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Abstract

Time becomes visible through illumination changes in what we see. Inspired by this, in
this paper we explore the potential to learn time awareness from static images, trying to
answer: what time tells us? To this end, we first introduce a Time-Oriented Collection
(TOC) dataset, which contains 130,906 images with reliable timestamps. Leveraging this
dataset, we propose a Time-Image Contrastive Learning (TICL) approach to jointly model
timestamps and related visual representations through cross-modal contrastive learning.
We found that the proposed TICL, 1) not only achieves state-of-the-art performance on
the timestamp estimation task, over various benchmark metrics, 2) but also, interestingly,
though only seeing static images, the time-aware embeddings learned from TICL show strong
capability in several time-aware downstream tasks such as time-based image retrieval, video
scene classification, and time-aware image editing. Our findings suggest that time-related
visual cues can be learned from static images and are beneficial for various vision tasks,
laying a foundation for future research on understanding time-related visual context. Project
page: https://rathgrith.github.io/timetells_release/.

“Time is the moving image of eternity.”

Plato

1 Introduction

On our planet, the day-night cycle occurs every 24 hours, a phenomenon recorded systematically by various
clock systems developed by human society. Surprisingly, such clock systems emerged much earlier than
our recognition of Earth as a “blue marble” engaged in constant orbital movement (Dohrn-van Rossum),
1996). Although most people possess a vague, intuitive sense of current time (Moore) [1992), the origin of
this metaphysical consciousness of time, which is a key concept for both our bodies and society, remains
elusive. Research in neuroscience has revealed that visual stimuli from photoreceptors are crucial for the
adaptation of mammals to day-night rhythms (Duffy & Czeisler, 2009)). This implies that the concept of
time for humankind could emerge from various visual experiences. Given the implicit relations between clock
time and visual experiences, we are interested in asking: 1) Can neural networks gain similar awareness to
clock time from solely visual stimuli i.e. static images? 2) If so, what implications does such time awareness
tell us towards understanding the world?

*These authors contributed equally.
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Figure 1: An overview of our study, in which we presented a new high-quality dataset for time-of-day
estimation (a), based on which we propose a new approach, achieving state-of-the-art performance (b). We
further explore the implications of learned time-aware embeddings (c), showing effectiveness over several
time-related downstream tasks.

To answer these questions, in this study, we propose an approach to learn and disentangle the visual cues
related to time from static images, via a pre-text task estimating the clock timestamps from images, and
exploration on various downstream tasks to find their visual implications.

Learning to model captured timestamps of images requires a reliable natural image dataset with timestamps.
There are previous surveillance camera datasets with fixed views, such as the Time of Year Dataset (TYD)
(Volokitin et all, [2016) and other subsets of the Archive of Many Outdoor Scenes (AMOS) (Jacobs et al.
, featuring images captured by a few stationary webcams at different times of the day. However,
these datasets do not reflect the complexity and diversity of views in real-world applications. To address
this issue, |Salem et al.| (2020)) proposed a mixed subset of AMOS and YFCC100M (Thomee et al., 2016),
containing diverse samples. However, many images in this dataset suffer from incorrect timestamps due
to unsynchronised time zones (Padilha et al., 2022), which undermines its reliability for learning robust
time-awareness.

In addition to the challenge of lacking reliable datasets, designing effective solutions for the pre-text task
also faces significant difficulty. Providing accurate clock time estimates requires the model to go beyond
understanding basic illumination, as the task is complicated by inherent ambiguities between the clock
timestamp and images. These ambiguities arise because daylight time is influenced by additional metadata,
such as regional climate and seasonal variations that affect the duration of daylight hours (Volokitin et al.,
[2016} [Sharma et all [2016}; |Zhang et al., |2022)). To cope with this issue, [Salem et al. (2022); |Zhai et al.|
introduced additional metadata inputs, aiming to model the joint conditional probabilities between
geolocation, hour and date to provide performance improvements to the estimation task. While these
works made reasonable and valuable improvements, they have introduced extra dependencies on additional
metadata, limiting the generalisation ability when such metadata is unavailable as reported. On the other
hand, they primarily focus on the specific task of clock time estimation, without exploring further implications
of time to other applications. Whereas in this work, in addition to estimating more accurate timestamps, we
further utilise the learned time and time-aware image features to investigate their impact on several other
downstream tasks.

Specifically, due to the lack of high-quality data, we first curate a new benchmark dataset comprising social
media images featuring diverse views and objects, along with manually verified reliable timestamps. Such
a dataset has the potential to become the new de facto choice for future research. Secondly, we propose a
Time-Image Contrastive Learning (TICL) approach that extracts time-of-day awareness from rich semantics
from foundation vision-language model via contrastive learning outperforms all existing methods on the
pre-text timestamp estimation task. Moreover, we conduct explorations of utilising such time-awareness
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on several downstream tasks, including time-based image retrieval, video scene recognition, and time-aware
visual editing, showing the indirect relations between time and scene understanding.

Note that this work is not aiming at purely time estimation, but more about an exploration of what the
learned embedding tells us, through such a pre-text task. Our key contributions can be summarised as
follows:

o We introduce Time-Oriented Collection (TOC), a new benchmark dataset containing 130,906 images
with reliable timestamps (examples shown in Fig. .

e We propose TICL, an approach jointly modelling time and related visual representations, achieving
state-of-the-art (SOTA) performance on timestamps estimation from static images. Fig. shows
the achieved performance, boosting SOTA from 14.11% to 20.6%, while keeping small number of
trainable parameters.

o We study the potential of the learned time-aware visual embeddings (Fig. by validating them on
several downstream tasks (e.g. time-based image retrieval, video scene classification, and time-aware
image editing), showing clear evidence of their effectiveness.

2 Related Works

2.1 Image datasets with timestamps

Estimating the time of day from static images is a notable and underexplored challenge. Earlier studies
were hampered by the scarcity of datasets with images paired with accurate local timestamps. Many images
from social networks often have metadata that is inaccurate, missing, or uncalibrated to local timezones. To
cope with this, some researchers have turned to webcam image datasets, which naturally include accurate
timestamps. However, these datasets are limited to fixed views and are often degraded by noise, low light,
or obstructions, hindering their generalisation to diverse applications.

For example, established social media image datasets such as MIRFLICKR-1M (Huiskes & Lew, 2008)
and YFCC100M (Thomee et al.,|2016)) were found to contain many unnatural non-photographic images (e.g.
memes, scribbles) and inaccurate timestamps due to unsynchronised clocks and other sources of inconsistency.
On the other hand, webcam datasets contain only fixed stationary views, such as AMOS (Jacobs et al., |2007])
and TYD dataset (Volokitin et al. |2016]), which fail to represent the complexities of temporal variations
within diverse environments. The CVT-Time dataset (Salem et all 2020), despite combining stationary
webcam images with YFCC100M subsets with images captured by smartphone, still struggles with unreliable
timestamps and low-quality webcam images.

2.2 Clock timestamp estimation

Previous work have studied joint attribute estimation of images, including captured clock time, date, and
geolocation. In this work, we focus solely on clock time estimation regardless of other fields in timestamps
(e.g., date, year), since we are primarily interested in relations between clock time itself originated from
human activities (Moore, [1992)) to visual cues. |Volokitin et al| (2016) used VGG-16 to classify tempera-
ture, month, and hour intervals from images taken by 6 webcams during daylight, which is insufficient for
comprehensive day-long analysis. In addition to such earlier simple approaches, |Zhai et al.| (2019)) worked
with a mixed dataset of Flickr and webcam images, classifying images taken at the same hour but in dif-
ferent months into 288 classes, optionally incorporating geolocation inputs. Similarly, Salem et al.| (2022)
used webcam images, predicting month, week, and hour as dependent tasks trained jointly while consid-
ering geolocations as optional inputs. Such joint predictions improve hour-based time-of-day classification
by leveraging metadata cues on regions and climate, which correlate with daylight length. However, such
dependency also puts risks on generalization ability when there are no reliable geolocation or date metadata
available (Salem et al., 2020} |Zhai et al.l|2019). Therefore, we deliberately chose to use only input images for
clock time prediction, without utilising any additional metadata with regard to the generalization problem
acknowledged in previous work.
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3 Time-lmage Contrastive Learning

Before introducing the proposed method, we revisit the problem formulation and goal of our study. Unlike
previous timestamp-prediction architectures that simply attach a classifier to an image backbone (Salem
et al., [2020; |Zhai et al., 2019; [Volokitin et al., |2016)), our goal is not to engineer another bespoke head.
Instead, we introduce a minimal, generic recipe that transforms a certain environmental attribute (in our
case, the clock time) into embeddings that elucidates the implications of world understanding from the
attribute. The novelty of TICL therefore lies in providing explicit semantic-aware time embeddings for
further investigations with its robustness on time encoding validated by superior pre-text time estimation
task performance.

For the clock-time estimation of images specifically, we seek to train a model fy(+), which predicts a timestamp
t given input image z. The estimate can be written as ¢ = fp (z). While regression seems ideal owing to
the continuous nature of time, it faces significant challenges. The cyclic nature of the clock introduces
discontinuity to regression methods that treat target values as scalars within a range that is a disconnected
set (Zhou et all 2019). In regression, cyclic data often causes f to cluster near the midpoint of the range
(Adams & Vamplew, 1998)). For instance, timestamps like 23:59 and 00:00, despite their visual similarity,
are treated as opposite extremes on the time scale. In such cases, the regression model tends to reach a
sub-optimal solution around 12:00, which is far from accurate. Apart from this extremal case, the sensitivity
of the scalar time values also encourages the model to predict an average ground-truth value across visually
similar images. Encoding time into cyclic space partially mitigates scalar discontinuities (Adams & Vamplew,
1998; [Kazemi et al., [2019), but sensitivity issues still limit performance (see detailed analysis in Appendix.

