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Abstract

Language models can retain dangerous knowl-001
edge and skills even after extensive safety fine-002
tuning, posing both misuse and misalignment003
risks. Recent studies show that even special-004
ized unlearning methods can be easily reversed.005
To address this, we systematically evaluate006
many existing and novel components of un-007
learning methods and identify ones crucial for008
irreversible unlearning.009

We introduce Disruption Masking, a technique010
in which we only allow updating weights,011
where the signs of the unlearning gradient and012
the retaining gradient are the same. This en-013
sures all updates are non-disruptive.014

Additionally, we identify the need for nor-015
malizing the unlearning gradients, and also016
confirm the usefulness of meta-learning. We017
combine these insights into MUDMAN (Meta-018
Unlearning with Disruption Masking and Nor-019
malization) and validate its effectiveness at pre-020
venting the recovery of dangerous capabilities.021
Our results show that MUDMAN significantly022
outperforms the prior TAR method, setting a023
new state-of-the-art for robust unlearning.024

Code: anonymous.4open.science/r/MUDMAN025

1 Introduction026

Language models can acquire dangerous skills dur-027

ing pre-training, such as manipulation, hacking and028

even knowledge useful for creating bioweapons029

(Li et al., 2024). They may also learn about the030

safeguards used to control them, which in the fu-031

ture may enable them to subvert such safeguards032

(Greenblatt et al., 2024; Roger, 2024).033

Studies show that popular safety fine-tuning tech-034

niques like DPO and RLHF fail to remove danger-035

ous knowledge; instead, they minimally modify036

model weights to hide it (Lee et al., 2024), allowing037

it to reemerge through jailbreak inputs (Zou et al.,038

2023), or even accidentally (Qi et al., 2023; Deeb039

and Roger, 2024). Even specialized unlearning 040

techniques turn out to be easily reversible (Lynch 041

et al., 2024; Łucki et al., 2025; Deeb and Roger, 042

2024). 043

To address these challenges, we systematically 044

investigated which components of unlearning al- 045

gorithms make behavior removal truly irreversible, 046

testing both existing and newly designed ones. We 047

identified several key components for more robust 048

unlearning: Disruption Masking, meta-learning, 049

and gradient normalization. Additionally, we con- 050

strain unlearning to specific model modules. We 051

integrate these into MUDMAN (Meta-Unlearning 052

with Disruption Masking and Normalization) and 053

demonstrate that it significantly outperforms state- 054

of-the-art across multiple models and tasks. 055

2 Related Work 056

Current unlearning methods fail to robustly un- 057

learn knowledge Some unlearning approaches 058

disrupt intermediate activations within the model 059

(Zou et al., 2024; Li et al., 2024; Rosati et al., 2024), 060

while others attempt to locate and ablate weights 061

responsible for unwanted behavior (Wang et al., 062

2024; Wu et al., 2023; Uppaal et al., 2024; Suau 063

et al., 2024). However, Lo et al. (2024) found 064

that even when unwanted concepts are directly re- 065

moved, the model can quickly learn to represent 066

them again using neurons with similar meaning. 067

To address this, modern unlearning techniques 068

increasingly incorporate meta-learning (Tamirisa 069

et al., 2024a; Henderson et al., 2023; Tamirisa et al., 070

2024b). This approach anticipates how an attacker 071

could relearn the target capability, by deriving un- 072

learning gradients from a copy of the model trained 073

on the forget set (Finn et al., 2017). This ensures 074

that harmful behavior continues to be unlearned 075

even after it becomes dormant in the main model. 076

However, for each existing unlearning method, 077

there are ways to elicit the supposedly removed 078
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capabilities, for example with jailbreaks, few-shot079

prompting, fine-tuning, in-context learning, out-of-080

distribution inputs or disabling refusal mechanisms081

with representation engineering (Lynch et al., 2024;082

Łucki et al., 2025).083

3 Methodology084

Models We conduct experiments with three lan-085

guage models of different sizes: pythia-14m (Bi-086

derman et al., 2023)1, SmolLM-135M (Allal et al.,087

2024) and Llama-3.2-1B (Grattafiori et al., 2024).088

Datasets We demonstrate skill unlearning by at-089

tempting to unlearn Python coding ability by us-090

ing function examples from CodeSearchNet (Hu-091

sain et al., 2019), while retaining the performance092

on Wikitext (Merity et al., 2016). To ensure we093

do not unintentionally unlearn English, we re-094

move comments and docstrings from the Python095

dataset. While programming is not a harmful be-096

havior, using loss on the Python dataset provides a097

high signal-to-noise ratio for comparing unlearning098

methods and serves as a good baseline.099

Then we move to knowledge unlearning with100

a realistic target: unlearning biohazardous knowl-101

edge using Pile-Bio (Tamirisa et al., 2024a), a sub-102

set of the Pile (Gao et al., 2020) containing texts103

about molecular biology. The rest of the Pile serves104

as the retain set.105

To test unlearning effectiveness on Pile-Bio, we106

measure the accuracy on WMDP-Bio (Li et al.,107

2024), a dataset of 1273 multiple-choice questions108

designed as a proxy measurement of hazardous109

biosecurity knowledge.110

Hyperparameter Search Method performance111

is highly dependent on hyperparameter selection.112

To ensure a fair comparison, we perform an au-113

tomated hyperparameter search for each method114

using Optuna (Akiba et al., 2019). We verify that115

each search converges and that the chosen hyper-116

parameter ranges are not saturated. Each search in-117

cludes hundreds of trials, with each trial consisting118

of an unlearning stage followed by a fixed relearn-119

ing stage, and the amount of compute in each stage120

is constant. (See Appendix F for details.)121

Unlearning and Retaining Metrics Optuna tries122

to maximize forget set loss (or WMDP accuracy)123

after relearning with supervised fine-tuning. While124

1Using pythia-14m allowed us to iterate fast on our tech-
niques. Then we validate our findings on the larger, more
modern models.

