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Abstract
Chain-of-thought (CoT) prompting can guide001
language models to engage in complex multi-002
step reasoning. The quality of provided demon-003
strations significantly impacts the success of004
downstream inference tasks. While existing005
automated methods prioritize accuracy and se-006
mantics in these demonstrations, we show that007
the underlying reasoning patterns play a more008
crucial role in such tasks. In this paper, we pro-009
pose Pattern-Aware CoT, a prompting method010
that considers the diversity of demonstration011
patterns. By incorporating patterns such as step012
length and reasoning process within interme-013
diate steps, PA-CoT effectively mitigates the014
issue of bias induced by demonstrations and015
enables better generalization to diverse scenar-016
ios. We conduct experiments on nine reasoning017
benchmark tasks using two open-source LLMs.018
The results show that our method substantially019
enhances reasoning performance and exhibits020
robustness to errors. The code will be made021
publicly available.022

1 Introduction023

Large language models (LLMs) have been proven024

highly effective in solving complex reasoning tasks.025

One technique contributing to their success is026

the chain-of-thought (CoT) prompting (Wei et al.,027

2022b), which motivates the LLMs to perform028

multi-step reasoning instead of providing direct029

answers. This approach can significantly enhance030

the model’s ability to handle challenging tasks such031

as arithmetic and symbolic questions.032

Generally, the overall effectiveness of CoT re-033

lies on the quality of the demonstrations provided.034

When confronted with no examples but only the035

prompt “Let’s think step by step”, known as Zero-036

Shot-CoT (Kojima et al., 2022), LLMs struggle037

with reasoning and encounter hallucination-related038

issues. While manually designing demonstrations039

for each question can alleviate such problems (Wei040

et al., 2022b), it comes with a significant labour041

Figure 1: Example of the chain-of-thought reasoning
process: This comprises a question accompanied by a
rationale. The rationale serves as a depiction of how
LLMs navigate the reasoning process to arrive at the
answer to the given question.

cost. To address such challenges, Zhang et al. 042

(2023) propose Auto-CoT, which can automati- 043

cally construct demonstrations as prompts. It ini- 044

tially partitions questions from a given dataset into 045

clusters and then selects a representative question 046

from each cluster. The selected questions are an- 047

swered using Zero-Shot-CoT to obtain their ratio- 048

nales (the intermediate reasoning chain). The per- 049

formance of this automated method is comparable 050

to that of Manual-CoT. 051

Despite the efficacy of the automated method, 052

how to develop a sound and complete set of demon- 053

strations remains an area for further exploration. 054

Several studies advocate for incorporating external 055

knowledge to ensure the accuracy of the intermedi- 056

ate reasoning chain (Zhao et al., 2023; Weng et al., 057

2023; Li et al., 2024). Others suggest generating 058

multiple CoT paths, complemented by a verifica- 059

tion process to maintain self-consistency (Wang 060

et al., 2023b; Yao et al., 2023; Liu et al., 2023). 061
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However, most prior research focuses on the preci-062