This justified why prior studies have employed classification over discrete time periods (e.g. hours), in which
¢ has finite value options corresponding to classes. Classification mitigates the above issue in regression
by simplifying the model to give a coarser estimate from mutually orthogonal discrete classes. Even for
boundary cases like 23:59 and 00:00, the classification model tends to predict one of the adjacent classes
(e.g. 23:00 or 00:00), which is more reasonable. However, the orthogonality of one-hot vectors (Rodriguez
et al., 2018)) overlooks the relationships (partial order, cyclic) between time periods.

On top of these observations, we propose Time-Image Contrastive Learning (TICL), a multi-modal approach
that jointly learns time and image representations via cross-modal contrastive learning, inspired by GeoCLIP
(Vivanco et al) [2023). Each input image x; is associated with a label t; € R® indicating its time period.
Empirically, we fix C'=24 for all the results in the main paper for a fair comparison with previous work
(see further discussions on the choice of C' in Appendix . Each one-hot vector t; is projected into a
high-dimensional representation space RX using a Time Encoder T; = fq,.(-), where K =768 to match the
dimensionality of the image representation.

As visualised in Fig. 2] during training we maximise the cosine similarity between the CLIP image feature
I; = fp,(x;) and its corresponding time-class embedding T; = fo,.(¢;). Here, fo,(:) denotes the combined
operation of the frozen CLIP image encoder and an Image-Time Adaptor (ITA). The alignment is optimised
by minimising the contrastive loss (He et al., 2019)), as defined in Eq. , where T is a learnable temperature
that controls the sharpness of the softmax distribution (Wu et al.2018)). At inference, TICL flexibly supports
both classification at any class granularity and nearest-neighbour inference (see Appendix Appendix

and Appendix [B.2]).

B-1
exp(l;- T /7
Lp=— log— U T/T) (1)
i=0 Zj:o eXp(Ii'Tj/T)

Several key intuitions support this design. Previous work has shown that combining additional geolocation
and date information can improve the performance of time estimation, but reliance on such attributes
propagates errors from prior to posterior predictions (Salem et al., 2020). We observed that the CLIP
image encoder is a powerful foundation model capturing rich semantic context, exhibiting strong zero-shot
capabilities in geo-localisation and scene recognition (Radford et al., [2021; [Agarwal et al., [2021; [Vivanco
et al., [2023). These results suggest that CLIP implicitly encodes cues (e.g. climate, region) relevant to
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Figure 2: Overview of TICL. Given static images and one-hot time labels, two encoders (Time Encoder and
image encoder + ITA) project inputs into a shared feature space; a contrastive loss aligns the corresponding
pairs.

Table 1: Classification accuracy on the TOC test set of the baseline model Salem et al.| (2022) when using
different training datasets.

Training Dataset | Top-11 Top-31 Top-51
Original |Salem et al.|(2020) | 12.02%  34.05%  56.45%
Cleaned TOC (ours)* 13.87% 39.36% 60.71%

T In training datasets, overlapped samples from the test set are excluded.
¥ The new dataset details are introduced in Section Eand Appendix

timestamp estimation. Therefore, we freeze the CLIP backbone and extract these cues directly, rather than
ingesting raw geolocations or season inputs that may themselves be noisy (Salem et all, [2022).

Another benefit comes from the learnable time embedding in the contrastive scheme. In a vanilla classifier,
the final output § is confined to the simplex {||g]; = 1,§ € R}, where each target is a fixed one-hot
vector. Samples are optimised only toward their own target, and activations to related classes may be
suppressed (He & Garciaj, [2009)). In contrast, our method endows each time class with a trainable vector
that absorbs shared information among temporally adjacent samples, aligning timestamps and visual inputs

more effectively—especially for tail classes. These learnable embeddings also prove useful in downstream
tasks (Section [6]).

In summary, we expect TICL combines the benefit from the orthogonality of one-hot encoded labels and
flexibility of learnable high-dimensional embeddings. This simple yet principled design delivers consistent
gains over prior estimators and alternative time-encoding schemes iRahimi & Recht], 2007; Kazemi et al.,
[2019; |Salem et al., [2022} |Zhai et all [2019) (see Sections and [5.3]), while remaining computationally
lightweight and conceptually generalisable.

4 Benchmark Dataset TOC

With regards to problems Section we introduce a new benchmark Time-Oriented Collection (TOC)
dataset consisting of high-quality images sourced from social media, featuring reliable image metadata. We
collected 117,815 training samples and 13,091 test samples from the Cross-View Time (CVT) (Salem et al.
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2020), mitigating various limitations in previous datasets. This dataset reflects real-world scenarios and
human activities, making time-of-day estimation more applicable to potential practical applications.

During dataset curation, we manually filtered out unnatural, non-photographic images from the CVT dataset
and calibrated the timestamps to match the images. To accelerate the process, we utilized ResNet18 features
of the images to quickly identify the outliers in deep image feature space for different periods of the day.
After which, we conducted meticulous manual inspection for each outlier image to check if their timestamp
or contents are natural and valid (see more details in Appendix . This revised dataset reflects natural
variations in human activity throughout the day, with improved reliability in terms of time metadata. As
evidence, Table [I] shows a performance gap on the same test set using different levels of filtering on the
CVT dataset, justifying the effectiveness of the filtering process indicated by improvements in baseline
model performance, suggesting that repetitive surveillance-camera-sourced and unnatural non-photographic
images we removed do not help the model in better time recognition for images in the wild. A few examples
of the exact format and appearances of the remaining samples within the TOC dataset are provided in Fig.
Geolocation distribution of the sample images within our final TOC dataset in Fig. [3]also suggests that, due
to the inherent geographic distribution of the internet, the northern hemisphere has more data captured by
nature. Our dataset well represents such natural distribution. Further information and statistics about the
dataset are available in Appendix [A]

{
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Figure 3: Sample images and metadata from the TOC dataset w.r.t. GPS coordinates. Metadata
contains several fields indicating timestamps and geolocations. The samples spread across all the continents
and show a natural distribution of internet images, where the southern hemisphere has relatively fewer
samples due to a sparser population of photo capturing.

5 Experiments

5.1 Experiment Setting

Dataset and metrics: We use different evaluation metrics to measure performance on image clock time
estimation tasks: top-k classification accuracy with k = 1,3,5, and Time Mean Absolute Error (MAE) on a
minute basis. In addition to the TOC test set, to better evaluate the generalisation ability of the proposed
method, we selected a subset of the AMOS dataset (Jacobs et al. [2007) as an additional test set. This
additional test set contains 3,556 images with high SNR (which ensures good sample quality) captured by
53 stationary surveillance cameras with a more balanced time label distribution (see curation process and
statistics in Appendix . That is, all the compared models are trained solely on the TOC training set
and evaluated on different test sets to demonstrate generalisation ability across different domains.

Implementation details: For our proposed TICL, we use Adam optimiser with an initial learning rate of
5x 10~* and a weight decay of 1 x 1075, The training process spans 20 epochs, with the learning rate halved
every 2 epochs and a batch size of 512. The temperature parameter is initialized to 0.07. All input images
are resized to 224 x 224. For a fair comparison, we retrained all the previous baseline methods on the cleaned
TOC train set, using the best training configurations reported in |Zhang et al.| (2022)); [Zhai et al.| (2019));
[Salem et al. (2022)) respectively. Additional details about implementations are available in Appendix
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Table 2: Time estimation performance on our TOC dataset and the AMOS test set.

AMOS test set!

TOC test set
Top-1 acc  Top-3 acc  Top-5 acc Time MAE (min.)

Top-1 acc t  Top-3 acct Top-5 acc t Time MAE (min.) |

BLIP-VQA-base (Li et al. b 9.36% - - 241.58 7.28% - - 302.82
GPT-40-mini (OpenAl et al Al ‘ 15.35% - - 161.39 ‘ 11.15% - - 216.83
Zhang et al.|(2022) (ResNet-101) 13.24% 37.30% 58.23% 177.84 7.85% 24.26%  40.10% 261.89
Zhang et al.|(2022) (ViT-B/32) 10.73% 31.21% 49.05% 195.33 7.25% 21.03%  32.93% 263.87
Zhai et al.[(2019 14.11% 40.47% 65.94% 188.78 9.14% 27.95%  45.36% 262.68
alem et al.[(2022 13.87% 39.36% 60.71% 186.44 8.63% 26.49%  42.58% 255.20
TICL (Ours 20.60% 49.01% 67.82% 171.65 13.55%  38.49%  57.28% 187.87
TICL-Nearest-Neighbour (Ours)!| 25.67% 49.32% 66.74% 156.24 1L.14%  3L01%  48.84% 220.94

15.01% 42.54% 68.24% 185.34 8.85% 24.12%  38.63% 268.41

13.53% 38.47% 59.10% 176.70 8.16% 23.88%  39.67% 257.00

T Experiments on this test set are conducted in a zero-shot manner, in which we directly evaluate models trained solely on the TOC dataset.
9 The result is obtained via direct Visual Q&A on the Visual Language Model with details in Appendix
 Results in this row are achieved via Nearest-Neighbour style inference. We choose the time labels of nearest neighbours from the train dataset as estimations (see details in Appcndix.
§ These methods take additional known geolocation metadata inputs. Therefore, it’s unfair to directly compare them with other methods. So we put them here just for reference.