we are interested in the overall recoverability of 125

unlearned behavior (e.g., through jailbreaks or out- 126

of-distribution attacks), here we just use supervised 127

fine-tuning, as it is the simplest and most reliable 128

way to resurface removed behavior (Lynch et al., 129

2024). 130

In addition to maximizing forget set loss, we en- 131

sure that unlearning does not significantly degrade 132

performance on the retain set. To control for this, 133

we terminate and reject trials where the retain loss 134

exceeds a fixed threshold2. 135

4 Building a Robust Unlearning Method 136

We conducted hundreds of small-scale experiments, 137

testing methods ranging from direct model edits 138

to blocking the updates during relearning. See 139

Appendix D for details of these approaches. While 140

almost all methods succeeded in making the forget 141

set loss high during unlearning, relearning typically 142

restored it immediately. 143

However, we identified several key compo- 144

nents that consistently improve unlearning robust- 145

ness. We integrate these into MUDMAN (Meta- 146

Unlearning with Disruption Masking and Normal- 147

ization), which outperforms the state-of-the-art 148

TAR method (Tamirisa et al., 2024a). See Algo- 149

rithm 1 for pseudocode and Appendix E for a mini- 150

mal PyTorch implementation. Below, we describe 151

each component in detail before presenting MUD- 152

MAN’s overall results. 153

4.1 Meta-Learning 154

First, we confirm the effectiveness of meta- 155

learning, which is increasingly used in modern 156

unlearning methods (Tamirisa et al., 2024a; Hender- 157

son et al., 2023; Tamirisa et al., 2024b; Finn et al., 158

2017). Meta-learning involves training a copy of 159

the main model—which we call the adversary—on 160

the forget set and applying its gradients to the main 161

model. 162

Traditional meta-learning employs an inner loop 163

to train multiple adversaries and accumulate un- 164

learning gradients before updating the main model 165

(Finn et al., 2017). However, in early experiments, 166

we found that interleaving adversary and main 167

model updates improves performance. To achieve 168

this, we flatten the process into a single loop (see 169

Algorithm 1) and focus on training a single adver- 170

sary deeply, rather than multiple ones briefly. 171

2Set as the initial retain loss + 0.05. We add 0.05 to accom-
modate for random loss fluctuations.
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Figure 1: Ablation study of MUDMAN. To establish that each part of MUDMAN is indeed necessary, we disable
them one by one and measure unlearning performance. We also compare to the state-of-the-art TAR method. The
baseline is the loss level with no unlearning applied, but after the same relearning as the other methods underwent.
Each bar corresponds to one Optuna hyperparameter search. The reported loss is the average of the last 30 valid trials
and error bars are their standard error. We can see that Disruption Masking makes a huge difference (orange vs red),
and that it accounts for most of the improvement over TAR. Meta-learning and unlearning gradient normalization
also tend to help but not in every setup. Sometimes ablating them yields better performance, but insignificantly. In
each experiment we only trained the first layers of each MLP.

36% 38% 40% 42%
WMDP-Bio accuracy after relearning

MUDMAN

w/o masking
w/o meta-learning

w/o normalization

TAR
Llama-3.2-1B unlearned on Pile-Bio

Figure 2: Accuracy on WMDP-Bio after unlearning
and relearning on Pile-Bio. The base level on the rigth
(43.5%) is the accuracy with no unlearning applied, but
also after relearning. Reported accuracy is the average
of the last 20 valid trials in each search. Just like in
Figure 1, using Disruption Masking is crucial (orange
vs red) and it accounts for most of the improvement over
TAR. We also cleary see the need for meta-learning and
unlearning gradient normalization. In each experiment
we only trained the first layers of each MLP.

4.2 Disruption Masking172

This is the key contribution of MUDMAN, and we173

find it to be even more crucial than meta-learning174

itself. In existing unlearning techniques (Tamirisa175

et al., 2024a; Rosati et al., 2024; Li et al., 2024),176

during unlearning the model is also trained on the177

retain set, hoping to revert any unintended disrup-178

tions. Instead, we take a more selective approach,179

aiming to avoid disruptions altogether rather than180

correcting them later.181

Our intuition is that since the model has already182

undergone extensive pre-training, its weights are 183

near-optimal. Any unnecessary modifications risk 184

disrupting well-learned representations, requiring 185

significant compute to recover what pre-training 186

had already established. 187

To prevent disruption, we found it is best to ap- 188

ply unlearning gradients only when they have the 189

same sign as their respective retain gradients 190

(see Equation 1). This not only prevents disruption 191

but also passively improves retain performance. 192

gfinal =

{
gu if sign(gu) = sign(gr)
0 otherwise

where gu is the unlearning gradient
and gr is the retaining gradient

(1) 193

To generalize beyond the current batch and identify 194

what might break retain set performance overall, 195

we use SGD momentum (Rumelhart et al., 1986), 196

which adds retain gradients to a decaying accumu- 197

lator. Then, instead of the signs of the single-batch 198

retain gradients, we use the signs of this accumu- 199

lator. This incurs no additional memory cost, as 200

we already need to store retain gradients alongside 201

unlearning gradients, so we simply store the accu- 202

mulator instead. 203

4.3 Gradient Normalization 204

Late in the unlearning process, we observe 205

that gradient norms shrink significantly, caus- 206

ing unlearning to slow down. To address 207
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Algorithm 1 MUDMAN – Meta-Unlearning with Disruption Masking And Normalization
Input: Model weights model; retain set Dretain; forget set Dforget; retain momentum µ; unlearning loss
Lunlearning; learning rates αretaining, αunlearning and αadv.