sion of demonstrations, with limited exploration of063

the distributional power inherent in these demon-064

strations. Enlightened by Min et al. (2022) and065

Madaan et al. (2023), LLMs perform CoT through066

a counterfactual approach: it does not necessitate067

precise example results but rather learns from the068

underlying patterns (e.g. equations, templates)069

exhibited by the examples.070

In this paper, we introduce a novel approach071

called Pattern-Aware Chain-of-Thought (PA-CoT)072

and demonstrate that LLMs can achieve improved073

reasoning performance by embracing the diversity074

inherent in demonstration patterns. Following the075

Auto-CoT schema, we automatically generate ques-076

tion clusters and select representative questions077

from each cluster. However, instead of relying078

solely on question embeddings for clustering, we079

explore multiple methods to enrich the diversity080

of rationale patterns. We contend that the conven-081

tional embedding-based clustering focuses solely082

on question semantics, lacks reflection on the ra-083

tionale, and consequently fails to encompass the084

full spectrum of demonstrations, as shown in Fig-085

ure 1. To quantify the diversity of patterns, we086

introduce three metrics: (i) the length or steps of087

the rationale, where a shorter rationale implies a088

simpler solution, while a longer one indicates more089

complex reasoning requirements; (ii) the processes090

within the rationale, where distinct equations or091

logics represent different solving approaches; and092

(iii) a combination of rationale steps and processes,093

providing a comprehensive perspective that consid-094

ers both aspects simultaneously.095

We evaluate the performance of PA-CoT across096

six arithmetic and three non-arithmetic reasoning097

tasks. The experimental results consistently demon-098

strate that the combination strategy outperforms099

other methods across two LLMs. This suggests100

that LLMs derive substantial benefits from the di-101

verse patterns presented in demonstrations. Further102

experiments are conducted to examine the impact103

of rationale step and process aspects. We empiri-104

cally find that PA-CoT introduces less bias to the105

generated answer and exhibits error robustness, at-106

tributed to our strategy emphasizing diversity.107

2 Related Work108

This section reviews how chain-of-thought (CoT)109

prompting works and introduces various advanced110

approaches.111

2.1 Chain-of-Thought Prompting 112

Large language models have demonstrated signifi- 113

cant ability in comprehending context and respond- 114

ing to prompts (Brown et al., 2020; Ouyang et al., 115

2022). Recent studies highlight that LLMs can 116

achieve improved task completion without fine- 117

tuning, particularly on reasoning tasks, when pro- 118

vided with few-shot demonstrations (Wei et al., 119

2022b). For instance, when presented with an ex- 120

ample like Q: Mary has 9 yellow marbles. John 121

has 3 yellow marbles. How many yellow marbles 122

do they have in all? A: They have 9 + 3 = 12 yel- 123

low marbles. The answer is 12, LLMs are expected 124

to emulate such a format, deconstruct the ques- 125

tion, engage in multi-step reasoning, and refrain 126

from generating random answers in subsequent 127

tasks. This process is commonly referred to as 128

chain-of-thought prompting or in-context learning 129

(Wei et al., 2022a; Xie et al., 2022). However, im- 130

plementing this practice often involves the manual 131

design of prompts at a labour cost. Consequently, 132

researchers are exploring more efficient example 133

selection strategies to streamline this process. 134

2.2 Example Selection and Refinement 135

Several CoT studies are directed towards automat- 136

ing the generation of demonstrations, such as 137

retrieval-based (Rubin et al., 2022), zero-shot (Ko- 138

jima et al., 2022), clustering-based (Zhang et al., 139

2023), and self-prompt (Shao et al., 2023). How- 140

ever, many of these approaches encounter chal- 141

lenges in achieving performance comparable to 142

Manual-CoT, primarily due to the absence of super- 143

vision in example selection. In another branch of re- 144

search, efforts are focused on enhancing the quality 145

of CoT demonstrations. They incorporate elements 146

such as knowledge-infusion (Zhao et al., 2023; 147

Weng et al., 2023; Li et al., 2024), self-consistency 148

(Wang et al., 2023b), complexity-based (Fu et al., 149

2022), contrastive-based (Chia et al., 2023), and 150

progressive-hint (Zheng et al., 2023). The primary 151

goal of these strategies is to ensure that LLMs ad- 152

here to the correct prompt and avoid being misled. 153

2.3 Role of Example Pattern 154

To understand the underlying mechanism of CoT, 155

Min et al. (2022) and Madaan et al. (2023) employ 156

counterfactual prompting methods. These methods 157

involve substituting question-answer mapping, to- 158

ken distributions, answer patterns, and many other 159

factors. Their findings consistently show that the 160
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Figure 2: Example of Auto-CoT and PA-CoT. The upper part comprises selected demonstrations and a test question,
and the lower part displays the corresponding answer generated by the same LLM.