5.2 Time estimation performance

As shown in Table 2, TICL not only outperforms all previous pure vision methods but also outperforms
previous methods that require additional geolocation inputs on most metrics. TICL also demonstrates
better performance in the additional AMOS test set, thereby indicating better generalisation ability. In
summary, our experimental results indicate an overall improvement of the proposed methods in clock time
estimation, especially in terms of accuracy and generalisation ability.

@ salem et al. (2022) @ Zhai et al. (2019) @ TICL (Ours) @ TICL-NN (Ours)

Ground truth

Prediction Prediction Prediction Prediction

Ground truth

U brediction " brediction U brediction C T prediction
Figure 4: Confusion matrices. They provide more detailed comparisons throughout the 24 hours on our
TOC test set (top), and the AMOS test set (bottom).

Additional error analysis on pre-text tasks In addition to the quantitative results, we also visualised
the confusion matrices in Fig. [4|to provide a more in-depth evaluation of the task. An interesting finding is
that both [Salem et al| (2022) and |Zhai et al. (2019) overlooked minority classes in the training set (classes
from 1 a.m. to 5 a.m.), resulting in nearly no predictions for these classes on both test sets. This indicates a
notable bias in these models towards classes during hours of intense human activity, when more images are
present in dataset. In contrast, our proposed TICL method exhibits more balanced class-wise distributions
of positive predictions on both test sets, suggesting better estimation fairness. The general trend in all
the confusion matrices also suggests the remaining challenges faced by all methods. Notable anti-diagonal
patterns indicate inherent visual ambiguities of the clock system w.r.t. appearances.
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Table 3: Detailed component analysis of the proposed method design.

Image Encoder’ fort forra® TOC test set AMOS test set
Top-1 acc T Top-3 acc T Top-5acct Time MAE (min.) | | Top-1 acc Top-3 acc Top-5 acc Time MAE (min.)
X X1 7.69% 23.36% 38.61% 302.84 5.65% 17.12% 27.28% 319.09
DINOv2-base Ours X 8.01% 23.84% 39.06% 295.34 5.23% 17.35% 29.22% 320.76
X 4 1.02% 3.29% 12.04% 486.77 4.11% 11.41% 19.62% 381.92
Ours v 9.53% 27.34% 44.17% 254.49 5.09% 14.74% 25.16% 327.72
X X1 11.45% 32.27% 51.08% 240.77 7.87% 22.49% 36.81% 281.80
Swinv2(B) Ours X 11.64% 32.13% 50.33% 243.86 7.51% 22.36% 37.54% 288.21
X v 12.74% 33.65% 52.06% 222.76 6.75% 23.76% 38.41% 284.30
Ours v 13.37% 34.94% 52.93% 216.17 7.37% 22.98% 38.08% 276.66
X X1 11.59% 32.93% 50.88% 240.64 6.41% 21.68% 37.63% 300.74
ConvNeXt(L) Ours X 11.86% 32.81% 50.18% 240.80 6.10% 20.66% 35.85% 302.45
o X 4 13.51% 35.29% 52.76% 216.28 7.711% 24.33% 39.96% 275.23
Ours v 14.67% 36.75% 54.60% 204.19 8.27% 24.78% 40.86% 263.03
X x1 16.66% 44.43% 65.07% 193.66 12.37% 36.95% 55.96% 200.93
Ours X 16.73% 44.05% 63.99% 195.41 13.50% 38.49% 58.30% 189.99
. X v 18.60% 46.41% 65.98% 181.22 12.57% 37.51% 57.23% 189.69
CLIP (ViT-L/14) X Sorea @ for 19.26% 45.40% 62.92% 189.97 11.42% 35.65% 54.06% 197.09
RFF v 16.75% 35.14% 46.61% 206.50 6.07% 15.78% 22.27% 290.70
T2V v 17.70% 45.69% 66.11% 185.89 7.37% 21.74% 35.10% 264.25
Ours v 20.61% 49.01% 67.83% 171.65 13.55% 38.50% 57.28% 187.87

T All image encoders are frozen feature extractors with pretrained features provided by corresponding PyTorch libraries (Wolf et al.][2020]jmaintainers & contributors|[2016].

* fo, denotes the Time Encoder module. When fg,. is absent, only one-hot encoding is used to represent the clock timestamp, and the outputs of fg, need to be projected to 24 dimensions. RFF,
T2V means that we uses off-the-shelf encoding methods for low-dimension/cyclic vectors from [Rahimi & Recht]; |Kazemi et al.|.

§ Joypa denotes the Image-Time Adaptor. When it is absent, only the backbone feature extractor and time encoder are used.

9 The baseline with neither of the Jors forps components simply has a linear layer after Image Encoder projecting the features to 24 dimensions.

5.3 Detailed component analysis

In this section, we present the ablation study investigating the effectiveness of each module in the proposed
TICL model across different configurations. To ensure a fair comparison, we use a classification-based infer-
ence pipeline for all experiments (see implementation details in Appendix. Tableprovides performance
comparisons under various settings, including different backbones (Tan & Le| [2021; |Oquab et al., 2023}

2022aljb) within the image encoders.

Impact of different backbone image encoders: The differences in performance across the image en-
coder backbones highlight the effectiveness of the CLIP Image Encoder. Thanks to its rich semantic repre-
sentations, the CLIP Image Encoder consistently achieves better results across all configurations than other
backbones.

Ablation on proposed modules: We observed that the Time Encoder fp, and the Image-Time Adaptor
forra have varying effects when used individually, either slightly improving or degrading the baseline. How-
ever, when both modules are employed simultaneously, they lead to universal improvements across all image
encoder backbones, underscoring the joint contribution of the Time Encoder and Image-Time Adaptor.

Ablation on different time encoding methods:  We also tested the performance using other variants
of Time Encoder. RFF (Rahimi & Recht|, 2007 encodes input (hour, minute) into 512-dim vectors to align
with ITA outputs directly using the same dynamic queue as in|[Vivanco et al. (2023)), which is outperformed
by our methods on TOC test set and does not generalise well on AMOS test set. In addition, T2V
based Time Encoder also shows similar problems on its performances. These comparisons
suggest that the one-hot class embeddings exhibit better generalisation ability and performance on most
metrics. A possible explanation could be that, the sensitivity of accurate time encoding results in some clock
timestamp embeddings being assigned with very limited training samples to represent them. This makes
them not robust against the visual ambiguity of time, as images with the same clock time could have very
different appearances due to variations in geolocation, season, and climate. In contrast, clock time class
embeddings for each hour are vaguely associated with many samples that lie in the same hour interval.
Representing target clock timestamp embeddings using spectrums of temporally close samples may reflect
the ambiguity of clock time w.r.t. image appearances, making the estimates more robust and generalizable.
(See more analysis in the Appendix [C.1).
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Table 4: Joint localisation of geolocation and time. probabilities that the top-1 retrieved image has
GPS coordinates’ L1-difference < 0.01 and a clock time L1-difference < 30 minutes to query images.

Chance | [Salem et al.[(2022) |Zhai et al.{(2019) ~CLIP (ViT-L/14) TICL (Ours)

0.03% | 2.08% 4.17% 6.25% 10.42%

6 What Time Tells Us on Downstream Tasks?

Apart from the possible media forensics application that time estimation can be applied to
. We also interested in the relation to other computer vision tasks and the capability of the learned time
awareness. Therefore, in this section, we explore 1) time-based image retrieval which is a direct use of the
model in retrieval & recommendation applications (Section , 2) video scene classification, revealing an
interesting connection between static images and dynamic visual scenes learned from timestamp supervision
(Section , and 3) time-based image editing, showing the model learned can provide proper perceptual
guidance to the generative models (Section .

6.1 Time-based image retrieval

An intuitive application of the time-aware model is

time-based image retrieval. It aims to effectively

retrieve images from a database with a similar cap- :;f:n:‘::‘;f’( 202) -
tured time of day to the query images. We con- CLIP (ViT-L/14) oot

sider a zero-shot vector search engine that retrieves R B 05
the nearest neighbours of query images based on  £°° 045 0430-47' mi
their time-aware feature similarities. To evaluate %04 e [

this task, we separated the TOC test set into 13,043 2,5 | °-31I I
database images and 48 query images spanning all . B o I I

24 hours. The performance is measured using Re- ﬁ“m I I
call@k reported in Fig. [f] Images retrieved with o o.ol I I I

a time difference of no more than 30 minutes from 0.0- R@1 R@S RG10 R®20
the queries are considered as positives. The results Recall @ k

clearly show that the proposed TICL model achieves

the best performance across all Recall@k metrics. Figure 5: Recall@k for time-based image retrieval.

We also analysed the distribution of metadata differences between the retrieved images and their correspond-
ing query images. Specifically, Fig. [6a] illustrates the distribution of clock time errors among the top-100
retrieved samples for different features. The results show that TICL retrieves a higher percentage of images
with smaller time errors compared to other features. Fig. [6b|further shows the geolocation error distribution.
Images retrieved by vanilla CLIP embeddings are geographically closest to the queries, suggesting that CLIP
represents a rich understanding of scene priors strongly related to geolocations, which was delineated in
some previous Visual Place Recognition (VPR) work using CLIP backbone (Radford et al. 2021} [Keetha
let al., 2024; |Vivanco et al., 2023). We suspect that this contextual awareness is partly inherited by TICL,
which achieved moderately better performance than other time-aware features of previous work. From this
observation, we suspect that TICL disentangled time-aware features from other metadata attributes. To
validate this hypothesis, for each query image, we consider an additional task of localising geolocation and
time jointly using retrieval. As shown in Table [4] the advantage of TICL suggests it has a more balanced
capability of understanding geolocation and time jointly than other models.