1: retain_acc = 0 Initialize retain accumulator
2: for loop_num = 1 to num_iterations do
3: if loop_num, is divisible by fork_every_n_loops then
4: adv = model Fork out the adversarial model from the main model
5: end if
6: xretain ∼ Dretain, xforget ∼ Dforget Sample batches
7: retain_grad = ∇modelLLM (model, xretain) Calculate retain gradients
8: retain_acc = µ · retain_acc+ (1− µ) · retain_grad Update retain accumulator
9: model −= αretainingretain_acc Update the model

10:

11: adv −= αadv∇advLLM (adv, xforget) Train adversary on forget set
12: grad = ∇advLunlearning(adv, xforget) Calculate unlearning gradient
13: grad /= ∥grad∥2 Normalize it
14: grad ∗= (sign(grad) == sign(retain_acc)) Mask out gradients which hurt retain loss
15: model −= αunlearninggrad Update the model with the unlearning gradient
16: end for

this, we normalize the unlearning gradients so208

that the strength of unlearning stays constant.209

Concretely, we divide each unlearning gradi-210

ent by a global gradient norm calculated as:211

(
∑

m∈modules ∥unlearning_gradm∥2)0.5. This212

not only improves overall performance but also213

makes the process easier to tune. See Appendix B214

for a comparison of various normalization variants.215

4.4 Module Selection216

We found that it helps to also be selective about217

which modules of the model we intervene on. For218

example MLP’s second weight matrices and atten-219

tion’s Q and K matrices tend to disrupt general220

performance a lot, while not being that important221

for unlearning. The most effective unlearning tar-222

gets turn out to be the first layers of MLPs (and223

in the case of gated MLPs, the gating matrices).224

This is likely because only these modules are able225

to deactivate MLP neurons, and once a neuron is226

inactive, neither its incoming nor outgoing weights227

can be updated by backpropagation, effectively pre-228

venting relearning. See Appendix A for detailed229

comparisons of unlearning on various modules.230

4.5 Experimental Results231

We validaded MUDMAN on three models and two232

unlearning tasks. For a clean comparison with TAR233

(Tamirisa et al., 2024a), we adapted its implementa-234

tion to match our setup: using a single training loop235

and omitting its initial representation noising step.236

As shown in Figure 1, MUDMAN consistently out- 237

performs this adapted TAR across all tested cases. 238

The ablation study indicates that this performance 239

gain primarily comes from Disruption Masking. 240

In individual setups some ablations occasionally 241

match full MUDMAN, but never significantly sur- 242

pass it. 243

MUDMAN is compatible with any unlearning 244

loss. In Figure 1, we used negative cross-entropy 245

loss as it performed best. However, in the WMDP 246

setup shown on Figure 2, MUDMAN achieves 247

the strongest results with negative entropy loss 248

(Tamirisa et al., 2024a), so we adopted it there. 249

5 Conclusion 250

We introduce MUDMAN, a novel method consist- 251

ing of three components: meta-unlearning, Dis- 252

ruption Masking and normalization of unlearning 253

gradients. We have shown across multiple datasets 254

and models that each of these components signifi- 255

cantly improves unlearning robustness. They also 256

come at minimal computational and memory over- 257

head. 258

Our results demonstrate the success of selective 259

unlearning methods which do not disrupt model 260

performance, inviting future work to pursue this 261

line of research. 262

These advances bring us closer to the goal of 263

truly irreversible unlearning, which is critical for 264

safe deployment as language models continue to 265

acquire dangerous knowledge and capabilities. 266
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6 Limitations267

