
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Spectral State Space Models

Anonymous Authors1

Abstract
This paper studies sequence modeling for pre-
diction tasks with long range dependencies. We
propose a new formulation for state space models
(SSMs) based on learning linear dynamical sys-
tems with the spectral filtering algorithm (Hazan
et al., 2017). This gives rise to a novel sequence
prediction architecture we call a spectral state
space model. Spectral state space models have
provable robustness properties for tasks that re-
quire long memory, and are constructed with fixed
convolutional filters that do not need to be learned.
We evaluate these models on synthetic dynamical
systems and long-range prediction tasks of var-
ious modalities. These evaluations support the
theoretical benefits of spectral filtering for tasks
that need very long range memory.

1. Introduction
In recent years, transformer models (Vaswani et al., 2017)
have become the staple of sequence modelling (Brown et al.,
2020; Dosovitskiy et al., 2020; Jumper et al., 2021). Trans-
former models are naturally parallelizable and hence scale
significantly better than Recurrent Neural Networks (RNNs)
(Hopfield, 1982; Rumelhart et al., 1985; Elman, 1990). How-
ever, attention layers have memory/computation require-
ments that scale quadratically with context length. Many
approximations have been proposed (see (Tay et al., 2022)
for a recent survey).

RNNs (Hopfield, 1982; Rumelhart et al., 1985; Elman,
1990) have seen a recent resurgence in the form of state
space models (SSM) which have shown promise in mod-
elling long sequences across varied modalities (Gu et al.,
2021a; Dao et al., 2022; Gupta et al., 2022; Orvieto et al.,
2023; Poli et al., 2023; Gu & Dao, 2023). SSMs use lin-
ear dynamical systems (LDS) to model the sequence-to
sequence transform by evolving the internal state of the dy-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Under review by the Workshop on Long-Context Foundation Mod-
els (LCFM) at ICML 2024. Do not distribute.

namical system. Despite its simplicity, linear systems can
capture a rich set of natural dynamical systems in engineer-
ing and the physical sciences due to the potentially large
number of hidden dimensions. They are also attractive as a
sequence model because their structure is amenable to both
fast inference and fast training via parallel scans (Blelloch,
1989; Smith et al., 2023) or convolutions (Gu et al., 2021a).
These techniques make SSMs suitable for sequence tasks
which inherently depend on long contexts that scale poorly
for transformers.

However, on tasks that require very long range memory,
SSMs can be unstable to train. This issue is specifically
highlighted in the work of (Orvieto et al., 2023), who ob-
serve that on long range tasks, learning an LDS directly does
not succeed and requires interventions such as stable expo-
nential parameterizations and specific normalization, which
have been repeatedly used either implicitly or explicitly in
the SSM literature (Gu et al., 2021a).

In this work, we consider the problem of sequential pre-
diction tasks that require long range memory from the per-
spective of learning marginally-stable dynamical systems.
Marginally-stable systems have dynamics that do not exhibit
decay: their dynamics matrices can have eigenvalues up to
1, allowing the system to memorize information from the
far past. The spectral filtering technique proposed by Hazan
et al. (2017) can provably learn certain marginally-stable
dynamical systems efficiently. It achieves this by projecting
the sequence of inputs onto a small subspace constructed
using the special structure that arise from learning a discrete
LDS. The efficient learning guarantee of spectral filtering
indicates that if we featurize the input using the spectral
basis, we can potentially design models that are capable of
efficiently and stably representing systems with extremely
long memory.

1.1. Our Contributions

We start by proposing state space models with learned com-
ponents that apply spectral filtering for their featurization.
Our main contribution is a neural architecture that is based
on these spectral state space models. We implement this neu-
ral architecture and apply it towards synthetically generated
data as well as the Long Range Arena benchmark (Tay et al.,
2021). We demonstrate that spectral state space models can

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Spectral State Space Models

stably and more efficiently learn on sequence modelling
tasks with long range dependencies without the need for
exponential parameterizations, particular initializations and
normalizations.

Preliminaries. We defer most prelminaries to Appendix
B, and give the basics here. In sequence prediction, every
time t ∈ [L] the learner is presented an input ut ∈ Rdin .
The learner A then produces a candidate output ŷt , and
the learner then suffers an instantaneous loss of ∥yt − ŷt∥2
given the real output yt. The task of the learner is to mini-
mize regret over a benchmark set of learning algorithms A,
defined as follows

Regret =
L∑

t=1

∥yt − ŷt∥2 − min
A′∈A

L∑
t=1

∥yt − ŷt(A
′)∥2,

where ŷt(A
′) is the output of the algorithm A′ at time

t. A linear dynamical system has four matrix parameters,
A ∈ RN×N , B ∈ RN×din , C ∈ Rdout×N , D ∈ Rdout×din .
The system evolves and generates outputs according to the
following equations

xt ≜ Axt−1 +But, ŷt ≜ Cxt +Dut. (1)

Thus, an example class of benchmark algorithms A are all
predictors that generate ŷt according to these rules, for a
fixed set of matrices A,B,C,D.

Spectral filtering. Another important set of predictors is
one which is inspired by spectral filtering (Hazan et al.,
2017). The spectral filtering theory builds an efficient
representation for all vectors in the range of the function
µ : [0, 1] → RL defined as µ(α) ≜ (α − 1)[1, α, α2 . . .].
To build this representation, define the following Hankel
matrix Z ∈ RL×L whose entries are given by

Z[i, j] ≜
2

(i+ j)3 − (i+ j)
(2)

Since Z is a real PSD Hankel matrix, it has an exponentially
decaying spectrum. As a result, one can show that for all
α ∈ [0, 1] 1, the vector µ(α) is approximately contained in
the subspace spanned by the top eigenvectors of Z.

Let {(σj ∈ R, ϕj ∈ RT)}Lj=1 be the eigenvalue-eigenvector
pairs of Z ordered to satisfy σ1 ≥ σ2 ≥ . . . ≥ σd.
We consider a fixed number K of the above eigenvec-
tors. Algorithms in the spectral filtering class generate
ŷt as follows. For each k ∈ K, we first project the in-
put sequence until time t on ϕk, leading to a sequence
Ut,k ∈ Rdin defined as Ut,k =

∑t
i=1 ut−i · ϕk(i). The

spectral filtering class is further parameterized by matrices

1in particular all α close to 1, representing marginally stable
systems.

Mu
1 ∈ Rdout×din , Mu

2 ∈ Rdout×din and a set of matrices
Mϕ

1 , ...,M
ϕ
K ∈ Rdout×din . The output at time t is then

ŷt = ŷt−1 +Mu
1 ut +Mu

2 ut−1 +

K∑
k=1

Mϕ
k Ut,k. (3)

Due to space constraints, we refer the reader to Appendix B
for more details on the spectral filtering algorithm.

2. Spectral Transform Unit (STU)
In this section, we use spectral filtering to create a se-
quence to sequence neural network layer, i.e. given an
input sequence {u1 . . . uL} ∈ Rdin , it produces an out-
put sequence {y1 . . . yL} ∈ Rdout . A single layer of
STU (depicted in Figure 2) is parameterized by a num-
ber K, denoting the number of eigenfactors and ma-
trices Mϕ+

1 . . .Mϕ+
K ,Mϕ−

1 . . .Mϕ−
K ∈ Rdout×din , and

Mu
1 ,M

u
2 ,M

u
3 ∈ Rdout×din . The matrices form the params

of the layer. Further recall the Hankel matrix Z ∈ RL×L

in (2) and let {(σj ∈ R, ϕj ∈ RL)}Lj=1 be the eigenvalue-
eigenvector pairs of Z in descending order. Given an input
sequence {u1 . . . uL} ∈ Rdin , we first project the input se-
quence till time t on fixed filters ϕk, leading to two feature
vectors U+

t,k, U
−
t,k ∈ Rdin defined as

U+
t,k =

t−1∑
i=0

ut−i ·ϕk(i) U−
t,k =

t−1∑
i=0

ut−i ·(−1)i ·ϕk(i).