6.2 Video scene classification

Understanding dynamic scenes is an important challenging problem that visual models currently face (Miao
. A fundamental task in this domain is video scene classification. Pretraining models on
static images with object categories have been proven to be helpful in video classification
2017). Intuitively, dynamic scenes represented in videos have temporally consistent frames within.
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Figure 6: Comparison of geolocation and time error distribution. It is collected among top-100
retrieved images using different feature extractors.

Table 5: Performances on the video scene classification task.

Classifier ‘ Hollywood2-Scene +  YUP++ 1+ 360+x (Panoramic) © 360-+x (Third-view) 1
VideoMAE (Tong et al.|[2022 48.83% 97.29% 53.70% 54.55%
VideoMAE + CLIP (ViT-L/14 52.92% 98.33% 57.40% 50.91%
VideoMAE + |Salem et al.| (2022 45.53% 97.50% 44.45% 52.72%
VideoMAE + |Zhai et al.|(2019 51.03% 97.71% 48.15% 56.36%
VideoMAE + TICL 56.53% 98.33% 59.26% 58.18%
CLIP (ViT-L/14) (Linear Probing) 39.69% 97.08% 35.19% 11.10%
TICL (Linear Probing) 57.04% 98.33% 51.85% 42.59%

T We use an unofficial train/val/test split of 5:1:4, since the original 1:9 train/test split overfit prematurely.

Therefore, despite dynamic scene categories seeming to be irreverential to the time of day, we are particularly
curious about whether the proposed TICL model, which is pretrained to estimate clock time for input static
images, can provide additional understanding of a continuous sequence of frames other than discrete moments
represented by static images.

Experiment setup: To assess whether our time-aware models provide valuable priors for understanding
different categories of dynamic scenes, we provide classification results under two different constructions. 1)
We concatenate the time-aware features from different frozen feature extractors to pretrained VideoMAE
backbone (Tong et al. [2022), 2) directly run linear probing on video frames with the frozen feature extrac-
tors. We compared the performances under different feature extractors on various scene datasets including
Hollywood2-Scene (Marszalek et al., [2009), YUP++ (Derpanis et al. [2012) and 360+x (Chen et al.| 2024]).
Please refer to Appendix [E| for implementation details and other experimental settings.

Possible correlations between the time of day and scene: According to Table [5| TICL features
provide consistent improvements to the scene classification task under different settings. The most straight-
forward explanation for this boost is that scene classes are correlated with the learned time of day by
definition. To prove this, we visualized the cosine similarity between certain text embeddings of certain
scenes that clock time class embeddings, as shown in Fig. []] The imbalanced distributions proved the
conceptual correlation of scenes to time due to human activity patterns.

Consistency in time-aware frame embeddings: As shown in Section the TICL representations
can capture similarities between images with close clock times. Natural videos, although they sometimes
involve drastic subjects or view movement, frames within each should still represent continuous time periods.
TICL features for frames across the whole video should be more consistent than those of vanilla CLIP, which
have stronger locality per frame (Tang et all 2021)). This intra-video consistency allows for more general
time-aware priors extracted using TICL. The t-SNE visualisation of the video features in Fig. [8| supports
this claim, showing that TICL features are more separable than vanilla CLIP features (see Appendix for
a more in-depth analysis of the phenomena and claims above).
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Figure 8: t-SNE visualisation comparison. It compares video features before the final classifier layer
using either (a) CLIP or (b) TICL, on the Hollywood2-Scene dataset (Marszalek et al.,|2009)), each different
scatter point shape/colour corresponds with classes.

6.3 Time-aware image editing

As aforementioned in Section [3] the TICL model can provide the corresponding embeddings for certain
periods of the day. Therefore, it is natural to consider using these clock timestamp embeddings as guidance
to edit images toward different classes. To assess the extent to which clock time embeddings aid this task,
we adopted the following experiment framework from [Patashnik et al| (2021)) that conducts image editing
via latent vector searching through optimisation steps instead of tuning the models directly.

Experiment setup: To provide comprehensive evaluations, we conducted experiments on three different
baseline StyleGAN2 models (Karras et all [2020D) focusing on different subjects trained on (Skorokhodov
et al., |2021; [Yu et al., 2015). The pretrained generator weights are adopted from existing codebases |Pinkney
(2024); Epstein et al| (2022)); [Karras et al| (2020a). The editing pipelines were restricted to follow the same
latent optimisation baseline method introduced in StyleCLIP (Patashnik et all |2021)). Additionally, we
designed a new time-aware synergy loss combining directional CLIP loss and TICL feature similarity loss.
Specifically, the editing process can be formulated as:

—_

argmin (A Lrror + A2Levipdie + A2 [|w — Wsourcel|5)
weW+

in which w, Wseuree Tepresents latent vectors for ongoing edit outcomes and original images, (design, hyper-
parameter and implementation details in Appendix [F.1]).

Qualitative evaluation: The proposed time-aware synergy loss yields the most plausible synthesis out-
come as illustrated in Fig.[9] The limitations of solely text-guided image editing methods could be due to
their susceptibility to certain adversarial solutions fooling CLIP image encoders with certain patterns only
(Liu et all [2021). Specifically, Fig. [0] shows the vanilla StyleCLIP edits using the CLIP loss tend to focus
on the general tint of the image but fail to reflect realistic illuminations. We find that replacing the CLIP
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Figure 9: Time-aware image editing. It shows the results of applying our time-aware editing method
(green overlay) on three different StyleGAN2 models trained on LHQ-Landscape (Skorokhodov et al) [2021)),
LSUN-Church, and LSUN-Bedroom datasets. The results of other non-latent optimisation
methods are also demonstrated (under grey overlay).

loss with a directional variant introduced in previous work (Gal et al. 2021; Kwon & Ye, [2022)) can assist in
overcoming larger domain gaps. Despite showing improvements over the baseline editing method, the results
still show unrealistic artefacts and shape distortions. These limitations show the necessity of incorporating
additional time-aware features other than just guidance text embeddings when computing loss functions
for image edits. Our qualitative evaluations demonstrated the effectiveness of the TICL embeddings on
the specific task. We also included other baseline method results that work under different frameworks
other than latent optimisation for a more comprehensive comparison. See more quantitative evaluations
(Table, user studies (Table and results on TICL-aided editing with diffusion models in Appendix
and Appendix [F.2] respectively.

7 Conclusion

In this paper, we tried to answer the question of what time tells us, through exploring the pretext task of
time-of-day estimation and downstream tasks. A new reliable benchmark dataset, TOC was introduced to
support the pretext task, consisting of images captured in natural settings with verified timestamps. This
dataset addresses the limitations of existing datasets by providing a more diverse and realistic collection of
images that better reflect daily visual experiences. Building upon that, a new learning paradigm (7TICL)
was proposed, which aligns clock timestamp and image in representation space via a pretext time predic-
tion task, surpassing previous work in time-of-day estimation. The learned time-aware representations were
further studied via validations on several downstream tasks. The strong performance in these downstream
tasks highlighted its capability to recognise the similarity of the captured time (in time-based image re-
trieval), frame-coherent priors in TICL for video scene understanding (significantly improved video scene
classification), and produce realistic and time-consistent performance in time-aware image editing (accurately
reflecting typical lighting conditions for different times of day).
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Appendix Roadmap

This is the appendix for the main paper. Here is a general roadmap describing the contents of each part of
this document supporting the main paper:

» We first provide additional details to the datasets in the Appendix [A] which includes how we cleaned
the originally noisy data into datasets that reflect the diversity of natural images paired with accurate
metadata.

 In Appendix [B] we cover the detailed illustration of the implementation of the model and the setup
of the experiment. Along with additional performance and error analysis. We also provide additional
results testing the ability to jointly predict date related metadata other than just the clock time.

 In Appendix [C] we explore various scalar encoding methods to time variables on the pre-text task
through an regression example in Appendix We also discussed the inherent trade-off of fine-
grained classification via an additional ablation to the number of classes in Appendix

e Appendix [D| provides additional qualitative evaluation to the time-based image retrieval task.

« Appendix [E] gives experimental setup details, as well as more evidences of the intra-video consistency
identified in the main paper in Appendix

e In Appendix we provide a detailed setup of the experiment along with additional qualitative
and quantitative evaluation of the capability of time-aware features in image editing tasks.

 Appendix [F.2] also shows results of using time-aware features to further improve the fidelity w.r.t.
clock time via time-aware features under more advanced diffusion model baselines.

e In the main paper, we discussed about the implications of time-awareness in visual scene under-
standing, in Appendix [G] we provide more examples of text query about the conceptual relations
between clock time and scene/action/objects text embeddings.

A More Details on Datasets

A.1 The proposed TOC dataset

Comparison to previous works: In this work, we introduce a new benchmark dataset that combines
images from the YFCC100M (Thomee et al., 2016 and Cross-View Time datasets (Salem et al., [2020). As
we briefly summarised in Section [4] the major differences of our datasets to previous static image datasets
featuring time-metadata lies in the view/appearance diversity and metadata correctness. Table |§| gives an
overview of the differences. For previous generic social media image datasets, there have been persisting
issues of unreliable timestamp metadata due to unsynchronized user/device activity. Apart from unreliable
groundtruth, the visual appearances of time in some of the images are often undefined in non-photographic
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Figure 10: Dataset filtering process, where (a) shows examples of finding unnatural images in DBSCAN
(Ester et al., [1996) outliers that may degrade dataset quality, and (b) shows examples of removed images
with uncalibrated clock timestamps.

Table 6: Comparison of existing image datasets with timestamps.