Evaluation of Disruption Currently, we assess268

how a method disrupts general performance by269

measuring retain set loss, which is the simplest270

approach. In the future, we plan to evaluate per-271

formance on capability benchmarks like MMLU272

(Hendrycks et al., 2021) to gain a more comprehen-273

sive understanding of performance preservation.274

Elicitation Methods Another limitation is that275

we only used supervised fine-tuning to elicit un-276

wanted behavior. While it is the most reliable elici-277

tation method (Lynch et al., 2024), it could be com-278

plemented by others, such as jailbreaks, few-shot279

prompting, in-context learning, out-of-distribution280

attacks, and automated curiosity-based red team-281

ing (Zheng et al., 2025; Hong et al., 2024) to test282

unlearning robustness.283

Additionally, to settle whether our techniques284

truly remove capabilities or just make them harder285

to recover, one could use the approach introduced286

by Deeb and Roger (2024), where the attacker tries287

to uncover some unknown, supposedly unlearned288

facts, by fine-tuning on another, non-overlapping289

set of facts.290

Stacking with Other Methods For simplicity291

we only evaluated monolithic methods which apply292

a single algorithm throughout the whole unlearning293

process. This involved stripping our TAR baseline294

(Tamirisa et al., 2024a) of its initial representation295

noising step and only keeping the meta-learning296

core of the algorithm. Future work could inves-297

tigate the effectiveness of consecutively applying298

different unlearning methods, looking for synergies299

between them.300

Selectivity and Granularity In our experiments,301

we have generally seen good results from tech-302

niques which aim to be more selective and granular.303

For instance, we think that trying to understand304

what happens at the level of individual logits and305

tweaking unlearning loss functions to target only306

the crucial logits is a ripe area for future improve-307

ments. Additionally, a more granular, per-token308

analysis of forget set loss could be valuable - rather309

than concentrating the loss increase on a few un-310

wanted tokens, the goal should be a high loss across311

all unwanted tokens. Further work should also try312

to pin down with more certainty which modules in313

a model are optimal to target for unlearning.314
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A Target Modules488

We have seen that some modules of the model are489

not important for unlearning but they disrupt the490

general performance a lot. It is better to freeze491

such modules and focus only on the ones where492

unlearning and retaining performance can be bet-493

ter separated. Freezing modules also lets us save494

memory, because we do not need to store their495

gradients, adversarial weights and accumulators of496

retain gradients. See Figure 3 for a comparison497

of unlearning robustness for various modules and498

their configurations.499

Both Llama-3.2-1B and SmolLM-135M use500

gated MLP architecture, and for them we find un-501

learning on the gate_proj module is the most effec-502

tive. For pythia-14m, which uses traditional MLPs503

with two layers: up_proj and down_proj, interven-504

ing on up_proj performs the best. This is actually505

consistent–in both cases the optimal module is the506

one whose outputs are passed to the MLP’s activa-507

tion function.508

B Types of Gradient Normalization509

In Table 1 we compare different ways of normaliz-510

ing the unlearning gradients. While the difference511

in performance with the case without any normal-512

ization is significant, the differences between vari-513

ous normalization types are less clear.514

The naive way is to normalize each module of515

the model separately. But this may wrongly inflate516

gradients on some overall low-norm modules. It517

is safer to normalize using a global gradient norm518

calculated as (
∑

m∈modules ∥∇mLLM∥2)0.5519

We can also normalize before or after applying520

the gradient masking. Turns out it does not make521

much difference in performance, so we just go with522

normalizing before the mask, which has a simpler523

implementation.524

C Unlearning Tendencies525

We had a partial success unlearning dangerous ten-526

dencies. We chose cruelty as our candidate, and as527

Normalization type Forget loss ↑
No Normalization 4.80±0.14

Per Parameter 7.61±0.48
Global Post Mask 7.60±0.49
Global Pre Mask 8.51±0.55

Table 1: Comparison of different gradient normaliza-
tion strategies. We report forget loss after 600 un-
learning passes using MUDMAN and 300 relearning
passes. We let Optuna optimize the hyperparameters
for 600 trials and then measure the mean and standard
error of the last 50 completed trials. Higher values in-
dicate better performance. (We use the pythia-14m
model the python forget set. For more details see
configs/pythia_normalization_test.yaml in our
repository.)

the forget set we used animal abuse examples from 528

BeaverTails (Ji et al., 2023). It contains Q&A pairs, 529

with questions like "What are some ways to torture 530

a small animal?". As the retain set, we used pairs 531

from BeaverTails with benign answers. 532

On Figure 4 we show unlearning performance 533

on this cruelty dataset, as well as on Python for 534

comparison. You can also see the performance of 535

some of our failed methods that we describe in 536

Appendix D below. 537

D Failed Methods 538

In our setup with pythia-14m and the Python forget 539

set, we tested dozens of components of unlearning 540

methods, both existing ones and ones designed by 541

us. In the main text we presented the best perform- 542

ing ones, for which we also conducted experiments 543

on other models and datasets. Here, we would 544

like to report the negative results, to inform future 545

explorations. 546

Note that most of these components have been 547

tested in isolation, so we may have missed some 548

synergies. In particular, many of them have not 549

been used together with meta-learning. We also do 550

not rule out that some of them may prove useful 551

when performance disruption is measured more 552

fully, using capability benchmarks. 553

Components we tested can be divided into five 554

categories presented in subsections below: damp- 555

ening relearning gradients, direct weight edits, eras- 556

ing capabilities rather than drowning them out, 557

making unlearning more selective, and tweaking 558

the meta-learning. The methods were tested in 559

many variants and combinations, but for concise- 560

ness we only describe them individually, and omit 561
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Figure 3: Performance comparison across different target module configurations for unlearning. Higher values
indicate better unlearning effectiveness while maintaining model capabilities. The baseline is the loss without any
unlearning, but with the same relearning stage as all the methods underwent. Gate projection (and in the case of
pythia its equivalent–the first MLP layer) helps most consistently. Other potential candidates for intervention are
V, O and up projections. Q, K and down projections disrupt retain performance so much that is it better to omit
them. In case of Pythia, Q, K and V matrices are integrated into one module, so we were not able to analyze them in
separation.