correctness of examples is not the most crucial161

factor, but rather the distribution or pattern (e.g.162

equations, templates, sentence structure) of the ex-163

amples. In this paper, we continue to uncover the164

power of CoT patterns and show how they can im-165

prove the reasoning process.166

3 Pattern-Aware Chain-of-Thought167

We now explore the impact of diverse demonstra-168

tion reasoning patterns on chain-of-thought prompt-169

ing. According to Min et al. (2022), the precision170

of demonstrations is not crucial when LLMs en-171

gage in CoT. Even if all the demonstrations pro-172

vided are incorrect, it would only marginally im-173

pede performance. This aligns with the insight de-174

rived from Auto-CoT (Zhang et al., 2023): cluster-175

ing zero-shot question-answer pairs (Kojima et al.,176

2022) without emphasizing accuracy can still yield177

valuable examples. Consequently, our focus shifts178

to a more nuanced factor - the underlying reason-179

ing pattern that harbours more informative content180

(Madaan et al., 2023) - to evaluate its potential181

benefits for the CoT process.182

We argue that demonstrations function as tem-183

plates, and they provide accessible reasoning for-184

mats for LLMs to emulate. The homogeneity in185

demonstrations poses a risk of introducing bias 186

into the generated answers (Wang et al., 2023a). 187

Conversely, maintaining diverse demonstrations 188

enables a broader exploration of new reasoning 189

inferences. Although Auto-CoT claims to cluster 190

based on diversity, it predominantly clusters by 191

question semantics, providing limited assistance 192

in problem-solving. In light of this, we propose 193

Pattern-Aware Chain-of-Thought (PA-CoT) that 194

refines the example selection process to enhance 195

the variety of reasoning chains. This approach en- 196

sures that selected examples contribute to a broader 197

range of cases, fostering more generalizable out- 198

comes. 199

In particular, we choose to experiment with arith- 200

metic and symbolic problems since the process pat- 201

terns are relatively intuitive. Given a dataset, each 202

question is first answered by adding the phrase 203

“Let’s think step by step” (zero-shot). Then we se- 204

lect k questions along with their rationales to serve 205

as a general demonstration prompt for the entire 206

dataset (Wei et al., 2022b; Zhang et al., 2023). We 207

design a rationale-based demonstration selection 208

method followed by three simple yet efficient vari- 209

ants to form our testbed: 210

• Cluster based on rationale semantics. This 211
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approach involves a straightforward shift from212