Note that for every k, the sequence of features U1:L,k can be
computed efficiently via convolution. The output sequence
{y1 · · · yL} is then given by

ŷt = ŷt−2 +

3∑
i=1

Mu
i ut+1−i︸ ︷︷ ︸

Auto−regressive Component

(4)

+

K∑
k=1

Mϕ+
k σ

1/4
k U+

t−2,k +

K∑
k=1

Mϕ−
k σ

1/4
k U−

t−2,k︸ ︷︷ ︸
Spectral Component

. (5)

For completeness we prove the following representation
theorem Appendix E, which shows that the above class
approximately contains any marginally-stable LDS with
symmetric A.2

Theorem 2.1. Given any A,B,C,D such that A
is a symmetric matrix with ∥A∥ ≤ 1 and given
any numbers K ∈ I+, a ∈ R+, there exists
matrices Mu

1 ,M
u
2 ,M

u
3 ,M

ϕ+
1 . . .Mϕ+

K ,Mϕ−
1 . . .Mϕ−

K ∈
2We discovered some small but easily fixable errors in the

original proof of (Hazan et al., 2017) which we have corrected in
our proof

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Spectral State Space Models

Rdout×din , such that for all L and all sequences u1:L sat-
isfying ∥ut∥ ≤ a for all t ∈ [L] the following holds. Let
yLDS
1:L be the sequence generated by execution of the LDS

given by A,B,C,D (via (10)) and ySF1:L be the sequence
generated by Spectral Filtering (via (5)) using the ma-
trices Mu

1 ,M
u
2 ,M

u
3 ,M

ϕ+
1 . . .Mϕ+

K ,Mϕ−
1 . . .Mϕ−

K . Then
for all t ∈ [T], we have that

∥yLDS
t − ySFt ∥2 ≤ c · ∥B∥col · ∥C∥col ·L3 ·a · e−

(
π2

4 · K
log(L)

)

where c ≤ 2 × 106 is a universal constant and ∥B∥col,
∥C∥col are the maximum column norm of the matrices B
and C respectively.

The above theorem in particular ensures for
any sequence length L that setting K =

O
(
log(L) log

(
∥B∥col·∥C∥col·L·a

ϵ

))
there exists a spec-

tral filtering model with K filters that can approximate any
LDS up to an error of ϵ. Note that the requirement on the
number of filters grows logarithmically in L, highlighting
the efficiency of the representation. Due to space limitations,
we discuss the runtime scaling of our method and compare
it with different methods in the appendix (Section A).

We conduct synthetic experiments on the STU layer in Ap-
pendix C, and investigate its behavior for learning an LDS
compared to the LRU layer proposed in Orvieto et al. (2023).
Our results show that the STU layer is significantly more
efficient at learning the LDS, demonstrating the advantages
of STU as supported by the theoretical guarantees.

3. Stacked STU
To increase the representation capacity and to maintain the
efficiency of prediction through linear dynamical systems,
SSMs stack these sequence to sequence transforms into
multiple layers. Non-linearities in the model can then be
introduced by sandwiching them as layers lying in between
these sequence to sequence transforms.

In this paper we closely follow the stacking approach fol-
lowed by (Orvieto et al., 2023), replacing the LRU layers
appropriately by STU layers. A schematic for the resultant
multi-layer model is displayed in Figure 1a. In a nutshell,
the input sequence is first embedded via a time-invariant
embedding function followed by multiple repetitions of al-
ternating STU layers and non-linearities (in particular we
use GLU). Finally the resulting output is time-pooled fol-
lowed by a final readout layer according to the task at hand.
This composite model can now be trained in a standard
fashion via back-propagation and other commonly used
deep-learning optimization techniques.

(a) Schematic displaying a multi-layer STU model.

Model Specification Pathfinder PathX

STU Eqn (5) (K=16) 91.8 89.5

LRU Dense A ✗ ✗

Λ Exp. Param. 65.4 ✗

Λ Stable Exp. 93.5 ✗

+ Ring Init. 94.4 ✗

+ γ-Norm. 95.1 94.2

(b) Comparison of the basic stacked STU model against LRU
ablations in (Orvieto et al., 2023)

3.1. Experiments on Long Range Arena (Tay et al.,
2021)

We evaluate the stacked STU model on the Long Range
Arena (LRA) benchmark (Tay et al., 2021). This bench-
mark aims to assess the performance of sequence prediction
models in long-context scenarios and consists of six tasks
of various modalities, including text and images. SSMs
(Gu et al., 2021a) have shown significantly superior per-
formance on most of the tasks compared to Transformer
architectures. In particular for the hardest task in the suite,
PathX (image classification with context length of 16K), no
transformer model has been able to achieve accuracy beyond
random guessing. We provide the evaluation of the stacked
STU model on the two hardest tasks namely PathFinder and
PathX in Table 1b.

We compare our performance against the ablation carried
out by (Orvieto et al., 2023) who find that ring initialization,
stable exponential parameterization and γ-normalization are
all crucial towards learning these tasks. In particular, all
three of the above interventions were necessary to learn
on PathX to any non-trivial accuracy due to its extremely
long context length. On the other hand, we find that the
the stacked STU (with the STU component exactly as rep-
resented by (5)) is sufficient to learn on both of these tasks
to relatively high accuracies. Notably, we do not require
any other normalization or initialization techniques. We
initialize all the parameters of the STU i.e. M matrices to 0.
Details about our implementation as well as details about
the experiments including hyperparameters can be found in

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Spectral State Space Models

CIFAR ListOps Text Retrieval Pathfinder PathX

S4 (Gu et al., 2021a) 88.65 59.60 86.82 90.90 94.20 96.35

LRU (Orvieto et al., 2023) 89 60.2 89.4 89.9 95.1 94.2

AR-STU 91.34 61.14 90.47 90.52 95.45 93.24

Table 1: Comparison of the STU model against various proposed SSM models on the LRA benchmark. We report the
median over 5 trials for our experiments.

Appendix G. This result in particular highlights the theoreti-
cal stability afforded by the STU even under learning tasks
involving large sequence lengths. In the appendix (Table 2
we provide the performance evaluation of the stacked STU
on all tasks of the LRA benchmark.

4. Hybrid Temporal and Spectral Units
A simple extension to the STU model (Equation (5)) is to
parameterize the dependence of yt on yt−2 with a parameter
My , leading to the following prediction model

ŷt = My ŷt−2 +

3∑
i=1

Mu
i ut+1−i︸ ︷︷ ︸

Auto−regressive Component

(6)

+

K∑
k=1

Mϕ+
k σ

1/4
k U+

t−2,k +

K∑
k=1

Mϕ−
k σ

1/4
k U−

t−2,k︸ ︷︷ ︸
Spectral Component

. (7)

Setting My = I we recover the guarantees afforded by The-
orem 2.1 and thus the above model is strictly more powerful.
We find that the above change leads to significant improve-
ments over the accuracy achieved by the simple STU model,
and we can further extend the auto-regressive component
to include multiple previous y’s. Indeed as the following
theorem shows adding sufficiently long auto-regression is
powerful enough to capture any LDS.

Theorem 4.1. Given an LDS parameterized by A ∈
Rd×d, B,C,D, there exist coefficients α1:d and matrices
Γ0:d such that given any input sequence u1:L, the output
sequence y1:L generated by the action of the LDS on the
input satisfies for all t

yt =

d∑
i=1

αiyt−i +

d∑
i=0

Γiut−i

This is a well-known observation and we provide a proof in
Appendix H. Motivated by the above theorem, we propose
a generalization of STU, which we call AR-STU. Given a

parameter ky we define AR-STU as

ŷt =

ky∑
i=1

My
i ŷt−i +

3∑
i=1

Mu
i ut+1−i︸ ︷︷ ︸

Auto−regressive Component

(8)

+

K∑
k=1

Mϕ+
k σ

1/4
k U+

t−2,k +

K∑
k=1

Mϕ−
k σ

1/4
k U−

t−2,k︸ ︷︷ ︸
Spectral Component

. (9)

In Table 1, we evaluate the performance of AR-STU on
Long Range Arena. In our experiments we search over two
values of ky = {2, 32}. For non-image tasks, ListOps, Text
and Retrieval, we find that setting ky = 2 is sufficient to get
optimal results. For the image tasks, CIFAR, Pathfinder and
PathX, we found that ky = 32 led to significant performance
gains. A performance ablation over this parameter can be
found in the appendix (Table 2). Overall we find that the
STU model provides improvements over baselines such as
S4 and LRU on 4 out of the 6 tasks and performs compara-
bly to the best baseline on the others. Remarkably, the STU
layers come with provable guarantees and thus performs
well out of the box without the need for specific initializa-
tions, discretizations or normalizations. We initialize all
parameters My

i ,M
u
i ,M

ϕ+
k ,Mϕ−

k with 0. We provide de-
tails of the experimental setup, including hyperparameter
tuning in the appendix (Section G).

