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ABSTRACT

With the rapid rise of generative AI and synthetic media, distinguishing AI-
generated images from real ones has become crucial in safeguarding against
misinformation and ensuring digital authenticity. Traditional watermarking tech-
niques have shown vulnerabilities to adversarial attacks, undermining their effec-
tiveness in the presence of attackers. We propose IConMark, a novel in-generation
robust semantic watermarking method that embeds interpretable concepts into AI-
generated images. Unlike traditional methods, which rely on adding noise or per-
turbations to AI-generated images, IConMark incorporates meaningful semantic
attributes, making it interpretable to humans and hence, resilient to adversarial
manipulation. This method is not only robust against various image augmenta-
tions but also human-readable, enabling manual verification of watermarks. We
demonstrate a detailed evaluation of IConMark’s effectiveness, demonstrating its
superiority in terms of detection accuracy and maintaining image quality. More-
over, IConMark can be combined with existing watermarking techniques to fur-
ther enhance and complement its robustness. We introduce IConMark+SS, a hy-
brid approach combining IConMark with StegaStamp, to further bolster robust-
ness against multiple types of image manipulations.

1 INTRODUCTION

With the rapid advancements in generative AI, distinguishing between AI-generated and real images
has become a critical challenge. The proliferation of deepfake technologies and synthetic media has
raised concerns about misinformation, copyright infringement, and digital authentication (Helmus,
2022). Traditional watermarking techniques, which add imperceptible noise or frequency domain
modifications to images, have been widely used to establish provenance and protect intellectual
property (Cox et al., 2007; Tancik et al., 2020; Bui et al., 2023; Wen et al., 2023; Sander et al., 2024;
Fernandez et al., 2023). However, recent research has demonstrated the vulnerability of existing
watermarking methods to adversarial attacks, including diffusion purification and model substitution
adversarial attacks, which can remove or spoof watermarks with minimal image alterations (Saberi
et al., 2023).

Watermarking methods can broadly be categorized into post-hoc and in-generation approaches.
Post-hoc watermarks modify an image after the generation, embedding signals through additive
noise or frequency-space perturbations (Tancik et al., 2020; Fernandez et al., 2023; Cox et al., 2007;
Bui et al., 2023). In contrast, in-generation watermarks such as TreeRing (Wen et al., 2023) embed
information during the image generation process, modifying the distribution of generated samples
rather than making explicit post-hoc changes. While in-generation watermarking methods tend to
be theoretically more robust, they are still susceptible to attacks, particularly adversarial strategies
that attempt to remove or obfuscate the watermark (Saberi et al., 2023).

In this work, we introduce a robust Interpretable Concept-based Watermark (IConMark), a novel in-
generation semantic watermarking approach that embeds interpretable concepts into AI-generated
images. Unlike traditional watermarks, which primarily rely on additive noise, our method integrates
meaningful semantic attributes, making it robust against various image perturbations and adversarial
purification attacks. Since these concepts are interpretable to humans, we can also manually check
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if an image generated with IConMark is watermarked. This novelty makes IConMark interpretable
and robust to adversarial attacks, potentially making it a strong technique for manual image foren-
sics with the help of human experts. IConMark can also automate detection using a visual language
model, which queries the presence of these embedded concepts. This ensures both machine verifi-
ability and human interpretability. Furthermore, we demonstrate that IConMark can be effectively
combined with existing watermarking approaches since it only perturbs the input prompt given to
the image generation model. We demonstrate that this ability of our IConMark to complement ex-
isting watermarking approaches can result in strong robust image watermarking techniques without
much image quality degradation.

Our contributions are as follows:

• We propose IConMark (Section 3), a novel semantic watermarking method that embeds in-
terpretable concepts rather than additive noise, improving the robustness and interpretabil-
ity of watermarking.

• We demonstrate that IConMark can be effectively combined with post-hoc watermarking
techniques to further enhance robustness against image augmentations (Section 4).

• We show that our method is resistant to various image augmentation attacks, including
diffusion purification attacks (Section 5). IConMark being interpretable makes it easier to
be detected by human experts, hence making our method resilient to adversarial attacks.

