
Under review as a conference paper at ICLR 2023

PIXEL-LEVEL TASK HELPS PRUNED NETWORK TRANS-
FER TO DOWNSTREAM TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning well-trained neural networks is effective to achieve a promising accuracy-
efficiency trade-off in computer vision regimes. However, most of existing pruning
algorithms only focus on the classification task defined on the source domain.
Different from the strong transferability of the original model, a pruned network is
hard to transfer to complicated downstream tasks such as object detection Girish
et al. (2021). In this paper, we show that the image-level pretrain task is not capable
of pruning models for diverse downstream tasks. To mitigate this problem, we
introduce image reconstruction, a pixel-level task, into the traditional pruning
framework. Concretely, an autoencoder is trained based on the original model,
and then the pruning process is optimized with both autoencoder and classification
losses. The empirical study on benchmark downstream tasks shows that the
proposed method can outperform state-of-the-art results explicitly.

1 INTRODUCTION

Fine-tuning a pre-trained model, which can leverage the knowledge from a large-scale pre-training
dataset, becomes prevalent for downstream tasks. This strategy avoids overfitting on small datasets
leading to better performance on target tasks. Benefits from the pretrain-finetune strategy, scaling
up model capacity is a trend in recent research Touvron et al. (2021); Dosovitskiy et al. (2020); Liu
et al. (2021). However, large-scale models consume a lot of computational and memory resources,
limiting their applications on edge devices. Many efforts are devoted to reducing the computational
requirements of neural networks Hubara et al. (2017); Hinton et al. (2015); Tai et al. (2016). Among
them, pruning Han et al. (2015) aims to remove unimportant parameters from the original model and
can reduce the size of the model significantly. Most pruning methods rely on a well-trained network
and can achieve extraordinary compression rates with negligible accuracy drop on the same task. Han
et al. (2015); Yang et al. (2019); Sanh et al. (2020)

Although pruning methods demonstrate an excellent accuracy vs. sparsity trade-off, only a few
works evaluate the pruned model’s transferability, i.e., the performance on different downstream
tasks. Given multiple downstream tasks, a pruning algorithm can be applied to the individual task.
However, the cost that linearly depends on the number of tasks will become intractable. To mitigate
this problem, we try to find a pruned model, called universal winning tickets, that can transfer to
diverse downstream tasks.

The lottery tickets hypothesis, proposed by Frankle & Carbin (2018), claims that each over-
parameterized neural network has a sparse subnetwork called a winning ticket, which can achieve the
same performance as the entire network. The transferability of winning tickets has been investigated
in Morcos et al. (2019). They show that an ImageNet ticket can transfer to different downstream
classification tasks. In Chen et al. (2021), the authors suggest that a pretraining procedure can be
regarded as a special initialized method. This kind of initialization is directly amenable to sparsi-
fication. Based on this insight, the authors use task agnostic pretraining to help find the universal
winning tickets. Their results show that a universal winning ticket exists across different classification
downstream tasks.

However, in some more complicated downstream tasks, such as object detection, tickets found by
Chen et al. (2021) can result in a degenerated performance. In Chen et al. (2021), the authors reveal
that tickets found by the target object detection task surpass tickets found by image classification with
a non-negligible margin. In Girish et al. (2021), the authors check tickets found by supervised learning

1

Under review as a conference paper at ICLR 2023

on an object detection dataset Lin et al. (2014). The result confirms that ImageNet tickets only transfer
to a limited extent to downstream tasks, such as object detection or instance segmentation. These
observations illustrate that the pruning method’s transferability is highly related to the task type.

In this paper, we aim to find the universal tickets for diverse downstream tasks. Most of the existing
methods rely on an image-level task to prune pre-trained models. Although the pruning pipeline
has shown an extraordinary performance on downstream tasks He et al. (2020), it does not treat
details and global features in the same status. The implicit tendency of image-level loss causes
the neural network to forget pixel-level information during the pruning process. After pruning,
pixel-level information becomes untraceable while it is essential for complicated downstream tasks,
e.g., detection, segmentation, etc. The intuition is theoretically analyzed in Section 3. Therefore, a
pixel-level task is necessary for pruning pre-trained models to preserve sufficient information and can
help the model transfer to generic downstream tasks.

Unlike image-level tasks, designing appropriate pixel-level tasks is still challenging. Inspired by the
recent progress in self-supervised learning He et al. (2021), we introduce the image reconstruction
task to find the universal tickets, and a two-stage training paradigm is proposed to obtain the desired
ticket. First, an autoencoder structure is introduced for the existing model. The encoder structure
inherits the original model structure and weights. Unlike an end-to-end unsupervised pre-training in
He et al. (2021), which requires an extremely large model and high mask rate to avoid cheating model,
a much smaller decoder is trained in our method for a specific encoder. We use the feature map hint
method to accelerate the convergence of decoder. After the first stage of training for the decoder,
we have a classification task with a classification head for the second stage of training. Concretely,
we freeze the decoder and apply a modified LTH algorithm to get a universal ticket. Finally, the
performance is evaluated by transferring the obtained tickets to different downstream tasks.

Our contributions can be summarized as follows.

• We propose a new framework for pruning pre-trained neural networks. Different from
directly pruning on the classification tasks, we first train a decoder for the pruned network
and then introduce the reconstruction loss. The pruned model is applicable for different
downstream tasks, especially object detection and instance segmentation.

• Our result suggests that pixel-level tasks are better than traditional image-level tasks for
pruning pre-trained neural networks. Although contrastive learning and classification tasks
have been proved to be useful pretraining tasks for large models, the pruning method relying
on those tasks may degenerate the transferability. By introducing an appropriate pixel-level
task, a pruned model generalizes better on downstream tasks.

• The proposed method is evaluated on benchmark downstream tasks. It achieves 32.7%AP
on the COCO dataset when only keeping about 20% parameters of the original model.
The superior performance over state-of-the-art result Girish et al. (2021) confirms the
effectiveness of our method.

2 RELATED WORK

Pruning and Lottery Tickets Hypothesis Pruning aims to remove the unimportant weights of a
neural network to reduce computation costs. It was first proposed in LeCun et al. (1990) where the
authors use the Hessian matrix to estimate the importance of parameters. In Han et al. (2015), the
authors propose iterative magnitude pruning to achieve a better compression rate. A lot of works
follow Han et al. (2015) setting and achieve promising results. Different from those methods, the
lottery tickets hypothesis, proposed in Frankle & Carbin (2018), suggests that a sparse trainable
subnetwork exists in a given over-parameterized model. This sparse network can achieve similar
performance as the entirety. To verify this assumption, Frankle & Carbin (2018) follow the iterative
pruning paradigm but set the model parameter to initial values at each pruning round. Some works
Lee et al. (2018); Wang et al. (2019); Tanaka et al. (2020) attempt to find the winning tickets in an
initialized network. Those methods can find winning tickets in small datasets. However, as stated in
Liu et al. (2018), the original LTH method fails with more complicated datasets and large learning
rates. In Renda et al. (2019), the authors find that rewinding the parameter to the early training stage
of the neural network, rather than the initial value, can bring profits to winning tickets in complicated
datasets.

2

Under review as a conference paper at ICLR 2023

Large Scale Pretrain ImageNet pretraining is widely used in nowadays computer vision training
pipeline. It is common sense that using a pretrained network on a large dataset can benefit downstream
tasks, both in accuracy and training epochs. Nowadays, self-supervised pretrain methods have become
more popular because they can utilize unlabeled data. Image-level self-supervised pretraining has
been developed for years He et al. (2020); Chen et al. (2020); Grill et al. (2020); Qian et al. (2021).
In those methods, an image is encoded into a single representation vector. The classifier should
distinguish a strongly augmented image from irrelevant ones by using their representation vector.
Recently, pixel-level or patch-level pretraining has attracted more attention. These methods focus on
the recovery of corrupted images Ramesh et al. (2021); Touvron et al. (2021); He et al. (2021). Most
of them require an extremely large model such as ViT Dosovitskiy et al. (2020) to achieve better
performance.

