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Abstract

This paper studies sequence modeling for pre-
diction tasks with long range dependencies. We
propose a new formulation for state space models
(SSMs) based on learning linear dynamical sys-
tems with the spectral filtering algorithm (Hazan
et al., 2017). This gives rise to a novel sequence
prediction architecture we call a spectral state
space model. Spectral state space models have
provable robustness properties for tasks that re-
quire long memory, and are constructed with fixed
convolutional filters that do not need to be learned.
We evaluate these models on synthetic dynamical
systems and long-range prediction tasks of var-
ious modalities. These evaluations support the
theoretical benefits of spectral filtering for tasks
that need very long range memory.

1. Introduction

In recent years, transformer models (Vaswani et al., 2017)
have become the staple of sequence modelling (Brown et al.,
2020; Dosovitskiy et al., 2020; Jumper et al., 2021). Trans-
former models are naturally parallelizable and hence scale
significantly better than Recurrent Neural Networks (RNNs)
(Hopfield, 1982; Rumelhart et al., 1985; Elman, 1990). How-
ever, attention layers have memory/computation require-
ments that scale quadratically with context length. Many
approximations have been proposed (see (Tay et al., 2022)
for a recent survey).

RNNs (Hopfield, 1982; Rumelhart et al., 1985; Elman,
1990) have seen a recent resurgence in the form of state
space models (SSM) which have shown promise in mod-
elling long sequences across varied modalities (Gu et al.,
2021a; Dao et al., 2022; Gupta et al., 2022; Orvieto et al.,
2023; Poli et al., 2023; Gu & Dao, 2023). SSMs use lin-
ear dynamical systems (LDS) to model the sequence-to
sequence transform by evolving the internal state of the dy-
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namical system. Despite its simplicity, linear systems can
capture a rich set of natural dynamical systems in engineer-
ing and the physical sciences due to the potentially large
number of hidden dimensions. They are also attractive as a
sequence model because their structure is amenable to both
fast inference and fast training via parallel scans (Blelloch,
1989; Smith et al., 2023) or convolutions (Gu et al., 2021a).
These techniques make SSMs suitable for sequence tasks
which inherently depend on long contexts that scale poorly
for transformers.

However, on tasks that require very long range memory,
SSMs can be unstable to train. This issue is specifically
highlighted in the work of (Orvieto et al., 2023), who ob-
serve that on long range tasks, learning an LDS directly does
not succeed and requires interventions such as stable expo-
nential parameterizations and specific normalization, which
have been repeatedly used either implicitly or explicitly in
the SSM literature (Gu et al., 2021a).

In this work, we consider the problem of sequential pre-
diction tasks that require long range memory from the per-
spective of learning marginally-stable dynamical systems.
Marginally-stable systems have dynamics that do not exhibit
decay: their dynamics matrices can have eigenvalues up to
1, allowing the system to memorize information from the
far past. The spectral filtering technique proposed by Hazan
et al. (2017) can provably learn certain marginally-stable
dynamical systems efficiently. It achieves this by projecting
the sequence of inputs onto a small subspace constructed
using the special structure that arise from learning a discrete
LDS. The efficient learning guarantee of spectral filtering
indicates that if we featurize the input using the spectral
basis, we can potentially design models that are capable of
efficiently and stably representing systems with extremely
long memory.

1.1. Our Contributions

We start by proposing state space models with learned com-
ponents that apply spectral filtering for their featurization.
Our main contribution is a neural architecture that is based
on these spectral state space models. We implement this neu-
ral architecture and apply it towards synthetically generated
data as well as the Long Range Arena benchmark (Tay et al.,
2021). We demonstrate that spectral state space models can
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stably and more efficiently learn on sequence modelling
tasks with long range dependencies without the need for
exponential parameterizations, particular initializations and
normalizations.

Preliminaries. We defer most prelminaries to Appendix
B, and give the basics here. In sequence prediction, every
time ¢ € [L] the learner is presented an input u; € R,
The learner A then produces a candidate output ¢, , and
the learner then suffers an instantaneous loss of ||y; — ;>
given the real output y;. The task of the learner is to mini-
mize regret over a benchmark set of learning algorithms A,
defined as follows

L L
Reoret — A2 A A2
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t=1 t=1
where ¢;(A’) is the output of the algorithm A’ at time
t. A linear dynamical system has four matrix parameters,
A e RVXN B ¢ RNXdin ' ¢ RlowXN ) ¢ RboutXdin
The system evolves and generates outputs according to the
following equations
zy £ A1 + Buy, 9t = Cxy + Duy. (D

Thus, an example class of benchmark algorithms 4 are all
predictors that generate g, according to these rules, for a
fixed set of matrices A, B, C, D.