• We evaluate the quality of images watermarked using IConMark, showing that it maintains
high visual quality while ensuring watermark detection integrity.

2 RELATED WORKS

Traditional and deep learning-based watermarking has long been a crucial tool for copyright pro-
tection, content authenticity, and AI-generated media detection (Honsinger, 2002; Swanson et al.,
1998). Classical techniques embed signals in the spatial or frequency domain, leveraging transfor-
mations such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) (Al-Haj,
2007; Cox et al., 2007). Deep learning-based watermarking methods, such as StegaStamp (Tancik
et al., 2020), StableSignature (Fernandez et al., 2023), TrustMark (Bui et al., 2023), and Watermark
Anything Model (Sander et al., 2024) have further improved robustness by training neural networks
to encode and extract watermarks from images. However, these methods remain susceptible to so-
phisticated removal techniques, including adversarial attacks and diffusion purification (Saberi et al.,
2023).

Saberi et al. (2023) demonstrated that diffusion purification attacks, which leverage denoising dif-
fusion models, can effectively remove low-perturbation watermarks by reconstructing images with
minimal modifications. Similarly, WAVES (An et al., 2024), a benchmarking framework, revealed
that watermark detection accuracy significantly degrades under adversarial and regeneration attacks,
highlighting the need for more robust watermarking solutions. Additionally, high-perturbation wa-
termarking methods, such as TreeRing (Wen et al., 2023), have been shown to be more resistant to
removal but are still vulnerable to adversarial model substitution attacks (Saberi et al., 2023).

Furthermore, research has shown that watermarking systems are not only vulnerable to removal
but also to spoofing attacks, where real images are falsely classified as watermarked, leading to
false attributions and reputational risks (Saberi et al., 2023). Adversarial perturbations designed to
mimic the statistical properties of watermarked images have been shown to effectively fool detection
systems, raising questions about the reliability of current watermarking schemes. Our work builds
on these findings by introducing an approach that is inherently more interpretable and robust to such
attacks.

The concept of semantic watermarking, which embeds meaningful and interpretable information
into images, has been relatively unexplored. Existing methods primarily focus on imperceptibility
and robustness but often lack interpretability. Our work builds on these foundations by integrating
interpretable concepts into AI-generated images, ensuring both human and machine verifiability
while maintaining robustness against adversarial attacks. Our approach aligns with recent trends in
AI provenance tracking and content authentication, presenting a compelling direction for the future
of watermarking technologies.
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(a) IConMark generation for various numbers of selected concepts k.

(b) Comparing images with various watermarking techniques.

Figure 1: Comparing images generated with different watermarking techniques. The images in the
first column are non-watermarked AI-generated images from the Flux model. For each of the rows of
the images, the main user prompts p for generation are “A view from a window on board an airplane
flying in the sky.”, “A small kitten is sitting in a bowl.”, and “A man getting a drink from a water
fountain that is a toilet.”, respectively. In Figure 1a, we show different ablations of IConMark over
the number of sampled concepts from the concept database. Figure 1b shows the comparison of
our methods IConMark and IConMark+SS with baseline techniques such as DWTDCT (Cox et al.,
2007), TrustMark (Bui et al., 2023), and StegaStamp (Tancik et al., 2020).

3 ICONMARK: INTERPRETABLE CONCEPT-BASED WATERMARKING

In this section, we describe our proposed method IConMark in detail. For every user prompt for
image generation, IConMark samples related concepts from a private database. IConMark aug-
ments the user prompt with the sampled concepts and uses this augmented user prompt to query
the image generator. The AI-image generator performs in-generation watermarking by adding these
interpretable syntactical signatures or concepts to the generated images. At detection time for a
candidate image, IConMark checks for the presence of various concepts from the private concept
database with the aid of a visual language model. If the candidate image has more than a threshold
number of concepts from the private concept database, it is classified as watermarked. Below, we
describe various steps for the proposed watermarking pipeline.
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3.1 INITIALIZATION: CONCEPT DATABASE GENERATION

We prompt ChatGPT (OpenAI, 2023) to generate multiple image concepts that can be added to an
image. We instruct the model to generate concepts describing simple objects with a unique detail.
For example, “ brass table lamp” or “a metal blue street sign”. We also instruct the model to generate
concepts that can occur in various settings such as indoors, nature, sky, forest, streets, etc. We then
manually craft a diverse database D with N concepts. Note that the concept database generation
needs to be performed pre-hoc only once for our setup. This D can be later used to automatically
generate or detect any new IConMark watermarked image without any manual intervention as shown
in the following subsections.