some details of the variants.562

D.1 Dampening Relearning Gradients563

Relearning will not happen if the gradients during564

relearning are near zero. We tried several tech-565

niques to dampen them, which we describe below.566

Unfortunately they were outperformed by more567

straightforward techniques just relying on back-568

propagation. This failure is actually consistent with569

findings by Finn et al. (2017), who have shown that570

meta-learning which uses second-order derivatives571

does not perform any better than the simpler and572

cheaper first-order methods.573

Stream Deactivation Update of a weight is pro-574

portional to upstream activation and downstream575

gradient. So if we ensure that upstream activation576

is zero, then the update will be zero. Concretely, if577

we managed to deactivate the residual stream, we578

would prevent updates of first MLP layers which579

listen to residual stream activations. This could580

also be thought of as ensuring that nothing is rep-581

resented by the model–the activation is silent–so582

downstream modules are clueless about what is the583

context.584

Misaligning Second MLP Layers from Incom-585

ing Gradients We can look at the dual approach586

to silencing activations–silencing the backpropa-587

gating gradients. For a neuron in MLP, if its out-588

going weights (one column in the second layer of 589

the MLP) are orthogonal to the gradients flowing 590

into the MLP, then this neuron’s activation does 591

not affect loss. This means that the gradient for 592

this neuron’s activation is zero, so we have stopped 593

backpropagation flowing through this neuron. 594

Tweaking First MLP Layers to Dampen Back- 595

propagation We know that the upstream gradient 596

contributed by a given weight is its downstream gra- 597

dient times the weight itself. Once we also know 598

what is the sum of gradients contributed by all 599

weights in a given module, we can then strategi- 600

cally tweak the weights to decrease magnitude of 601

this summed gradient. Here in particular, we tried 602

to tweak the first layers of the MLPs. This method 603

has 3 variants: we can either aim to dampen gra- 604

dient immediately upstream of this module, or the 605

gradient before the layer norm, or even the gradient 606

on the residual stream after the MLPs gradients are 607

added into it. 608

D.2 Direct Weight Edits 609

Since we know that backpropagation tends to dis- 610

able unwanted capabilities rather than removing 611

them, we can try to more directly locate the weights 612

responsible for these capabilities and ablate them. 613

Unfortunately, here again we find that using back- 614

propagation is more powerful in precisely locating 615

where interventions are needed. 616
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Figure 4: Robustness of unlearning cruel tendencies. Each bar is one Optuna hyperparameter search. The
baselines are loss levels with no unlearning applied, but also after the same relearning as the other methods
underwent. We can see some benefit of using Disruption Masking. Puzzlingly, meta-learning does not help at all,
suggesting that cruel tendencies may be more "shallow" than the skills and knowledge we tried to unlearn in other
experiments. The biggest effect is caused by simply using cross-entropy loss for unlearning (here in MUDMAN and
its variants we used selective logit loss, described in Appendix D). We conclude that unlearning tendencies like
cruelty seems possible, but will require more refinement of the methods. We also show performance for some of
rejected methods, that we describe in Appendix D.

Ablating Neurons Based on Activations We617

can locate which MLP neurons are most active618

on the forget task, and at the same time least active619

on the retain task, and then just ablate them. This620

is similar to existing model editing methods (Wu621

et al., 2023; Suau et al., 2024).622

Ablating Weights Based on Importance We623

can also go more granular and look for ways to624

ablate weights. Here, we define weight relevance625

as: pre-weight activations times the weight value626

itself–this is just the contribution of this weight to627

downstream activation. Turns out this is dramati-628

cally better than just ablating neurons, proving that629

intervening on neurons is not granular enough.630

Fading Backpropagation We propose a tech-631

nique that does rely on backpropagation, but at632

least tries to bias it to be more local–to prioritize633

effects nearer in the computation graph, rather than634

far downstream. To do so, we scale down the gra-635

dients added into the residual stream from each636

MLP (and optionally also from attention). The gra-637

dients passed through residual connections remain638

unscaled. Sadly, we have found no evidence of this639

working better than normal backpropagation.640

D.3 Erasing Capabilities Rather Than 641

Drowning Them Out 642

There is a possibility that our unlearning methods 643

sometimes mask the unwanted capabilities by am- 644

plifying some other behavior, rather than actually 645

erasing what we care about. So we can try to bias 646

the methods to prefer erasing things rather than 647

adding or amplifying. 648

Only Shrinking Weights One thing to try is to 649

only allow unlearning updates that shrink the mag- 650

nitudes of model weights. So if an update has the 651

same sign as the weight, it is zeroed out. It is not 652

clear though that smaller weight magnitudes relate 653

to erasing capabilities–for example a freshly ini- 654

tialized network contains many non-zero weights 655

but no capabilities–only noise. So this heuristic of 656

relying on weight magnitudes could definitely be 657

refined. 658

Only Shrinking Activations Another similar 659

idea is to only allow weight updates which result 660

in smaller activation magnitudes. This is similar 661

to "stream deactivation" discussed above, but here 662

we do not rely on backpropagation and only care 663

about activations immediately after a given weight 664

(although this can be tweaked). We also do not ac- 665
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tively aim to descrease these activations, just mask666

any updates that would grow them.667

Selective Logit Loss Finally, we can also limit668

which logits we try to shift. Normally, when we use669

cross-entropy loss applied after the final softmax,670

we can increase this loss either by decreasing logit671

of the correct token, or by increasing the logit for a672

token that is already highly active. For this reason,673

unlearning methods will sometimes try to grow674

these other tokens which dominate the softmax,675

rather than just focusing on decreasing the logit of676

our unwanted token.677

To amend this, we can ignore the softmax layer,
and focus just on bringing the unwanted token
down. We have found that it helps to normalize
by subtracting the average of all logits, to prevent
incentivizing to decrease all logits. This is valid be-
cause output probabilities are invariant to shifting
all logits by the same value. So the full equation
for this more selective logit loss is:

logit_loss = logitscorrect_id −
∑
i

logitsi

We have found that it performs quite well, some-678

times even outperforming cross-entropy loss or en-679

tropy loss. It is not very reliable across datasets680

though. In future work it is worth exploring deeper681

how to refine this technique.682

D.4 Making Unlearning More Selective683

We have seen great success in trying to make un-684

learning more selective. The culmination of this685

line of research was the Disruption Masking. Prior686

to it, we have tried many other ways of deciding687

which weights should be masked (e.g. quantiles688

and aggregating absolute values of gradients, which689

we describe below). We also tried multiple exten-690

sions (multiple LoRA adversaries, using weight691

consensus), but they provided no benefits.692

Representation Engineering Retain Loss To693

make calculation of disruption more accurate, we694

can also augment the normal retain loss with a loss695

aiming to leave the model activations unchanged696

(Tamirisa et al., 2024a; Zou et al., 2024). In our697

setup we saw no improvement when using this698

activation loss, but maybe some effect will become699

visible after we also look at the performance on700

capability benchmarks.701

Aggregating Absolute Values of Gradients Just702

adding the retaining gradients together, means that703

sometimes positive and negative ones will cancel. 704

This means that if some weight increase disrupts 705

performance in one context but helps in another, 706

then it will be treated as neutral. If we want to 707

be more conservative, we may disqualify such 708

weights, based only on the fact that they disrupt 709

in some contexts. To do so we can take the abso- 710

lute value of retaining gradients and then aggregate 711

them. Optionally we can also raise them to some 712

power before aggregation. 713

It is possible to draw some parallels between Dis- 714

ruption Masking and A-GEM technique (Chaudhry 715

et al., 2019) from the continual learning field. Sim- 716

ilarly, the method in the continual learning field 717

that corresponds to this aggregation of absolute val- 718

ues, would be Online-EWC (Schwarz et al., 2018), 719

which tries to estimate disruption on previous tasks 720

by squaring the gradients. 721

By using absolute values of retaining gradients, 722

we prevent canceling of helpful and unhelpful ef- 723

fects of changing a given weight, but now we also 724

treat the helpful effects as something bad (since 725

taking the absolute value inverts them). A compro- 726

mise approach is to scale down the helpful effects 727

so that they do not cancel the estimated disruption 728

but also they are not counted as disruption them- 729

selves. We have found that this scaling works much 730

better than just using absolute values, but it is still 731

outperformed by Disruption Masking, which is also 732

much more straightforward. 733

Disruption Percentiles Rather than attacking all 734

weights where the signs of unlearning and retaining 735

gradients agree, we could narrow down even more 736

and attack just some small percent of weights least 737

disruptive for retain performance and most disrup- 738

tive for forget task performance. When we tune the 739

percentile value which dictates how many weights 740

we allow to attack, the optimal value oscillates 741

around 50%, meaning it is optimal to attack around 742

half of all weights. This is more or less the same 743

amount as when using Disruption Masking (where 744

signs must agree, which happens around 50% of 745

the time). Given that just looking at gradient signs 746

as the criterion is much simpler conceptually and 747

requires no tuning, we got rid of using disruption 748

percentiles. 749

Multiple Adversaries In our meta-unlearning 750

approach, we mainly train just one adversary. This 751

means the unlearning gradients we derive using it, 752

may be idiosyncratic to that particular adversary. 753

For this reason, we have also tried training multiple 754
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adversaries, which is actually the default in meta-755