Dataset Image source Timestamp reliability Scene diversity
MIRFLICKR-1M | mobile / miscellaneous X high
YFCC100M 1 mobile / miscellaneous X high

AMOS 1 fixed webcams X limited
CrossView Time VT l m webcams + mobile devices X mixed

TOC (ours) wild-view natural photography images verified & timezone-aligned high

images which do not reflect any natural time-of-day. Despite such these problems are mitigated for datasets
with proportional samples from static surveilance camera, the repetitive views and occasional ground-truth
leakage overlayed on the camera footage suggests limitity usablilty. These issues are depicted separately in
Fig.[TT] Therefore, our dataset resolved these issues by manually verifying metadata fidelity given the image
on purely social media samples.

Detailed curation steps: Now, we cover more details of the dataset curation process. Fig.[10|gives a clear
illustration of the data filtering steps to the dataset, improving the sample quality and metadata reliability.
We firstly inspected all the night-time images with average pixel brightness > 100 to determine whether they
have clearly mislabeled timestamps. Specifically, extreme cases like polar day were considered, so images
with |altitudes| > 75 were retained regardless of illumination. This step removes clearly unsynchronized
images, which do not align with human consensus about nighttime illuminations. To reduce the workload of
filtering unnatural images, we firstly partitioned the images into 24 different hour intervals; within each of

Unsynchronized

Tifnestamss Label Leakage in

Webcam Data

Lacking Visual
Cues of Time

2007-07-2101:07:44 2013-01-20 00:00:00

Figure 11: Existing issues in previous datasets (Salem et al., 2020; Thomee et al., 2016} Jacobs et al.,|[2007)
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Figure 12: Dataset hourly sample distribution, where (a) shows hourly sample distribution for TOC
dataset, in which daytime images are significantly more prevalent than nighttime images, and (b) shows
hourly sample distribution for AMOS-test dataset displaying a similar skewed but more balanced distribution
towards daylight hours.
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Figure 13: Mean brightness with standard deviation over images taken at different periods of the day.

them, we apply DBSCAN (e = 10, minPts = 100) on ResNet-18 features, which gives a majority group and
outliers. We recruited workers to manually review all the outlier images determining whether to add them
back to the dataset. This pipeline allows for efficient removal of unnatural images without proper visual
cues about time in the dataset by looking at samples groups with distinct features to the majority group
containing natural photographs.

We conduct a statistical sanity check on the dataset—processing pipeline. The most intuitive visual cue
correlated with the time of day is scene illumination, which we approximate by the statistical average of pixel
brightness. In Fig. [13| we observe that, before cleaning, images labelled 00:00-06:00 in the previous dataset
have brightness comparable to daytime photos, and an unnatural gap appears between the 21:00-23:59 and
00:00-03:59 bins. Both patterns violate common sense, where 1) late-night images should be markedly darker
than daytime images, and 2) illumination should change most rapidly around sunrise and sunset, while
remaining relatively stable during midnight and noon periods. These anomalies point to unsynchronised
capture timestamps in the unprocessed dataset. After cleansing, the TOC dataset follows the expected
smooth day-—night trend, confirming that our pipeline yields data consistent with human intuition about
illumination over a 24-hour cycle.

Following the data filtering, we partitioned the TOC dataset into a training set and a test set at a 9 : 1
ratio, with stratified sampling to ensure that the clock time distributions of both subsets were approximately
equivalent. We observed a significant scarcity of images with reliable metadata captured at night compared
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“image_path": "20110125_084002.jpg"
"latitude": 61.3105118775

"longitude": 35.798828125

"time": "2011-01-25 08:40:02"

"image_path": "20130124_064631.jpg"
"latitude": 46.3833333

"longitude": 11.85

"time": "2013-01-24 07:46:31"

"image_path": "20110712_093520.jpg"
"latitude": 51.8277718744

"longitude": 5.87035946679

"time": "2011-07-12 11:35:20"

"image_path": "20120615_060924.jpg"
"latitude": 33.7497447444
"longitude": -84.3883686381

"time": "2012-06-15 02:09:24"

Figure 14: Sample images from the AMOS test dataset. The images showcase different scenes captured
by stationary surveillance cameras at various times of the day with decent visual quality.

to daytime images. This observation corroborates our hypothesis that the distribution of timestamps in
images shared on social media is inherently unbalanced as depicted in Fig. [I2}

Such imbalance presents challenges in learning equitable embeddings for class time periods that are under-
represented due to limited sample availability. This imbalance necessitates strategic approaches to model
training that can adequately compensate for these discrepancies.

A.2 AMOS test dataset

Dataset Filtering and SNR Estimation: The AMOS-test dataset was selected from the CVT test
set, containing 5,000 AMOS images, which was further reduced to 3,556 images. The dataset filtering
involves several steps to ensure metadata reliability and sample quality. First, we calibrated the original
UTC timestamps to their respective local timezones using the geolocation metadata. Then, we filtered out
(1) noisy images with low Signal-to-Noise Ratio, where the SNR is estimated using a block-based variance
method. Specifically, for an image I with IV pixels, the SNR is computed as

2
Usignal
SNR(I) = 10 - log;, <02 > ,

noise
where the noise variance o2 ;.. is estimated as the average variance over the lowest 10% of non-overlapping
blocks of size 16 x 16 pixels, and the signal variance is given by

O-Signal = Ut20tal ~ Onoiser

with o2 ., being the variance of the entire image. Images with SNR(I) < 15 were discarded. After cleansing,
the average SNR improved from 1.93 (std = 10.35) to 3.38 (std = 3.50). This filtering ensured that only
images with recognizable time-of-day related appearance were included in the evaluation. Figure [14] shows

a few sample images from the dataset.

As the images were captured automatically by surveillance cameras with fixed views, the AMOS test set
represents a different domain to the proposed TOC dataset. Although the dataset contains repetitive visual
appearances due to the stationary setup of the cameras, it benefits from a more balanced distribution of
timestamps throughout the day, as shown in Appendix

B Implementation Details of TICL

In the main paper, we covered the high-level design of the TICL model we devised to learn time-awareness
via a clock time estimation pre-text task. This section provides additional details.
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Figure 15: Visualisation of TICL sub-module architectures.

B.1 Model details

Time Encoder: The Time Encoder consists of several fully-connected layers, with the detailed architecture
shown in Fig. The raw timestamps are first preprocessed into 24 one-hot class embeddings. The Time
Encoder then takes these input class embeddings and projects them to the desired representation space.

Image-Time Adaptor module: The Image-Time Adaptor module is employed to adapt the raw backbone
features with Time Encoder outputs, as depicted in Fig. Training the Image-Time Adaptor module and
Time Encoder jointly using a contrastive learning scheme allows for effective alignment between the two
modalities.
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(a) Classification-based inference (b) Nearest-neighbour inference

Figure 16: Detailed illustration of different inference pipelines. In (a), the model selects the clock
time with the highest similarity to the input image from a finite set of clock time class embeddings. (b) shows
that the model estimates clock timestamp by finding the corresponding timestamp of the nearest-neighbour
to the input images from the training set based on the sample-specific TICL embeddings.

B.2 Details in clock timestamp estimation inference pipelines

Two different clock timestamp estimation inference pipelines were devised. The first pipeline, shown in
Fig. adheres to the classification scheme, selecting the timestamp with the highest similarity within a
finite clock timestamp embedding pool encoded from C' one-hot embeddings. The second pipeline, shown in
Fig.[I6D] converts the problem to a retrieval-style formulation, using known image-timestamp pairs from the
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Figure 17: Parameter efficiency and performance. (a) Comparison of trainable parameters and perfor-
mance. (b) Analysis of total parameters and performance.

Table 7: Joint time estimation performance on our TOC dataset. Namely, we jointly estimate the
month and hour using the same setup in the previous baseline [Zhai et al.[ (2019) for fair comparison.

Hour Prediction Month Prediction
Top-1 acc t  Top-3 acc t  Top-5 acc T Time MAE (min.) | | Top-1 acc Top-3 acc Top-5 acc Month MAE
Salem et al.|(2022) 13.87% 39.36% 60.71% 186.44 7.40% 25.74% 42.93% 3.14
Zhai et al.|(2019) 14.11% 40.47% 65.94% 188.78 11.23% 33.03% 55.16% 2.38
Salem et al.[(2022)" 13.53% 38.47% 59.10% 176.70 9.59% 24.56% 39.61% 2.74
Zhai et al.|(2019)7 15.01% 42.54% 68.24% 185.34 12.03% 35.91% 60.50% 2.25
TICL (Hour only) 20.60% 49.01% 67.82% 171.65 - - - -
TICL (Month only)* - - - - 34.48% 68.19% 82.88% 1.45
TICL (Month, Hour) 19.45% 42.07% 55.57% 176.45 32.28% 52.00% 62.26% 1.77
Hour Prediction Season Prediction
Top-1 acc t Top-3 acc T Top-5 acc T Time MAE (min.) | | Top-1 acc Top-3 acc Top-5 acc -
TICL (Season, Hour) ‘ 20.14% 45.98% 62.58% 170.93 ‘ 61.52% 71.74% 80.48% -

T These baselines take additional known geolocation metadata inputs, which boosted their performances on both prediction tasks.
¥ Predicting 12 classes for months.

training set. The model returns the class-level timestamp of the most similar samples to it in the training
set using an efficient vector search engine (Johnson et al., 2019)).

Settings for VQA baselines: For baseline VQA based methods tested in Table [2| namely the BLIP
(Li et al., |2022) and GPT-40-mini (OpenAl et al., 2024), we simply use a pipeline with one round Q&A
directly outputing times as predictions, which takes the input prompt pquery = "Estimate the LOCAL cap-
ture clock time of the image, answer with ONLY one 24-hour time in HH:MM format.".