3.2 WATERMARKED IMAGE GENERATION

For every user prompt p, IConMark samples top-k related concepts from the private concept
database D = {c1, c2, ..., cN}. IConMark prompts Llama-3.1-8B-Instruct model, L, to sample
the related concepts. Llama gets the database D, the user prompt p, and the number of concepts k to
be sampled as inputs using a custom system prompt template to sample concepts c1p, c

2
p, ..., c

k
p ∈ D.

Here is the custom prompt template for L:

System prompt: Here is a database of N concepts: \n \n c1 \n c2 \n . . .\n cN \n \n
In an image of ‘p’, what are the top k related concepts from this database that can very likely occur
in the background of this image? Consider only concepts that are related to this given image. For
example, an image of a lion cannot have a basketball or a table in the background, whereas an image
of a bird can have a tree or a mountain in the background. The concepts should be ONLY from the
database of concepts given above. You should NOT generate new concepts.
User: Print each of the k related concepts verbatim between <a >and </a >.

IConMark then uses a prompt template to generate an augmented user prompt p̃k. IConMark passes
p̃k to the image generator G to generate a watermarked image with the syntactical concept-based
signatures. Here is the augmented prompt template for p̃k:

p in the foreground. add following: \n c1p \n c2p \n . . .\n ckp . \n \n sharp, detailed.

3.3 WATERMARK DETECTION

For a candidate image x, IConMark has access to the private concept database D and V , a visual
language model, IDEFICS3-8B-Llama3. IConMark prompts V to check for the presence of each of
the N concepts in D given the image x using a custom prompt template. Here is the prompt template
for prompting V to detect the presence of a concept ci ∈ D:

Image input: x
Text input: Print yes or no. Is there something like ‘ci’?

The detection score is the number of objects in D that were detected in x by V . If the detection score
is greater than a threshold τ , the candidate image x is classified as watermarked. Else, the image is
labeled as non-watermarked.

4 ICONMARK+SS: HARNESSING STEGASTAMP AND ICONMARK

In this section, we harness the combined strength of StegaStamp (Tancik et al., 2020) and our method
IConMark. An et al. (2024) endorse StegaStamp for its resilience to various image manipulations.
StegaStamp stood out as a robust watermark among other popular techniques such as TreeRing (Wen
et al., 2023) and StableSignature (Fernandez et al., 2023) in the WAVES benchmarking by An et al.
(2024).

However, unlike IConMark these prior watermarking techniques lack interpretability and are not
robust to adversarial attacks (Saberi et al., 2023). Since IConMark is a complementary technique
with any other watermarking technique, we propose to combine the powers of both StegaStamp and
our method IConMark. We name this method IConMark+SS.
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IConMark+SS generates IConMark watermarked images and then applies post-hoc watermarking
using StegaStamp. At detection time, IConMark+SS labels an image as watermarked if either the
IConMark or StegaStamp detectors label it as watermarked. If both the detectors label the image
as non-watermarked, only then the image is labeled as non-watermarked by IConMark+SS. This
makes IConMark+SS robust to all the attacks that both StegaStamp and IConMark are resilient to.

5 EXPERIMENTS

In this section, we provide the experiments to demonstrate the effectiveness of our watermarks.
Section 5.1 provides the experimental setup of our work describing the baselines, dataset, mod-
els, and metrics used. In Section 5.2, we show the performance of IConMark and IConMark+SS
when compared to other baselines. We also perform ablation studies over hyperparameters used for
IConMark and quantify the effect of changes in image quality due to watermarking. See Figure 1a
for images generated via IConMark with different values of k. Section 5.3 shows the experiments
testing various watermarks in the presence of different image manipulation techniques to study their
robustness to such modifications. Our experiments show that IConMark, being the only interpretable
watermark, is also the clear winner in the presence of certain image modifications when compared to
other baselines. We use this to our advantage to complement the power of IConMark with StegaS-
tamp to demonstrate the robustness of IConMark+SS. In our experiments, IConMark+SS obtains
the best detection performance without trading-off the image quality.