5. Conclusion
Insprired by the success of SSMs, we present a new
theoretically-founded deep neural network architecture,
Spectral SSM, for sequence modelling based on the Spectral
Filtering algorithm for learning Linear Dynamical Systems.
We demonstrate the core advantages of the Spectal SSM,
viz. robustness to long memory through experiments on a
synthetic LDS and the Long Range Arena benchmark. We
find that the Spectral SSM is able to learn even in the pres-
ence of large context lengths/memory without the need for
designing specific initializations, discretizations or normal-
izations which were necessary for existing SSMs to learn in
such settings.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Spectral State Space Models

References
Blelloch, G. E. Scans as primitive parallel operations. IEEE

Transactions on computers, 38(11):1526–1538, 1989.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Dao, T., Fu, D. Y., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Elman, J. L. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

Fu, D. Y., Epstein, E. L., Nguyen, E., Thomas, A. W., Zhang,
M., Dao, T., Rudra, A., and Ré, C. Simple hardware-
efficient long convolutions for sequence modeling. arXiv
preprint arXiv:2302.06646, 2023.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 1474–1487. Curran As-
sociates, Inc., 2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021a.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:
572–585, 2021b.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces
are as effective as structured state spaces. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=RjS0j6tsSrf.

Hazan, E., Singh, K., and Zhang, C. Learning linear dynam-
ical systems via spectral filtering. In Advances in Neural
Information Processing Systems, pp. 6702–6712, 2017.

Hazan, E., Lee, H., Singh, K., Zhang, C., and Zhang, Y.
Spectral filtering for general linear dynamical systems.
In Advances in Neural Information Processing Systems,
pp. 4634–4643, 2018.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the national academy of sciences, 79(8):2554–2558,
1982.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Li, Y., Cai, T., Zhang, Y., Chen, D., and Dey, D. What makes
convolutional models great on long sequence modeling?
arXiv preprint arXiv:2210.09298, 2022.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gul-
cehre, C., Pascanu, R., and De, S. Resurrecting recur-
rent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866, 2023.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. Learn-
ing internal representations by error propagation, 1985.

Shi, J., Wang, K. A., and Fox, E. Sequence modeling
with multiresolution convolutional memory. In Inter-
national Conference on Machine Learning, pp. 31312–
31327. PMLR, 2023.

Smith, J. T., Warrington, A., and Linderman, S. Simplified
state space layers for sequence modeling. In The Eleventh
International Conference on Learning Representations,
2023.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=qVyeW-grC2k.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. ACM Comput. Surv., 55(6), dec
2022. ISSN 0360-0300. doi: 10.1145/3530811. URL
https://doi.org/10.1145/3530811.

5

https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.1145/3530811

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Spectral State Space Models

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Spectral State Space Models

A. Detailed Related work
State space models. SSMs for learning long range phenomenon have received much attention in the deep learning
community in recent years. (Gu et al., 2020) propose the HiPPO framework for continuous-time memorization, and
shows that with a special class of system matrices A (HiPPO matrices), SSMs have the capacity for long-range memory.
Subsequently, (Gu et al., 2021b) propose the Linear State-Space Layer (LSSL), where the system matrix is learnable. The
LSSL can be viewed as a recurrence in the state domain and a convolution in the time domain, and generalizes particular
RNN and CNN architectures. For efficient learning of the system matrices, authors propose learning within a class of
structured matrices that contain the HiPPO dynamics, and have efficient convolution schemes. However, the proposed
method is numerically unstable in practice as well as memory-intensive. As a result, (Gu et al., 2021a) develop the S4
parameterization to address these bottlenecks. The S4 parameterization restricts the system matrices A to be normal plus
low-rank, allowing for stable diagonalization of the dynamics. Under this parameterization, authors design memory and
computationally efficient methods that are also numerically stable.

The S4 model has been further streamlined in later works. (Gupta et al., 2022) simplify the S4 parameterization to diagonal
system matrices, and shows that the diagonal state-space model (DSS) is competitive with S4 on several benchmarks. (Smith
et al., 2023) propose the S5 architecture, which improves upon S4 in two directions: 1) instead of having independent SISO
SSMs in the feature dimension, S5 has one MIMO DSS that produces vector-valued outputs; 2) S5 uses efficient parallel
scans in place of convolutions, bypassing custom-designed algorithms for computing the convolutional filters.

To improve the performance of SSMs on language modeling tasks, (Dao et al., 2022) develops the H3 layer by stacking
two SSMs together. They identify two areas where SSMs underperform compared to the transformer: remembering earlier
tokens and comparing tokens across the input sequence. The H3 layer includes a shift SSM, where the dynamics matrix is a
shifting operator, and a DSS, with multiplicative interactions. The shift SSM enables the layer to store earlier tokens, while
the multiplicative interaction allows for comparison (inner product) between tokens in a sequence. They also develop FFT
algorithms with better hardware utilization, to close the speed gap between SSMs and Transformers.

Motivated by the similarities between SSMs and RNNs, (Orvieto et al., 2023) investigate whether deep RNNs can recover
the performance of deep SSMs, and provide an affirmative answer. The proposed RNN architecture is a deep model with
stacked Linear Recurrent Unit (LRU) layers. Each LRU has linear recurrence specified by a complex diagonal matrix,
learned with exponential parameterization and proper normalization techniques. The deep LRU architecture has comparable
computational efficiency as SSMs and matches their performance on benchmarks that require long-term memory. However,
the paper also shows that without the specific modifications on linear RNNS, namely the stable exponential parameterization,
gamma normalization and ring initialization, LRU fails to learn on certain challenging long-context modeling tasks. We
provide further details about this study after this section.

Spectral filtering. The technique of spectral filtering for learning linear dynamical systems was put forth in (Hazan et al.,
2017). This work studies online prediction of the sequence of observations yt, and the goal is to predict as well as the best
symmetric LDS using past inputs and observations. Directly learning the dynamics is a non-convex optimization problem,
and spectral filtering is developed as an improper learning technique with an efficient, polynomial-time algorithm and
near-optimal regret guarantees. Different from regression-based methods that aim to identify the system dynamics, spectral
filtering’s guarantee does not depend on the stability of the underlying system, and is the first method to obtain condition
number-free regret guarantees for the MIMO setting. Extension to asymmetric dynamical systems was further studied in
(Hazan et al., 2018).

Convolutional Models for Sequence Modeling Exploiting the connnection between Linear dynamical systems and
convolutions (as highlighted by (Gu et al., 2021a)) various convolutional models have been proposed for sequence mod-
elling. (Fu et al., 2023) employ direct learning of convolutional kernels directly to sequence modelling but find that they
underperform SSMs. They find the non-smoothness of kernels to be the culprit and propose applying explicit smoothing
and squashing operations to the kernels to match performance on the Long Range Arena benchmark. The proposed model
still contains significantly large number of parameters growing with the sequence length. (Li et al., 2022) identifies two
key characteristics of convolutions to be crucial for long range modelling, decay in filters and small number of parameters
parameterizing the kernel. They achieve this via a specific form of the kernel derived by repeating and scaling the kernel
in a dyadic fashion. (Shi et al., 2023) propose a multiresolution kernel structure inspired from the wavelet transform and
multiresolution analysis.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Spectral State Space Models

All these methods parameterize the kernels with specific structures and/or add further regularizations to emulate the
convolution kernels implied by SSMs. In contrast our proposed kernels are fixed and thereby parameter-free and the number
of parameters scale in the number of kernels and not the size of the kernel. Furthermore our kernels are provably more
expressive than linear dynamical systems capable of directly capturing and improving the performance of SSMs without the
need for specific initializations. Naturally our kernels (see Fig ??) by default satisfy both the smoothness and the decay
condition identified (and explicitly enforced) by (Li et al., 2022) and (Fu et al., 2023).