B.3 Computational efficiency

Since the majority part of the TICL model, the CLIP image encoder, is frozen during training, the TICL
training is thus efficient with a small number of trainable parameters. Figs. and shows that TICL
achieved the best performance with the minimum trainable parameters among existing methods. Benefiting
from the fewer trainable parameters, training on precomputed image features is significantly faster. Also,
Fig. demonstrates that simply scaling up the model parameters for previous works may even degrade
the performance. We suspect that it is due to the more severe overfitting of the larger models on training
samples. In comparison, the TICL model reached better performance with a moderate total number of
parameters.
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B.4 Joint metadata estimation with time

We noticed that some of the previous baselines support joint time estimation instead of just focusing on
clock time only. They often consider the joint contribution of other metadata including geolocation, date,
and time of day to the image appearances (Salem et al., [2022; [Zhai et al., [2019) to deal with the ambiguity
of clock time when given only visual inputs. Therefore, in this section, we aim to explore such capability of
estimating time and month jointly from only social media images.

We adjusted the network structure of TICL, enabling its abil-
ity to estimate month and hour jointly using a similar struc-

ture to|Zhai et al| (2019), in which the model predicts 12 x 24 o : B 6
classes combining months and hours. We kept all the specified 1 ek « 0o b g 1&% 10
hyper-parameters and other setups the same. As for the com- 2 x & :’ % 9 g
pared baseline methods, we used the same hyper-parameters ***& ﬁ @ ﬁﬁ 8 &
provided in previous works and picked the best performances 1% & %&sﬁs & 7 g
from several trials, all the models are trained and tested on -2 @ @00* LT I 3
TOC dataset which contains only social media data to demon- e ® = * & ® ° %
strate the challenges on real-world samples. As provided in ] Season ;f ‘tg. @ : 8
Table [7], TICL generally outperforms previous baselines when -6 : !Vrlffne; s S0 ® 5
trained an tested on the more challenging TOC dataset without N f i:;:zir %‘*’ 1
images with fixed views. In addition, under TICL paradigm, 0

jointly predicting clock time and month or season does not pro- IS TR0 mEs 00 as 30T

vide boosts to individual tasks. We suspect that it is because
of the gaps between the visual cues between the two different
target variables. Such gaps lead to difficulties to model a joint
probability of P(t,m|x) for clock time ¢ and month m with
only the input x. However, the prediction advantages of models focusing on each attributes only suggest
the possibility of stacking such different metadata-aware models in joint metadata verification-related tasks
focusing on P(t|m,x), P(m|t, x).

Figure 18: t-SNE visualisation of class em-
beddings <clock time, season>.

However, compared with using the date as additional supervision, the season supervision combines both
date and geolocation gives a much smaller performance gap to the purely clock time supervised model. This
suggests that learning meaningful combinations of other metadata could possibly provide a better clue to
normalise the visual variance of the clock time. To support this point, we have included a visualization of
learned clock time and season in terms of embedding in Fig. As visualised, the model clearly recognizes
season variations of the same clock time, while keeping a general pattern for different time periods of the
day. This shows the potential of producing a possible calibration mechanism by learning on unnormalised
timestamps with the help of different metadata supervision. This indicate a hopeful direction that we may
learn an calibration mechanism to the raw clock time to bio-clock by incorporating comprehensive metadata
and scene priors as supervision.

C Exploration of More Precise Time Encoding

C.1 Scalar encoding

In this section, we explore limitations in a simple regression solution to the pre-text estimation task using
scalar encoding of the clock time.

Raw scalar encoding: The regression style construction for clock time estimation from images presents
significant challenges as covered in main text. There are different issues with regression models, including 1)
loss function sensitivity and 2) discontinuity in the scalar range for regression. In the following paragraphs, we
first provide a brief illustration of the issue on the regression loss function. Secondly, we present experiments
of a regression model working in a circular space instead of the vanilla scalar range which is a disconnected
set (Zhou et al., [2019). These experiments provide explanations for the limits of vanilla regression models.
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Figure 19: Visual ambiguities for ground truth in regression. (a) depicts a sub-optimal regression
model where the predictions are biased towards the mid-point, and (b) shows a trend that images with more
similar ResNet-18 features could have disparate timestamps. Few examples of such cases are provided in (c),

(d).

Let us define the problem setting of clock timestamp regression as follows. Given an image z, the objective
is to predict the timestamp y in the range [0, 24) hours of the day. In a regression framework, the model fy
maps an input image z to a continuous scalar output § = fp(x) € [0,24).

Consider a dataset D consisting of images taken at various times throughout the day. Specifically, consider
pairs of images {(z;,¥:),(x;,y;)} taken during “symmetric times” such as sunrise and sunset, where the
general light conditions are similar but the ground truth timestamps are different (see Fig. and [L9d).
With very similar inputs and the same model fy(-), it holds that:

fo(wi) = fo(x)
Then the Mean Squared Error (MSE) loss for the regression model over the dataset is defined as:
, P
Lyse(0) = ] > (wr — folan))?
k=0

To find the optimal model parameters 6*, we minimise this loss function. Ideally, the goal of the optimiser
is:
VoL(0) =0
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Figure 20: Experiments on regression model. (a) shows prediction distribution of regression model
on TOC test set, (b) represents the confusion matrix by hour, (c) and (d) visualise t-SNE of regressor
representations annotated with ground truth and predicted timestamps, respectively.

For pairs of similar images with different y, this optimisation leads to mid-point predictions:

s YT Yy
yiNyjfvT

This effect leads to local minima in the clock timestamp embedding space in Fig. [[9a] particularly when y;
and y; are at opposite ends of the 24-hour cycle, for example, 00:00 and 23:59. The regression model struggles
with the ambiguous nature of time, resulting in systematically biased predictions towards the midpoint of
symmetric clock times. Such bias results in incorrect gradient updates that cannot lead to an accurate
estimation model for inputs z;, ;.

The aforementioned phenomenon of similar images with disparate ground truth timestamps prevails in the
dataset. As evidence, we visualise the similarity of features using the ResNet-18 backbone throughout hours
for the entire dataset in Fig. Therefore, this overall trend of feature similarity extends the reasoning to
the entire dataset, where the predictions § are systematically biased towards the average of the whole clock
time distribution. The predictions are likely to follow the normal distribution with the same mean value to
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Figure 21: Cyclic regression model results, (a) shows prediction distribution of cyclic regression model,
and (b) visualise how the cyclic encoding of predictions differ from the ground truth.

the ground truth distribution and smaller variance ¢ (Murphy, [2012).
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We conduct corresponding experiments to provide evidence for the claims above. Particularly, we train a
regression model using ResNet-101 backbone. The prediction histogram and confusion matrix provided in
Fig. and Fig. support our claims. The predictions are heavily concentrated around the average value
of the ground truth distribution, while the actual timestamps in the dataset are more evenly distributed
throughout the day. This discrepancy highlights the failure of the regression model to capture the cyclic
nature of time, resulting in biased predictions of the average of the whole range. Fig. shows that the
regression model fails to discern similar images with different timestamps, where the features form disjoint
trails on which images features from totally different time periods are nearly overlapped with each other.
Fig. 20d] further shows how the regression model predicts average timestamps for these images with similar
features. These phenomena show that although the regression model managed to learn a certain extent of
continuity of time of day from static views, it failed to tackle the ambiguity of clock timestamp given visual
inputs with similar illuminations. Therefore, while such a regression model reaches convergence at local
minima for the MSE loss, it is not ideal resorts we are looking for.

Cyclic vector encoding: As we identified in the main paper, the regression range for clock timestamp
is a disconnected set. Here we present an attempt to solve the discontinuity of the clock timestamp scalar
range: we adopted a previous method bridging the gap by trigonometric encoding and decoding to cyclic
data (Adams & Vamplew| 1998)). Specifically, it encodes the scalar data y into points on the unit circle
(cos (Y/Ymaz) » S0 (Y/Ymaz)), and decodes the model outputs by reversing this process. Such representation
space is proved to be continuous (Zhou et al., [2019)). It bridged the gap between the end and the start of
the regression value range, which was supposed to be close. We tried this remedy and found that it slightly
mitigates the issue of over-concentration on the average values, as shown in Fig. 2Ta

However, although this modification managed to rescue part of night images that are wrongly predicted
toward the mean value of the whole target value range, it still exhibits poor prediction fairness, with most of
the predictions falling in certain short time spans. The possible cause for such phenomena could still be the
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Figure 22: Confusion matrices under different number of classes provide more in-depth comparison
of clock timestamp estimation performance.
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Figure 23: Comparative error analysis of different class partitioning schemes, it shows trends of

mean absolute error (MAE) and observational error.

local minima that persist in the MSE loss landscape due to the prevailing timestamp ambiguities we discussed.
Another observation in Fig. is that there exists an obvious gap between the distribution of trigonometric
encoding of ground truth timestamps and the predictions. This suggests that the cyclical correlation between
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visual appearances and clock time may not perfectly follow the simple unit-circle assumption in |[Adams &
Vamplew| (1998)). In contrast, our proposed learnable embeddings for the target clock time labels in TICL
can capture more complex correlations between different periods of clock times and visual cues without
imposing such assumptions.

Therefore, the regression approaches struggle to properly address the ambiguity between time and visual
features. Regression-based solutions are thus not as favourable for the pretext task of image clock time
estimation.

C.2 Ablation study on class partitioning

In the main paper, we adhere to the 24-class classification scheme used in previous methods. As loss of
precision may introduce observation errors, we explore the effects of different granularities of class partitioning
on pretext tasks.