5.1 EXPERIMENTAL SETTINGS

Baselines. We compare IConMark to several recent watermarking baselines, including StegaStamp
(Tancik et al., 2020), TrustMark (Bui et al., 2023), and DwtDctSVD (Cox et al., 2007). All meth-
ods employ 100-bit binary watermark keys and encode the watermark by computing additive noise
patterns that are applied to the images. Due to the additive nature of these watermarks, they can be
easily integrated with IConMark for higher robustness (see Section 4).

Dataset and Models. We use 108 captions from the MS-COCO dataset (Lin et al., 2014) to generate
AI images using the FLUX.1-dev model (Labs, 2024). Throughout the paper, we refer to the image
generation model G as Flux. For sampling the top related image concepts for IConMark, we use the
Llama-3.1-8B-Instruct model (Dubey et al., 2024). Throughout the paper, we refer to the language
model L as Llama. We use IDEFICS3-8B-Llama3 (Laurençon et al., 2024) as the visual language
model for measuring IConMark detection score. Throughout the paper, we refer to the visual lan-
guage model V as Idefics. In all our experiments, we generate 10 different images per prompt with
G. Hence, we use 1080 non-watermarked images and 1080 watermarked images for our main ex-
periments, totaling 2160 images in our evaluation. For all our detection robustness experiments, we
halve our dataset size to 1080 images. For IConMark, we use a concept database of size N = 100
and, by default, sample k = 9 concept to augment the user prompt.

Detection Metrics. We plot the Receiver Operating Characteristic (ROC) curves or the True Positive
Rates (TPR) vs. False Positive Rates (FPR) for the detection tasks. We measure the area under
the ROC curves (AUROC) and the accuracy of the detection methods. We also measure TPR at
5% FPR (T@5%F) and TPR at 1% FPR (T@1%F). It is quite straightforward to measure these
detection metrics for any watermarking detector that provides a continuous range of detection scores.
However, for IConMark+SS, we do not have an explicit detection score since it performs detection
conditioned on the output of both IConMark and StegaStamp detectors. Therefore, we measure the
TP values of IConMark+SS at different FP values by varying their detection thresholds. This gives
us the TPR and FPR for IConMark+SS. To obtain the ROC curves, we then sample the Pareto-
optimal detection threshold pairs of IConMark and StegaStamp, ensuring that no selected point in
the curve has a higher FPR for the same or lower TPR. After obtaining the ROC curve in this manner,
we measure the detection metrics for IConMark+SS.

Image quality metrics. We use Clip Score (Radford et al., 2021; Hessel et al., 2021), Ratings
(aesthetic score), Artifacts (Xu et al., 2024), and Diversity (Astolfi et al., 2024) metrics to measure
the image generation qualities. Clip score measures the similarity of the generated image with the
input prompt text with respect to the CLIP model (Radford et al., 2021). Ratings and Artifacts
measure the changes in aesthetic and artifact features of images using a fine-tuned CLIP image
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reward model. Diversity quantifies the capability of an image generator to produce diverse images
for a prompt.

5.2 WATERMARK DETECTION AND IMAGE QUALITY

Figure 2: (Left) ROC curves for ablations of k for our proposed method IConMark. The black
dashed lines indicate the ROC curve of a random detector. (Right) Number of concepts detected in
watermarked (IConMark k = 9) and non-watermarked images by the IDEFICS3 visual language
model.