A.1. Ablations performed by (Orvieto et al., 2023)

Motivated by the success of SSMs, (Orvieto et al., 2023) revisit the RNN model (under the same deep stacked structure
as SSMs) to investigate their efficiency. They begin from a simple linear RNN (a directly parameterized LDS) and add
multiple components inspired from the SSM literature to ensure numerical stability and trainability of the model especially
as the sequences grow larger. Overall they demonstrate that carefully designed parameterizations and initializations of LDS
parameters as well as specifically designed normalizations are all necessary for model to learn consistently over the LRA
dataset and in particularly over the 16K context length task PathX. These interventions are driven by specific intuitions such
as an inductive bias towards larger memory or controlling the loss blowup at initialization under long contexts but as such
come with no theoretical guarantees towards alleviating the problem. We provide some quick details towards what these
interventions are and refer the reader to (Orvieto et al., 2023) to understand the motivations behind them and comparisons
with similar ideas existing in previous SSM literature. The LRU model considered by (Orvieto et al., 2023) is given by

yk = diag(λ)yk−1 + γ ⊙Buk.

In the above the learned parameters are λ and B and note that diag(λ) corresponds to a diagonal A. γ is a specific
normalization technique they develop to control the loss blowup under long-context detailed below. They perform the
following interventions towards stable training

• Stable Exponential Parameterization: They parameterize λ as

λj = exp(− exp(νlogj)︸ ︷︷ ︸
magnitude

+i exp(θlogj)︸ ︷︷ ︸
phase

)

The above is done to ensure a bound on the magnitude of eigenvalues of the effective A matrix as well as to ensure
more resolution in the parameter space closer to the value of 1.

• Ring Initialization: They initialize the λj in the complex annulus [min rad,max rad]. This ensures that at initialization
the magnitude of λj chosen randomly lies in ∈ [min rad,max rad] and the phase is chosen randomly. When not
applying this intervention min rad and max rad are chosen to be 0,1 respectively. When applying this intervention
these values are chosen to be closer to 1, e.g. 0.9, 0.999 respectively.

• γ-Normalization: They set γj =
√

1− |λj |2

• Restricting Phase at initialization: Instead of drawing a random phase at initialization the authors recommend
selecting the initial phase from [0, π/10]. The authors claim that uniform phase inherently biases the network towards
learning spurious features in the input sequence.

(Orvieto et al., 2023) provide the following ablation in the paper. In particular we see that all the above interventions are
necessary to make the model get to non-trivial accuracy on PathX. On the contrary, as we show the STU model achieves
comparable accuracy without requiring any specific initialization or normalization.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Spectral State Space Models

Model Specification sCIFAR ListOps Pathfinder PathX

LRU Dense A 72.2 50.4 ✗ ✗

Λ Exp. Param. 85.4 60.5 65.4 ✗

Λ Stable Exp. Param. 87.2 59.4 93.5 ✗

+ Ring Init. 88.1 59.4 94.4 ✗

+ γ-Norm. + Phase Init. 89.0 60.2 95.1 94.2

B. Preliminaries
Sequence prediction. We treat sequence prediction as a game between a predictor/learner and nature in which iteratively
at every time t ∈ [L], the learner is presented an input ut ∈ Rdin . The learner A then produces a candidate output ŷt = ŷt(A)
, and nature reveals the tth element of a target sequence yt ∈ Rdout . The learner then suffers an instantaneous loss of
∥yt − ŷt∥2. The task of the learner is to minimize regret over a benchmark set of learning algorithms A, defined as follows

Regret =
L∑

t=1

∥yt − ŷt∥2 − min
A∈A

L∑
t=1

∥yt − ŷt(A)∥2.

Linear Dynamical Systems (LDS): An example benchmark set of methods is that of a linear dynamical system, which
has four matrix parameters, A ∈ RN×N , B ∈ RN×din , C ∈ Rdout×N , D ∈ Rdout×din . The system evolves and generates
outputs according to the following equations

xt ≜ Axt−1 +But, ŷt ≜ Cxt +Dut (10)

Thus, an example class of benchmark algorithms A are all predictors that generate ŷt according to these rules, for a fixed set
of matrices A,B,C,D.

Spectral Filtering: Another important set of predictors is one which is inspired by spectral filtering (Hazan et al., 2017).
The spectral filtering theory builds an efficient representation for all vectors in the range of the function µ : [0, 1] → RL

defined as µ(α) ≜ (α − 1)[1, α, α2 . . .]. To build this representation, for any L define the following Hankel matrix
Z ∈ RL×L whose entries are given by

Z[i, j] ≜
2

(i+ j)3 − (i+ j)

It is shown in the appendix (see Lemma E.1) that Z =
∫ 1

0
µ(α)µ(α)⊤dα. Thus it can be seen that Z is a real PSD Hankel

matrix. It is known (see Lemma E.4 in the appendix) that real PSD Hankel matrices have an exponentially decaying spectrum.
As a result, the crux of the spectral filtering theory, lies in showing that for all α ∈ [0, 1] 3, the vector µ(α) is approximately
contained in the subspace spanned by the top eigenvectors of Z, making the subspace spanned by top-eigenvectors of Z a
very efficient subspace to project the input into. This fact is formalized as Lemma E.3 in the appendix. We now use this
intuition to describe the Spectral Filtering algorithm.

Since Z is a real PSD matrix, it admits a real spectral decomposition, and the (non-negative) eigenvalues can be easily
ordered naturally by their value. Let {(σj ∈ R, ϕj ∈ RT)}Lj=1 be the eigenvalue-eigenvector pairs of Z ordered to satisfy
σ1 ≥ σ2 ≥ . . . ≥ σd. We consider a fixed number K of the above eigenvectors. Algorithms in the spectral filtering class
generate ŷt as follows. For each k ∈ K, we first featurize the input sequence by projecting the input sequence until time t
on ϕk, leading to a sequence Ut,k ∈ Rdin defined as

Ut,k =

t∑
i=1

ut−i · ϕk(i).

3in particular all α close to 1, representing marginally stable systems.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Spectral State Space Models

Figure 2: Schematic showing the spectral projection of a 1-dimensional input sequence and how these features are used to
produce the spectral component in the STU output (5). In the multi-dimensional case the operation is applied in parallel
across every input dimension.

The spectral filtering class is further parameterized by matrices Mu
1 ∈ Rdout×din , Mu

2 ∈ Rdout×din and a set of matrices
Mϕ

1 , ...,M
ϕ
K ∈ Rdout×din . The output at time t is then given by

ŷt = ŷt−1 +Mu
1 ut +Mu

2 ut−1 +

K∑
k=1

Mϕ
k Ut,k. (11)

Note that given an input sequence u1:L for any k, the din × T matrix U1:L,k can be efficiently computed via convolutions
along the time dimension L in total time O(din · L log(L)). The following theorem (proved in (Hazan et al., 2017))
establishes that the spectral filtering class of predictors approximately contains bounded linear dynamical systems with
positive semi-definite A.

Theorem B.1. Given any A,B,C,D such that A is a PSD matrix with ∥A∥ ≤ 1 and given any numbers K ∈ I+, a ∈ R+,
there exists matrices Mu

1 ,M
u
2 ,M

ϕ
1 , ...,M

ϕ
K , such that for all L and all sequences u1:L satisfying ∥ut∥ ≤ a for all t ∈ [L]

the following holds. Let yLDS
1:L be the sequence generated by execution of the LDS given by A,B,C,D (via (10)) and ySF1:L

be the sequence generated by Spectral Filtering (via (3)) using the matrices Mu
1 ,M

u
2 ,M

ϕ
1 , ...,M

ϕ
K . Then for all t ∈ [L],

∥yLDS
t − ySFt ∥2 ≤ c · ∥B∥col · ∥C∥col · L3 · a · e−

(
π2

4 · K
log(L)

)

where c ≤ 106 is a universal constant and ∥B∥col, ∥C∥col are the maximum column norm of the matrices B and C
respectively.

We do not provide a proof for this theorem which can be found in (Hazan et al., 2017) 4. Instead, in the next section we
provide a generalization of this theory to cover all symmetric matrices and not just PSD matrices and prove a more general
theorem (Theorem 2.1). We further build upon this generalization to create a sequence to sequence prediction unit.