To measure the precision loss, we compute observational errors, which are the average difference between
actual timestamps and the converted class timestamps. Fig. shows the mean absolute error (MAE) and
the observational errors for different partitions of classes. As a part of MAE, observational errors are inherent
such that they persist even with perfect class predictions (Conforti et al.,|2020)). Specifically, a small number
of classes induces larger MAE, which is reasonable since converting actual timestamps to coarser time-span
classes introduces larger additional observational errors.

However, this does not imply that extremely fine partitions should always be used to reduce observational
error. We find that finer class partitioning, such as 144 classes, does not further improve the performance.
In particular, Fig. 22| presents the performance of the TICL model on the TOC test set under different class
partitioning. The overall distribution of predictions exhibits similar patterns despite different granularities.
Fig. [24] highlights both class accuracy and hour accuracy for the model. The visualisation shows that while
class accuracy drops significantly as the number of classes increases, the overall hour accuracy remains stable
once the number of classes exceeds 24. This degradation in class accuracy with finer partitioning can be
attributed to the smaller sample volumes within each class. The smaller the sample volume for each class,
the more under-represented it tends to be (Sangalli et al |2021)). This suggests a potential drawback of finer
class partitioning for downstream tasks involving time class embeddings.
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Figure 25: Zero-shot downstream pipelines. (a) corresponds with experiment pipelines for retrieval in
the main paper, which is a zero-shot vector search engine for same-hour images based on FAISS
, and (b) shows one of the pipeline for video scene classification in addition to linear probing,
in which we test the capabilities of TICL by plugging in the corresponding models to the feature extractor
whose outputs are convoluted and concatenated to the backbone features (Tong et al., 2022).

Since the difference between clock time estimation performance of the 24-class partition and the optimal result
achieved with different class partitioning is within an acceptable range, we choose the 24-class partition as
the default in our main work. This choice allows for a fair comparison against previous methods, to ensure
that our improvements are due to the proposed techniques rather than variations in class partitioning.
Additionally, the 24-class partitioning, which reached Class Accuracy =~ Hour Accuracy, also ensures that
each class can be assigned enough samples so that a robust time class embedding could be learned.

To sum up, the ablation study on number of classes indicates that while the proposed TICL method can
easily be extended to finer class partitioning schemes and maintains good hour accuracy and MAE, moderate
granularity in class partitioning yields the best results for time estimation tasks. This supports our choice
of a 24-class partitioning scheme for consistent benchmarking to previous baselines and verification of our
conjecture on visual time awareness.

C.3 Exploration on other contrastive learning methods

Given the ambiguity of visual appearances with respect to time of day, in addition to the vanilla InfoNCE con-
trastive learning we applied, another relaxed supervised contrastive learning counterpart is also tested to learn
the TICL model following Segsort (Hwang et al., [2019). Concretely, we replace the InfoNCE objective with
an hour-aware, cluster-based pulling/pushing scheme: for each hour, embeddings are repeatedly clustered
with k-means; samples that fall into the same hour-specific subcluster within a minibatch (memory bank)
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are pulled together, while others are pushed apart via a negative log-likelihood objective (as in Hwang et al.
(2019)). At inference, we embed a query image once and predict clock time via cosine k-nearest-neighbour
over the frozen gallery of training embeddings. In the experiment below, We follow defaults in Hwang et al.
(2019): the hour-wise subcluster count is set to ng,, = 25, the inner k-means refinement uses max_iter= 10
iterations per refresh, and the assignment sharpness is controlled by concentration_constant= 10. All
remaining training and optimization settings are identical to those in TICL.

Table 8: TOC and AMOS test results under different contrastive learning methods.

| TOC AMOS
Contrastive Loss ‘ Top-1 acc T Top-3 acct Top-5acct Time MAE (min.) | ‘ Top-1 acc  Top-3 acc  Top-5 acc  Time MAE (min.)
Segsort-style (Hwang et al.||2019) 18.97 39.32 52.27 171.55 12.29 28.37 39.57 209.00
InfoNCE (Classification) 20.60 49.01 67.82 171.65 13.55 38.49 57.28 187.87
InfoNCE (kNN) 25.67 49.32 66.74 156.24 11.14 31.01 48.84 220.94

As shown in Table [8] across both datasets, the Segsort-style variant did not consistently improve over
InfoNCE. On both TOC AMOS, InfoNCE methods achieves the best performance. We hypothesize two
contributing factors: (i) prototype assignments in Segsort are well-suited to separable semantic classes,
whereas time-of-day differences can be subtler than object-level semantics; (ii) hour-wise k-means over CLIP
features tends to form subclusters by object identity early in training, which may misalign with temporal
structure and provide weaker supervisory signals. Developing supervised contrastive objectives that more
directly encode temporal neighbourhoods remains a promising direction; we therefore retain InfoNCE as the
default in TICL.

D Qualitative Time-based Image Retrieval Results

Fig. [26] provides a closer look at the retrieved images using the pipeline in Fig. [25a]as part of a more detailed
qualitative evaluation of retrieval performance. Some of the retrieved images have totally different content
from the query images, but share similar light conditions. This suggests that our model disentangles the time-
awareness from rich semantics of CLIP representations, which have more semantic focus to the subjects. In
addition, the negative predictions still share similar illumination to the query images, suggesting the essence
and ambiguity of clock time to visual appearances.

E Additional Results on Video Scene Classification

E.1 Experiment setup

The performance of different models on the video scene classification task was evaluated across three datasets,
each containing videos with distinct styles. Apart from simple linear probing, we also tested the model’s
performance fused with/against a baseline method VideoMAE (Tong et al) 2022). The detailed fusion
architecture is visualized in Fig.

o Hollywood2-Scene (Marszalek et al.,[2009) is a movie clip-based dataset with 570 training videos
and 582 test videos across 10 scene classes, totalling 20.1 hours. Each video represents a specific
dramatic scene with multiple shots, meaning drastic view/subject changes within.

o YUP++ (Derpanis et al.,[2012) comprises 1200 videos across 20 scenes captured by either stationary
or moving cameras. Given the significant differences between the 20 scenes and the fact that the
average clip duration is only 5 seconds, the classification task on it is considered less challenging
(Wang & Koniusz, 2023)).

o 360+x dataset (Chen et all|2024)) is a more recent dataset introduced for holistic dynamic scene
understanding with multiple views captured by stationary cameras. It consists of 15 indoor scenes
and 13 outdoor scenes, with 1380 clips totalling 67.78 hours. Its multi-view and stationary camera
traits enable us to evaluate how our learned time-awareness perform on different types of views
individually.
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Figure 26: Randomly sampled retrieval results. FEach image is annotated with its corresponding
timestamp, green captioned images are positive retrieval while red are negative predictions with Error >

00:30, retrieved images closer to the left have larger similarity to the query images.

Hyper-parameters: For fair comparison, a fixed set of hyper-parameters was used in different experiment
trials. Apart from the number of epochs and the learning rate, we followed all the parameter settings in
[Tong et al|(2022). And we only varied numbers epochs and learning rate for different datasets in. We report
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Figure 27: t-SNE visualisation comparison. It visualises time-aware video features in YUP++ dataset
(Derpanis et all [2012). Each embedding is annotated by their corresponding labels. It exhibits a similar
trend to the t-SNE results in the main paper.

the best result achieved for each method tested. Specifically, a training/validation split of 5:1 was applied
to each original training dataset to fairly select the best checkpoints for each method.

E.2 Time embedding coherence on video frames

As discussed in the main paper, the observed improvements when integrating time-aware features with video
classification backbone models could be attributed to the stronger intra-video consistency of these time-aware
features.

To provide quantitative evidence of this consistency, we examine the characteristics of time-aware features
across frames within each video. The backbone VideoMAE (ViT-B) model takes the input by sampling 16
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Table 9: Hyper-parameters used for video scene classification on different datasets.

Hyper-parameter | Hollywood2-Scene YUP-++ 360x (Third-person) 360x (Panoramic)

Learning Rate 5x107° 5x 107° 7x107° 7 x107°

# Iterations 20 10 20 20
Default Settings from (Tong et al.|[2022} 'Wolf et al.| |2020) (Common Across All Datasets)
Optimizer Type adamw__torch(f; = 0.9, B2 = 0.999, ¢ = 1078)

LR Scheduler linear

Batch Size 2

Table 10: Mean intra-video feature variance. It is computed by the mean feature variance of 16
input frames for each video using different models, showing a quantitative evidence of intra-video feature
consistency of time-aware models.

Models ‘ Hollywood2-Scene YUP++4  360+x (Third-person) 360-+x (Panoramic)
CLIP (ViT-L/14) 7.49 x 1072 2.49 x 1072 3.31 x 1072 2.83 x 1072
Salem et al.|(2022) 3.52 x 107 1.23 x 1076 7.55 x 1077 7.86 x 1077
Zhai et al.[(2019) 2.50 x 1074 1.00 x 1074 8.50 x 107° 7.59 x 1075
TICL (Ours) 3.33 x 1074 1.24 x 1074 1.44 x 1074 1.33 x 1074

frames evenly from each video. For the 16 input frames, we observed that the time-aware features of these 16
frames exhibit significantly smaller average variance compared to their CLIP features, as shown in Table

This finding supports our intuition that a natural video that depicts a dynamic scene is typically captured over
a short period of the day, leading to relatively small changes in the time-aware features of consecutive frames.
In contrast, the CLIP features show more drastic changes between frames, making it harder to summarise
consistent frame-wise features into coherent video-level features. The t-SNE visualisation comparisons to
these features in main paper and Fig. provide additional results to prove that TICL video features are
more separable than CLIP video features.