Autoencoder is a famous traditional machine learning structure. It is widely used in image denoising
Vincent et al. (2008) and generative model Kingma & Welling (2013). Recently, the image recon-
struction task is also introduced in self-supervised pretraining He et al. (2021). To get abundant
semantic information of neural networks and avoid cheating models, the autoencoder usually adopts a
strong regularizer or data augmentation and should take a lot of time to train. In this paper, we focus
on pruning to downstream tasks, rather than getting a better autoencoder. In this way, we separately
train the decoder and encoder of our neural network. Thus, the decoder only needs to be trained for
fewer epochs than in previous works.

3 IMAGE-LEVEL TASKS ARE NOT SUFFICIENT CRITERION FOR PRUNING
NEURAL NETWORK

In this section, we show the insufficiency of image-level tasks for finding universal tickets. It is
common sense that traditional image classification tasks can produce an abundant feature map so
that their backbone can transfer to every downstream task. Thus, we use the difference between the
original feature map and the pruned version to imply the transferability of a pruned model. We mainly
study two simple but important variants of CNN: linear convolutional neural network (LCNN) and
one-layer ReLU convolutional neural network (ORCNN). We should point out that our proof methods
can not directly generalize to the deep neural network so the proof of the deep neural network is still
an open problem. We focus on pruning in LCNN and finetuning in ORCNN. Our results suggest that
image-level tasks cannot produce a transferable pruned neural network. We mainly talk about the 1D
convolution, but the 2D case is easy to extend.

3.1 PRELIMINARY

Notations about Tensor A k-th order tensor (ai1...ik) is a k-dimensional array of real numbers
ai1...ik . We use || · || and ⟨·, ·⟩ to denote the standard l2 norm and inner product of tensors. And we
define the normalized l2 distance between tensor A and B as

distNl2 (A,B) =
||A−B||√
||A||||B||

(1)

Convolution Operator is a linear operator represented by ∗ . Let x = (xi,j) ∈ Rc×D be the input,
where D is the length of input sequence and c is the channel number of input. Let W ∈ Rc′×c×(2s+1)

be the convolution tensor. Then the convolution between W and x is defined as:

(W ∗ x)i,j =
c∑

k=1

s∑
l=−s

wik,lxk,j+l (2)

where we use circular padding method, i.e. xi,j+D := xi,j .

Average Pooling Operator is also a linear operator Pa. For any matrix v ∈ Rc×D, we have:

Pav =
1

D

D∑
i=1

v:,i ∈ Rc (3)

3

Under review as a conference paper at ICLR 2023

Linear Convolutional Neural Networks (LCNN): LCNN is a linear mapping C : Rc×D →
RmL+1×D, which can be defined as

C(x) := WL ∗WL−1 ∗ ...W 0 ∗ x (4)

where x ∈ Rc×D,W l ∈ Rml+1×ml×(2s+1).

One-hidden-layer ReLU Convolutional Neural Networks (ORCNN): Let x = (xi,j) ∈ Rc×D be
the input. W ∈ Rm×c×(2s+1) is the convolution tensor, where m is the channel number of feature
maps. ORCNN is defined as the following:

xconv =
1√
m
σ(W ∗ x)

xpool = Pax
conv

f(x) =
〈
a,xpool

〉 (5)

where xconv , xpool are hidden-layer outputs and f(x) is the predicted label. We use fa,W(x) to
denote the whole newtork. σ(·) denotes ReLU activation function which is defined as σ(·) :=
max(·, 0). a = (a1, a2, ..., am)T ∈ Rm are the fully connected weights.

3.2 PRUNING IN LCNN

In this section, we investigate the pruning step in LCNN. We claim:

Claim Let C be an LCNN, there must exists another LCNN C ′, such that

PaC(x) = PaC′(x), C(x) ̸= C′(x) (6)

This is a direct result by considering the translation symmetry in LCNN. Now, the question becomes
“Can this LCNN C′ be found by pruning algorithm?". At least, can we find an LCNN C′ by pruning,
such that the change of ||PaC(x)−PaC′(x)|| is small while ||C(x)−C′(x)|| is large? To answer this
question, we come out the following theorem:

Theorem 3.1. For any random initialized LCNN, where parameter is initialized as i.i.d N (0,∆).
Then, for any p < 0.11, we can prune p proportion of weights and get a new LCNN C′ with high
probability, such that:

||PaC(x)− PaC′(x)||
||PaC(x)||

< C1p
3/2

||C(x)− C′(x)||
||C(x)||

> C2p
1/2

Here C1 and C2 are constants related to the kernel size s and the depth L

This theorem means that if we initialize the LCNN properly, we can find some neurons such that
removing those neurons does not change the image-level feature vector a lot but destroys the feature
map structure. Thus, using a pruning criterion based on image-level loss can not preserve the feature
map of LCNN. The detailed proof is in Appendix.

3.3 FINETUNING IN ORCNN

In this section, we focus on finetuning in ORCNN. Let fa,W(x) denote the ORCNN parameterized
by fully connected weight a and convolution tensor W. The pruning pipeline can be formalized as
the following three phases:

• Pre-trained Phase: We randomly initialize the parameters a and W to a0 and W0. Then,
we train the model via image-level tasks on the given labeled dataset S and derive a pre-
trained model fapre,Wpre(x).

• Pruning Phase: We apply the structured pruning method to ORCNN with the pruning rate
p.

4

Under review as a conference paper at ICLR 2023

• Finetuning Phase: We first reset unpruned parameters to initial values a0 and W0. Next,
we finetune the network parameters on the same labeled dataset S via the gradient descent
algorithm. Finally, we derive the finetuned model fafin,Wfin

(x).

We mainly consider the training process in the finetuning phase. In the finetuning phase, we use the
same dataset S = {(x1, y1), (x2, y2), ..., (xn, yn)} as in the pretraining phase and use loss function
L(f) := 1

2

∑n
i=1(f(xi) − yi)

2. We use the gradient descent method to update the convolutional
tensor W and freeze the fully connected weights a:

W(t+ 1) = W(t)− η
∂L

∂W(t)
(7)

where η is the learning rate, and t denotes tth-iter.

As the original pre-trained model has a strong transferability to diverse downstream tasks, we believe
the pre-trained model can learn a good representation of the data. Specifically, the pre-trained
ORCNN can derive the feature maps from the image data by the pre-trained convolution tensor Wpre.
Thus, the ‘difference’ between convolution tensors Wfin and Wpre implies the transferability of
pruned model.

In order to measure the difference between convolution tensors, we multiply an arbitrary rotation
operator Q on the Wfin to recover its density. Then, we calculate the minimal normalized l2 distance
between QWfin and Wpre. The following Theorem 3.2 characterizes the lower bound of the
distance under the over-parameterized setting.

Theorem 3.2. Assume that we set the channel number of feature maps m = Ω(1
δ2 poly(n)), and the

finetuning learning rate η is sufficiently small. After the finetuning phase, the finetuned convolution
tensor is Wfin. Then with probability at least 1− δ over the random initialization in the pre-trained
phase, we have

min
Q∈O

{distNl2 (QWfin,Wpre)} ≥ p

2
(8)

where O is rotation operator space and p is the pruning rate.

The main idea of the proof is to analyze the dynamics of the model Gram matrix in the gradient
descent process. The detailed proof can be found in Appendix.

Theorem 3.2 suggests the lower bound of normalized l2 distance between them is growing linearly
with respect to the pruning rate p. It reveals the pruned model’s ability to extract features is less than
the original although it may have the same good performance as the original model in image-level
tasks. Therefore, we demonstrate the insufficiency of image-level tasks for finding universal tickets.