C. Learning a marginally-stable LDS
We provide a simple synthetic evaluation of the stability and training efficiency afforded by the STU. We consider a
low-dimensional linear system A,B,C,D generated as follows. B ∈ R4×3, C ∈ R3×4 are matrices with iid unit Gaussian
entries. D is a diagonal matrix with iid unit Gaussian entries and A is a diagonal matrix with Aii ∼ 0.9999 ∗ Z where Z is
a random sign. By design this is a system with a very high stability constant (∼ 104). As a training dataset we generated
{(ui, yi)} where ui is a random input sequence and yi is the output generated by applying the linear dynamical system on
ui. We perform mini-batch (batch size 1) training with the l2 loss. As comparison we perform the same procedure with an

4Note that (Hazan et al., 2017) consider a simpler setting where in the ground truth yt is available to the learner for all future time
steps. We do not make such an assumption and theorems have been adjusted to suffer an additional L factor in the error as a result.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Spectral State Space Models

(a) (b)

Figure 3: Learning dynamics for learning a marginally stable LDS. (a.)(Smoothed) Learning curves for a single STU layer
(red) vs a single LRU layer (black). The learning rate was tuned for both models. See Appendix for a detailed discussion of
the tuning and sensitivity to hyperparameters for both the models. Curiously at stable LRs we observe that LRUs show a
plateauing of learning. (b.) Error (in log-scale) obtained by the single STU layer as a function of the model parameter ’K’.
We observe an exponential drop in the reconstruction loss as predicted by the analysis.

LRU (Linear Recurrent Unit) layer as proposed by (Orvieto et al., 2023) which directly parameterizes the linear system. The
results of the training loss as seen by the two systems are presented in Figure 3a.

We use all the initialization/normalization techniques as recommended by (Orvieto et al., 2023) for LRU including the stable
exponential parameterization, γ-normalization and ring-initialization. Indeed we find that all these tricks were necessary to
learn this system at all. We provide more details about the ablations and other hyperparameter setups in the appendix. We
observe that the STU is significantly more efficient at learning the LDS as opposed to the LRU. We further find that there is
a wide range of LRs where the STU has a stable optimization trajectory and the loss decreases continuously highlighting the
advantages of a convex parameterization. On the other hand, LRU is able to eventually learn the system at the right learning
rates, it requires almost 8x the number of samples to get to a system with non-trivial accuracy. More details can be found in
the appendix. Curiously we observe that for the LRU training plateaus completely for the first 50% of training highlighting
the difficulty of optimization via a non-convex landscape.

The STU layer in the previous experiment employs K = 25. In Figure 3b we plot the performance of STU at various levels
of K. As predicted by the theory we observe an exponential decay in the error as K increases with the error effectively
plateauing after K ≥ 15.

D. Computational complexity and comparison to other methods.
Using the STU method to make a sequence of L predictions, the features U+, U− ∈ RL×din×K can be computed in time
O(K · L · din log(L)) using the Discrete Fast Fourier Transform, where K is the number of filters and L is the context
length. The linear prediction part (i.e. spectral component) takes O(K · L · din · dout) time, and the autoregressive part can
be implemented in total time O(L · din · dout). Therefore the overall runtime is O(K · L · din · (log(L) + dout)). 5

For comparison, consider LRU and transformers. The same computation carried out by LRU w. diagonal system matrices
is dominated by the hidden dimension, i.e. O(L · dhidden · (din + dout)). Thus, the number of filters is replaced by dhidden,
which is usually an order of magnitude larger, although STU has another O(logL) overhead.

A transformer model with full attention runs in time O(L2dindout), which is significantly more costly than both LRU and
STU. This is consistent with the motivation of SSM as more efficient models for sequences.

5We shortly note that the K filters can be distributed amongst K machines and their computations done separately. There are many
other opportunities for distributed computing for all architectures which we will not survey here as it is out of scope.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Spectral State Space Models

E. Proof of Theorem 2.1
We begin by observing that without loss of generality we can assume that A is a real-diagonal matrix. This can be ensured
by performing a spectral decomposition of A = UΣU⊤ and absorbing the U,U⊤ by redefining the system. Before
continuing with the proof, we will provide some requisite definitions and lemmas. Define the following vector for any
α ∈ R, µ(α) ∈ RL, with µ(α)(i) = (α− 1)αi−1. Further define the Hankel matrix H as

Z ≜
∫ 1

0

µ(α)µ(α)⊤dα.

As the following lemma shows the Hankel matrix Z above is the same Hankel matrix defined in the definition of STU (2).

Lemma E.1. Z is a Hankel matrix with entries given as

Z(i, j) =
2

(i+ j)3 − (i+ j)

Lemma E.2. We have that the following statements hold regarding µ(α) for any α ∈ [0, 1],

• |µ(α)|2 ≤ 1

• For any α ∈ [0, 1] and any unit vector v we have that

(µ(α)⊤v)2 ≤ 12(v⊤Hv)

Lemma E.3. For any α ∈ [0, 1], let µ̃(α) be the projection of µ(α) on the subspace spanned by top k eigenvectors of Z,
then we have that

∥µ(α)− µ̃(α)∥2 ≤ 12

L∑
i=k+1

σi

Finally the following lemma from (Hazan et al., 2017) shows that the spectrum of the matrix Z decays exponentially.

Lemma E.4 (Lemma E.3 (Hazan et al., 2017)). Let σj be the top jth eigenvalue of Z. Then we have that

σj ≤ Γc−j/ log(L)

where c = eπ
2/4 ∼ 11.79 and Γ = 235200 is an absolute constant.

We now move towards proving Theorem 2.1. Consider the following calculation for the LDS sequence yLDS
t

yLDS
t =

T∑
i=0

CAiBut−i +Dut,

and therefore we have that

yLDS
t − yLDS

t−2 = (CB +D)ut + CABut−1 −Dut−2 +

T∑
i=0

C(Ai+2 −Ai)But−2−i︸ ︷︷ ︸
Term of Interest

For any t1 ≥ t2 we define the matrix Ū{t1:t2} ∈ Rdout×t1−t2+1 whose ith column is the input vector ut1−i+1. We allow
t2 to be negative and by convention assume ut = 0 for any t ≤ 0. Denote the diagonal entries of A by {αl}dh

l=1, i.e.
αl = A(l, l). Further let bl, cl be the l-th column for the matrices B,C respectively. The term of interest above can then be

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Spectral State Space Models

written as

L∑
i=0

C(Ai+2 −Ai)But−2−i

=

dh∑
l=1

(cl ⊗ bl)

(
L∑

i=0

(αi+2
l − αi

l)ut−2−i

)

=
∑

l:αl≥0

(cl ⊗ bl)

(
L∑

i=0

(α2
l − 1)αi

lut−2−i

)
+
∑

l:αl<0

(cl ⊗ bl)

(
L∑

i=0

(α2
l − 1)αi

lut−2−i

)

=
∑

l:αl≥0

(αl + 1)(cl ⊗ bl)

(
L∑

i=0

(αl − 1)αi
lut−2−i

)
+
∑

l:αl<0

(1 + |αl|)(cl ⊗ bl)

(
L∑

i=0

(|αl| − 1)|αl|i(−1)iut−2−i

)
=
∑

l:αl≥0

(αl + 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L}µ(α)

)
+
∑

l:αl<0

(|αl|+ 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L} ⊙ 1±)µ(|αl|)

where 1± ∈ Rdout×L is defined as the matrix whose every row is the alternating sign vector [1,−1, 1,−1 . . .]) and ⊙ is
Hadamard product (i.e. entry-wise multiplication).

yLDS
t − yLDS

t−2 = (CB +D)ut + CABut−1 −Dut−2 +
∑

l:αl≥0

(αl + 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L}µ(α)

)
︸ ︷︷ ︸

PositivePart

+
∑

l:αl<0

(|αl|+ 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L} ⊙ 1±)µ(|αl|)︸ ︷︷ ︸

NegativePart

(12)

Recall that we defined the sequence {σk, ϕk}Lk=1 to be the eigenvalue and eigenvector pairs for the Hankel matrix Z. For
any α we define the projection of µ(α) on the top k eigenvectors as µ̃(α), i.e. µ̃(α) =

∑K
k=1(µ(αl)

⊤ϕk)ϕk. Further define
STU parameters as follows

Mu
1 = CB +D,Mu

2 = CAB,Mu
3 = −D

Mϕ+
k =

∑
l:αl≥0

(αl + 1)(µ(αl)
⊤ϕk)σ

−1/4
k (cl ⊗ bl)

Mϕ−
k =

∑
l:αl<0

(|αl|+ 1)(µ(|αl|)⊤ϕk)σ
−1/4
k (cl ⊗ bl) (13)

By the definition of STU prediction (5) we have that,

ySTU
t = ySTU

t−2 +

3∑
i=1

Mu
i ut+1−i +

K∑
k=1

Mϕ+
k σ

1/4
k

(
t−1∑
i=0

ut−i · ϕk(i)

)
+

K∑
k=1

Mϕ−
k σ

1/4
k

(
t−1∑
i=0

ut−i · (−1)i · ϕk(i)