Thus, time-aware feature extractors provide more consistency across different frames, making it easier to
capture time-related visual priors in videos, which correlate with scene categories. These time-aware video
priors eventually improved the video scene recognition performance, as illustrated in the main text.

However, it is observed that the embeddings in [Salem et al.| (2022)) and |Zhai et al.| (2019) have much
smaller intra-video feature variances, but they perform worse than the TICL features we proposed. Given
that the previous methods produce 128-dimensional time-aware embeddings, which dimensionality is much
lower than TICL embeddings, it is expected that they have much smaller variances. Moreover, although
previous methods perform moderately better than the baseline methods in the majority of test datasets,
their performance degradation in panoramic video datasets suggests a limitation in terms of generalisation
ability between different styles of videos, especially for those captured in rare camera views in the 360+4x
dataset (Chen et al 2024)). In contrast, TICL utilising a strong foundation model generalised better across
different kinds of videos.

In summary, time-aware embeddings could provide a more coherent representation among multiple sequential
frames in a video, which are relatively invariant to sudden view/object changes altering the semantic meaning
of the frame. Among the time-aware models, TICL gives more robust time-aware priors that generally bring
more improvements than all the other time-aware models on different styles of video.
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Figure 28: Time-aware image editing pipeline. This is the pipeline for latent optimisation for image
editing, where w, Wsource represents latent vectors for ongoing edit outcomes and original images, tiarget is
the one-hot encoding of the desired time of day for the output image, G(-) is the generator, dist(:,-) computes
the cosine distance between two vectors, Algrp is the difference between CLIP embeddings of the original
image, ATcrip stands for the difference between the source and target caption embeddings. fy,(+), for (%)
corresponds to components of the TICL model.

F Additional Results on Time-aware Image Editing

F.1 Latent optimisation

Experiment setup & Hyper-parameters: Fig.[28| gives an overview of the experiment pipeline we used
for the time-aware image editing task. For the main paper’s results, each columns results were obtained via
the same hyper-parameter setup. Specifically, we set the target timestamps t4rge¢ as visualized in the figure
and fixed the A\; = Ay = 1, using Adam optimiser with 1r_rampup= 0.05 for all experiments; we varied other
hyper-parameters as visualized in the following Table [11| w.r.t. different target time periods of the day and
the subject contents of images.

Table 11: Hyper-parameters for LHQ 1 2024)), LSUN-Church, and LSUN-Bedroom q 2015))

editing processes.

LHQ ‘ LSUN-Church ‘ LSUN-Bedroom

Hyper-parameter ‘
‘Noon Evening Night ‘ Noon Evening Night ‘ Noon Evening Night

AL2 0.001 0.001 0.0005 | 0.001 0.001 0.0005 | 0.001 0.001 0.0005
# iterations 50 50 100 50 50 100 50 50 100
Ir 0.07 0.07 0.1 0.5 0.5 0.5 0.05 0.05 0.05
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Figure 29: Day-to-Night Edits. An example of transitioning images from daytime to nighttime using
latent optimization. This figure shows the progression of edits from various starting points to target times
of day 22:00 (The rightmost figures are outputs for each edits.).

e Steps

Figure 30: Day-to-Evening Edits. An example of transitioning images from daytime to evening using
latent optimization. This figure shows the progression of edits from various starting points to target times
of day 19:00 (The rightmost figures are outputs for each edits.).
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Figure 31: Night/Sunset-to-Noon Edits. An example of transitioning images from nighttime/sunset to
noon using latent optimization. This figure shows the progression of edits from various starting points to
target times of day 12:00 (The rightmost figures are outputs for each edits.).

Table 12: FID Scores. They quantitatively show how realistic the image editing results are for different
methods on two image edit directions.

Methods ‘ Day-to-Night | Day-to-Sunset |
Latent optimisation (Lcorrp) (]Patashnik et al.l |2021b 53.55 50.60
Latent optimisation (Lcrip,,, ) 50.07 50.59
Latent optimisation (Lcrip,,, + LricL) 48.97 50.41
StyleGAN NADA (Gal et al.] 2021 78.80 66.58
CLIPStyler QKwon & Ye| 2022) 71.12 73.59

More qualitative results: Additional results of latent optimisation based editing are presented. We
varied the initial latent vectors and target hours to show the broader capabilities of our approach. Fig. [29]
Fig. [30] and Fig. B1] provide more examples of time-aware image editing with intermediate results during
optimisation steps. The results suggest that our method could be applied to broad time-aware editing
directions, which can start from images from various times of day.

Quantitative evaluations (User study): In addition to the qualitative evaluation results, we also
include quantitative metrics to evaluate the synthesis results. Table gives FID scores (Heusel et al.|
to different edit directions calculated by the official PyTorch implementation of [Seitzer| (2020) on 5000
samples for each methods. Our method outperforms existing methods with a smaller FID score suggesting
more realism in the synthesised images. Additionally, we conducted a user study (by using the mean-opinion-
score scheme) on the output images. The preference scores for each method are reported in Table further
demonstrating the advantages brought by incorporating time-aware embeddings.
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Table 13: User study evaluating image editing qualities, in which we report preference scores and
their standard deviation (in brackets). Preference scores range from 1-5, and higher scores mean better
preferences.

Methods ‘ Day-to-Night T Day-to-Sunset 1
Latent optimisation (Lcrrp) (]Patashnik et al.| |2021p 2.80 (0.60) 2.84 (0.53)
Latent optimisation (Lcrip,;,) 2.63 (0.85) 3.28 (0.67)
Latent optimisation (LcLip,,;, + Lrrcr) (Ours) 3.34 (0.64) 4.01 (0.58)
StyleGAN NADA (Gal et al.| 2021) 2.41 (0.89) 2.36 (1.17)
CLIPStyler (Kwon & Ye|[2022) 2.08 (0.62) 1.81 (0.93)

Parmar et al. (2024)
Source Image Parmar et al. (2024) + TICL refine
(Ours)

Figure 32: Visualisation of Day-to-night edits (Part 1). Transitioning images from day to night using
the diffusion model.

F.2 Editing with diffusion models

Given that the previous baseline latent optimisation image editing method has limited capabilities, we extend
our experiment to a more recent editing method Parmar et al.| (2024)) using diffusion models (Ho et al., 2020
[Rombach et al., [2021)).

Experiment setup & Hyper-parameters: Specifically, we optimise the edit target text embedding
E}, ., to minimise the cosine distance between the time-aware embeddings of the output images and the

target clock timestamp embeddings, which is written as:

B}y = arg glin dist (f91 (G (z, Etewt)) s for (ttarget))

text

where E}._, is the target text embeddings for the text-based image editing model G(-,-) takes input image =
and guidance text embedding Eieqt. fo,, for corresponds to TICL model components. dist(-,-) measures the
cosine distance of two embeddings. It essentially optimises the guidance text embeddings Fi.,;: to achieve

better editing results that visually align with the target time.
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Parmar et al. (2024)
Source Image Parmar et al. (2024) + TICL refine
(Ours)

Figure 33: Visualisation of Day-to-night edits (Part 2). Continuing results of time-aware editing using
the diffusion model.

Parmar et al. (2024)
Source Images Parmar et al. (2024) + TICL refine
(Ours)

Figure 34: Visualisation of Day-to-night edits (Part 3). Further results demonstrating day-to-night
transitions using the diffusion model.

As for hyper-parameters, we applied default experiment settings for the baseline editing process as provided
in [Parmar et al| (2024) with text guidance set to “a photo of {target time period }”. The subsequent
optimisation process to Fye,r uses Adam optimiser with learning rate = 0.02 and 10 iterations without any
further configuration.

Qualitative results: As shown in Fig. Fig. [33] and Fig. although additional optimisation steps for
each edit are required, it refines the existing method with more reasonable synthesis results compared with
using purely text editing guidance, further proving the general applicability of the TICL embeddings to the
whole image-editing subfield.
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G Additional Text Queries on Clock Time Class Embeddings

In video scene classification tasks, we explored the semantic correlations between clock timestamps and
scenes, and here we provide several examples to illustrate these connections. The Time Encoder and Image-
Time Adaptor modules are designed to align visual CLIP representations and clock time embeddings. As
a result, the learned time embeddings naturally align with CLIP text embeddings. This alignment allows
us to factorise text concepts using TICL time embeddings and vice versa. Specifically, for each input text
embedding, T 7 p, we compute their similarity with time-class embeddings, T;, using the Softmax function:

exp (Terrp - Ti)
S b exp (Torip - T))

Softmax =

where T;, T are the TICL class embeddings. This formulation offers a probabilistic measure of the similarity
between text embeddings and time classes. The resulting 24-hour class probabilities are shown in Fig.

The results clearly demonstrate that texts describing specific times of day are directly associated with
corresponding time periods. In addition, we also observe indirect associations. For example, the word
"breakfast" is by definition related to morning hours, while "thief" is often associated with nighttime
activities. These uneven probability distributions across the 24-hour timeline reflect the natural relations
between certain events, scenes, or concepts and their corresponding time periods.

However, some irregular trends in the probability distributions indicate that our time-aware embeddings,
learned from a limited image dataset, still have room for further improvements, particularly for night-time
related concepts, which corresponds with fewer night-time image samples in the dataset. This highlights the
need for further improvement of the dataset/model to achieve more robust time-awareness across all clock
time periods.
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Figure 35: Probability measure of the similarity between time classes and text queries. The
x-axis is hour classes and y-axis is probabilities calculated by Softmax.
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