Spectral filtering. Another important set of predictors is
one which is inspired by spectral filtering (Hazan et al.,
2017). The spectral filtering theory builds an efficient
representation for all vectors in the range of the function
p i [0,1] — RE defined as p(a) £ (a — 1)[1,a,a?..].
To build this representation, define the following Hankel
matrix Z € RE*E whose entries are given by

2
(i+4)* = (+7)

Z[i, j] = ©)
Since Z is a real PSD Hankel matrix, it has an exponentially
decaying spectrum. As a result, one can show that for all
a € [0,1] !, the vector u(«) is approximately contained in
the subspace spanned by the top eigenvectors of Z.

Let {(0; € R,¢; € RT) gL:1 be the eigenvalue-eigenvector
pairs of Z ordered to satisfy o7 > o9 > > og4.
We consider a fixed number K of the above eigenvec-
tors. Algorithms in the spectral filtering class generate
J: as follows. For each £ € K, we first project the in-
put sequence until time ¢ on ¢y, leading to a sequence
Upr € Rn defined as Uy, = Z’;:l g - Ox(i). The
spectral filtering class is further parameterized by matrices

lin particular all « close to 1, representing marginally stable
systems.

M € Rouxdin Jfu ¢ RloueXdin and a set of matrices
MP,..., Mg € Réewxdin The output at time ¢ is then

K
G = Go-1 + Mi'ug + Mywg 1+ Y MUy, (3)
k=1

Due to space constraints, we refer the reader to Appendix B
for more details on the spectral filtering algorithm.

2. Spectral Transform Unit (STU)

In this section, we use spectral filtering to create a se-
quence to sequence neural network layer, i.e. given an
input sequence {u;...uz} € R9n, it produces an out-
put sequence {y;...yr} € R, A single layer of
STU (depicted in Figure 2) is parameterized by a num-
ber K, denoting the number of eigenfactors and ma-
trices MY M MPT . MYT € RewXdinand
M, M3, MY € Réouxdin The matrices form the params
of the layer. Further recall the Hankel matrix Z € RI*L
in (2) and let {(0; € R, ¢; € RF) ]L:1 be the eigenvalue-
eigenvector pairs of Z in descending order. Given an input
sequence {u; ...ur} € R%n, we first project the input se-
quence till time ¢ on fixed filters ¢y, leading to two feature
vectors U:)'k, Uik € R%n defined as

t—1 t—1
Ul = wi-gu() U= - (—1)" i (i)
=0 =0

Note that for every k, the sequence of features U;.r, 1 can be
computed efficiently via convolution. The output sequence
{y1---yr} is then given by

3
Ge= ot > M uii i )
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Auto—regressive Component

K K
Y M UL+ Y M U )
k=1 k=1

Spectral Component

For completeness we prove the following representation
theorem Appendix E, which shows that the above class
approximately contains any marginally-stable LDS with
symmetric A.%

Theorem 2.1. Given any A,B,C,D such that A
is a symmetric matrix with ||A|| < 1 and given
any numbers K ¢ 1T,a € RT, there exists
matrices M, My, M@, M{™T ... MOT MP™ ... MY

*We discovered some small but easily fixable errors in the
original proof of (Hazan et al., 2017) which we have corrected in
our proof
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Rout Xdin - gycpy that for all L and all sequences uy.1, sat-
isfying ||u|| < a for all t € [L] the following holds. Let
yIfES be the sequence generated by execution of the LDS
given by A, B,C, D (via (10)) and yfFL be the sequence
generated by Spectral Filtering (via (5)) using the ma-
trices M, MY, My, MPT .. MET MP™ ... ME™. Then
forallt € [T, we have that

=2 K

||ytLDS _ytSFH2 < c[|Blleot |C|cor L? a'e_(T'log(L)

where ¢ < 2 x 10° is a universal constant and || B||co1
||Cl|cor are the maximum column norm of the matrices B
and C respectively.

The above theorem in particular ensures for
any sequence length L that setting K =
1o} (10g(L) log (”BHCOI'HSHCOI'L‘G )
tral filtering model with K filters that can approximate any
LDS up to an error of e. Note that the requirement on the
number of filters grows logarithmically in L, highlighting
the efficiency of the representation. Due to space limitations,
we discuss the runtime scaling of our method and compare
it with different methods in the appendix (Section A).

there exists a spec-

We conduct synthetic experiments on the STU layer in Ap-
pendix C, and investigate its behavior for learning an LDS
compared to the LRU layer proposed in Orvieto et al. (2023).
Our results show that the STU layer is significantly more
efficient at learning the LDS, demonstrating the advantages
of STU as supported by the theoretical guarantees.