)

= ySTU
t−2 +

3∑
i=1

Mu
i ut+1−i +

K∑
k=1

Mϕ+
k σ

1/4
k

(
Ū{t−2:t−1−L}ϕk

)
+

K∑
k=1

Mϕ−
k σ

1/4
k

(
(Ū{t−2:t−1−L} ⊙ 1±)ϕk

)
.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Spectral State Space Models

Using the parameters specified in (13) in the above we have that,

ySTU
t − ySTU

t−2 = (CB +D)ut + CABut−1 −Dut−2 +
∑

l:αl≥0

(αl + 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L}

)


K∑
k=1

(µ(αl)
⊤ϕk)ϕk︸ ︷︷ ︸

=µ̃(α)



+
∑

l:αl<0

(|αl|+ 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L} ⊙ 1±)


K∑

k=1

(µ(|αl|)⊤ϕk)ϕk︸ ︷︷ ︸
=µ̃(|αl|)


Combining the above display with (12), we get that

yLDS
t − ySTU

t = yLDS
t−2 − ySTU

t−2 +
∑

l:αl≥0

(αl + 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L}

)
(µ(α)− µ̃(α))

+
∑

l:αl<0

(|αl|+ 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L} ⊙ 1±) (µ(|αl|)− µ̃(|αl|)) (14)

Let ∥B∥col = maxl ∥bl∥, ∥C∥col = maxl ∥cl∥ be the maximum column norms of B and C respectively. Therefore we have
that for all l, the spectral norm of the matrix cl ⊗ bl is bounded as ∥B∥col · ∥C∥col. Further note that every column of Ū is an
input ut for some time t. Further we have assumed that ∥ut∥ ≤ a for all t. Therefore we have that the frobenius norm (and
thus spectral norm) of Ut−2:t−1−L is bounded as

∥Ūt−2:t−1−L∥ ≤ ∥Ūt−2:t−1−L∥F ≤
√
L · a.

Putting the above together we get that for all l,

∥(αl + 1)(cl ⊗ bl)
(
Ūt−2:t−1−L

)
∥ ≤ |(αl + 1)|∥(cl ⊗ bl)∥∥

(
Ūt−2:t−1−L

)
∥ ≤ 2 · ∥B∥col · ∥C∥col ·

√
L · a.

Therefore we have (using E.3 that,

∥
∑

l:αl≥0

(αl + 1)(cl ⊗ bl)
(
Ūt−2:t−1−L

)
(µ(α)− µ̃(α)) ∥

≤
∑

l:αl≥0

∥(αl + 1)(cl ⊗ bl)
(
Ūt−2:t−1−L

)
∥ · ∥ (µ(α)− µ̃(α)) ∥

≤ 5 · ∥B∥col · ∥C∥col · L1.5 · a ·

√√√√ L∑
i=K+1

σi.

Similarly we have that

∥
∑

l:αl<0

(|αl|+ 1)(cl ⊗ bl)
(
Ū{t−2:t−1−L} ⊙ 1±) (µ(|αl|)− µ̃(|αl|)) ∥ ≤ 5 · ∥B∥col · ∥C∥col · L1.5 · a ·

√√√√ L∑
i=K+1

σi.

Plugging the above into (14), we get that

∥yLDS
t − ySTU

t ∥ ≤ ∥yLDS
t−2 − ySTU

t−2 ∥+ 10 · ∥B∥col · ∥C∥col · L1.5 · a ·

√√√√ L∑
i=K+1

σi

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Spectral State Space Models

Applying the above equation recursively and Lemma E.4 we get that for any K ≥ log(L),

∥yLDS
t − ySTU

t ∥ ≤ 5 · ∥B∥col · ∥C∥col · L2.5 · a ·

√√√√ L∑
i=K+1

σi ≤ c · ∥B∥col · ∥C∥col · L3 · a · e
(
−π2

4 · K
log(L)

)
.

where c = 5Γ ≤ 2× 106 is an absolute constant. This finishes the proof of the theorem.

E.1. Proofs of Lemmas

Proof of Lemma E.1. The lemma follows from the following simple calculations.

Z(i, j) =

∫ 1

0

(α− 1)2αi+j−2dα =

∫ 1

0

(
αi+j + αi+j−2 − 2αi+j−1

)
dα

=
1

(i+ j + 1)
+

1

(i+ j − 1)
− 2

(i+ j)

=
2

(i+ j)3 − (i+ j)

Lemma E.3 is immediate from the second part of Lemma E.2. We show Lemma E.2 below.

Proof of Lemma E.2. By definition µ(α) = 0 for α ∈ {0, 1}. Otherwise we have that for all α ∈ (0, 1),

|µ(α)|2 =

T∑
i=1

(α− 1)2α2i−2 ≤ (α− 1)2

(1− α2)
≤ 1− α

1 + α
≤ 1− α

To prove the second part we consider drawing α from the uniform distribution between [0, 1]. We get that

E[(µ(α)⊤v)2] = v⊤Zv

We now show that the worst case value is not significantly larger than the expectation. To this end we consider the function
f(α) = (µ(α)⊤v)2 and we show that this is a 6-Lipschitz function. To this end consider the following,∥∥∥∥∂µ(α)∂α

∥∥∥∥2
2

=

T−1∑
i=0

{∣∣∣∣ ∂∂α (1− α)αi

∣∣∣∣2
}

=

T−1∑
i=0

(
(1− α)iαi−1 − αi

)2
≤ 2(1− α)2

T−1∑
i=1

i2α2(i−1) + 2

T−1∑
i=0

α2i (a+ b)2 ≤ 2(a2 + b2)

≤ 2(1− α)2
(

1

(1− α2)2
+

2α2

(1− α2)3

)
+

2

1− α2

∞∑
i=1

i2βi−1 =
1

(1− β)2
+

2β

(1− β)3

=
2

(1 + α)2
+

4α2

(1− α2)(1 + α)2
+

2

1− α2
.

Therefore we have that for all α ∈ [0, 1],

∂f(α)

∂α
= 2(µ(α)⊤v)

(
∂µ(α)⊤

∂α
v

)
≤ 2∥µ(α)∥∥v∥2∥∂µ(α)

∂α
∥

≤ 2

√
(1− α) ∗

(
2

(1 + α)2
+

4α2

(1− α2)(1 + α)2
+

2

1− α2

)

≤ 2

√(
2(1− α)

(1 + α)2
+

4α2

(1 + α)3
+

2

1 + α

)
≤ 6.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Spectral State Space Models

Now for the positive function f(α) which is 6-Lipschitz on [0, 1] let the maximum value be R. It can be seen the lowest
expected value of f(α) over the uniform distribution over [0, 1], one can achieve is R2/2 ∗ 6 and therefore we have that

R2/12 ≤ v⊤Zv ⇒ R ≤
√
12v⊤Hv,

which finishes the proof.

F. Alternative Representation for capturing negative eigenvalues
In this section we setup an alternative version of STU wherein a different Hankel matrix is used but one can get a similar
result. As before a single layer of STU (depicted in figure 2) is parameterized by a number K, denoting the number of
eigenfactors and matrices Mϕ

1 . . .Mϕ
K ∈ Rdout×din , and Mu

1 ,M
u
2 ,M

u
3 ∈ Rdout×din . The matrices form the params of the

layer. We use a different Hankel matrix ZL ∈ RL×L whose entries are given by

ZL[i, j] ≜ ((−1)i+j−2 + 1) · 8

(i+ j + 3)(i+ j − 1)(i+ j + 1)
. (15)

and let {(σj ∈ R, ϕj ∈ RT)}Tj=1 be the eigenvalue-eigenvector pairs of ZL ordered to satisfy σ1 ≥ σ2 . . . σd.

Given an input sequence {u1 . . . uL} ∈ Rdin , as before we first featurize the input sequence by projecting the input sequence
till time t on fixed filters ϕk. The main difference is that we do not need to create a negative featurization now. We define

Ut,k =

t−1∑
i=0

ut−i · ϕk(i).