question embeddings to rationale embeddings.213

The goal is to determine if the underlying214

pattern can be discovered through this mi-215

nor alteration. However, our experiment indi-216

cates that this method can still be distracted217

from irrelevant elements such as characters218

or scenes, hindering its ability to generate di-219

verse demonstrations.220

• Cluster based on rationale step length. This221

approach is inspired by the notion of reason-222

ing complexity (Fu et al., 2022; Zhou et al.,223

2022), where a simple task typically involves a224

few steps, and a complex task requires longer225

reasoning chains. Our aim is for the demon-226

strations to encompass both aspects simultane-227

ously. For instance, if all demos are complex,228

the test question may involve an unnecessar-229

ily lengthy reasoning process, and vice versa.230

To validate this hypothesis, we include two231

comparative studies in our experiment.232

• Cluster based on rationale reasoning pro-233

cess. This approach is designed to extract pat-234

terns that guide the task towards reaching its235

objectives (Madaan et al., 2023). Empirically,236

we choose mathematical symbols for arith-237

metic tasks and keywords for symbolic ones.238

For more details, please see Appendix A. In239

these problems, a process can effectively rep-240

resent a solution for a particular question type.241

For example, an equation like 2 + 3 = 5 can242

evoke the association of addition, but it pro-243

vides little assistance in understanding mul-244

tiplication. Our findings demonstrate that di-245

verse process patterns can significantly mit-246

igate bias in the rationale, as illustrated in247

Figure 2.248

• Combination of step length and process.249

Given that the previously mentioned methods250

focus on distinct dimensions of rationale pat-251

terns, this approach seeks to integrate them,252

offering a comprehensive perspective. As se-253

mantics may introduce irrelevant distractions,254

it is not considered in this method. There are255

various ways to combine the step length and256

the process, and we opt for the straightforward257

concatenation of the two dimensions. We also258

test additional variants in subsequent experi-259

ments.260

In summary, we adopt the aforementioned 261

methods as our demonstration clustering strategy. 262

We explicitly extract patterns for each question- 263

rationale pair and encode them into vector repre- 264

sentations using Sentence-BERT1 (Reimers and 265

Gurevych, 2019). For instance, we encode “3” if 266

the step length is 3 (split by “. ” or “\n”), encode 267

“+” if the process appears in the rationale (concate- 268

nate if there are multiple processes), and encode “3 269

+” for our combination strategy. These representa- 270

tions undergo processing by the k-means clustering 271

algorithm, similar to Auto-CoT. Within each clus- 272

ter, we sort the distances and select the example 273

closest to the centre. It is important to note that 274

Wei et al. (2022b) and Zhang et al. (2023) both 275

impose restrictions on the chosen example, requir- 276

ing it to be simple (question less than 60 tokens 277

and rationale less than 5 steps). In contrast, we 278

do not impose such restrictions to preserve variety. 279

The k selected question-rationale pairs are then 280

assembled as the final prompt for inference. 281

4 Experiments 282

In this section, our objective is to evaluate the ef- 283

fectiveness of our proposed PA-CoT and assess 284

whether the introduced variety yields benefits. 285

4.1 Experimental Setup 286

Datasets. We adopt nine representative datasets 287

for our reasoning tasks: MultiArith (Roy and Roth, 288

2015), GSM8K (Cobbe et al., 2021), AddSub (Hos- 289

seini et al., 2014), AQUA-RAT (Ling et al., 2017), 290

SingleEq (Koncel-Kedziorski et al., 2015), SVAMP 291

(Patel et al., 2021), Coin-Flip (Wei et al., 2022b), 292

BIG-bench Date Understanding, and BIG-bench 293

Tracking Shuffled Objects (Srivastava et al., 2023). 294

They require certain reasoning steps and are com- 295

monly used for CoT method comparisons (Wei 296

et al., 2022b; Kojima et al., 2022; Zhang et al., 297

2023; Wang et al., 2023a; Fu et al., 2022). 298

Language Models. We consider open-source 299

large language models as our inference engine. 300

Specifically, we choose LLaMA-2-7b-chat-hf (Tou- 301

vron et al., 2023) and qwen-7b-chat (Bai et al., 302

2023) models, as they have been reported to be 303

comparable to GPT-3.52 in terms of arithmetic abil- 304

ity and possess chain-of-thought reasoning capabil- 305

1We use all-MiniLM-L6-v2 as the embedding en-
coder. https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

2https://platform.openai.com/docs/models
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Model MultiArith GSM8K AddSub AQuA SingleEq SVAMP Coin Date Tracking

LLaMA-2-7b-chat-hf

Zero-Shot-CoT 72.33 21.00 57.97 24.01 57.67 41.90 44.60 39.29 30.80
Auto-CoT 76.00 27.36 58.48 24.01 64.96 43.80 51.20 44.71 32.53

PA-CoT-semantic 74.83 26.76 63.29 24.80 66.92 47.19 48.00 43.08 31.66
PA-CoT-step 76.16 24.41 67.59 29.13 66.14 47.59 48.00 44.44 33.33
PA-CoT-process 79.66 25.39 65.06 25.19 71.85 48.50 59.40 47.96 32.26
PA-CoT-concat 76.67 28.05 66.83 29.92 71.06 50.10 58.40 46.07 32.53

qwen-7b-chat

Zero-Shot-CoT 87.33 42.83 54.93 35.03 69.09 55.70 45.40 50.13 32.40
Auto-CoT 90.66 47.01 62.53 30.31 80.31 60.19 45.40 48.78 29.73

