
Towards Symmetric Low-Rank Adapters

First Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Second Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Third Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Abstract

In this paper, we introduce Symmetric Low-Rank Adapters,
an optimized variant of LoRA with even fewer weights. This
method utilizes Low-Rank Symmetric Weight Matrices to
learn downstream tasks more efficiently. Traditional LoRA
accumulates fine-tuning weights with the original pre-trained
weights via a Singular Value Decomposition (SVD) like ap-
proach, i.e., model weights are fine-tuned via updates of the
form BA (where B ∈ Rn×r , A ∈ Rr×n, and r is the rank
of the merged weight matrix). In contrast, our approach,
named SymLoRA, represents fine-tuning weights as a Spec-
tral Decomposition, i.e., Qdiag(Λ)QT , where Q ∈ Rn×r

and Λ ∈ Rr . SymLoRA requires approximately half of the
finetuning weights. Here, we show that this approach has
negligible losses in downstream efficacy.

Introduction
Deploying large Natural Language Processing (NLP) services
presents significant challenges. End-users of such applica-
tions expect fast response times and seamless, conversation-
like interactions. Still, the computational demands of evaluat-
ing even a pre-trained model can slow down the system, po-
tentially diminishing the user experience. When considering
the environmental impact, running these models continuously
for such applications can be costly and environmentally tax-
ing. Finally, large models naturally have higher deployment
costs.

The cause for such a need are the ever-increasing model
sizes in Deep Learning (DL). In fact, there is a belief that
larger models may be more suitable for more complex tasks,
with NLP tasks being no exception. However, as has been
shown by the Pruning Literature (Blalock et al., 2020; Hoe-
fler et al., 2021; Wang et al., 2022; Wimmer, Mehnert, and
Condurache, 2023), Deep Neural Networks (NNs) are over-
parametrized mainly, with only a fraction of the model
weights being needed for accurate predictions. Indeed, this
is one of the reasons why efficient pruning is sometimes re-
ferred to as finding Lottery Tickets, e.g., finding the model’s
weight that matter and only those weights (Blalock et al.,
2020).

Correlated to the pruning literature, Adapters (Houlsby et
al., 2019; Hu et al., 2022; Rebuffi, Bilen, and Vedaldi, 2017;

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yin et al., 2023) are a successful training technique used to
fine-tune Large Language Models (LLMs) focusing only on
a small fraction of weights. Low-rank adapters (or LoRA)
have gained significant traction for language tasks. In a few
words, LoRA focuses on saving Low-Rank Singular Value
Decomposed (SVDs) updates for model weights. The smaller
the SVD rank, the fewer the weights stored.

Traditional fine-tuning paradigms often involve training
part of the parameters or external modules. However, since
these methods increase inference latency or reduce the
model’s usable sequence length, LoRA became a valuable
solution for these two problems while presenting several
practical vantages. One of these is that different fine-tuned
models share the pre-trained weights, making it possible to
build small adapter modules, one for each task, containing
only the fine-tuning weights and switch easily between them.

In this research paper, we aim at understading if the
structure of LoRA updates may be captured by a low-rank
Symmetric matrix. In particular, our study focuses on the
following hypothesis: May SVD be changed to a Eigen-
Decomposition in LoRA? A natural consequence of this
choice, is even more reduction in adapter sizers.

To investigate our hypothesis, we present SymLoRA, a
symmetric version of LoRA focused on Eigendecomposi-
tions that reduces the number of fine-tuning weights by half.
Reduced model sizes can significantly save storage and oper-
ational costs in scenarios where models must be deployed at
scale (e.g., large-scale NLP services).

The proposed method retains all the advantages of LoRA,
as it is designed based on the LoRA paradigm. The main
contribution of this work is the introduction of symmetric
layers. NNs with symmetric layers have been proven to be
universal approximators. They are particularly appealing
due to their reduced parameter count, which is half that of
a conventional matrix. By applying the appropriate decom-
position, we can reparametrize the layer to be symmetric
and low-rank, achieving even smaller adapters. We evaluate
SymLoRA on the Glue benchmark, finding that it is statisti-
cally tied to LoRA. Thus, our approach results in little to no
performance loss while effectively reducing the number of
trainable parameters.

In the next section, we discuss Related Work, followed by
our development of SymLoRA, and our Empirical Results.
The last section concludes our paper.

Related Work
This section presents our discussion of related work. It is
divided into Low-Rank Adapters, Neural Network Pruning,
and Symmetric Neural Networks.

Low-Rank Adapters (LoRA)
Low-Rank Adapters (LoRA) have gained significant atten-
tion due to their efficient fine-tuning methods (Houlsby et
al., 2019), which require only a small number of additional
parameters. This approach allows the adapter to be merged
directly into the original model layer, enabling adaptation to
new downstream tasks without introducing any new layers to
the NN. Furthermore, the LoRA method provides the flexi-
bility to split the original layer and the adapter, facilitating
seamless transitions between different tasks.