4 METHOD

As we discussed in Section 3, only focusing on the image-level task during the pruning procedure will
lead to a degenerated feature map. In general, using image-level loss as a pruning criterion tends to
remove image details and destroy the structure of the feature map. That untraceable information will
cause a significant accuracy drop on the detection or segmentation tasks. To mitigate this problem,
we attempt to introduce the pixel-level task to the traditional pruning framework. Our framework can
be formalized into three stages:

i) Train an autoencoder. We modify the pretrained model to the encoder of an autoencoder structure.
The last feature map of the original model becomes the compressed code of the autoencoder; then,
we freeze the encoder and start training. We use the feature map hint method (illustrated in Section
4.1) to accelerate the training process and improve performance.

ii) Prune the encoder. After decoder training, we prune the encoder part with reconstruction loss
and classification loss simultaneously. During this pruning step, the decoder is frozen to keep the
information gathered from the encoder. We follow a modified LTH pruning pipeline to get better
performance.

iii) Adapt the encoder to the downstream tasks according to the standard transfer learning setting.

5

Under review as a conference paper at ICLR 2023

Figure 1: Overview of our framework. First, we use the reconstruction loss and the feature map
hint method to train an autoencoder structure. Next, we use the modified LTH algorithm for pruning
the neural network. We combine classification loss and image reconstruction loss for finetuning
procedure. Then, we transfer the encoder part to the downstream tasks. The encoder part is frozen
during the autoencoder training process, while the decoder is frozen in the Modified LTH pruning
process.

The overall structure design is described in Figure 1. We will describe the first two steps in our
framework in the following sections.

4.1 AUTOENCODER TRAINING

Image reconstruction is a conventional computer vision task but was introduced as a pretraining
method recentlyHe et al. (2021). Autoencoder is the basic architecture of image reconstruction. As
the first step of our framework, the original model will be embedded in the autoencoder structure,
which will be trained until the decoder captures the pixel-level information.

In this paper, we focus on ResNet structure, but our method can easily generalize to other kinds of
structures. We remove the last pooling layer and fully connection layer of the original model as the
encoder part. In this way, the final feature map is regarded as the compressed code of the autoencoder.
Different from unsupervised pretraining, the decoder part in our method is an inversed ResNet. The
training purpose of an autoencoder is to minimize

Lrec =
1

N

N∑
i=1

||D(F(xi))− xi||2 (9)

where N is the number of training samples, F represents the encoder part, D represents the decoder
part, xi is the input image. Obviously, without any constraint on F or D, the loss function will lead to
a trivial solution. Therefore, we freeze the parameters in F during the autoencoder training process.

4.2 FEATURE MAP HINT

We use the previous stage’s feature map as a hint to the inversed ResNet decoder for better image
reconstruction results. Directly transporting the feature map to the decoder part must lead to a fault
model. The decoder tends to rely on low-level features while ignoring the high-stage information.
Therefore, we mix the original feature map and the following decoder’s feature map with a specific
proportion t. Formally, let fi be the feature map in the encoder stage-i, gi is the output feature in the
decoder stage-i, and the input feature map of the decoder i+ 1 stage is:

g′i = (1− t)gi + tfi (10)

This mixing method can stabilize the finetuning process and avoid fault models. In practice, the
proportion t will be a small positive number. In Section 6.2, we conduct an ablation study on the
choice of different feature maps. The final result shows that using f3 and f4 as feature map hints for
the decoder can achieve the best performance.

6

Under review as a conference paper at ICLR 2023

4.3 RECONSTRUCTION LOSS IN PRUNING STEP

With the autoencoder structure, we can add the reconstruction loss to the pruning process. The
loss function during the pruning process is composed of two parts: Lclass refers to the traditional
classification loss, and Lrec refers to the reconstruction loss. We use a hyperparameter λ to balance
Lclass and Lrec

L = Lclass(F) + λLrec(F ,D) (11)

Notice that the decoder D is related to Lrec in the above function, which means the decoder will
be trained during the finetuning process. However, we hope the decoder part guides the finetuning
process and transfers pixel-level information to the encoder. The decoder change will perturb the
information remaining in the decoder and may lead to an unexpected result. It also slows down the
training. Therefore, we freeze the parameter in the decoder part during the pruning process.

4.4 MODIFIED LTH PRUNING

There are two widely used pruning pipelines, IMP and LTH, where LTH resets the parameter to the
initial value, but IMP does not. In this section, We argue that neither setting is the most capable
method to find universal tickets. We introduce a modified LTH pipeline, which is showed more
powerful to find universal tickets.

In previous works, Chen et al. (2021) used an IMP method to produce universal tickets. Although the
IMP method usually provides better accuracy on the upstream tasks, it may cause the neural network
to fall in the minima of the upstream task while it is hard to finetune on the downstream task. In
Girish et al. (2021), the authors examine whether the ImageNet tickets produced by LTH can work for
detection tasks. We should point out that their method does not utilize the pretrained network power
and limits the performance of their method. We try to combine the strengths of those two methods.

Inspired by Chen et al. (2021), we replace the initial values in the original LTH method with the
pretrained values. Let f(x; θ) represent the neural network, θ ∈ Rn. Pruning some parameters means
we permanently set some dimensions of θ to zero. In this way, we can use mask m ∈ {0, 1}n to
describe the pruned parameter. Thus, a pruned network can be described by f(x;m ⊙ θ), where
mi = 0 means we prune this parameter from the whole neural network. Let θpre represent the
pretrained value of the original neural network. We train the network for T epochs and prune the
smallest p proportion of unmasked parameters for every training round. After the prune step, the
parameters θ reset to pretrained values θpre. Then another training round begins.

Figure 2: Performance on the COCO detection and segmentation dataset. It is noticeable that our
method outperforms the reported result in Girish et al. (2021). We can produce transferable tickets at
sparsity around 80%.

5 EXPERIMENT

We only post our experiment results in this section, the detailed experiment setting can be found in
Appendix

7

Under review as a conference paper at ICLR 2023

5.1 DETECTION AND SEGMENTATION RESULTS

We evaluate our method on the COCO dataset. In Figure 2, we compare our method with the reported
ImageNet tickets results in Girish et al. (2021). Notice that our results surpass the baseline results
at every point of the accuracy-sparsity curve. Our method can achieve 32.7 mAP on the detection
task and 30.3 mAP on the segmentation task at sparsity 79.03%. To make a fair comparison with
the reported result in Girish et al. (2021), we interpolate our accuracy-sparsity curve at 80% and
90% sparsity. The result is listed in Table 1. At high-level sparsity, e.g., 92% sparsity, our method’s
performance goes down due to the limitation of ResNet50 itself. As stated in Girish et al. (2021), it is
hard for ResNet50 to find winning tickets at 90% sparsity, even in the setting of directly applying
LTH on the downstream task.

5.2 CLASSIFICATION RESULTS

Figure 3: Classification transfer results. From left to right are the results of Cifar10, Cifar100,
SVHN. In Cifar10 and SVHN datasets, our method is comparable to the directly applying LTH
method. At Cifar100, our method outperforms with LTH method, showing the transferability of our
selected tickets.

Baseline setting We compare our results with the baseline that directly performs LTH on the target
dataset in classification task transfer. We perform 15 pruning rounds. Each pruning round has 182
epochs and will cut 20% parameters. The learning rate starts from 0.1 in each round, ×0.1 at 91, 136.
The weight decay is 2e-4. This setting is the same as the task setting in Chen et al. (2021).

We evaluate our tickets on Cifar10, Cifar100, SVHN. The results are presented in Figure 3. Our
method is comparable or even better than directly applying the LTH method on the target dataset,
especially in Cifar100 datasets. In Cifar100, our method achieves over 80% accuracy, while the LTH
method only achieves 76% at the beginning of training.