PA-CoT-semantic 91.33 44.80 65.06 31.88 78.74 59.00 43.20 52.38 31.00
PA-CoT-step 90.33 46.85 74.17 33.07 78.14 62.00 38.00 49.32 30.46
PA-CoT-process 90.50 47.16 67.59 29.52 82.08 61.50 52.60 55.72 32.53
PA-CoT-concat 91.33 48.14 72.40 33.46 83.85 62.30 47.40 53.13 31.60

Table 1: Accuracy (%) on nine reasoning datasets. We present the mean value obtained from five runs.

ities. These LLMs are deployed on our local server306

equipped with 4x NVIDIA GeForce RTX 3090.307

We use the inference function of these models and308

the process does not involve training or finetuning.309

We set the hyperparameter temperature as 0.4 to310

regulate the model’s randomness (Xu et al., 2022).311

It is noteworthy that, as highlighted by Wei et al.312

(2023), larger models are more susceptible to the313

influence of examples. We observe that these 7B314

models can also be impacted. Thus, PA-CoT is315

expected to be effective in enhancing their perfor-316

mance.317

Baselines. We primarily compare our methods318

with Zero-Shot-CoT (Kojima et al., 2022) and319

Auto-CoT (Zhang et al., 2023). To clarify the dif-320

ferent variations of our proposed PA-CoT method,321

we note each pattern at the end of its name. For322

example, PA-CoT-semantic for clustering based on323

rationale semantics, and similarly for PA-CoT-step,324

PA-CoT-process, and PA-CoT-concat.325

4.2 Main Results326

Table 1 displays the overall performance of various327

methods on two LLMs. Since our primary focus328

is on evaluating the effectiveness of PA-CoT, we329

are not concerned with determining which LLM330

outperforms the other. Based on the results, we331

have the following observations:332

• Auto-CoT consistently outperforms Zero-333

Shot-CoT, indicating that the cluster-sample334

strategy is effective across different LLMs.335

With the guidance of demonstrations, LLMs336

exhibit an enhanced capability to generate im-337

proved results.338

• Simply switching from question embeddings339

(Auto-CoT) to rationale embeddings (PA-CoT-340

semantic) does not yield significant benefits, 341

as they generally perform at a similar level. 342

We attribute this phenomenon to the inherent 343

similarity between the two embeddings. As 344

the embedding encoder considers the entire 345

sentence as input, it unavoidably incorporates 346

numerous irrelevant elements, such as charac- 347

ters and scenes. Consequently, this approach 348

does not effectively address the fundamental 349

problem. 350

• Considering naive rationale patterns (PA-CoT- 351

step and PA-CoT-process) can notably en- 352

hance performance in various scenarios, with 353

some instances even ranking first among all 354

methods. This observation suggests that by 355

incorporating diverse patterns into demonstra- 356

tions, LLMs can effectively learn from this 357

variability and generalize better across the en- 358

tire dataset. However, given the inherent char- 359

acteristics of different datasets, a single pat- 360

tern may not universally adapt to every case, 361

leading to occasional failures. 362

• Concatenating step length and process pat- 363

terns (PA-CoT-concat) consistently produces 364

the most favourable results across various sce- 365

narios compared to alternative methods. This 366

finding implies that LLMs derive substantial 367

benefits from incorporating multiple dimen- 368

sions in the demonstration. The inclusion of 369

both step length and process patterns encom- 370

passes a broader spectrum of the data distri- 371

bution. Consequently, they are less prone to 372

sampling similar examples, contributing to 373

improved overall performance. 374

In summary, we present different approaches 375

and evaluate their performance on various reason- 376
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Model MultiArith GSM8K AddSub AQuA SingleEq SVAMP Coin Date Tracking

qwen-7b-chat
PA-CoT-step 90.33 46.85 74.17 33.07 78.14 62.00 38.00 49.32 30.46
CoT-simple 84.50 43.82 70.37 27.55 80.31 62.00 47.59 52.74 32.73
CoT-complex 81.50 41.16 74.43 OOM 78.14 59.40 38.20 39.83 31.13

Table 2: Comparison between methods with various demonstration lengths.