Detection (%) ↑ Quality
k AUC Accuracy T@5%F T@1%F Clip Score ↑ Ratings ↑ Artifacts ↓ Diversity ↑
1 76.05 74.58 11.85 4.44 0.026 ± 0.030 6.073 ± 1.016 2.156 ± 0.631 0.285 ± 0.014
3 92.04 85.65 55.65 28.06 0.029 ± 0.031 6.069 ± 1.042 2.164 ± 0.633 0.307 ± 0.018
5 96.47 91.67 80.46 57.69 0.031 ± 0.032 6.123 ± 0.998 2.139 ± 0.622 0.325 ± 0.019
7 97.31 92.18 87.69 72.78 0.032 ± 0.032 6.250 ± 1.028 2.102 ± 0.613 0.342 ± 0.021
9 97.46 92.41 88.24 75.65 0.033 ± 0.032 6.282 ± 1.084 2.100 ± 0.632 0.349 ± 0.022

Table 1: Comparison of IConMark watermark detection and quality metrics for different ablations
of the number of sampled concepts k.

Detection (%) ↑ Quality
Methods AUC Accuracy T@5%F T@1%F Clip Score ↑ Ratings ↑ Artifacts ↓ Diversity ↑

DWTDCT 100.00 100.00 100.00 100.00 0.036 ± 0.028 5.431 ± 1.045 2.368 ± 0.646 0.278 ± 0.012
TrustMark 100.00 100.00 100.00 100.00 0.032 ± 0.028 5.860 ± 1.054 2.264 ± 0.639 0.274 ± 0.013

StegaStamp 100.00 100.00 100.00 100.00 0.029 ± 0.027 5.475 ± 1.059 2.452 ± 0.630 0.284 ± 0.013

IConMark 97.46 92.41 88.24 75.65 0.033 ± 0.032 6.282 ± 1.084 2.100 ± 0.632 0.349 ± 0.022
IConMark+SS 100.00 100.00 100.00 100.00 0.028 ± 0.029 6.158 ± 1.016 2.303 ± 0.578 0.361 ± 0.021

Table 2: Comparison of watermark detection and quality metrics across different methods.

In this section, we demonstrate the watermark detection capability of our method when compared to
the baseline approaches. We also measure the image quality of the generated images. See example
generated images we use in Figure 1 (more in Appendix Figures 4–9).

In Figure 2, we provide the ROC curves for IConMark with different ablations of top-k or the
number of concepts sampled from the database D. As shown in the plot, the detection performance
of IConMark improves as the number of sampled concepts increases. The AUROC and T@1%F
values rise over 21% and 71%, respectively, as k changes from 1 to 9. Figure 2 also shows the
frequency histogram of the number of concepts detected in the IConMark (k=9) watermarked and
non-watermarked (k=0) images. As shown in the histogram, the watermarked images have a much
higher likelihood of having concepts from the database than the non-watermarked images.

We also measure the detection and image quality metrics for IConMark for various values of k and
provide them in Table 1. As shown in the table, the quality of the watermarked images does not
degrade with different ablations of k, although it shows an increasing trend for the quality of images
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as k increases. In the rest of the analysis, we fix k = 9 for IConMark since that gives the best
detection results without a degradation in the image quality. Table 2 compares the detection and
quality metrics of our watermarks IConMark and IConMark+SS with baselines. As shown in the
table, IConMark has lower detection scores than other methods. However, IConMark+SS performs
at par with the baselines. We also note that our methods offer a higher image quality Rating and
Diversity, while other quality metrics are comparable with respect to the baselines.

5.3 ROBUSTNESS OF WATERMARKS

(a) No augmentation (b) Geometric

(c) Regen (d) Valuemetric

Figure 3: ROC curves of various watermarking techniques in the presence of various image aug-
mentations. Black dotted curves indicate the performance of a random detector. As shown, our
IConMark+SS performs the best.

No augmentations Geometric Regen Valuemetric
Methods AUC Acc T@5%F T@1%F AUC Acc T@5%F T@1%F AUC Acc T@5%F T@1%F AUC Acc T@5%F T@1%F

DWTDCT 100.00 100.00 100.00 100.00 73.52 70.32 3.43 1.20 60.29 56.90 12.87 3.24 45.50 51.76 5.74 0.83
TrustMark 100.00 100.00 100.00 100.00 70.00 68.89 42.31 38.15 63.07 59.35 11.30 2.96 85.75 78.75 56.20 41.94

StegaStamp 100.00 100.00 100.00 100.00 55.41 54.58 4.72 1.02 96.54 90.09 82.50 60.46 99.83 98.98 99.26 98.52

IConMark 97.46 92.41 88.24 75.65 96.27 90.65 84.07 51.11 96.14 91.39 74.63 59.26 93.40 87.50 67.04 32.22
IConMark+SS 100.00 100.00 100.00 100.00 96.32 90.65 84.63 51.11 99.05 95.46 95.19 79.44 99.93 99.35 99.44 99.26

Table 3: Comparison of watermark detection across different augmentation settings. As shown, our
IConMark+SS performs the best.