Although we are mainly concerned about the pruned network’s transferability, our method still
achieves comparable ImageNet unstructured pruning results. As shown in Figure 5, our method has a
similar performance with the iterative magnitude unstructured pruning result, which implies that our
tickets are also winning tickets on the ImageNet.

Table 1: Object Detection and Segmentation Results. (mAP)

Task Detection Segmentation
Sparsity 80% 90% 80% 90%

Girish et al. (2021) 31.0 30.7 29.0 28.6
ours (interpolated) 32.6 31.1 30.2 28.9

6 ABLATION STUDY

6.1 COMPARISON VS IMP METHOD

As we argued in Section 4.4, the IMP method is not the best way to create universal tickets. In this
section, we compare the transferability of tickets produced by IMP and our method. We evaluate
those tickets on detection downstream tasks at different sparsity. It is easy for the IMP method to
get a more sparse network in complicated datasets. However, we find out that in the transferability

8

Under review as a conference paper at ICLR 2023

Table 2: Comparison with IMP Method. Object Detection and Segmentation Results. (mAP)

Sparsity
(backbone)

Detection Segmentation
IMP Ours IMP Ours

79.02% 32.1 32.7 29.9 30.3
83.22% 31.8 32.3 29.6 29.8
86.57% 31.3 31.6 29.1 29.5
89.26% 30.8 31.4 28.7 29.2
91.41% 30.1 30.5 28.0 28.4

tasks, our method brings significant AP improvement in the downstream detection and segmentation
datasets. The results are shown in Table 2

6.2 FEATURE MAP HINT SELECTION

In this section, we investigate the influence of feature map hints. As Figure 4 shows, different feature
map hints lead to a different result. We attribute this phenomenon to the different feature maps’
detailed and semantic information levels. If we only use a high-level feature for autoencoder, it takes
a lot of network capacity and needs more epochs to converge; if we use a low-level feature map, those
features are so close to the original information that the decoder part does not get useful information.
We find that using f3, f4 as feature map hints can lead to the best performance compared to other
settings. So we use f3, f4 as the feature map hints choice on other settings.

7 CONCLUSION

In this paper, we propose a new framework to find the universal tickets that can transfer to diverse
downstream datasets. First, we theoretically show that the image-level tasks may result in a degener-
ated feature map with high probability. This analysis implies that image-level tasks are not sufficient
for neural network pruning. To address the problem, we introduce a new pruning framework that
includes the image reconstruction task to guide the pruning process. Our framework has three steps: i)
Train an autoencoder, ii) Prune the encoder with an improved LTH method. iii) Transfer the encoder
to downstream tasks. Besides, the feature map hint method is developed to accelerate the autoencoder
training stage. The obtained tickets are evaluated on diverse downstream tasks at different sparsity
ratios. The empirical study demonstrates that the proposed method can outperform state-of-the-art
method Chen et al. (2021); Girish et al. (2021) on benchmark datasets.

Figure 4: The ablation study of different fea-
ture map hints. We use the detection transfer
result at pruning round 8 (sparsity 83.22%) as
the selection criterion. We observe that using f3
and f4 as feature map hints can induce the best
result on detection datasets.

Figure 5: The comparison between our
method and IMP on ImageNet. We find that
our method has a similar performance as the IMP
result. Considering that our method only fine-
tunes 10 epochs for each ticket, we believe that
our ticket is also winning tickets on ImageNet.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training in
computer vision models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16306–16316, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 1675–1685. PMLR, 09–15 Jun 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Sharath Girish, Shishira R Maiya, Kamal Gupta, Hao Chen, Larry S Davis, and Abhinav Shrivastava.
The lottery ticket hypothesis for object recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 762–771, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Journal
of Machine Learning Research, 18(1):6869–6898, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

10

Under review as a conference paper at ICLR 2023

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. 2021.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2018.

Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. Advances in Neural
Information Processing Systems, 32:4932–4942, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Qi Qian, Yuanhong Xu, Juhua Hu, Hao Li, and Rong Jin. Unsupervised visual representation learning
by online constrained k-means. CoRR, abs/2105.11527, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 8821–8831. PMLR, 18–24 Jul 2021.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2019.

Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by
fine-tuning. In NeurIPS, 2020.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and E Weinan. Convolutional neural networks
with low-rank regularization. In 4th International Conference on Learning Representations, ICLR
2016, 2016.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks with-
out any data by iteratively conserving synaptic flow. Advances in Neural Information Processing
Systems, 33, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR, 18–24 Jul
2021.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Yang Yang, Yaxiong Yuan, Avraam Chatzimichailidis, Ruud JG van Sloun, Lei Lei, and Symeon
Chatzinotas. Proxsgd: Training structured neural networks under regularization and constraints. In
International Conference on Learning Representations, 2019.

11

https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2023

A EXPERIMENT SETTING

Dataset For the autoencoder training step and modified LTH pruning step, we conduct all experi-
ments on ImageNet Deng et al. (2009). For the image-level transfer task, we still focus on image
classification. We evaluate the tickets gathered from the ImageNet dataset on Cifar10 Krizhevsky
et al. (2009), Cifar100Krizhevsky et al. (2009), and SVHN Netzer et al. (2011). We also show the
accuracy of ImageNet. For pixel/patch-level task transfer, we investigate object detection and instance
segmentation. As stated in Girish et al. (2021), ImageNet tickets transfer to the COCO Lin et al.
(2014) dataset is harder than transfer to small detection dataset such as VOC datasets. Therefore, We
use the COCO dataset as a standard benchmark.

Model We evaluate our method with ResNet50, a standard CNN model on the ImageNet and COCO
object detection/instance segmentation task backbone. We use official PyTorch pretrained weights as
our pretrained values. The decoder is an inverse ResNet architecture. This decoder part is removed in
the downstream tasks, and only the encoder part transfer. For classification transfer tasks, we adjust
the first kernel size of ResNet50 to 3× 3 and remove the first max-pooling layer. We use a famous
structure mask RCNNHe et al. (2017) as the segmentation and detection head for object detection
and instance segmentation tasks.

Training and Pruning Setting In the autoencoder training step, we train the decoder with the
AdamW optimizer. We use a multi-step learning rate schedule with an initial learning rate 1e-4
and ×0.1 at the 10, 30 epoch. The total training epoch is 50; the batch size is 512; weight decay
is 2e-4. In the modified LTH pruning step, We follow the pruning setting in Chen et al. (2021),
where for each pruning round, we prune 20% parameters. Each pruning round has 10 epochs.
We use the SGD optimizer, and the learning rate is kept 3e-4, the batch size is 512, momentum
is 0.9. The reconstruction penalty λ defined in (9) is 10, the feature map hint proportion is 0.1.
For classification task transfer setting, we follow the setting in Chen et al. (2021). We draw the
accuracy-compression rate curve for different classification tasks. For segmentation and detection
tasks, we use a standard Detectron2Wu et al. (2019) FPN 1× training config. We mainly evaluate
the performance at 7,8,9,10,11 pruning round (79.03%,83.22%,86.58%,89.26%,91.41%) to make a
comparison with result in Girish et al. (2021). The numbers in the brackets represent the sparsity at
each pruning round. All the experiment are conducted on 8 V100 GPUs.