3. Stacked STU

To increase the representation capacity and to maintain the
efficiency of prediction through linear dynamical systems,
SSMs stack these sequence to sequence transforms into
multiple layers. Non-linearities in the model can then be
introduced by sandwiching them as layers lying in between
these sequence to sequence transforms.

In this paper we closely follow the stacking approach fol-
lowed by (Orvieto et al., 2023), replacing the LRU layers
appropriately by STU layers. A schematic for the resultant
multi-layer model is displayed in Figure 1a. In a nutshell,
the input sequence is first embedded via a time-invariant
embedding function followed by multiple repetitions of al-
ternating STU layers and non-linearities (in particular we
use GLU). Finally the resulting output is time-pooled fol-
lowed by a final readout layer according to the task at hand.
This composite model can now be trained in a standard
fashion via back-propagation and other commonly used
deep-learning optimization techniques.
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(a) Schematic displaying a multi-layer STU model.

Model | Specification | Pathfinder | PathX
STU | Eqn (5) (K=16) 91.8 89.5
LRU Dense A X X

A Exp. Param. 65.4 X

A Stable Exp. 93.5 X
+ Ring Init. 94.4 X
+ v-Norm. 95.1 94.2

(b) Comparison of the basic stacked STU model against LRU
ablations in (Orvieto et al., 2023)

3.1. Experiments on Long Range Arena (Tay et al.,
2021)

We evaluate the stacked STU model on the Long Range
Arena (LRA) benchmark (Tay et al., 2021). This bench-
mark aims to assess the performance of sequence prediction
models in long-context scenarios and consists of six tasks
of various modalities, including text and images. SSMs
(Gu et al., 2021a) have shown significantly superior per-
formance on most of the tasks compared to Transformer
architectures. In particular for the hardest task in the suite,
PathX (image classification with context length of 16K), no
transformer model has been able to achieve accuracy beyond
random guessing. We provide the evaluation of the stacked
STU model on the two hardest tasks namely PathFinder and
PathX in Table 1b.

We compare our performance against the ablation carried
out by (Orvieto et al., 2023) who find that ring initialization,
stable exponential parameterization and y-normalization are
all crucial towards learning these tasks. In particular, all
three of the above interventions were necessary to learn
on PathX to any non-trivial accuracy due to its extremely
long context length. On the other hand, we find that the
the stacked STU (with the STU component exactly as rep-
resented by (5)) is sufficient to learn on both of these tasks
to relatively high accuracies. Notably, we do not require
any other normalization or initialization techniques. We
initialize all the parameters of the STU i.e. M matrices to 0.
Details about our implementation as well as details about
the experiments including hyperparameters can be found in
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CIFAR | ListOps | Text | Retrieval | Pathfinder | PathX

S4 (Gu et al., 2021a) 88.65 59.60 | 86.82 90.90 94.20 96.35
LRU (Orvieto et al., 2023) &9 60.2 89.4 89.9 95.1 94.2
AR-STU 91.34 61.14 | 9047 90.52 95.45 93.24

Table 1: Comparison of the STU model against various proposed SSM models on the LRA benchmark. We report the

median over 5 trials for our experiments.

Appendix G. This result in particular highlights the theoreti-
cal stability afforded by the STU even under learning tasks
involving large sequence lengths. In the appendix (Table 2
we provide the performance evaluation of the stacked STU
on all tasks of the LRA benchmark.

4. Hybrid Temporal and Spectral Units

A simple extension to the STU model (Equation (5)) is to
parameterize the dependence of y; on y;_5 with a parameter
M, leading to the following prediction model

3
Je = MY9_o + ZMZ‘uUt—H—i
i=1

6)

Auto—regressive Component

K K
+ Z M}Z)JFU;MU;Q,I@ + Z MIQD_U;MU;Q,}@ - (D
k=1 k=1

Spectral Component

Setting MY = I we recover the guarantees afforded by The-
orem 2.1 and thus the above model is strictly more powerful.
We find that the above change leads to significant improve-
ments over the accuracy achieved by the simple STU model,
and we can further extend the auto-regressive component
to include multiple previous y’s. Indeed as the following
theorem shows adding sufficiently long auto-regression is
powerful enough to capture any LDS.