The key insight behind LoRA is that the weight updates
of a pre-trained model often exhibit an intrinsic low-rank
structure. Consequently, only a low-rank decomposition of
the update matrix for the original layer needs to be saved
and optimized. Section provides the mathematical details of
LoRA. Even though there are several extensions of LoRA, to
the best of our knowledge, none have looked into Symmetric
NNs as we do.

Neural Network Pruning
Neural network pruning is an active research field with a vast
amount of literature. We can point out four recent surveys on
the subject (Blalock et al., 2020; Hoefler et al., 2021; Wang
et al., 2022; Wimmer, Mehnert, and Condurache, 2023). We
refer the reader to these surveys for in-depth reviews.

While SymLoRA is not a running method, it effectively
reduces the number of adapter weights that need storage. In
this sense, SymLoRA shares the same overarching question
of running, which is to find the most miniature model for a
given task. Our discussion here will be on the importance of
pruning and the main ideas related to SymLoRA.

Symmetric Networks
The third related idea is that of exploring symmetric NNs (Hu,
Zagoruyko, and Komodakis, 2019). Here, the NN is enforced
to have symmetric layers. By definition, if a network is
symmetric, it only needs to store upper or lower triangular
matrices, thus saving up computing memory. Hu et al. (Hu,
Zagoruyko, and Komodakis, 2019) showed that symmetric
NNs are universal approximators and thus present a promis-
ing starting point for pruning. Similarly, some authors pro-
pose favoring Spectral Machine Learning (Giambagli et al.,
2021; Buffoni et al., 2022).

SymLoRA
In this section, we introduce the proposed method, provide
a background overview, and highlight the main differences
between LoRA and SymLoRA. Given the well-established
foundation of the LoRA method, we begin by elaborating on
LoRA and follow on to build SymLoRA.

Background
The LoRA method is applied to pre-trained weights when
training a model on a downstream task. In this approach, the
pre-trained weights are frozen, and only the LoRA weights
are fine-tuned. For a trained and frozen weight matrix W0 ∈
Rn×m, LoRA optimizes a low-rank matrix to capture the
difference between W0 and the fine-tuned matrix for the
downstream task. Consequently, during gradient descent,
the matrix W0 acts as a constant. The low-rank matrix ∆W
is represented by the product BA, where B ∈ Rn×r, A ∈
Rr×m, and r is the rank of the low-rank matrix. The forward
pass through this layer is then given by:

h(l) = W
(l)
0 x+∆W (l)x = W

(l)
0 x+B(l)A(l)x

In our notation, (l) indicates a layer. For simplicity, we
drop this index when not required. Note that both matri-
ces, W0 and ∆W = BA, are multiplied by x during the
forward pass, but only ∆W = BA is updated during back-
propagation. The matrix A is typically initialized with a
random Gaussian distribution, and B is initialized with zeros.
This initialization ensures that the model’s forward pass is
identical to that of the pre-trained model at the beginning
of training. Additionally, ∆W is scaled by α

r , where α is a
tunable hyperparameter and r is a low rank (user-defined).

It is important to note that since LoRA requires three
matrix-vector products in each layer, the latency could be
prohibitive. However, in practice, LoRA does not need to
be applied to all layers to be effective. Even in the layers
where it is applied, the rank r is often much lower than n and
m, resulting in additional latency comparable to any other
fine-tuning prefix-based method.

Our Method
The method proposed here is a variation of the LoRA method
that aims to reduce the number of trainable weights further
while maintaining the performance and practical benefits of
LoRA. Additionally, it expands the exploration of symmetric
weight matrices in neural networks. This work’s main con-
tribution is to explore the performance of symmetric weight
matrices as Low-Rank Adapters.

When LoRA constrains ∆W to be a low-rank matrix, it
represents it via its truncated SVD (B = UΣ and A =
V T). By doing so, the shape of the matrices constrains the
maximum rank of ∆W . In our approach, we use a different
decomposition. Specifically, we represent the matrix ∆W
as Qdiag(Λ)QT , where Q ∈ Rn×r and Λ ∈ Rr. This
not only constrains the rank of the matrix to be at most r
but also ensures that it is symmetric. One might argue that
∆W must be square to be represented by this decomposition.
Fortunately, in transformers, most weight matrices are square.
LoRA is typically applied only to the square matrices in
the attention layers, as demonstrated in the empirical results
presented in the LoRA paper.