learning. To save memory, each adversary was a756

LoRA adapter attached to the main model. When757

keeping the amount of compute constant in each758

variant, and tuning both the number of adversaries759

and the frequency of forking them, using multiple760

adversaries did not perform any better than just one761

(also a LoRA adapter). We speculate that splitting762

compute among multiple adversaries makes us do763

redundant work–each of the adversaries must travel764

through a similar learning trajectory.765

Unlearning Gradient Accumulator In the final766

MUDMAN method, we use an decaying accumu-767

lator to store retaining gradients. The same could768

be done for the unlearning gradients, so that during769

the masking step, we have a better idea of what770

is generally needed to break the forget set perfor-771

mance, not just break it on the current batch. (We772

also call this technique "forget momentum".) In-773

terestingly, it turns out it is actually not needed.774

It also makes memory usage much higher, so we775

disabled it. This means that we need to accurately776

know which weights disrupt retain set performance777

(as we have shown in the main text), but knowing778

which ones break forget set performance does not779

need to be as accurate.780

Weight Consensus When having multiple781

sources of unlearning gradients (for example782

when we have multiple adversaries or when783

we accumulate unlearning gradients over many784

batches), we can decide to attack only weights785

where there is a consensus that they are important786

for the forget task. This way we partially eliminate787

the role of luck and of adversary idiosyncrasies.788

To do so, we can instead of simply adding the789

gradients together, first raise them to some power790

smaller than one. This prioritizes consistency of791

update signs, and limits the influence of individual792

huge values. When we automatically tune this793

power, the optimal value tends to be around one,794

meaning that consensus is not important, and795

simply summing the gradients is sufficient. (We796

also allowed powers larger than one–similarly,797

they are worse.)798

D.5 Tweaking the Meta-Learning799

There are many ways to train the adversary models800

needed to perform meta-learning. We found the801

one described in Algorithm 1 to be optimal. Here802

are some other ideas we tried:803

LoRA Adversaries First of all, instead of using 804

a full copy of the main model as our adversary, 805

we could just attach a LoRA adapter and train this 806

LoRA to do well on our forget task. This way 807

we reuse main model weights, and the LoRA just 808

serves as a small addition on top, used to reacti- 809

vate dormant unwanted capabilities so that they 810

can keep being unlearned. The performance of this 811

variant was worse than using a full adversary, but 812

sometimes it is competitive, so it may still be an 813

option to consider when memory is a bottleneck. 814

Adversary Updates One of the benefits of using 815

LoRA adversaries, was that as the main model 816

is updated, the adversary is naturally updated too 817

(because it consists of a LoRA and the main model 818

weights underneath). This may mean that such 819

adversary stays more up to date, or "in sync" with 820

the main model, meaning we do not need to fork it 821

as often. We could try to use this advantage also 822

in the variant where not LoRA but a full adversary 823

is used. Concretely, each time when we update 824

the main model, we just apply the same update 825

(optionally scaled down) to the adversary. 826

Adversary Decay Another way to keep the ad- 827

versary more in sync with the main model, is to in 828

each loop move its weights slightly closer to the 829

main model. This may also be seen as a kind of 830

regularization for the adversary. This was one of 831

the most promising methods we found–for example 832

on Figure 4 we can see that removing this mecha- 833

nism dramatically harms unlearning performance 834

on Python. However, we have found it to be unreli- 835

able across datasets, so we excluded it from final 836

algorithm. We think refining this mechanism holds 837

promise, though. 838

Locating Unwanted Circuits Only Once To 839

save compute we could even try removing meta- 840

learning completely. But then, we get back to our 841

initial problem–unwanted circuits are deactivated 842

quickly (before they are fully erased), and so we 843

cannot continue removing them with backpropa- 844

gation. To remedy this, we tried to locate the un- 845

wanted circuit only once, using the initial model 846

before any unlearning. We go through the whole 847

forget set (or some subset) and aggregate the gra- 848

dients. The rest is the same as in MUDMAN–we 849

apply this aggregated unlearning gradient, but only 850

if its sign agrees with the retaining gradient (com- 851

puted normally). This turns out to work really well, 852

comparably to full meta-learning, but only at the be- 853

11



ginning of the unlearning process. Later, it appears854

that this pre-computed unwanted circuit becomes855

too outdated.856

E MUDMAN Implementation in PyTorch857

In Listing 1 we show the core of the MUDMAN858

algorithm implemented in PyTorch.859

In contrast to prior meta-unlearning algorithms,860

rather than training the adversary in an inner loop,861

we do everything in one loop and periodically fork862

the adversary. This simplification interleaves the863

main model and adversary updates more. We also864

focus on training only one adversary more deeply,865

rather than multiple ones shallowly. We found866

these changes to be beneficial, but we encourage867

future methods to explore these trade-offs more868

thoroughly.869

In addition to inputs defined in Algorithm 1, this870

code also needs interven_params – a list of pa-871

rameters of the model to intervene on–in our case872

gate_proj components of all the MLPs. Note that873

rather than defining a separate adversary model, we874

save memory by only storing adversarial weights875

for these interven_params.876

Concretely, rather than having param.data,
we have param.base_data and param.adv_data,
and for the inference we set param.data to point
to one of these two. So in addition to the model, we
need to store these additional weights, unlearning
gradients and retain accumulators (also, only for
interven_params). This results in total memory
usage of:

size(model) + 3 ∗ size(interven_params)

For intevening only on gate_proj, this is less than877

regular training with SGD.878

Another optimization is that we reuse the for-879

ward pass on forget batches, resulting in a total880

of just 5 forward or backward passes per loop. If881

cross-entropy is used as the unlearning loss, then882

reusing the backward pass is also possible.883
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Listing 1: Core of the MUDMAN Algorithm Implemented in PyTorch.
1 # Initialize retain grad accumulators
2 for p in interven_params:
3 p.retain_acc = pt.zeros_like(p.data)
4 p.base_data = p.data.clone().detach ()
5

6 # Unlearning and retaining loop
7 for loop_num , (retain_batch , forget_batch) in enumerate(batch_pairs):
8 if loop_num % fork_every_n_loops == 0:
9 # Fork adversary

10 for p in interven_params:
11 p.adv_data = p.base_data.clone().detach ()
12

13 # Retain pass
14 model.zero_grad ()
15 # Switch to base model
16 for p in interven_params:
17 p.data = p.base_data
18 output = model(retain_batch)
19 loss = cross_entropy_loss(output , retain_batch)
20 loss.backward ()
21 for p in interven_params:
22 # Update disruption scores
23 p.retain_acc *= retain_momentum
24 p.retain_acc += p.grad * (1 - retain_momentum)
25 # Retain update
26 p.base_data -= retaining_rate * p.retain_acc
27

28 # Relearn the adversary
29 model.zero_grad ()
30 # Switch to adversary
31 for p in interven_params:
32 p.data = p.adv_data
33 output = model(forget_batch)
34 loss = cross_entropy_loss(output , forget_batch)
35 loss.backward(retain_graph=True)
36 for p in interven_params:
37 # Apply adversary update
38 p.adv_data -= adv_lr * p.grad
39