Theorem 4.1. Given an LDS parameterized by A €
RI*d B C, D, there exist coefficients a1.q and matrices
To.q such that given any input sequence ui.r,, the output
sequence y1.1, generated by the action of the LDS on the
input satisfies for all t

d d
ye=Y i+ Y Tty
i=1 i=0

This is a well-known observation and we provide a proof in
Appendix H. Motivated by the above theorem, we propose
a generalization of STU, which we call AR-STU. Given a

parameter k, we define AR-STU as

ky 3
Ge=> MY§i i+ Mu ®)
=1 i=1

Auto—regressive Component

K K
Y M UL+ Y M U )
k=1 k=1

Spectral Component

In Table 1, we evaluate the performance of AR-STU on
Long Range Arena. In our experiments we search over two
values of k, = {2, 32}. For non-image tasks, ListOps, Text
and Retrieval, we find that setting k£, = 2 is sufficient to get
optimal results. For the image tasks, CIFAR, Pathfinder and
PathX, we found that k,, = 32 led to significant performance
gains. A performance ablation over this parameter can be
found in the appendix (Table 2). Overall we find that the
STU model provides improvements over baselines such as
S4 and LRU on 4 out of the 6 tasks and performs compara-
bly to the best baseline on the others. Remarkably, the STU
layers come with provable guarantees and thus performs
well out of the box without the need for specific initializa-
tions, discretizations or normalizations. We initialize all
parameters M}, M*, M ,f M ,f ~ with 0. We provide de-
tails of the experimental setup, including hyperparameter
tuning in the appendix (Section G).

5. Conclusion

Insprired by the success of SSMs, we present a new
theoretically-founded deep neural network architecture,
Spectral SSM, for sequence modelling based on the Spectral
Filtering algorithm for learning Linear Dynamical Systems.
We demonstrate the core advantages of the Spectal SSM,
viz. robustness to long memory through experiments on a
synthetic LDS and the Long Range Arena benchmark. We
find that the Spectral SSM is able to learn even in the pres-
ence of large context lengths/memory without the need for
designing specific initializations, discretizations or normal-
izations which were necessary for existing SSMs to learn in
such settings.
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A. Detailed Related work

State space models. SSMs for learning long range phenomenon have received much attention in the deep learning
community in recent years. (Gu et al., 2020) propose the HiPPO framework for continuous-time memorization, and
shows that with a special class of system matrices A (HiPPO matrices), SSMs have the capacity for long-range memory.
Subsequently, (Gu et al., 2021b) propose the Linear State-Space Layer (LSSL), where the system matrix is learnable. The
LSSL can be viewed as a recurrence in the state domain and a convolution in the time domain, and generalizes particular
RNN and CNN architectures. For efficient learning of the system matrices, authors propose learning within a class of
structured matrices that contain the HiPPO dynamics, and have efficient convolution schemes. However, the proposed
method is numerically unstable in practice as well as memory-intensive. As a result, (Gu et al., 2021a) develop the S4
parameterization to address these bottlenecks. The S4 parameterization restricts the system matrices A to be normal plus
low-rank, allowing for stable diagonalization of the dynamics. Under this parameterization, authors design memory and
computationally efficient methods that are also numerically stable.

The S4 model has been further streamlined in later works. (Gupta et al., 2022) simplify the S4 parameterization to diagonal
system matrices, and shows that the diagonal state-space model (DSS) is competitive with S4 on several benchmarks. (Smith
et al., 2023) propose the S5 architecture, which improves upon S4 in two directions: 1) instead of having independent SISO
SSMs in the feature dimension, S5 has one MIMO DSS that produces vector-valued outputs; 2) S5 uses efficient parallel
scans in place of convolutions, bypassing custom-designed algorithms for computing the convolutional filters.

To improve the performance of SSMs on language modeling tasks, (Dao et al., 2022) develops the H3 layer by stacking
two SSMs together. They identify two areas where SSMs underperform compared to the transformer: remembering earlier
tokens and comparing tokens across the input sequence. The H3 layer includes a shift SSM, where the dynamics matrix is a
shifting operator, and a DSS, with multiplicative interactions. The shift SSM enables the layer to store earlier tokens, while
the multiplicative interaction allows for comparison (inner product) between tokens in a sequence. They also develop FFT
algorithms with better hardware utilization, to close the speed gap between SSMs and Transformers.

Motivated by the similarities between SSMs and RNNs, (Orvieto et al., 2023) investigate whether deep RNNs can recover
the performance of deep SSMs, and provide an affirmative answer. The proposed RNN architecture is a deep model with
stacked Linear Recurrent Unit (LRU) layers. Each LRU has linear recurrence specified by a complex diagonal matrix,
learned with exponential parameterization and proper normalization techniques. The deep LRU architecture has comparable
computational efficiency as SSMs and matches their performance on benchmarks that require long-term memory. However,
the paper also shows that without the specific modifications on linear RNNS, namely the stable exponential parameterization,
gamma normalization and ring initialization, LRU fails to learn on certain challenging long-context modeling tasks. We
provide further details about this study after this section.