(a) MultiArith (b) SVAMP

Figure 3: The box plot of generated rationale length across CoT-simple (pink), PA-CoT-step (blue), CoT-complex
(green). The x-axis represents method names, and the y-axis represents the number of sentence tokens. The box
in the middle represents where half of the numbers are. Extending from the box are whiskers that reach out to
the minimum and maximum values within a specific range. Circles denote outliers, and the line splitting the box
represents the median.

ing tasks. The results indicate the significance of377

demonstration patterns.378

4.3 Impact of Step Length379

To explore the influence of step length on LLMs’380

inference, we conduct additional experiments on381

this factor. In particular, we introduce two com-382

parison methods: CoT-simple and CoT-complex.383

CoT-simple involves selecting examples with the384

fewest rationale steps, while CoT-complex involves385

selecting examples with the most (Fu et al., 2022).386

We aim to assess whether our PA-CoT-step method387

outperforms these two comparison methods.388

Table 2 illustrates the performance of PA-CoT-389

step alongside two comparison methods. Over-390

all, PA-CoT-step demonstrates advantages over the391

other two methods in most scenarios. We observe392

that CoT-complex tends to generate more errors393

during long intermediate steps and faces an out-394

of-memory (OOM) issue when the input becomes395

excessively long. While CoT-simple yields decent396

results in specific cases, it struggles with tasks re-397

quiring intricate reasoning.398

We further visualize the distribution of gener-399

ated answer length as in Figure 3. The box in the 400

middle represents the interquartile range (IQR) and 401

encapsulates the middle 50% of the data, with its 402

lower and upper boundaries marked by the first 403

quartile (Q1) and third quartile (Q3), respectively 404

(Williamson et al., 1989; Kampstra, 2008). Inside 405

the box, a line denotes the median (Q2) and in- 406

dicates the dataset’s central tendency. Extending 407

from the box are whiskers that reach out to the min- 408

imum and maximum values within a specific range. 409

Individual points beyond the whiskers signify po- 410

tential outliers in the dataset. 411

The plot illustrates the correlation between the 412

length of demonstrations and the number of gen- 413

erated tokens. With predominantly short demon- 414

strations, CoT-simple tends to produce concise an- 415

swers, resulting in a lower average value. Con- 416

versely, CoT-complex encourages longer answers, 417

with most taking an extended route to complete 418

the task. PA-CoT-step, on the other hand, main- 419

tains a moderate average rationale length. It covers 420

a wider range from simple to complex reasoning. 421

This adaptability allows it to perform well in more 422

general situations. 423
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Model MultiArith GSM8K AddSub AQuA SingleEq SVAMP Coin Date Tracking

LLaMA-2-7b-chat-hf
PA-CoT-concat 76.67 28.05 66.83 29.92 71.06 50.10 58.40 46.07 32.53
PA-CoT-sep 76.16 26.09 66.58 25.19 68.91 49.70 59.40 47.96 32.26
PA-CoT-mean 75.83 27.67 68.86 24.01 70.86 48.19 54.80 41.73 31.85

Table 3: Comparison between methods with various combination strategies.