40 # Unlearning step with masking
41 model.zero_grad ()
42 loss = unlearning_loss_fn(output , forget_batch) # Reuse the output
43 loss.backward ()
44 grad_norm = sum(p.grad.norm() ** 2 for p in interven_params) ** 0.5
45 for p in interven_params:
46 # Mask
47 p.grad *= p.retain_acc.sign() == p.grad.sign()
48 # Normalize & update
49 p.base_data -= unlearning_rate / grad_norm * p.grad
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F Hyperparameter Searches884

Each bar in Figures 1 and 2 corresponds to one885

Optuna hyperparameter search. In Table 2 we re-886

port for each model: the number of trials, unlearn-887

ing steps, relearning steps, and approximate total888

time of one search on one Nvidia L40 GPU. In889

"BIO" row we also report these values for the final890

experiment–unlearning and relearning on Pile-Bio,891

and trying to minimize WMDP-Bio accuracy.892

By unlearning and relearning steps, we do not893

mean the number of algorithm loops, but the total894

number of forward and backward passes. This way,895

we ensure that each run used roughly the same896

amount of compute, regardless of the method used.897

Model Trials Unlearn Relearn Time
Llama 500 120 120 7h
Smol 500 300 300 9h
pythia 800 300 300 4h
BIO 120 2400 1200 24h

Table 2: Hyperparameter search configurations for each
model. Trials indicates the number of Optuna trials,
Unlearn and Relearn show the number of steps in each
phase, and Time is the approximate total duration of the
search.

We always use the same relearning process:898

SGD with a learning rate of 1e-3. We also tried899

using LoRAs for relearning, but that resulted in900

unpredictable results–probably some LoRAs just901

have a lucky initialization. This makes the com-902

parison of methods too noisy, so we fixed on only903

using SGD relearning.904

We made sure that hyperparameter search ranges905

are wide enough to cover the best values. For exact906

ranges used in each search, you can look at con-907

figuration files named ablations_and_loss2 and908

wmdp3.909

F.1 Maximizing Forget Loss Searches910

Note that to produce Figure 1, we use a MUDMAN911

version where the adversary’s weights are moved912

slightly towards the main model weights in each913

step and the strength of this is tuned (adversary de-914

cay). This is something which we later abandoned915

(Algorithm 1 does not have it) after realising it does916

not help and only complicates the algorithm.917

We tune unlearning_rate (αunlearning in Algo-918

rithm 1), retaining_rate (αretaining), adv_lr (αadv),919

retain_momentum (µ), adv_decay (later removed920

from Algorithm 1), and fork_every_n_loops (how921

often we fork the adversary). 922

F.2 Minimizing WMDP Accuracy Searches 923

We only attack Llama-3.2-1B, because other mod- 924

els have accuracy not better than random guessing 925

(25%), while Llama-3.2-1B has about 45%. 926

When minimizing WMDP accuracy, we needed 927

to do 20x longer unlearning to see satisfying ac- 928

curacy decreases. This is likely because it is easy 929

to break performance on the same dataset that we 930

use for unlearning, while here, we need to break 931

performance on a different set (WMDP-Bio, not 932

Pile-Bio). We also make relearning 10x longer, to 933

match the longer unlearning. 934

With such a long unlearning, doing full hyperpa- 935

rameter searches would take too long, so we only 936

tune the unlearning_rate which is the most impor- 937

tant hyperparameter. Previous automatic searches 938

inform the choice of other hyperparameters. When 939

the retain loss exceeds a predefined threshold (ini- 940

tial retain loss + 0.05), we pause the unlearning 941

updates while still doing the retaining updates, un- 942

til retain loss goes back below the threshold. If 943

retain loss exceeds a higher threshold (initial retain 944

loss + 0.1) we terminate and reject the trial. This 945

ensures each method has almost the same impact 946

on the retain set performance. 947

F.3 Detailed Optuna Plots 948

Finally, for each Optuna search, we provide de- 949

tailed plots, containing per-trial results. In Fig- 950

ures 5 – 8 each row corresponds to one search and 951

each point to one trial. On the left you can see 952

how performance (forget loss after relearning, or 953

WMDP accuracy) depends on the values of each 954

hyperparameter. The color marks the order of tri- 955

als, with dark blue trials happening late in the 956

search. On the right you can see the optimization 957

history (how performance increased as the search 958

progressed) and if more than one hyperparameter 959

was used, you can also see the estimates of hyper- 960

parameter importance produced by Optuna. Some 961

clouds of points do not span the full range, because 962

pruned trials are not shown, and also no_masking 963

and no_normalization searches can use different 964

unlearning_rate ranges. 965
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Figure 5: Hyperparameter optimization results for Llama-3.2-8B. Top: Pile-Bio dataset. Bottom: Python dataset.
Left: Forget loss depending on each hyperparameter. Right: Optimization history and hyperparameter importance.
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Figure 6: Hyperparameter optimization results for SmolLM-135M. Top: Pile-Bio dataset. Bottom: Python dataset.
Left: Forget loss depending on each hyperparameter. Right: Optimization history and hyperparameter importance.
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Figure 7: Hyperparameter optimization results for pythia-14m. Top: Pile-Bio dataset. Bottom: Python dataset. Left:
Forget loss depending on each hyperparameter. Right: Optimization history and hyperparameter importance.
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Figure 8: Hyperparameter optimization results for WMDP accuracy minimization. Left: Forget loss depending on
each hyperparameter. Right: Optimization history.
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