Spectral filtering. The technique of spectral filtering for learning linear dynamical systems was put forth in (Hazan et al.,
2017). This work studies online prediction of the sequence of observations ¥;, and the goal is to predict as well as the best
symmetric LDS using past inputs and observations. Directly learning the dynamics is a non-convex optimization problem,
and spectral filtering is developed as an improper learning technique with an efficient, polynomial-time algorithm and
near-optimal regret guarantees. Different from regression-based methods that aim to identify the system dynamics, spectral
filtering’s guarantee does not depend on the stability of the underlying system, and is the first method to obtain condition
number-free regret guarantees for the MIMO setting. Extension to asymmetric dynamical systems was further studied in
(Hazan et al., 2018).

Convolutional Models for Sequence Modeling Exploiting the connnection between Linear dynamical systems and
convolutions (as highlighted by (Gu et al., 2021a)) various convolutional models have been proposed for sequence mod-
elling. (Fu et al., 2023) employ direct learning of convolutional kernels directly to sequence modelling but find that they
underperform SSMs. They find the non-smoothness of kernels to be the culprit and propose applying explicit smoothing
and squashing operations to the kernels to match performance on the Long Range Arena benchmark. The proposed model
still contains significantly large number of parameters growing with the sequence length. (Li et al., 2022) identifies two
key characteristics of convolutions to be crucial for long range modelling, decay in filters and small number of parameters
parameterizing the kernel. They achieve this via a specific form of the kernel derived by repeating and scaling the kernel
in a dyadic fashion. (Shi et al., 2023) propose a multiresolution kernel structure inspired from the wavelet transform and
multiresolution analysis.
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All these methods parameterize the kernels with specific structures and/or add further regularizations to emulate the
convolution kernels implied by SSMs. In contrast our proposed kernels are fixed and thereby parameter-free and the number
of parameters scale in the number of kernels and not the size of the kernel. Furthermore our kernels are provably more
expressive than linear dynamical systems capable of directly capturing and improving the performance of SSMs without the
need for specific initializations. Naturally our kernels (see Fig ??) by default satisfy both the smoothness and the decay
condition identified (and explicitly enforced) by (Li et al., 2022) and (Fu et al., 2023).

A.1. Ablations performed by (Orvieto et al., 2023)

Motivated by the success of SSMs, (Orvieto et al., 2023) revisit the RNN model (under the same deep stacked structure
as SSMs) to investigate their efficiency. They begin from a simple linear RNN (a directly parameterized LDS) and add
multiple components inspired from the SSM literature to ensure numerical stability and trainability of the model especially
as the sequences grow larger. Overall they demonstrate that carefully designed parameterizations and initializations of LDS
parameters as well as specifically designed normalizations are all necessary for model to learn consistently over the LRA
dataset and in particularly over the 16K context length task PathX. These interventions are driven by specific intuitions such
as an inductive bias towards larger memory or controlling the loss blowup at initialization under long contexts but as such
come with no theoretical guarantees towards alleviating the problem. We provide some quick details towards what these
interventions are and refer the reader to (Orvieto et al., 2023) to understand the motivations behind them and comparisons
with similar ideas existing in previous SSM literature. The LRU model considered by (Orvieto et al., 2023) is given by

yr = diag(A)yr—1 + v © Buy.

In the above the learned parameters are A and B and note that diag(\) corresponds to a diagonal A. v is a specific
normalization technique they develop to control the loss blowup under long-context detailed below. They perform the
following interventions towards stable training

» Stable Exponential Parameterization: They parameterize A as

A\;j = exp(— exp(uj—og) +i exp(H;-Og))
—_————— ———
magnitude phase

The above is done to ensure a bound on the magnitude of eigenvalues of the effective A matrix as well as to ensure
more resolution in the parameter space closer to the value of 1.

* Ring Initialization: They initialize the \; in the complex annulus [min_rad, max_rad]. This ensures that at initialization
the magnitude of \; chosen randomly lies in € [min_rad, max_rad] and the phase is chosen randomly. When not
applying this intervention min_rad and max_rad are chosen to be 0,1 respectively. When applying this intervention
these values are chosen to be closer to 1, e.g. 0.9, 0.999 respectively.

* 7-Normalization: They set v; = /1 — |);]?

