94.8 30.9 27.9 21.8 681 760 549
FreeLB++ 95.3 46.0 42.1 33.9 829 974 637
RSMI 92.7 77.9 74.3 70.6 3443 4342 2619
DiffuseDef-FreeLB++ (Ours) 95.0 86.2 85.9 86.8 3573 4663 2941
DiffuseDef-RSMI (Ours) 92.4 84.7 84.1 84.3 3673 4782 3007

Table 1: Main adversarial robustness results on classification tasks with BERT and RoBERTa PLMs. Clean:
accuracy on clean test set. TF: TextFooler. TB: TextBugger. BA: BertAttack.

ness from diffusion training. In addition, we ob-417

serve that the number of queries for denoising-418

based methods (i.e. RSMI, DiffuseDef) is gen-419

erally higher than adversarial training-based meth-420

ods (i.e. InfoBERT, FreeLB++). This is because421

denoising-based methods transform the hidden rep-422

resentations of the adversarial texts into a non-423

deterministic representation. The introduction of424

randomness in hidden states results in uncertainty425

in model logits, thus increasing the difficulty find-426

ing vulnerable words to attack (Wang et al., 2023).427

5.2 Ablation - NLI Task428

To understand how each component contributes429

to DiffuseDef, we conduct an ablation analysis430

on the QNLI dataset (Table 2). Compared to the431

fine-tuning baseline, FreeLB++ increases the AUA432

score from 21.5 to 45.6, showing the benefit of ad-433

versarial training. After applying diffusion training434

(with inference timestep t′ = 30), the score is fur-435

ther improved to 49.2, showing that diffusion train-436

ing complements adversarial training. Finally, en-437

sembling enhances adversarial performance and im-438

proves the score to 66.7, with the number of queries439

growing from 392 to 485. Similar improvements in440

both AUA and number of queries is found with the441

RSMI model after applying diffusion training and442

ensembling, which validates that the two compo- 443

nents are complementary and that DiffuseDef is 444

compatible with multiple SOTA defense methods.

Method Clean% AUA% #Query

Fine-Tuned (BERT) 90.8 21.5 195

FreeLB++ 90.3 45.6 253
+ diffusion training 90.2 49.2 392

+ ensembling 90.3 66.7 485

RSMI 87.4 35.2 314
+ diffusion training 86.5 40.0 353

+ ensembling 86.4 55.5 459

Table 2: Ablation results for DiffuseDef on QNLI
datasets. AUA% and #Query are measured under
TextFooler attack.

445

5.3 Robustness w.r.t Token Length 446

Figure 2 provides comparison of defense rate for 447

different models by token length on the IMDB 448

dataset. The defense rate is calculated as the per- 449

centage of test examples in which TextFooler fails 450

to construct a successful attack. All models ex- 451

cept RSMI show a consistent trend that the de- 452

fense rate declines as the texts lengthen. This trend 453

can be attributed to the nature of adversarial at- 454

tacks as longer texts allow for the generation of 455

more adversarial examples. Specifically, adversar- 456
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Figure 2: Defense rate (against TextFooler) w.r.t token
length for different models on IMDB dataset.

ial training defense methods like InfoBERT and457

FreeLB++ show poor performance on longer texts458

(more than 300 tokens), with the defense rate re-459

duced to near 0. This drastic decline indicates that460

given an adequate number of queries, the attacker is461

guaranteed to find a successful attack to fool these462

models. Similarly, EarlyRobust exhibits a perfor-463

mance drop on long texts as it is based on FreeLB464

training. RSMI, however, performs worse on short465

texts, but its defense rate increases as the text length466

grows. Compared to all SOTA defense approaches,467

the two DiffuseDef variants show a more steadily468

declining trend and maintain a higher defense rate469

across all token lengths, i.e. DiffuseDef is more470

robust to input text length.471

5.4 Effect of Additional Denoising Steps472
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Figure 3: AUA and #Query (TextFooler) w.r.t inference
denoising step for DiffuseDef w/ and w/o ensembling.