B PROOF OF THEOREM 3.1

We use Discrete Fourier Transformation to proof Theorem 3.1

Discrete Fourier Transformation (DFT) of a vector sequence x ∈ Rc×N is defined as:

F(xi,:)(k) = x̃k
i =

1

N

∑
s

xi,se
2πJ
N sk (12)

We use J represent imaginary unit to distinguish from footnote i. Here we assume xi,: follow the
Periodic Boundary Conditions. DFT has two important propositions:
Proposition B.1. Let x̃k

i = F(xi,:)(k), then we have:
(1) xi,s =

∑
k x̃

k
i e

2πJ
N sk

(2) [W ∗ x]i,j =
∑

t,k W̃ (k)itx̃
k
t e

2πJ
N jk

We define [W̃ (k)]ij =
∑

s Wij,se
2πJ
N sk for simplicity. By those propositions, C(x) can be written as

a simple version:
C(x):,p =

∑
k

WL(k)WL−1(k)...W 0(k)x̃k
: e

2πJ
N pk (13)

Because the avgpool operation only associate with the k = 0 component, while other part is
independent with it. It’s easy to find another network such the zero component unchanged will other
component are different. Thus we can proof the claim we stated in Section 3.2

claim Let C be a LCNN, there must exists another LCNN C ′, such that

PaC(x) = PaC′(x), C(x) ̸= C′(x) (14)

12

Under review as a conference paper at ICLR 2023

To prove Theorem 3.1 we should notice that in such a LCNN C, we can find some weights (around
O(ϵ

∆)) such that |
∑

s Wij,s| < ϵ. By the assumption that each weights is initialized independent, the
high frequency component of W is in O(1) while the zero frequency component is O(ϵ). Therefore,
the total influence of ||Pa(C(x))||2 is O(ϵ3

∆3) but the influence of ||C(x)||2 is O(ϵ
∆)

Lemma B.2. For a randomly initialized convolutional tensor, Wij,s ∼ i.i.dN (0,∆), we have:

(1) E(
∑

i

∑s
k=−s Wij,k

∑s
n=−s Wim,n) = (2s+ 1)n∆2δjm

(2) p = P(
∑s

k=−s Wij,k < ϵ) <
√

1
2π(2s+1)

ϵ
∆

If we prune every neuron with |
∑

s Wij,s| < ϵ and let the new tensor is W ′
ij,s, we have W ′

ij,s =
mijWij,s

(3) P(mij = 0) = p

(4) E(
∑

t mijWij,t

∑
k Wij,k) > ∆2(1− 2ϵ3

3
√
2π∆3

)

(5) E(
∑

t mijWij,t

∑
k mijWij,k) = E(

∑
t mijWij,t,

∑
k Wij,k)

(6) E(
∑

t mijWij,t sin tkθ
∑

m Wij,m sin tkθ) = (1− p)
∑

t sin
2 tkθ

(7) E(
∑

t mijWij,t cos tkθ
∑

m Wij,m cos tkθ) < (1− p)
∑

t cos
2 tkθ

in (6)(7) θ = 2π
D , and k ∈ {1, 2, ..., D − 1}

(1)(2)(3)(5) are easy to understand, for(4), we have:

E(
∑
t

mijWij,t,
∑
k

Wij,k) (15)

=E(
∑
t

Wij,t

∑
k

Wij,k

∣∣mij = 1)(1− p) + E(m
∑
t

Wij,t

∑
k

Wij,k

∣∣mij = 0)p (16)

=∆2 −
∫ ϵ

−ϵ

1√
2π∆

x2e−
x2

2π∆ dx > ∆2(1− 2ϵ3

3
√
2π∆3

) (17)

for (6) this result is a direcly result by considering the conditional expectation:

E(
∑
t

Wij,t sin tkθ
∑
k

Wij,k sin tkθ
∣∣|∑

t

Wij,t| > ϵ) (18)

Due to
∑

t 1 · sin tkθ = 0, this expectation is independent of conditional variable. Thus we have:

E(
∑
t

mijWij,t sin tkθ
∑
t

Wij,t sin tkθ) (19)

=E(
∑
t

mijWij,t sin tkθ
∑
k

Wij,k sin tkθ
∣∣mij = 1)(1− p) (20)

+ E(
∑
t

mijWij,t sin tkθ
∑
t

Wij,t sin tkθ
∣∣mij = 0)p (21)

=(1− p)
∑
t

(sin tkθ)2 (22)

For (7), although the expectation term is dependent on the conditional term, we knew that this
condition will enlarge the expectation, so we have:

E(
∑
t

mijWij,t cos tkθ
∑
t

Wij,t cos tkθ) (23)

=E(
∑
t

mijWij,t cos tkθ
∑
k

Wij,k cos tkθ
∣∣mij = 1)(1− p) (24)

+ E(
∑
t

mijWij,t cos tkθ
∑
t

Wij,t sin tkθ
∣∣mij = 0)p (25)

<(1− p)
∑
t

(cos tkθ)2 (26)

Now, we can calculate the difference caused by prune the weights:

13

Under review as a conference paper at ICLR 2023

Lemma B.3. For any random initialized LCNN, where parameter is i.i.d initialized as N (0,∆). If
we prune every neuron with |

∑
s W

l
ij,s| < ϵ and get a pruned LCNN C′, then we have

||PaC(x)− PaC(x)||2

||PaC(x)||2
∼ O(

ϵ3

∆3
)

proof According to (13), we can rewrite PaC(x) as:

PaC = WL(0)WL−1(0)...W 0(0)Pa(x) (27)

for simplicity, we write F l(k) = W l(k)W l−1(k)...W 0(k)F(x)(k). Thus,

||PaC(x)− PaC′(x)||2 = ||FL(0)− F ′L(0)||2 (28)

We define El as the expectation about the l-th layer weights, then we have:

E||PaC(x)− PaC′(x)||2

=EEL||FL(0)− F ′L(0)||2

=EEL

〈
FL(0), FL(0)

〉
+ EEL

〈
F ′L(0), F ′L(0)

〉
− 2EEL

〈
FL(0), F ′L(0)

〉
=EEL

〈
WL(0)FL−1(0),WL(0)FL−1(0)

〉
+ EEL

〈
W ′L(0)F ′L−1

(0),W ′L(0)F ′L−1
(0)
〉
−

2EEL

〈
WL(0)FL−1(0),W ′L(0)F ′L−1

(0)
〉

<mL(2s+ 1)∆2
〈
FL−1(0), FL−1(0)

〉
+mL(2s+ 1)∆2(1− 2ϵ3

3
√
2π∆3

)
〈
F ′L−1

(0), F ′L−1
(0)
〉

− 2mL(2s+ 1)∆2(1− 2ϵ3

3
√
2π∆3

)
〈
FL−1(0), F ′L−1

(0)
〉

<mLmL−1...m1(2s+ 1)L∆2L[1− (1− 2ϵ3

3
√
2π∆3

)L] ⟨Pa(x), Pa(x)⟩

<mLmL−1...m1(2s+ 1)L∆2LL
2ϵ3

3
√
2π∆3

⟨Pa(x), Pa(x)⟩

=L
2ϵ3

3
√
2π∆3

||PaC(x)||2

(29)

By using the concentretion inequality, we proof Lemma B.3

Lemma B.4. For any random initialized LCNN, where parameter is i.i.d initialized as N (0,∆). If
we prune every neuron with |

∑
s W

l
ij,s| < ϵ and get a pruned LCNN C′, then we have

||C(x)− C(x)||2

||C(x)||2
∼ O(

ϵ

∆
)

proof First we have

||C(x)− C(x)||2 =
∑
k

||F(C(x))(k)−F(C′(x))(k)||2

14

Under review as a conference paper at ICLR 2023

We caculate k ̸= 0 term, due to k = 0 is calculated in B.3 and it is O(ϵ
∆)∑

k ̸=0

E||F(C(x))(k)−F(C′(x))(k)||2

=
∑
k ̸=0

EEL||FL(k)− F ′L(k)||2

=
∑
k ̸=0

EEL

〈
WL(k)FL−1(k),WL(k)FL−1(k)

〉
− EEL

〈
WL(k)FL−1(k),W ′L(k)F ′L−1

(0)
〉

>
∑
k ̸=0

E(2s+ 1)mL∆
2E
〈
FL−1(k), FL−1(k)

〉
−

EmL∆
2E
〈
FL−1(k), FL−1(k)

〉
(1− p)(

∑
t

cos2 tkθ +
∑
t

sin2 tkθ)

=
∑
k ̸=0

mLmL−1....m1(2s+ 1)L∆2LE ⟨F(x)(k),F(x)(k)⟩ (1− (1− p)L)

=(1− (1− p)L)
∑
k ̸=0

E||F(C(x))(k)||2

(30)

Thus we have: ∑
k

E||F(C(x))(k)−F(C′(x))(k)||2

=(1− (1− p)L)
∑
k

E||F(C(x))(k)||2 = O(
ϵ

∆
)||C(x)||2

(31)

By combining Lemma B.3 and Lemma B.4, we proof Theorem 3.1

C PROOF OF THEOREM 3.2

In order to prove Theorem 3.2, we need more notations to represent the problem setup.