Note that for every k, the sequence of features X1:T,k can be computed efficiently via convolution. The output sequence
{y1 · · · yT } is then given by

ŷt = ŷt−2 +

3∑
i=1

Mu
i ut+1−i︸ ︷︷ ︸

Auto−regressive Component

+

K∑
k=1

Mϕ
k σ

1/4
k Xt−2,k︸ ︷︷ ︸

Spectral Component

. (16)

We prove the following representation theorem which shows that the above class approximately contains any marginally-
stable LDS with symmetric A.
Theorem F.1. Given any A,B,C,D such that A is a symmetric matrix with ∥A∥ ≤ 1 and given any numbers
K ∈ I+, a ∈ R+, there exists matrices Mu

1 ,M
u
2 ,M

u
3 ,M

ϕ
1 . . .Mϕ

K ∈ Rdout×din for all L and all sequences u1:L sat-
isfying ∥ut∥ ≤ a for all t ∈ [L] the following holds. Let yLDS

1:L be the sequence generated by execution of the LDS
given by A,B,C,D (via (10)) and ySF1:L be the sequence generated by Spectral Filtering (via (16)) using the matrices
Mu

1 ,M
u
2 ,M

u
3 ,M

ϕ+
1 . . .Mϕ+

K ,Mϕ−
1 . . .Mϕ−

K . Then for all t ∈ [T], we have that

∥yLDS
t − ySFt ∥2 ≤ c · ∥B∥col · ∥C∥col · L3 · a · e−

(
π2

4 · K
log(L)

)
where c ≤ 106 is a universal constant and ∥B∥col, ∥C∥col are the maximum column norm of the matrices B and C
respectively.

In the following we prove the above theorem.

F.1. Proof of Theorem F.1

Without loss of generality we assume that A is a real-diagonal matrix. Before continuing with the proof, we will provide
some requisite definitions and lemmas. Define the following vector for any α, µ(α) ∈ RT , with µ(α)(i) = (α2 − 1)αi−1.
Further define the Hankel matrix H as

Z ≜
∫ 1

−1

µ(α)µ(α)⊤dα

As the following lemma shows the Hankel matrix Z above is the same Hankel matrix ZL defined in the definition of STU
(15).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Spectral State Space Models

Lemma F.2. Z is a Hankel matrix with entries given as

Z(i, j) = ((−1)i+j−2 + 1) · 8

(i+ j + 3)(i+ j − 1)(i+ j + 1)

Proof. Consider the following simple computations

H(i, j) =

∫ 1

−1

(α2 − 1)2αi+j−2dα

=

∫ 0

−1

(α2 − 1)2αi+j−2dα+

∫ 1

0

(α2 − 1)2αi+j−2dα

=

∫ 0

−1

(|α|2 − 1)2(−1)i+j−2|α|i+j−2dα+

∫ 1

0

(α2 − 1)2αi+j−2dα

=

∫ 1

0

(α2 − 1)2(−1)i+j−2αi+j−2dα+

∫ 1

0

(α2 − 1)2αi+j−2dα

= ((−1)i+j−2 + 1)

∫ 1

0

(α2 − 1)2αi+j−2dα

= ((−1)i+j−2 + 1) · 8

(i+ j + 3)(i+ j − 1)(i+ j + 1)

Lemma F.3. We have that the following statements hold regarding µ(α) for any α ∈ [−1, 1],

• |µ(α)|2 ≤ 1

• For any α ∈ [−1, 1] and any unit vector v we have that

(µ(α)⊤v)2 ≤ 6(v⊤Zv)

Proof. By definition µ(α) = 0 for α ∈ {−1, 1}. Otherwise we have that for all α ∈ (−1, 1),

|µ(α)|2 =

T∑
i=1

(α2 − 1)2α2i−2 ≤ (α2 − 1)2

(1− α2)
= 1− α2 ≤ 1.

To prove the second part we consider drawing α from the uniform distribution between [−1, 1]. We get that

E[(µ(α)⊤v)2] =
v⊤Zv

2

We now show that the worst case value is not significantly larger than the expectation. To this end we consider the function
f(α) = (µ(α)⊤v)2 and we show that this is a 6-Lipschitz function. To this end consider the following,∥∥∥∥∂µ(α)∂α

∥∥∥∥2
2

=

T−1∑
i=0

{∣∣∣∣ ∂∂α (1− α2)αi

∣∣∣∣2
}

=

T−1∑
i=0

(
(1− α2)iαi−1 − 2αi+1

)2
≤ 2(1− α2)2

T−1∑
i=1

i2α2(i−1) + 4

T−1∑
i=0

α2i+2 (a+ b)2 ≤ 2(a2 + b2)

≤ 2(1− α2)2
(

1

(1− α2)2
+

2α2

(1− α2)3

)
+

4α2

1− α2

∞∑
i=1

i2βi−1 =
1

(1− β)2
+

2β

(1− β)3

= 2 +
8α2

(1− α2)
.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Spectral State Space Models

Therefore we have that for all α ∈ [−1, 1],

∂f(α)

∂α
= 2(µ(α)⊤v)

(
∂µ(α)⊤

∂α
v

)
≤ 2∥µ(α)∥∥v∥2∥∂µ(α)

∂α
∥

≤ 2

√
(1− α2) ∗

(
2 +

8α2

(1− α2)

)
≤ 2
√
2 + 6α2 ≤ 6.

Now for the positive function f(α) which is 6-Lipschitz on [−1, 1] let the maximum value be R. It can be seen the lowest
expected value of f(α) over the uniform distribution over [0, 1], one can achieve is R2/2 ∗ 6 and therefore we have that

R2/12 ≤ v⊤Zv

2
⇒ R ≤

√
6v⊤Zv,

which finishes the proof.

A direct consequence of the above lemma is the following.

Lemma F.4. For any α ∈ [0, 1], let µ̃(α) be the projection of µ(α) on the subspace spanned by top k eigenvectors of Z,
then we have that

∥µ(α)− µ̃(α)∥2 ≤ 6

L∑
i=k+1

σi

Finally the following lemma with a proof similar to E.3 shows that the spectrum of the matrix Z decays exponentially.

Lemma F.5. Let σj be the top jth eigenvalue of Z. Then we have that

σj ≤ Γc−j/ log(L)

where c = eπ
2/4 ∼ 11.79 and Γ = 235200 is an absolute constant.

We now move towards proving Theorem F.1. Consider the following calculation for the LDS sequence yLDS
t

yLDS
t =

T∑
i=0

CAiBut−i +Dut,

and therefore we have that

yLDS
t − yLDS

t−2 = (CB +D)ut + CABut−1 −Dut−2 +

T∑
i=0

C(Ai+2 −Ai)But−2−i︸ ︷︷ ︸
Term of Interest

For any t1 ≥ t2 we define the matrix Ūt1:t2 ∈ Rdout×t1−t2+1 whose ith column is the input vector ut1−i+1. We allow t2 to
be negative and by convention assume ut = 0 for any t ≤ 0. Denote the diagonal entries of A by {αl}dh

l=1, i.e. αl = A(l, l).
The term of interest above can then be written as

L∑
i=0

C(Ai+2 −Ai)But−2−i =

dh∑
l=1

(cl ⊗ bl)

(
L∑

i=0

(αi+2
l − αi

l)ut−2−i

)

=

dh∑
l=1

(cl ⊗ bl)

(
L∑

i=0

(α2
l − 1)αi

lut−2−i

)

=

dh∑
l=1

(cl ⊗ bl)
(
Ū{t−2:t−1−L}µ(α)

)
.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Spectral State Space Models

Therefore we get that

yLDS
t − yLDS

t−2 = (CB +D)ut + CABut−1 −Dut−2 +

dh∑
l=1

(cl ⊗ bl)
(
Ū{t−2:t−1−L}µ(α)

)
.

Recall that we defined the sequence {σk, ϕk}Lk=1 to be the eigenvalue and eigenvector pairs for the Hankel matrix Z. For
any α we define the projection of µ(α) on the top k eigenvectors as µ̃(α), i.e. µ̃(α) =

∑K
k=1(µ(αl)

⊤ϕk)ϕk. Further define
STU parameters as follows

Mu
1 = CB +D,Mu

2 = CAB,Mu
3 = −D

Mϕ
k =

∑
l

(µ(αl)
⊤ϕk)σ

−1/4
k (cl ⊗ bl)

The definition of STU prediction (using the above parameters) implies that the predicted sequence satisfies

ySTU
t − ySTU

t−2 = (CB +D)ut + CABut−1 −Dut−2 +
∑
l

(cl ⊗ bl)
(
Ū{t−2:t−1−L}

)


K∑
k=1

(µ(αl)
⊤ϕk)ϕk︸ ︷︷ ︸

=µ̃(α)

 .