In Figure 3 we study how the inference denoising473

steps t′ can affect the adversarial performance. For474

the DiffuseDef model without ensembling, both475

AUA score and the number of queries required to 476

attack increase as the inference denoising step is 477

larger. As the denoising step t′ grows from 1 to 478

30, the AUA score improves from 58 to 65 while 479

the number of attack queries grows from 430 to 480

780. In contrast, for DiffuseDef with ensembling, 481

the model maintains a stable but robust perfor- 482

mance in AUA and number of queries, regardless 483

of the increase of t′. Considering that the ensem- 484

bling introduces a notable performance increase, 485

the DiffuseDef model is likely to be hitting an 486

upperbound in both metrics, thus no further im- 487

provement is reached by increasing the denoising 488

steps. However, it also shows that with ensem- 489

bling, DiffuseDef can be applied with a smaller 490

t′ for better efficiency while maintaining a robust 491

adversarial performance. 492

5.5 Ensembling Diffused Hidden 493

Representations 494

In DiffuseDef the text hidden state is diffused 495

and ensembled to form a denoised hidden repre- 496

sentation, which contributes significantly to the 497

improved adversarial robustness. In this section, 498

we study how the ensembling diffused hidden rep- 499

resentation helps defend against adversarial attacks. 500
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Figure 4: Distribution of max token importance score
in the AGNews test set.

501

As mentioned in Section 2.1, attack methods 502

need to first rank token importance based on its 503

influence on prediction. Specifically, the impor- 504

tance score is calculated by comparing the change 505

of model prediction probablities after removing 506

each word. In Figure 4, we compare the distri- 507

bution of max token importance score between 508

FreeLB++ and its DiffuseDef counterpart. Both 509

FreeLB++ and DiffuseDef show a long-tail dis- 510
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tribution with over 80 percent examples having511

a max token importance score below 0.1. This512

suggests that in most cases changing one single513

token will not significantly alter the prediction for514

both models. However, DiffuseDef shows a no-515

tably lower percentage of tokens when the max516

importance score is between 0.9 and 1, where the517

attacker can easily find the vulnerable token to con-518

struct adversarial examples. This difference shows519

that DiffuseDef can complicate the process of im-520

portant word searching, which accounts for the in-521

creased number of queries required for a successful522

attack.523

Method L2 Cosine

FreeLB++ 12.53 0.35
DiffuseDef-FreeLB++ 10.66 0.27

RSMI 9.72 0.24
DiffuseDef-RSMI 8.61 0.21

Table 3: L2 and cosine distance between hidden states
for clean and adversarial texts.

In addition, DiffuseDef mitigates the difference524

between clean and adversarial texts by reducing525

the distance between their hidden states. In Table526

3, we report the L2 and cosine distance between527

clean and adversarial hidden states for FreeLB++528

and RSMI. Both show lower L2 and cosine dis-529

tance after applying DiffuseDef, indicating that530

ensembling diffused representation repositions the531

adversarial example closer to the clean example,532

leading to the model maintaining its predictions.533

5.6 Efficiency of DiffuseDef534

Method Params FLOPS

Fine-Tuned (BERT) 110M 46G

EarlyRobust 82M 32G
FreeLB++ 110M 46G
InfoBERT 110M 46G
RSMI 110M 92G
RanMask (k = 10) 110M 459G
SAFER (k = 10) 110M 459G

DiffuseDef (t′ = 1, k = 10) 120M 96G
DiffuseDef (t′ = 5, k = 10) 120M 267G

Table 4: Efficiency comparison of DiffuseDef-
FreeLB++ with other methods. Params: number of
model parameters. FLOPS: number of floating point
operations per second at inference time, calculated with
batch size of 1 and sequence length of 256.