* Restricting Phase at initialization: Instead of drawing a random phase at initialization the authors recommend
selecting the initial phase from [0, 7/10]. The authors claim that uniform phase inherently biases the network towards
learning spurious features in the input sequence.

(Orvieto et al., 2023) provide the following ablation in the paper. In particular we see that all the above interventions are
necessary to make the model get to non-trivial accuracy on PathX. On the contrary, as we show the STU model achieves
comparable accuracy without requiring any specific initialization or normalization.

8
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Model Specification sCIFAR | ListOps | Pathfinder | PathX
LRU Dense A 72.2 50.4 X X
A Exp. Param. 85.4 60.5 65.4 X
A Stable Exp. Param. 87.2 59.4 93.5 X
+ Ring Init. 88.1 59.4 94.4 X
+ v-Norm. + Phase Init. 89.0 60.2 95.1 94.2

B. Preliminaries

Sequence prediction. We treat sequence prediction as a game between a predictor/learner and nature in which iteratively
at every time ¢ € [L], the learner is presented an input u; € R%», The learner A then produces a candidate output ; = 7 (A)
, and nature reveals the ¢! element of a target sequence 1; € R%ut. The learner then suffers an instantaneous loss of
ly: — 9¢]|%. The task of the learner is to minimize regret over a benchmark set of learning algorithms A, defined as follows

L L
Regret = Z lye — ell* — glelf}lz lye — G (A)|1%.
t=1

t=1

Linear Dynamical Systems (LDS): An example benchmark set of methods is that of a linear dynamical system, which
has four matrix parameters, A € RV*N B ¢ RNXdin (' ¢ RdowtXN ) ¢ RoutXdin The system evolves and generates
outputs according to the following equations

Tt é Al't_l + But, ZQt é CIt + D’LLt (10)

Thus, an example class of benchmark algorithms .4 are all predictors that generate ¢; according to these rules, for a fixed set
of matrices A, B,C, D.

Spectral Filtering: Another important set of predictors is one which is inspired by spectral filtering (Hazan et al., 2017).
The spectral filtering theory builds an efficient representation for all vectors in the range of the function y : [0, 1] — R
defined as u(a) £ (o — 1)[1,,a2...]. To build this representation, for any L define the following Hankel matrix
7 € REXL whose entries are given by

2
(i+4)* = (+7)

Z[i, j] =

It is shown in the appendix (see Lemma E.1) that Z = fol p(a) () Tda. Thus it can be seen that Z is a real PSD Hankel
matrix. It is known (see Lemma E.4 in the appendix) that real PSD Hankel matrices have an exponentially decaying spectrum.
As a result, the crux of the spectral filtering theory, lies in showing that for all v € [0, 1] 3, the vector u(«) is approximately
contained in the subspace spanned by the top eigenvectors of Z, making the subspace spanned by top-eigenvectors of Z a
very efficient subspace to project the input into. This fact is formalized as Lemma E.3 in the appendix. We now use this
intuition to describe the Spectral Filtering algorithm.

Since Z is a real PSD matrix, it admits a real spectral decomposition, and the (non-negative) eigenvalues can be easily
ordered naturally by their value. Let {(c; € R, ¢; € RT) jL=1 be the eigenvalue-eigenvector pairs of Z ordered to satisfy
01> 09 > ... > 0q. We consider a fixed number K of the above eigenvectors. Algorithms in the spectral filtering class
generate ¢, as follows. For each k € K, we first featurize the input sequence by projecting the input sequence until time ¢
on ¢y, leading to a sequence Uy j, € R%» defined as

t
Ui = Zut—i - o (7).
i=1
3in particular all « close to 1, representing marginally stable systems.

9



Spectral State Space Models

L

° o L.~y |
* ° °
° o
Input Signal
—_— . ¢ | __|
m/\/\/ /\/\/ M13
Fixed K Filters Featurization Learned

Parameters

Figure 2: Schematic showing the spectral projection of a 1-dimensional input sequence and how these features are used to
produce the spectral component in the STU output (5). In the multi-dimensional case the operation is applied in parallel
across every input dimension.

The spectral filtering class is further parameterized by matrices Mj* € R%utXdin Af2 ¢ RdoutXdin and a set of matrices
MY, ..., M% € Réw*din The output at time ¢ is then given by

K
e = o1 + Mi‘ug + Mywy + Y MU, . (1)
k=1

Note that given an input sequence u,., for any k, the di, x T matrix U;.z, i can be efficiently computed via convolutions
along the time dimension L in total time O(d;, - Llog(L)). The following theorem (proved in (Hazan et al., 2017))
establishes that the spectral filtering class of predictors approximately contains bounded linear dynamical systems with
positive semi-definite A.