The forward pass through a Symmetric LoRA layer is
defined by:

h(l) = (λ(l)W
(l)
0)x+ (Q(l) diag(Λ(l))Q(l)T)x

Again, (l) is the network layer (sometimes dropped from our
discussion for simplicity). More importantly, λ(l) is also a

Table 1: The performance of Lora and SymLora on GLUE benchmark.

Datasets SymLoRA (Val.) SymLoRA (Test) LoRA (Val.)

CoLA (Matthew’s correlation) 0.63±2.9 0.60±−.− 0.63±−.−
QNLI (Accuracy) 0.92±0.7 0.92±0.7 0.93±0.3

SST-2 (Accuracy) 0.94±1.5 0.95±1.0 0.95±0.2

MNLI (Accuracy) 0.86±0.5 0.86±0.5 0.87±0.3

QQP (Accuracy) 0.90±0.3 0.88±0.1 0.90±0.1

RTE (Accuracy) 0.85±4.1 0.78±1.5 0.86±0.7

MRPC (Accuracy) 0.88±1.5 0.88±1.5 0.89±0.7

STS-B (Pearson correlation) 0.90±0.5 0.88±−.− 0.91±−.−

Figure 1: Comparing SymLoRA (top) vs LoRA (bottom). For SymLoRA λ(l) || W (l)
0 ||f= λ(l)

∑
i,j | W

(l)
0 (i, j) |. On LoRA

we do not have the λ(l) argument. All plots are on the same color scale.

trainable parameter we add to the method. This parameter
serves two purposes. Firstly, it guides whether or not (when
the parameter is zero) the downstream tasks need the original
weights. Empirically, we find that λ(l) is commonly set
to zero for the last layers of the NN. Secondly, it enables
multiplicative updates (e.g., doubling or adding 10%) of
the original weights. This is not achievable by adding a
symmetric matrix to a non-symmetric matrix.

While, LoRA has 2 · n · r parameters for square matrices,
whereas Symmetric LoRA has (n + 1) · r parameters. For
SymLoRA we also scale the new weights by α

r , using the
same strategy for choosing α as in LoRA. We will discuss
our results next.

Empirical Results
This section presents our empirical results comparing
LoRA with SymLora on downstream tasks from the GLUE
benchmark (Wang et al., 2019). All experiments used
RoBERTa (Liu et al., 2019) as the base model. Test set results
come from submitting predictions to the GLUE website.

To ensure a fair comparison, we made every effort to use
the same hyperparameters and configurations as the LoRA
experiments on RoBERTa. We applied SymLora with a rank
of 8 to the value and query matrices of the attention layers,
and we set α equal to the rank, just as in LoRA. In addition,
we conducted a grid search to determine the best learning
rate and batch size for our models. Our results are shown in

Table 1.
The table shows the average score for each task over vali-

dation training sets. The score used in each task is also indi-
cated. Moreover, a 95% CI. This is the standard ±1.96 s√

n

confidence interval, where s is the standard deviation. This
standard deviation, s, is not divulged by the GLUE submis-
sion website for test sets. Nevertheless, if the score is a
fraction (i.e., accuracy), we estimate it from the formula for
the Bernoulli Random Variable, i.e., s = p(1−p), where p is
the score. We cannot compute the CI for the test set for scores
that are not fractions. Thus, this is omitted. Nevertheless, we
do show them for the validation set.

In this table, the values for LoRA were taken from the
original LoRA article. To understand this choice, we point
out that the main difference between the training of LoRA
and SymLoRA was the maximum sequence length, which
was 512 in LoRA and 128 in our experiments. This change
was performed due to GPU memory limitations. To ensure
that this change did not impact results, we retrained LoRA
on three tasks, namely COLA, QNLI, and SST-2, reaching
scores close to the ones reported on the paper, i.e., 63.05%
for COLA, 92.71% for QNLI, and 94.95% for SST-2.

Overall, the table presents scores that are close to or tied
(when we consider overlapping CIs) with LoRA. The top loss
is for RTE. The decrease in accuracy for this task was around
0.8 in absolute terms and 11% in relative terms (from 0.86%
to 0.78). All other losses are below this one, with most being

less than 5% in relative terms. This points to a slight loss in
efficacy when comparing LoRA and SymLoRA.

To better compare SymLoRA and LoRA in Figure 1, we
show the difference in Frobenius norms of the original and
adapter matrices per task (x-axis) and network layer (y-axis).
The top row focuses on SymLoRA, whereas the bottom fo-
cuses on LoRA. For the LoRA row, we only show the Frobe-
nius norms of the three tasks we trained locally (COLA,
QNLI, and SST-2).