Given that DiffuseDef adds additional denois-535

ing and ensembling steps during inference, it in-536

evitably increases the computation time compared 537

to its base model. To study its efficiency, we re- 538

port the number of model parameters and infer- 539

ence FLOPS in Table 4. In addition to the defense 540

methods in Table 1, we also compare the efficiency 541

of DiffuseDef with two other SOTA ensembling- 542

based defense methods, i.e. RanMask (Zeng et al., 543

2023) and SAFER (Ye et al., 2020). 544

All SOTA models have the same number of pa- 545

rameters as the fine-tuned BERT model, except Ear- 546

lyRobust which applies attention head pruning for 547

better efficiency. DiffuseDef, with 1 additional 548

diffusion layer, increases the number of parameters 549

from 110M to 120M. DiffuseDef requires more 550

inference FLOPS than non ensembling-based base- 551

lines such as FreeLB++ and EarlyRobust. With 552

t′ = 1 and k = 10, the FLOPS for DiffuseDef 553

doubles from 46G to 96G, nevertheless, this num- 554

ber is close to RSMI model (92G FLOPS) as it 555

requires gradient information during inference. De- 556

spite this increase, DiffuseDef is more efficient 557

than ensembling-based methods like RanMask and 558

SAFER which need to go through a full forward 559

pass for all ensembles. With the same ensembling 560

number of 10, both RanMask and SAFER require 561

459G FLOPS, which is 10x the number for BERT 562

baseline. In contrast, even with t′ increased to 5, 563

DiffuseDef can be run faster with 267G FLOPS, 564

showing that it can mitigate the efficiency problem 565

from ensembling while maintaining the benefit of 566

improved robustness. 567

6 Conclusions 568

We propose a novel adversarial defense method, 569

DiffuseDef, which combines adversarial train- 570

ing, diffusion training, and ensembling to im- 571

prove model robustness to adversarial attacks. 572

DiffuseDef can build on any existing adversar- 573

ial training method, training an additional diffu- 574

sion layer to predict and remove randomly sampled 575

noise at a given timestep. During inference, the dif- 576

fusion layer is used to denoise the adversarial hid- 577

den states, which are ensembled to construct a ro- 578

bust text representation. Our experiments validate 579

the effectiveness and efficiency of DiffuseDef, 580

which significantly outperforms SOTA on three 581

common adversarial attack methods. Analysis 582

shows that DiffuseDef makes it difficult to find 583

vulnerable tokens to attack, and also reduces the 584

difference between the hidden representations of 585

clean and adversarial texts. 586
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7 Limitations587

Scope Our experiments focus on defending588

against three common black-box adversarial attack589

methods, while whether DiffuseDef improves590

model robustness against white-box attacks is un-591

clear. White-box attacks have access to model592

parameters and can utilize gradient information593

to construct adversarial examples more efficiently594

than black-box attacks. Defending against white-595

box attacks is more challenging, and we consider596

this as a future direction of DiffuseDef.597

Comparison with additional approaches Due598

to the length limit, we do not compare against all599

current approaches. However we do compare with600

the SOTA methods with best adversarial robustness601

based on our preliminary experiments.602

Efficiency Despite the fact that DiffuseDef is603

more efficient than existing ensembling-based604

methods, it still requires more model parameters605

and inference FLOPS than non-ensembling-based606

models to achieve a better robustness. Future direc-607

tions of this work might involve efforts to reduce608

the size of diffusion layer and number of ensembles609

to make DiffuseDef more efficient.610

8 Ethical Considerations611

In this paper we propose a new method612

DiffuseDef which uses a diffusion layer as a613

denoiser to provide robust and efficient text rep-614

resentation. We demonstrate that the proposed615

method could significantly improve the robustness616

of NLP systems to adversarial attacks. However,617

DiffuseDef cannot defend against all adversarial618

attacks without limitations (e.g. number of per-619

turbed words, semantic similarity between original620

and adversarial examples). Potential risks might621

include creation of new adversarial attacks devised622

specifically for DiffuseDef.623
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A Data Preparation919

Dataset Train Valid Test Avg Len

AGNews 108K 12K 7K 51.3
IMDB 40K 5K 5K 311.9
QNLI 94K 10K 5K 47.2

Table 5: Dataset statistics. The average text length is
counted with BertTokenizer.