First, we introduce the convolution expansion operator ϕ·(·) that can simplify convolution operator to
inner product of tensors.

Convolution Tensor In convolutional neural network(CNN), the convolution tensor is described
as follows. Let wij = (wij,−s, wij,−s+1, ..., wij,s)

T ∈ R2s+1(1 ≤ i ≤ c′, 1 ≤ j ≤ c) be
convolution kernel, where c′ is the number of filters and 2s+ 1 is the size of convolution kernel. And
Wi = (wi1,wi2, ...,wic)

T ∈ Rc×(2s+1) denotes ith filter. Then the convolution tensor is defined as
a 3-dimensional tensor W = (Wi)1≤i≤c′ ∈ Rc′×c×(2s+1).

Convolution Expansion Operator Let x = (xi,j) ∈ Rc×D be the 1-dimensional input, where D is
the length of input sequence and c is the channel number of input. Let W ∈ Rc′×c×(2s+1) be the
convolution tensor. Then we define ϕk(x) as

ϕk (x) =

(
x1,k−s, . . . , x1,k+s

. . . , . . . , . . .
xc,k−s, . . . , xc,k+s

)
(32)

Recall the definition of convolution operator, we have

(W ∗ x)r,k = ⟨Wr, ϕk(x)⟩ (33)

Because we use structured pruning method to prune model, we can assume the new channel number
of feature maps is M = mq = m(1 − p), where p is our pruning rate. And we assume mq is an
integer in order to simplify the proof. Now, we can represent the pruned ORCNN as

f(x) =

√
q

√
MD

M∑
r=1

ar

D∑
k=1

σ(⟨Wr, ϕk(x)⟩) (34)

15

Under review as a conference paper at ICLR 2023

To analyze the gradient descent process, inspired by Du et al. (2019), we focus on the Gram matrix
G = (Gi,j) of ORCNN, which is defined as

Gi,j =
q

MD2

M∑
r=1

D∑
k=1

D∑
l=1

⟨ϕk(xi), ϕl(xj)⟩ I{⟨Wr, ϕk(xi)⟩ ≥ 0, ⟨Wr, ϕl(xj)⟩ ≥ 0} (35)

And if we consider the case that M goes to infinity, we can represent the expectation of G and we
know G converges to it by central limit theorem and independence of Wr(1 ≤ r ≤ M). We use
G∞ to denote the expectation, which can be formally defined as

G∞
i,j = EW∼N(0,I)

[
q

D2

D∑
k=1

D∑
l=1

⟨ϕk(xi), ϕl(xj)⟩ I{⟨W, ϕk(xi)⟩ ≥ 0, ⟨W, ϕl(xj)⟩ ≥ 0}

]
(36)

Proposition C.1. We use λmin(·) to denote the least eigenvalue of a matrix, then we assume that
G∞ has the positive least eigenvalue λ0 = λmin(G

∞). In fact, we know G∞ is positive definite.
Thus, the assumption is weak and reasonable.

We use G0 to denote the initial Gram matrix of pruned model. By the standard concentration analysis
of independent variables, we can derive the following Lemma C.2, which means the initial Gram
matrix of model also has the bounded positive least eigenvalue with high probability.

Lemma C.2. When the channel number of feature maps in pruned model M = Ω
(

n2

λ2
0
log
(
n
δ

))
and

initialization in pre-trained phase satisfies the standard Guassian distribution, with probability at
least 1− δ, we have

λmin(G0) ≥
3

4
λ0 (37)

Before analyzing the finetuning process, we assume some settings as follows to simplify the process
in order to focus on the change of convolution tensor.

Proposition C.3. In finetuning phase, we randomly initialize the fully connected weight a ∼
Unif({−1, 1}M). And we normalize the input such that ||ϕk(xi)|| = 1 for any k, i. In fact, without
the normalization assumption we can also proof the similar conclusion, but it will dependent with
maxk,i{||ϕk(xi)||}
mink,i{||ϕk(xi)||} , which is also an constant.

Because the fully connected weight a is fixed, we can represent the model output w.r.t. the given
dataset S as

Fi(W(t)) =

√
q

√
MD

M∑
r=1

ar

D∑
k=1

σ(⟨Wr(t), ϕk(xi)⟩) (38)

which is output of ith sample in dataset. And we use F(W(t)) =

(F1(W(t)), F2(W(t)), · · · , Fn(W(t)))
T to denote the output vector, where t means it is

tth-round.

Proposition C.4. Recall the initialization of the pruned convolution tensor is the same as that in pre-
trained phase, we know each unpruned entry of the pruned convolution tensor satisfies indenpendent
standard Guassian distribution N(0, 1). With the knowledge of sub-exponential distribution, we can
prove that w.h.p. the l2 norm of the pruned convolution tensorW(0) is close to

√
qmD(2s+ 1) and

the l2 norm of the original convolution tensor before pre-trained phase is close to
√
mD(2s+ 1).

Next, we introduce Lemma C.5 that describes the dynamic process in finetuning phase.

Lemma C.5. Under the above assumptions, if the channel number of feature maps in pruned model
M is Ω

(
n6

λ4
0δ

3

)
and learning rate η is O

(
λ0

n2

)
, with probability at least 1− δ, we have

||F(W(t))− y||2 ≤
(
1− ηλ0

2

)t

||F(W(0))− y||2 (39)

where y = (y1, y2, · · · , yn)T is the label vector of dataset S.

16

Under review as a conference paper at ICLR 2023

By Lemma C.5, with the standard analysis of gradient descent, we can prove the following Lemma
C.6

Lemma C.6. Under the above assumptions, if the channel number of feature maps in pruned model
M is Ω

(
n6

λ4
0δ

3

)
and learning rate η is O

(
λ0

n2

)
, with probability at least 1− δ, for some constant C,

we have

||Wfin −W(0)|| ≤
C
√
qn

λ0
(40)

Remark of Lemmma C.6 In fact, we have similar conclusion of Lemmma C.6 in pre-trained phase,
which implies ||Wpre|| =

√
m(1 + o(1)) and can be proven by the same method as follows.

Proof of Theorem 3.2 By m = Ω(n
6

λ4
0
), Proposition C.4 and Lemma C.6, with probability 1 − δ,

we have ||Wfin − W(0)|| = o(||W(0)||) and ||Wfin|| =
√
qm(1 + o(1)). Combined with

the property of rotation operator, for any rotation operator Q, we have distNl2 (QWfin,Wpre) ≥
||Wpre||−||QWfin||√

||Wpre||||QWfin||
= (1− p)−

1
4 − (1− p)

1
4 ≥ p

2 . Thus, we prove Theorem 3.2 .