4.4 Impact of Reasoning Process424

To investigate the role of process patterns in demon-425

strations, we also perform additional experiments426

on this aspect. Specifically, we categorize answers427

from Auto-CoT and PA-CoT-process based on ba-428

sic arithmetic symbols: Addition, Subtraction, Mul-429

tiplication, and Division. We then tally the num-430

ber of correct and incorrect instances within each431

group. Figure 4 presents a comparison of the re-432

sults on datasets AddSub and SingleEq, where the433

tasks are relatively straightforward.434

Our observations reveal that Auto-CoT produces435

more incorrect arithmetic equations, leading to a436

higher error rate within each symbol group. This437

indicates a higher likelihood of being misled by438

the demonstrations. For instance, as depicted in439

Figure 2, the selected demos for Auto-CoT exhibit440

an overemphasis on multiplication. This trend is441

reflected in the results of Figure 4, where Auto-442

CoT generates instances solved using multiplica-443

tion even when it is not appropriate. In contrast,444

PA-CoT-process exhibits a better ability to select445

the correct solving approach, resulting in fewer446

errors within each group.447

4.5 Combination Strategy448

The preceding sections showcase the impact of449

different pattern aspects. We now turn our atten-450

tion to exploring the optimal way to combine them.451

We initially devise PA-CoT-concat to encode the452

concatenation of step length and process strings.453

Considering the potential limitations of this ap-454

proach, we introduce two alternative methods to455

explore potential improvements. The first approach456

involves concatenating separate vector representa-457

tions encoded from step length and process strings,458

denoted as PA-CoT-sep. The second approach em-459

ploys mean pooling over the separate vector rep-460

resentations, denoted as PA-CoT-mean. All other461

settings remain constant as we conduct experiments462

on LLaMA-2-7b-chat-hf.463

Table 3 presents the comparison results of these464

combination strategies. Overall, the performance465

of PA-CoT-concat slightly exceeds that of PA-CoT-466

sep and PA-CoT-mean. We attribute this outcome467

(a) AddSub

(b) SingleEq

Figure 4: The distribution of the number of correct and
wrong instances regarding different arithmetic symbols.

to the different practices of semantics encoding. 468

PA-CoT-concat takes the entire pattern string as 469

input, where the encoded vector reflects an inte- 470

gration of information. In contrast, the other two 471

approaches separate the two patterns into distinct 472

vectors, which creates a gap between their distribu- 473

tions. 474

In conclusion, our exploration of PA-CoT and 475

its combination strategies sheds light on the im- 476

portance of considering diverse demonstration pat- 477

terns in enhancing language models’ reasoning ca- 478

pabilities. Despite slight variations in performance 479

among the approaches, our findings underscore the 480
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MultiArith GSM8K AddSub

AQuA SingleEq SVAMP

Figure 5: Visualization of clustering on six reasoning tasks. Cluster centres are noted as stars. The scatter of
PA-CoT-concat clusters shows its superiority in example differentiation.

Dataset Demos Incorrect Error Rate

MultiArith 8 2 25.0%
GSM8K 8 5 62.5%
AddSub 8 3 37.5%
AQuA 4 4 100%

SingleEq 8 2 25.0%
SVAMP 8 3 37.5%

Coin 8 4 50.0%
Date 8 3 37.5%

Tracking 8 4 50.0%

Table 4: The number of demonstrations and their error
rate for each dataset.