Table 5 presents the number of examples in920

train/valid/test splits and the average token length921

for the three datasets used in the experiments. For922

QNLI and AGNews datasets, we randomly split923

the training set into our train/valid splits, with a924

ratio of 0.9/0.1, and use its test set as our test split.925

For IMDB dataset, we randomly split the dataset926

into train/valid/test splits with a ratio of 0.8/0.1/0.1.927

All train/valid/test splitting is performed using a928

random seed of 42.929

B Evaluation Constraints930

Dataset εmin Kmax ρmax

AGNews 0.84 50 0.3
IMDB 0.84 50 0.1
QNLI 0.84 50 0.2

Table 6: Evaluation parameters for each dataset.

When evaluating with adversarial attack, We fol-931

low the parameter settings for TextAttack as sug-932

gested in (Li et al., 2021). The minimum semantic933

similarity εmin between the clean text and adversar-934

ial text is set to 0.84, with the score computed using935

Universal Sentence Encoder (Cer et al., 2018). The936

maximum number of candidate substitution Kmax937

from attacker is 50, thus the maximum number of938

queries Qmax = Kmax × L where L is the num-939

ber of tokens. Finally, the maximum percentage940

of changed tokens ρmax is set to 0.3/0.1/0.2 for941

AGNews, IMDB, and QNLI dataset respectively.942

C Training943

The details on hyper-parameters of diffusion train-944

ing can be found in Table 7. All models are trained945

on a single RTX A6000 GPU. The diffusion train-946

ing of 100 epochs takes 6/4/3 hours on AGNews,947

IMDB, QNLI datasets respectively.948

D License for Scientific Artifacts949

Table 8 lists the scientific artifacts including data,950

codes, and models used in this paper. The use of951

AGNews IMDB QNLI

Epochs 100 100 100
Batch size 64 64 64
Sequence len 128 256 256
Dropout 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW
Lr 2e-5 2e-5 2e-5
t 30 10 30
t′ 5 5 5
k 10 10 10

Table 7: Hyperparameters for training DiffuseDef.

Artifact License

AGNews (Zhang et al., 2015b) Custom (non-commercial)
IMDB (Maas et al., 2011b) -
QNLI (Wang et al., 2018) CC BY-SA 4.0

transformers (Wolf et al., 2020) Apache License 2.0
TextAttack (Morris et al., 2020) MIT License

BERT (Devlin et al., 2019) Apache License 2.0
RoBERTa (Liu et al., 2019) MIT License

Table 8: Licenses of scientific artifacts used in this
paper.

these artifacts in this paper is consistent with their 952

intended use, i.e. for scientific research only. The 953

data used in the experiment is in English and does 954

not contain personally identifying info or offensive 955

content. 956

E Example of noising and denoising in 957

DiffuseDef 958

Adding and removing noise to hidden states are es- 959

sential features in DiffuseDef which contribute to 960

the improved adversarial robustness. To study how 961

adding or removing noise can affect the semantic 962

meaning of the text, we feed the hidden states to 963

the pretrained BERT model with masked language 964

modeling (MLM) head to generate the text output. 965

In Table 9, we present the MLM outputs from 966

hidden states added with different steps of noise 967

and the MLM outputs from noise hidden states de- 968

noised with same number of steps. In the example 969

shown, with more noise added some semantic in- 970

formation can be lost and replaced by symbols or 971

function words like "." or "the". In contrast, denois- 972

ing for the same number of steps help alleviate such 973

information lost. For example, the word "IBM" can 974

be recovered from the noise. 975

However, in practise it is not possible to assume 976

number of denoising steps therefore in Table 10 977

we show the MLM outputs of denoised hidden 978

states directly from clean and adversarial texts. On 979
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clean text, we observe that a higher number of980

denoising steps can result in more abstraction of981

the texts. For example, more words are replaced982

with "the" in the MLM outputs as t′ grows. How-983

ever, words related to the topic (e.g. "Manchester984

United", "Liverpool") are kept during the denoising985

process, thus the model can predict correctly. Simi-986

larly, the trend of abstraction can be also found on987

adversarial text while we observe that the denoising988

can help remove the adversarial noise / perturbation989

and recover the word "united" from "nation", thus990

resulting its correct prediction on the adversarial991

text.992

F Confusion Matrix under Attack993

Figure 5 and 6 present the confusion matrixes of994

models prediction on clean text and on adversarial995

texts (successful attack example) on AGNews and996

IMDB test sets respectively.997
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t′ MLM Output (add noise) MLM Output (add noise then denoise)