Next, We will use induction method to prove Lemma C.5 and Lemma C.6 . Our inductive hypothesis
is the inequality is true for 0, 1, · · · , t and we want to prove the inequality is also true for t+ 1. First,
we have the following decomposition of l2 loss.

||F(W(t+ 1))− y||2 = ||F(W(t+ 1))− F(W(t)) + F(W(t))− y||2

= ||F(W(t+ 1))− F(W(t))||2

+ 2 (F(W(t))− y)
T
(F(W(t+ 1))− F(W(t))) + ||F(W(t))− y||2

(41)
The third term can be bounded by the inductive hypothesis. Thus, we only need to bound the first and
the second terms.

The following Lemma C.7 can help us to bound the gradient norm in finetuing phase.

Lemma C.7. In finetuing phase, we can control the upper bound of gradient norm as∣∣∣∣∣∣∣∣∂L(W)

∂Wr

∣∣∣∣∣∣∣∣ ≤ √
qn

√
M

||F(W)− y|| (42)

for any r ∈ [M].

Proof of Lemma C.7 The proof is very standard to analysis gradient descent.∣∣∣∣∣∣∣∣∂L(W)

∂Wr

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣
∣∣∣∣∣

√
q

√
MD

n∑
i=1

(Fi(W)− yi)

D∑
k=1

ϕk(xi)I{⟨Wr, ϕk(xi)⟩ ≥ 0}

∣∣∣∣∣
∣∣∣∣∣

≤
√
q

√
MD

||F(W)− y||

∣∣∣∣∣∣
∣∣∣∣∣∣
(

D∑
k=1

ϕk(xi)I{⟨Wr, ϕk(xi)⟩ ≥ 0}

)
1≤i≤n

∣∣∣∣∣∣
∣∣∣∣∣∣

=

√
q

√
MD

||F(W)− y||

√√√√ n∑
i=1

||
D∑

k=1

ϕk(xi)I{⟨Wr, ϕk(xi)⟩ ≥ 0}||2

≤
√
q

√
MD

||F(W)− y||

√√√√ n∑
i=1

(
D∑

k=1

||ϕk(xi)I{⟨Wr, ϕk(xi)⟩ ≥ 0}||

)2

≤
√
q

√
MD

||F(W)− y||
√
nD2

=

√
qn

√
M

||F(W)− y||

(43)

17

Under review as a conference paper at ICLR 2023

Now, we can derive an upper bound of the first term by Lemma C.7 and 1-Lipschitz property of
ReLU funciton.
||F(W(t+ 1))− F(W(t))||2

=

n∑
i=1

|Fi(W(t+ 1))− Fi(W(t))|2

=

n∑
i=1

∣∣∣∣∣
√
q

√
MD

M∑
r=1

ar

D∑
k=1

(σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

∣∣∣∣∣
2

=

n∑
i=1

∣∣∣∣∣
√
q

√
MD

M∑
r=1

ar

D∑
k=1

(
σ

(〈
Wr(t)− η

∂L(W(t))

∂W(t)r
, ϕk(xi)

〉)
− σ(⟨Wr(t), ϕk(xi)⟩)

)∣∣∣∣∣
2

≤ q

D

n∑
i=1

M∑
r=1

D∑
k=1

∣∣∣∣〈η ∂L(W(t))

∂Wr(t)
, ϕk(xi)

〉∣∣∣∣2

≤ qη2

D

n∑
i=1

M∑
r=1

D∑
k=1

∣∣∣∣∣∣∣∣∂L(W(t))

∂Wr(t)

∣∣∣∣∣∣∣∣2 ≤ qη2

D
nMD

qn

M
||F(W(t))− y||2

= q2η2n2||F(W(t))− y||2
(44)

To bound the second term, we need a more refined analysis of its form. The following Lemma C.8
will inspire us how to deal with the term.
Lemma C.8. Under the inductive hypothesis, for any T ∈ [t+ 1] and rin[M], we have

||Wr(T)−Wr(0)|| ≤
4
√
qn

√
Mλ0

||F(W(0))− y|| (45)

Proof of Lemma C.8 By the gradient descent and inductive hypothesis, we have

||Wr(T)−Wr(0)|| ≤
T−1∑
j=0

||Wr(j + 1)−Wr(j)|| = η

T−1∑
j=0

∣∣∣∣∣∣∣∣∂L(W(j))

∂Wr(j)

∣∣∣∣∣∣∣∣
≤ η

T−1∑
j=0

√
qn

√
M

||F(W(j))− y||

≤ η
T−1∑
j=0

√
qn

√
M

(
1− ηλ0

2

) j
2

||F(W(0))− y||

≤ η

√
qn

√
M

||F(W(0))− y||
∞∑
j=0

(
1− ηλ0

2

) j
2

≤ η

√
qn

√
M

||F(W(0))− y||
∞∑
j=0

(
1− ηλ0

4

)j

≤
4
√
qn

√
Mλ0

||F(W(0))− y||

(46)

Notice we have

Fi(W(t+ 1))− Fi(W(t)) =

√
q

√
MD

M∑
r=1

ar

D∑
k=1

(σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

(47)

And Lemma C.8 implies the distance between Wr(T) and Wr(0) is bounded, we can use truncation
estimation method to deal with Fi(W(t+ 1))− Fi(W(t)). Specifically, we use Ur,k,i(R) to denote
the event ⟨Wr(0), ϕk(xi)⟩ < R.

18

Under review as a conference paper at ICLR 2023

Because ϕk(xi) is normalized, we know ⟨Wr(0), ϕk(xi)⟩ is a standard Guassian Variable. We have
the following Lemma C.9 .
Lemma C.9. For any r in[M], k ∈ [D] and i ∈ [n], we have the probability of the Ur,k,i(R) satisfies

P{Ur,k,i(R)} ≤ 2R√
2π

(48)

If the event Ur,k,i(R) is false and 4
√
qn√

Mλ0
||F(W(0)) − y|| < R, then we know

I{⟨Wr(t+ 1), ϕk(xi)⟩ ≥ 0} = I{⟨Wr(t), ϕk(xi)⟩ ≥ 0} = I{⟨Wr(0), ϕk(xi)⟩ ≥ 0} by Lemma
C.8 . So we use Jtrue(R) to denote the set {(r, k, i)|Ur,k,i(R) is true} and Jfalse(R) to denote the
set {(r, k, i)|Ur,k,i(R) is false}.

By Markov’s inequality, we can derive the following Lemma C.10
Lemma C.10. With probability at least 1− δ, we have

|Jtrue(R)| ≤ nMDR√
2πδ

(49)

If we use ei(1 ≤ i ≤ n) to denote the standard basis of Rn, then we can decompose F(W(t+ 1))−
F(W(t)) as

F(W(t+ 1))− F(W(t))

=

n∑
i=1

ei

√
q

√
MD

M∑
r=1

ar

D∑
k=1

(σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

=

√
q

√
MD

∑
(r,k,i)∈Jtrue(R)

arei (σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

+

√
q

√
MD

∑
(r,k,i)∈Jfalse(R)

arei (σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

(50)

We use I1, I2 to denote two terms indexed by Jtrue(R), Jfalse(R). And the term indexed by Jtrue(R)
can be bounded by the cardinal of Jtrue(R) as

||I1|| =

∣∣∣∣∣∣
∣∣∣∣∣∣

√
q

√
MD

∑
(r,k,i)∈Jtrue(R)

arei (σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

∣∣∣∣∣∣
∣∣∣∣∣∣

=

√
q

√
MD

√√√√√ n∑
i=1

∣∣∣∣∣∣
∑

r,k|(r,k,i)∈Jtrue(R)

ar (σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

∣∣∣∣∣∣
2

=

√
q

√
MD

√√√√√ n∑
i=1

∣∣∣∣∣∣
∑

r,k|(r,k,i)∈Jtrue(R)

ar

(
σ

(〈
Wr(t)− η

∂L(W(t))

∂Wr(t)
, ϕk(xi)

〉)
− σ(⟨Wr(t), ϕk(xi)⟩)

)∣∣∣∣∣∣
2

≤
√
q

√
MD

√√√√√ n∑
i=1

 ∑
r,k|(r,k,i)∈Jtrue(R)

η

∣∣∣∣∣∣∣∣∂L(W(t))

∂Wr(t)

∣∣∣∣∣∣∣∣
2

≤
√
q|Jtrue(R)|
√
MD

η

∣∣∣∣∣∣∣∣∂L(W(t))

∂Wr(t)

∣∣∣∣∣∣∣∣
≤

√
q|Jtrue(R)|
√
MD

η

√
qn

√
M

||F(W(t))− y||

=
ηq

√
n|Jtrue(R)|
MD

||F(W(t))− y||
(51)

19

Under review as a conference paper at ICLR 2023

Next, we focus on I2 and establish relation between it and the Gram matrix.