Combining the above displays we get that

yLDS
t − ySTU

t = yLDS
t−2 − ySTU

t−2 +
∑
l

(cl ⊗ bl)
(
Ū{t−2:t−1−L}

)
(µ(α)− µ̃(α)) .

Using a similar derivation as in the proof of Theorem 2.1 we get that

∥yLDS
t − ySTU

t ∥ ≤ ∥yLDS
t−2 − ySTU

t−2 ∥+ 10 · ∥B∥col · ∥C∥col · L1.5 · a ·

√√√√ L∑
i=K+1

σi

Applying the above equation recursively and Lemma F.5 we get that for any K ≥ log(L)

∥yLDS
t − ySTU

t ∥ ≤ 5 · ∥B∥col · ∥C∥col · L2.5 · a ·

√√√√ L∑
i=K+1

σi ≤ c · ∥B∥col · ∥C∥col · L3 · a · e
(
−π2

4 · K
log(L)

)
.

where c = 2.5× Γ ≤ 106 is an absolute constant. This finishes the proof of the theorem.

G. Experiment Details
G.1. Synthetic Experiments with a marginally-stable LDS

The random system we generated for the experiments displayed in Figure 3a is as follows -

A =


−0.9999 0. 0. 0.

0. 0.9999 0. 0.
0. 0. −0.9999 0.
0. 0. 0. 0.9999

 , B =


0.36858183 −0.34219486 0.1407376
0.18933886 −0.1243964 0.21866894
0.14593862 −0.5791096 −0.06816235
−0.3095346 −0.21441863 0.08696061



C =

 0.5528727 −0.51329225 0.21110639 0.2840083
−0.18659459 0.3280034 0.21890792 −0.8686644
−0.10224352 −0.46430188 −0.32162794 0.1304409

 , D =

1.5905786 0. 0.
0. −0.45901108 0.
0. 0. 0.3238576


19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Spectral State Space Models

Hyperparameters for STU: We only tuned the learning rate in the set ([5e− 2, 1e− 1, 5e− 1, 1, 5, 10]) for vanilla STU
and used K = 25.

Hyperparameters for LRU:

• Model Hyperparameters (Orvieto et al., 2023) provide a few recommendations for the LRU model. We tested
exhaustively over the following hyperparameter choices:

– Stable Exp-parameterization: We searched over [True, False]

– Logarithmic Representation of Recurrent Parameters: We searched over [True, False]

– γ-Normalization: We searched over [True, False]

– Ring Initialization: We searched over min rad∈ {0.0, 0.9, 0.99, 0.999} and max rad∈ {0.9, 0.99, 0.999, 1.0}.

– Setting the max init phase∈ {1.57, 3.14, 6.28}

We found the Stable Exp-parameterization, Logarithmic Representation of Recurrent Parameters and γ-normalization
to be essential for training in this problem. We did not observe any particular benefit of Ring Initialization or reducing
the phase at initialization and we set them to defaults eventually. We provide the learning curves over our search space
in Figure 5.

• Optimization Hyperparameters Given the comparatively higher sample complexity of the LRU model we employed
standard deep-learning optimization tricks like tuning weight-decay as well as applying a cosine learning rate schedule
with warmup. These optimization tricks did not lead to gains over standard training with Adam and a fixed learning
rate in this problem. We tuned the learning rate in the set ([5e− 2, 1e− 1, 5e− 1, 1, 5, 10]).

Figure 4: (Smoothed) Learning curves for learning a marginally stable LDS for a single STU layer (dashed) vs a single LRU
layer (solid). Different colors represent different learning rates highlighting that the training becomes unstable for LRUs
quickly as LR increases while the STU trains at much higher learning rates. Curiously at stable LRs we observe that LRUs
show a platea-ing of learning for a large fraction of the training time.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Spectral State Space Models

Figure 5: LRU Hparam search vs STU. All the gray curves represent the hyperparameters for LRU we tried. The STU
curve is the best taken from Figure 4. For LRU we searched over choices of enabling stable exp-parameterization, gamma-
normalization, ring-initialization, phase-initialization, learning rate, weight decay and constant vs warmup+cosine decay lr
schedule.

G.2. Experimental setup for LRA experiments

Our training setup closely follows the experimental setup used by (Orvieto et al., 2023). We use the same batch sizes and
training horizons for all the tasks as employed by (Orvieto et al., 2023).

Hyperparameter tuning For all of our experiments on the LRA benchmark for both the vanilla STU model and the
auto-regressive AR-STU model we searched the learning rate in the set {1e− 4, 3e− 4, 5e− 4, 1e− 3, 2.5e− 3, 5e− 3}
and tune the weight decay in the set {1e − 3, 1e − 2, 1e − 1, 5e − 1, 1.0}. We fix the number of filters K to be 24. We
use Adam as the training algorithm with other optimization hyperparameters set to their default values. We use the same
learning rate schedule as (Orvieto et al., 2023), i.e. 10% warmup followed by cosine decay to 0. For the AR-STU model we
searched over two values of ky ∈ {2, 32}. In Table 2 we present a comparison of vanilla STU with AR-STU with ky = 2
and AR-STU with ky = 32. We find that both vanilla STU and AR-STU ky = 2 reach comparable accuracy which is better
than the baselines S4 and LRU on non-image datasets. On image datasets we found ky = 32 to be helpful in getting better
test accuracies.

Initialization For the STU model we initialized all the M matrices at 0.

Finally while training the AR-STU model as employed by the training setup of (Orvieto et al., 2023) and previous SSM
implementations, we found that using a smaller value of LR specifically for My matrices to be useful. We decreased the
value of LR by a factor 0.1 or 0.05 and searched over this parameter.

H. Power of Auto-regression: Dimension-dependent representation for LDS
In this section we give a short proof that any partially-observed LDS can be perfectly predicted via a linear predictor acting
over at most d of its past inputs and outputs where d is the hidden-state dimensionality (i.e. A ∈ Rd×d). In particular

Theorem H.1. Given an LDS parameterized by A ∈ Rd×d, B,C,D, there exist coefficients α1:d and matrices Γ0:d such
that given any input sequence u1:L, the output sequence y1:L generated by the action of the LDS on the input satisfies for all
t

yt =

d∑
i=1

αiyt−i +

d∑
i=0

Γiut−i

Proof. By unrolling the LDS we have that yt =
∑t

i=0 CAiBut−i +Dut.. By the Cayley Hamilton theorem, the matrix A

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Spectral State Space Models

CIFAR ListOps Text Retrieval Pathfinder PathX

S4 (Gu et al., 2021a) 88.65 59.60 86.82 90.90 94.20 96.35

LRU (Orvieto et al., 2023) 89 60.2 89.4 89.9 95.1 94.2

STU 83.73 61.04 90.48 90.40 91.70 89.71

AR-STU (ky = 2) 86.56 61.14 90.47 90.52 93.85 90.49

AR-STU (ky = 32) 91.34 57.66 88.51 87.39 95.45 93.24

Table 2: Comparison of the STU model against various proposed SSM models on the LRA benchmark: Bold values indicate
the best for that task. We find that STU is competitive across all the workloads without the need for carefully designed
initializations, discretizations or normalizations. We report the median over 5 trials for our experiments.

has a characteristic polynomial p of degree d, namely there exists d numbers c1:d such that

p(z) =
d∑

i=0

ciz
i

satisfies p(A) = 0. Without loss of generality we can assume the constant term in the polynomial is 1. We can now consider
the series for yt, yt−1, ... as

yt −Dut = CBut CABut−1 ... CAtBu1

yt−1 −Dut−1 = 0 CBut−1 ... CAt−1Bu1

...
yt−d −Dut−d = 0 0 ... CAt−dBu1

Now, if we take the combination of the above rows according to the coefficients of the characteristic polynomial, we get that

d∑
i=0

ciyt−i =

t∑
j=0

Rj +

d∑
i=0

Dut−i (17)

where Rj is the appropriate sum along the j′th column of the matrix above. For all j > d, this amounts to an expression of
the form:

j > d ⇒ Rj =

d∑
i=0

ciCAi ·At−jBut−j = C(

d∑
i=0

ciA
i) ·At−jBut−j = C · p(A) ·At−jBut−j = 0.

Since all but the first d columns are zero, rearranging (17) and collecting terms, we get that there exists coefficients α1:d and
matrices Γ0:d such that

yt =

d∑
i=1

αiyt−i +

d∑
j=0

Γjut−j .

22