Theorem B.1. Given any A, B, C, D such that A is a PSD matrix with || A|| < 1 and given any numbers K € T, a € R,
there exists matrices M, M3 M. ..., Mf; such that for all L and all sequences ., satisfying ||u:|| < a forall t € [L]
the following holds. Let y{j]zs be the sequence generated by execution of the LDS given by A, B, C, D (via (10)) and y%i
be the sequence generated by Spectral Filtering (via (3)) using the matrices M7*, M3, M{ﬁ, e Mf; Then for all t € [L)],

(=2, _K__
14278 — 42 < ¢ |Blloot - Clleot - ¥ - - e~ (5 i)

where ¢ < 10° is a universal constant and || B||cot, ||C||cor are the maximum column norm of the matrices B and C
respectively.

We do not provide a proof for this theorem which can be found in (Hazan et al., 2017) 4 Instead, in the next section we
provide a generalization of this theory to cover all symmetric matrices and not just PSD matrices and prove a more general
theorem (Theorem 2.1). We further build upon this generalization to create a sequence to sequence prediction unit.

C. Learning a marginally-stable LDS

We provide a simple synthetic evaluation of the stability and training efficiency afforded by the STU. We consider a
low-dimensional linear system A, B, C, D generated as follows. B € R**3, C' € R3** are matrices with iid unit Gaussian
entries. D is a diagonal matrix with iid unit Gaussian entries and A is a diagonal matrix with A;; ~ 0.9999 x Z where Z is
a random sign. By design this is a system with a very high stability constant (~ 10%). As a training dataset we generated
{(ui, y;)} where u; is a random input sequence and y; is the output generated by applying the linear dynamical system on
u;. We perform mini-batch (batch size 1) training with the 12 loss. As comparison we perform the same procedure with an

“Note that (Hazan et al., 2017) consider a simpler setting where in the ground truth y; is available to the learner for all future time
steps. We do not make such an assumption and theorems have been adjusted to suffer an additional L factor in the error as a result.

10
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Figure 3: Learning dynamics for learning a marginally stable LDS. (a.)(Smoothed) Learning curves for a single STU layer
(red) vs a single LRU layer (black). The learning rate was tuned for both models. See Appendix for a detailed discussion of
the tuning and sensitivity to hyperparameters for both the models. Curiously at stable LRs we observe that LRUs show a
plateauing of learning. (b.) Error (in log-scale) obtained by the single STU layer as a function of the model parameter "K’.
We observe an exponential drop in the reconstruction loss as predicted by the analysis.

LRU (Linear Recurrent Unit) layer as proposed by (Orvieto et al., 2023) which directly parameterizes the linear system. The
results of the training loss as seen by the two systems are presented in Figure 3a.

We use all the initialization/normalization techniques as recommended by (Orvieto et al., 2023) for LRU including the stable
exponential parameterization, ~y-normalization and ring-initialization. Indeed we find that all these tricks were necessary to
learn this system at all. We provide more details about the ablations and other hyperparameter setups in the appendix. We
observe that the STU is significantly more efficient at learning the LDS as opposed to the LRU. We further find that there is
a wide range of LRs where the STU has a stable optimization trajectory and the loss decreases continuously highlighting the
advantages of a convex parameterization. On the other hand, LRU is able to eventually learn the system at the right learning
rates, it requires almost 8x the number of samples to get to a system with non-trivial accuracy. More details can be found in
the appendix. Curiously we observe that for the LRU training plateaus completely for the first 50% of training highlighting
the difficulty of optimization via a non-convex landscape.

The STU layer in the previous experiment employs K = 25. In Figure 3b we plot the performance of STU at various levels
of K. As predicted by the theory we observe an exponential decay in the error as K increases with the error effectively
plateauing after K > 15.

D. Computational complexity and comparison to other methods.

Using the STU method to make a sequence of L predictions, the features U™, U~ € RL*%nxK can be computed in time
O(K - L - dinlog(L)) using the Discrete Fast Fourier Transform, where K is the number of filters and L is the context
length. The linear prediction part (i.e. spectral component) takes O(K - L - diy, - doyt) time, and the autoregressive part can
be implemented in total time O(L - d;y, - dout ). Therefore the overall runtime is O(K - L - diy, - (log(L) + dout)). >

For comparison, consider LRU and transformers. The same computation carried out by LRU w. diagonal system matrices
is dominated by the hidden dimension, i.e. O(L - dhidaden * (din + dout))- Thus, the number of filters is replaced by dpigdens
which is usually an order of magnitude larger, although STU has another O(log L) overhead.