I2 =

√
q

√
MD

∑
(r,k,i)∈Jfalse(R)

arei (σ(⟨Wr(t+ 1), ϕk(xi)⟩)− σ(⟨Wr(t), ϕk(xi)⟩))

=

√
q

√
MD

∑
(r,k,i)∈Jfalse(R)

arei

(
σ

(〈
Wr(t)− η

∂L(W(t))

∂Wr(t)
, ϕk(xi)

〉)
− σ(⟨Wr(t), ϕk(xi)⟩)

)

=

√
q

√
MD

∑
(r,k,i)∈Jfalse(R)

arei

(
−η

∂L(W(t))

∂Wr(t)

)
I{⟨Wr, ϕk(xi)⟩ ≥ 0}

= −η
q

MD2

∑
(r,k,i)∈Jfalse(R)

n∑
j=1

D∑
l=1

ei(Fj(W(t))− yj) ⟨ϕk(xi), ϕl(xj)⟩

I{⟨Wr, ϕk(xi)⟩ ≥ 0, ⟨Wr, ϕl(xj)⟩ ≥ 0}

= −η

n∑
i=1

ei

n∑
j=1

G̃i,j(t)(Fj(W(t))− yj)

= −ηG̃(t)(F(W(t))− y)
(52)

where G̃(t) is defined as

G̃i,j(t) =
q

MD2

∑
r,k,l|(r,k,i)∈Jfalse(R)

⟨ϕk(xi), ϕl(xj)⟩ I{⟨Wr(t), ϕk(xi)⟩ ≥ 0, ⟨Wr(t), ϕl(xj)⟩ ≥ 0}

(53)

By matrix perturbation technique, we can prove the following Lemma C.11

Lemma C.11. If the channel number M is Ω
(

q3n6

δ2λ0
4

)
, then with probability at least 1− δ, we have

λmin(G(t)) ≥ λ0

2
(54)

Proof of Lemma C.11 First, by M = Ω
(

q3n6

δ2λ0
4

)
and Lemma C.8, if we set R′ to 4

√
qn√

Mλ0
||F(W(0))−

y||, then we have
||Wr(t)− tr(0)|| ≤ R′ (55)

for any r ∈ [M].

Next, we establish relation between G(t) and G(0). We consider the difference of each entry of
them as

E|Gi,j(t)−Gi,j(0)|

=
q

MD2

M∑
r=1

D∑
k=1

D∑
l=1

| ⟨ϕk(xi), ϕl(xj)⟩ (I{⟨Wr(t), ϕk(xi)⟩ ≥ 0, ⟨Wr(t), ϕl(xj)⟩ ≥ 0}

− I{⟨Wr(0), ϕk(xi)⟩ ≥ 0, ⟨Wr(0), ϕl(xj)⟩ ≥ 0})|

≤ q

MD2

M∑
r=1

D∑
k=1

D∑
l=1

P{Ur,k,i(R
′) ∪ Ur,L,i(R

′)}

≤4qR′
√
2π

(56)

By the Markov’s inequality, with probability at least 1 − δ, we have ||G(t) −G(0)||l1 ≤ 4qn2R′
√
2πδ

.
And by the positive definite of G(t),G(0)we know

λmax(G(t)−G(0)) ≤ ||G(t)−G(0)||F ≤ ||G(t)−G(0)||l1 ≤ 4qn2R′
√
2πδ

(57)

20

Under review as a conference paper at ICLR 2023

Thus, we have
λmin(G(t)) ≥ λmin(G(0))− λmax(G(t)−G(0))

≥ 3

4
λ0 −

4qn2R′
√
2πδ

≥ λ0

2

(58)

Under conclusion of Lemma C.11, by the similar technique used by proof of Lemma C.11 and
Lemma C.10, we can prove

Lemma C.12. If the channel number M is Ω
(

q3n6

δ2λ0
4

)
, then with probability at least 1− δ, we have

λmin(G̃(t)) ≥ λ0

2
− qn2R√

2πδ
(59)

Thus, by Lemma C.12, we have

(F(W(t))− y)
T
I2 = −η (F(W(t))− y)

T
G̃(t)(F(W(t))− y)

≤
(
−ηλ0

2
+

ηqn2R√
2πδ

)
||F(W(t))− y||2

(60)

With the upper bound of the cardinal of Jtrue(R)(Lemma C.10), we also have

(F(W(t))− y)
T
I1 ≤ ||F(W(t))− y||||I1||

≤ ||F(W(t))− y||ηq
√
n|Jtrue(R)|
MD

||F(W(t))− y||

≤ qηn
3
2R√

2πδ
||F(W(t))− y||2

(61)

Based on the estimation of upper bound of three terms, we have

||F(W(t+ 1))− y||2 = ||F(W(t+ 1))− F(W(t))||2

+ 2 (F(W(t))− y)
T
(F(W(t+ 1))− F(W(t))) + ||F(W(t))− y||2

= ||F(W(t))− y||2 + ||F(W(t+ 1))− F(W(t))||2

+ 2 (F(W(t))− y)
T
I1 + 2 (F(W(t))− y)

T
I2

≤

(
1 + q2η2n2 − ηλ0 +

2ηqn2R√
2πδ

+
2qηn

3
2R√

2πδ

)
||F(W(t))− y||2

≤
(
1− ηλ0

2

)
||F(W(t))− y||2

(62)
Finally, we only need to select the value of R. To make all the lemmas are true, we can set R to√

2πδλ0

16qn2 . Now, by combining the inductive hypothesis, we prove Lemma C.5.

Next, we prove Lemma C.6 by the expansion of Lemma C.8. In fact, Lemma C.5 is true for any t, so
Lemma C.8 is true for any T . We use Wfin,i(1 ≤ i ≤ m) to denote the finetuned convolution filters
and have Wfin = (Wfin,i)1≤i≤m. Notice some filters have been pruned, by Lemma C.8, then we
have

||Wfin −W(0)||2 =

M∑
r=1

||Wfin,r −Wr(0)||2

≤
M∑
r=1

(
4
√
qn

√
Mλ0

||F(W(0))− y||
)2

=
16qn

λ2
0

||F(W(0))− y||2

(63)

By the concentration of random initialization, with high probability, ||F(W(0))− y|| is O(
√
n). So

there exists an constant C such that ||F(W(0))− y||2 ≤ Cn, which means we prove Lemma C.6 .

21

	Introduction
	Related Work
	Image-level Tasks are not Sufficient Criterion for Pruning Neural Network
	Preliminary
	Pruning in LCNN
	Finetuning in ORCNN

	Method
	Autoencoder Training
	Feature Map Hint
	Reconstruction Loss in Pruning Step
	Modified LTH Pruning

	Experiment
	Detection and Segmentation Results
	Classification Results

	Ablation Study
	Comparison vs IMP Method
	Feature Map Hint Selection

	Conclusion
	Experiment Setting
	Proof of Theorem 3.1
	Proof of Theorem 3.2