From the top row of the figure, for SymLoRA, we can
initially observe a significant difference between the original
and adapter norms for most tasks (first column). Notably,
this difference is negative for all tasks except COLA. When
we examine the norms for the original (middle column) and
adapter (last column) weights individually, it is evident that
SymLoRA primarily focuses updates on the previous weights
(specifically, the last two layers of the last column). Addi-
tionally, it is interesting to note that the free parameter λ
tends to zero out the last layers of the network (seen in the
concentration of zeroes in the last layers of the top middle
plot).

For LoRA (second row), we can also see this concentration
of updates on the last layers (check the previous layers of
the last plot on the second row). However, given that LoRA
does not have the λ parameter, the original weights are not
zeroed out as in SymLoRA. As future work, we aim to ex-
plore whether this parameter is interesting as an indicator of
original layers for deletion.

Conclusion
In this paper, we present Symmetric Low-Rank Adapters
(SymLoRA). SymLoRA represents a significant advance-
ment in parameter efficiency for fine-tuning, surpassing the
capabilities of traditional LoRA. This finding indicates that
even state-of-the-art fine-tuning methods may not fully opti-
mize parameter utilization.

Our exploration of layer-wise updates in LoRA and Sym-
LoRA further reveals that the most substantial updates occur
predominantly in the final layers. This observation suggests
that the new parameters might also be underutilized, warrant-
ing further investigations in future research.

Before concluding, we point out that the LoRA literature
is already vast (Dettmers et al., 2024; Valipour et al., 2022;
Hayou, Ghosh, and Yu, 2024; Yin et al., 2023; Hu et al.,
2022). Several authors have extended LoRA to incorpo-
rate quantization strategies (Dettmers et al., 2024), dynamic
ranks (Valipour et al., 2022), magnitude and direction infor-
mation (Liu et al., 2024), as well as Fourier features (Gao
et al., 2024). As future work, we aim at extending these
methods to also incorporate symmetric matrices, if possible.

References
Blalock, D.; Gonzalez Ortiz, J. J.; Frankle, J.; and Guttag,

J. 2020. What is the state of neural network pruning? In
Proc. MLSys.

Buffoni, L.; Civitelli, E.; Giambagli, L.; Chicchi, L.; and
Fanelli, D. 2022. Spectral pruning of fully connected
layers. Scientific Reports 12(1).

Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer,
L. 2024. Qlora: Efficient finetuning of quantized llms.
Advances in Neural Information Processing Systems 36.

Gao, Z.; Wang, Q.; Chen, A.; Liu, Z.; Wu, B.; Chen, L.; and
Li, J. 2024. Parameter-efficient fine-tuning with discrete
fourier transform. arXiv preprint arXiv:2405.03003.

Giambagli, L.; Buffoni, L.; Carletti, T.; Nocentini, W.; and
Fanelli, D. 2021. Machine learning in spectral domain.
Nature communications 12(1).

Hayou, S.; Ghosh, N.; and Yu, B. 2024. Lora+: Effi-
cient low rank adaptation of large models. arXiv preprint
arXiv:2402.12354.

Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; and Peste,
A. 2021. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks. The
Journal of Machine Learning Research 22(1).

Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-efficient transfer learning for
nlp. In Proc. ICLR.

Hu, E. J.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang,
L.; Chen, W.; et al. 2022. Lora: Low-rank adaptation of
large language models. In Prov. ICLR.

Hu, S. X.; Zagoruyko, S.; and Komodakis, N. 2019. Explor-
ing weight symmetry in deep neural networks. Computer
Vision and Image Understanding 187:102786.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.

Liu, S.-Y.; Wang, C.-Y.; Yin, H.; Molchanov, P.; Wang,
Y.-C. F.; Cheng, K.-T.; and Chen, M.-H. 2024. Dora:
Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Rebuffi, S.-A.; Bilen, H.; and Vedaldi, A. 2017. Learning
multiple visual domains with residual adapters. In Proc.
NeuRIPs.

Valipour, M.; Rezagholizadeh, M.; Kobyzev, I.; and Ghodsi,
A. 2022. Dylora: Parameter efficient tuning of pre-trained
models using dynamic search-free low-rank adaptation.
arXiv preprint arXiv:2210.07558.

Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2019. Glue: A multi-task benchmark and
analysis platform for natural language understanding. In
Proc. ICLR.

Wang, H.; Qin, C.; Bai, Y.; Zhang, Y.; and Fu, Y. 2022. Re-
cent advances on neural network pruning at initialization.
In Proc. IJCAI.

Wimmer, P.; Mehnert, J.; and Condurache, A. P. 2023. Di-
mensionality reduced training by pruning and freezing
parts of a deep neural network: a survey. Artificial Intelli-
gence Review.

Yin, D.; Yang, Y.; Wang, Z.; Yu, H.; Wei, K.; and Sun, X.
2023. 1% vs 100%: Parameter-efficient low rank adapter
for dense predictions. In Proc. CVPR.