significance of integrating multiple pattern aspects481

for improved reasoning outcomes.482

4.6 Error Robustness483

It is noteworthy that we do not enforce accuracy484

constraints on demonstrations. We proceed to485

count the incorrect instances within our selected486

demonstrations, as illustrated in Table 4.487

It is intriguing to notice that the majority of488

our provided prompts are imperfect, with AQuA489

even exhibiting a 100% error rate. This phe-490

nomenon suggests that LLMs struggle to discern491

incorrect examples from correct ones. Instead, they492

learn from how the example approaches problem-493

solving, which we refer to as “pattern”. PA-CoT494

encourages LLMs to follow the most probable rea- 495

soning chain towards the final answer and thus 496

provides a significant improvement. 497

4.7 Visualization 498

Figure 5 visualizes the k clusters of PA-CoT-concat 499

on six reasoning tasks through PCA projection. 500

The plot depicts that there is an apparent divergence 501

between each cluster. The scatter implies that the 502

step length and the process can effectively differ- 503

entiate the patterns. With such diversities, LLMs 504

can more effectively learn from demonstrations to 505

generalize reasoning scenarios. 506

5 Conclusion 507

This paper introduces a novel pattern-aware chain- 508

of-thought prompting method, which significantly 509

enhances the reasoning performance of language 510

models. Our experiments reveal that incorporating 511

a variety of rationale step lengths prevents LLMs 512

from taking excessively long or short steps, thereby 513

maintaining a balanced inference chain. Similarly, 514

diverse process patterns instruct LLMs to select 515

appropriate reasoning routes and reduce bias from 516

singular patterns. We also introduce a combination 517

strategy that considers both aspects simultaneously. 518

Further investigations show the effectiveness of our 519

proposed strategy. Apart from performance gains, 520

our method offers additional advantages such as 521

ease of use and error robustness. 522
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Limitations523

Due to the shutdown of OpenAI code-davinci-002524

and text-davinci-002 API, we are unable to perform525

experiments on their models. Since most previous526

works choose to experiment on these models, we527

seek alternative LLMs as our inference engine. The528

two LLMs used in this paper are open-source, CoT-529

capable, and comparable to code-davinci-002. We530

hope such a practice can help future researches.531

Another limitation is that our method has only532

been tested on datasets with explicit reasoning533

paths, such as arithmetic and symbolic tasks, where534

patterns are intuitive and easily extractable. When535

applied to datasets with implicit reasoning paths, it536

may be necessary to identify the inherent reason-537

ing processes. For more discussions, please see538

Appendix A.539
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A Reasoning Process Patterns771

The reasoning process pattern generally guides the772

task towards reaching its objectives and hence can773

manifest differently depending on the task (Madaan774

et al., 2023). Table 5 shows the process pattern775

identified in our experiments.776

For arithmetic tasks, we utilize a standardized777

set of mathematical symbols. For symbolic tasks,778

we identify empirical keywords as patterns, which779

serve a similar function to symbols. For instance,780

in scenarios like the Coin Flip, consecutive patterns781

such as ‘head-head-head’ are different from ‘head-782

tail-tail’. PA-CoT incentivizes LLMs to learn from783

these reasoning pathways. Additionally, there are784

potential automated methods for pattern selection,785

such as chi-square testing and keyword extraction.786

B Heuristic Demonstration787

We aim for a fair comparison with Auto-CoT,788

which utilizes embeddings for clustering. Our ex-789

periments are designed to showcase that while clus-790

tering question embeddings may not always iden-791

tify the best examples, clustering pattern embed-792

dings can achieve this to some extent. Acknowl-793

edging that embeddings might not be the optimal794

clustering approach, we introduce another variant795

Dataset Process Pattern

MultiArith

+ , - , *, x , / , % , > , <

GSM8K
AddSub
AQuA

SingleEq
SVAMP

Coin ‘heads up’, ‘tails up’
Date ‘day’, ‘week’, ‘month’, ‘year’, ‘yesterday’, ‘tomorrow’

Tracking ‘trade’, ‘switch’, ‘exchange’, ‘swap’

Table 5: The process pattern identified for each dataset.

Model MultiArith GSM8K AddSub

LLaMA-2-7b-chat-hf
PA-CoT-step 76.16 24.41 67.59
PA-CoT-heuristic 77.00 24.94 67.84

qwen-7b-chat
PA-CoT-step 90.33 46.85 74.17
PA-CoT-heuristic 91.66 45.18 75.20

Table 6: Comparison between methods with and without
embedding clustering.

of PA-CoT using heuristics. Specifically, we orga- 796

nize demonstrations into groups based on the num- 797

ber of reasoning steps (e.g., 1, 2, ..., k), selecting 798

one random instance per group instead of creating 799

embeddings and clusters. This approach allows us 800

to evaluate the effectiveness of embeddings. 801

Table 6 shows the comparison between PA- 802

CoT-step and PA-CoT-heuristic. We observed 803

a marginal improvement with PA-CoT-heuristic. 804

This suggests that using Sentence-BERT to encode 805

information such as step length does not signifi- 806

cantly hinder performance. However, there is po- 807

tential to enhance performance by adjusting the 808

method of demonstration selection. 809
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