In this section, we evaluate the robustness of our watermarks in the presence of various image
manipulation techniques (Sander et al., 2024). We employ three types of composite modifications
to evaluate watermarks’ robustness. Each composite modification, as shown below, comprises one
or more elementary perturbations designed to emulate typical real-world degradations:

Geometric. Random rotation (in range [−20◦, 20◦]) and random cropping retaining 70%–95% of
the original area.
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Valuemetric. Photometric distortions, including brightness and contrast adjustments (factors in
[1.4, 1.7]), Gaussian blur (radius between 1 and 3 pixels), additive Gaussian noise (standard devia-
tion in [0.05, 0.15]), and JPEG compression (quality in the range [40, 70]).

Regen. Image regeneration (Saberi et al., 2023; An et al., 2024) using a diffusion model with 300
diffusion steps.

For examples of these types of augmented images, see Figure 10. We display our results to demon-
strate the robustness of our watermarks in Table 3 and Figure 3. As shown in the results, our
method IConMark+SS is the clear winner regarding the detection performance. IConMark+SS gets
its strength from combining the resilience of IConMark to geometric and regen augmentations, and
the resilience of StegaStamp to valuemetric augmentations.

6 CONCLUSION

IConMark represents a significant advancement in AI image watermarking, offering both inter-
pretability and robustness against a wide range of adversarial threats. By embedding semantic
concepts, it enables watermark detection by both humans and machines, making it a reliable tool
for image forensics and authentication. Integrating IConMark with existing techniques like StegaS-
tamp (IConMark+SS) further strengthens its resilience, establishing it as the most robust method
compared to baselines. Our experimental results demonstrate that our watermarks achieve high de-
tection accuracy while preserving image quality, ensuring practical usability. This work lays the
foundation for more secure and interpretable watermarking methods in the era of generative AI.

However, IConMark relies on AI models for concept generation, sampling, and detection, which
may introduce performance bottlenecks. A well-curated and diverse concept database is crucial
for maintaining high detection rates and ensuring alignment with user requests. As AI models
continue to advance, IConMark is expected to become even more effective. Future research should
investigate the influence of different datasets and models on their performance to further enhance
their robustness.

Additionally, IConMark may be less effective when users generate images with highly specific
prompts, potentially limiting its practicality in certain scenarios. This challenge aligns with the-
oretical findings on the limitations of AI-generated content detection in low-entropy output spaces,
as discussed in Sadasivan et al. (2023) and Saberi et al. (2023). Nevertheless, we believe our novel
approach to interpretable watermarks opens up an exciting new avenue for research in this field.
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A APPENDIX

A.1 ADDITIONAL EXAMPLES OF GENERATED IMAGES

Figure 4: Non-watermarked images with their corresponding prompts for image generation using
the Flux model.

Figure 5: IConMark watermarked images (k = 1) with their corresponding prompts for image
generation using the Flux model and detected concepts from the concept database D using the
IDEFICS3 visual language model.
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Figure 6: IConMark watermarked images (k = 3) with their corresponding prompts for image
generation using the Flux model and detected concepts from the concept database D using the
IDEFICS3 visual language model.

Figure 7: IConMark watermarked images (k = 5) with their corresponding prompts for image
generation using the Flux model and detected concepts from the concept database D using the
IDEFICS3 visual language model.
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Figure 8: IConMark watermarked images (k = 7) with their corresponding prompts for image
generation using the Flux model and detected concepts from the concept database D using the
IDEFICS3 visual language model.

Figure 9: IConMark watermarked images (k = 9) with their corresponding prompts for image
generation using the Flux model and detected concepts from the concept database D using the
IDEFICS3 visual language model.
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Figure 10: Examples of modified images for each modification type used in Section 5.3.
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