0 IBM Chips May Someday Heal Themselves New technology
applies electrical fuses to help identify and repair faults.

-

5 the ibm chips may someday heal themselves new technology
introduces electrical fuses to help identify and repair faults.

the ibm chips may someday heal themselves new technology
introduces electrical fuses to help identify and repair faults.

6 ) ibm chips may someday heal themselves new technology
introduces electrical fuses to help identify and repair faults.

the ibm chips may someday heal themselves new technology
introduces electrical fuses to help identify and repair faults.

7 the. chips may someday heal themselves new technology
introduces electrical fuses to help identify and repair faults.

the. chips may someday heal themselves new technology
uses electrical fuses to help identify and repair faults.

8 ).. may someday heal themselves new technology introduces
electrical fuses to help identify and repair faults.

the ibm. may someday heal themselves new technology uses
electrical fuses to help identify and repair faults.

9 the ibm chips may someday heal themselves new technology
uses electrical fuses to help identify and repair faults.

the ibm chips may someday heal themselves new technology
introduces electrical fuses to help identify and repair faults.

10 the. chips may someday heal themselves new technology
extends electrical fuses to help identify and repair faults.

the ibm. may someday heal themselves new technology de-
velops electrical fuses to help identify and repair faults.

Table 9: MLM outputs from hidden states with noise added and hidden states with first noise added but then
denoised. We only report t′ above 5 as the MLM outputs with smaller t′ are identical to the clean text.

t′ Clean Text / MLM Output Adv Text / MLM Output Pred clean Pred adv

0 United Apology over Website Abuse
Manchester United have been forced to is-
sue an embarrassing apology to Liverpool
for an ill-advised attack on the Anfield outfit
on its own website.

United Apology over Website Abuse
Manchester Nations have been forced to is-
sue an embarrassing apology to Liverpool
for an ill-advised attack on the Anfield outfit
on its own website.

Sports World

1 football. apology over website abuse manch-
ester united have been - to issue an embar-
rassing apology to liverpool for an the - ad-
vised attack on the anfield outfit on its own
website.

the. apology over website abuse manchester
nations have been the to issue an embarrass-
ing apology to liverpool for an the - advised
attack on the anfield outfit on its own web-
site.

Sports World

2 the. apology over website abuse manchester
united have been - to issue an embarrassing
apology to liverpool for an the - advised at-
tack on the anfield outfit on its own website.

the. apology over website abuse manchester
nations have been the to issue an embarrass-
ing apology to liverpool for an the - advised
attack on the anfield outfit on its own web-
site.

Sports World

3 the. apology over website abuse manchester
united have been the to issue an embarrass-
ing apology to liverpool for an the - advised
attack on the anfield outfit on its own web-
site.

the. apology over website abuse manchester
s have been the to issue an embarrassing
apology to liverpool for an the - advised at-
tack on the anfield outfit on its own website.

Sports Sports

4 the. apology over website abuse manchester
united have the - to issue an embarrassing
apology to liverpool for an the - advised at-
tack on the anfield outfit on its own website.

the. apology over website abuse manchester
s have been the to issue an embarrassing
apology to liverpool for an the - advised at-
tack on the anfield outfit on its own website.

Sports Sports

5 the. apology over website abuse manchester
united have the the to issue an a apology to
liverpool for an the - advised attack on the
anfield outfit on its own website.

the. apology over website abuse manchester
united have been the to issue an the apology
to liverpool for an’- advised attack on the
anfield outfit on its own website.

Sports Sports

Table 10: MLM outputs and FreeLB++ model predictions from ensembling diffused hidden states at different
denoising steps.
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Figure 5: Confusion matrix of models under attack on AGNews test set.
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Figure 6: Confusion matrix of models under attack on IMDB test set.
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