A transformer model with full attention runs in time O(L2 dindout ), which is significantly more costly than both LRU and
STU. This is consistent with the motivation of SSM as more efficient models for sequences.

SWe shortly note that the K filters can be distributed amongst K machines and their computations done separately. There are many
other opportunities for distributed computing for all architectures which we will not survey here as it is out of scope.

11



Spectral State Space Models

E. Proof of Theorem 2.1

We begin by observing that without loss of generality we can assume that A is a real-diagonal matrix. This can be ensured
by performing a spectral decomposition of A = UXU T and absorbing the U,U " by redefining the system. Before
continuing with the proof, we will provide some requisite definitions and lemmas. Define the following vector for any
a € R, u(a) € RY, with () (i) = (o — 1)a’ 1. Further define the Hankel matrix H as

2% [ ueto) do.

As the following lemma shows the Hankel matrix Z above is the same Hankel matrix defined in the definition of STU (2).

Lemma E.1. 7 is a Hankel matrix with entries given as

2

20D = =i

Lemma E.2. We have that the following statements hold regarding p(«) for any o € [0, 1],

* u(@)? <1
* For any « € [0, 1] and any unit vector v we have that
(1(e) T0)? < 12(0 Ho)

Lemma E.3. Forany « € [0, 1], let i(«) be the projection of () on the subspace spanned by top k eigenvectors of Z,
then we have that

L
lue) - a2 <12 3 o

i=k+1

Finally the following lemma from (Hazan et al., 2017) shows that the spectrum of the matrix Z decays exponentially.

Lemma E.4 (Lemma E.3 (Hazan et al., 2017)). Let o be the top jth eigenvalue of Z. Then we have that
oj < T/ los(L)

where ¢ = e™ /4 ~ 11.79 and T = 235200 is an absolute constant.

We now move towards proving Theorem 2.1. Consider the following calculation for the LDS sequence y-P5

T
nyS = Z CA'Buy—; + Duy,
i=0
and therefore we have that

T
yg“DS — ytLP2S = (CB + D)Ut + CAB’LLt,1 - Dut,z + Z C(Ai+2 - Ai)But,g,Z—
=0

Term of Interest

For any t; > t, we define the matrix U{tl:tz} € Rdousxti=t2+1 whoge i column is the input vector u, ;1. We allow

to to be negative and by convention assume u; = 0 for any ¢ < 0. Denote the diagonal entries of A by {al}ﬁ 1> L.e.
a; = A(l,1). Further let b, ¢; be the I-th column for the matrices B, C' respectively. The term of interest above can then be
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written as

L
> C(A™? — A")Buy_s_;

i=0
dn,

= Z (@ by) (Z - O‘;)thz‘)
=1 =0

= (g ®b) <Z(o¢12 — l)a}ut_g_Z) + Z (a®b) <Z(o¢12 — l)a}ut_g_Z)
l:a; >0 =0 l:a; <0 =0

L L
(v +1)(a®b) <Z(Oéz - 1)afut—2—i> + > (It |a)(aeb) (Z(|al| - 1)|04l|i(—1)iut—2—i>

0 i=0 liay <0 i=0

Q

I
g

[HeT]

= (a1 +1)(cr @ by) (Ugp—aip—1-ryml(a)) + Z (loul + 1) (1 @ by) (Uge—2—1-1y © 1) p|cul)
l:a; >0 l:a; <0

v

where 1% € R%ut*L js defined as the matrix whose every row is the alternating sign vector [1, —1,1,—1...]) and ® is
Hadamard product (i.e. entry-wise multiplication).

ytLDS y%DS (CB+ D)uy + CABuy—1 — Duy_o + Z (ar+1)(a®b) (U{t 2t—1— L}M( ))

l: Otl>0

PositivePart

_ (12)
+ Z (laul + )(cr @ br) (Ugp—2it—1-1y © 1F) p(|eu])

l:a; <0

NegativePart

Recall that we defined the sequence {0, ¢k}£:1 to be the eigenvalue and eigenvector pairs for the Hankel matrix Z. For

any « we define the projection of y(«v) on the top k eigenvectors as fi(«), i.e. i(a) = Zszl(u(al)Tqﬁk)gbk. Further define
STU parameters as follows

M} =CB+ D,M¥ = CAB,M¥ = —D
MPT =3 (o + 1) (lar) T )y e @ by)
l:a; >0
M =3 (el + D(pllaal) T ooy (e @ br) (13)
l:a <0

By the definition of STU prediction (5) we have that,

ytSTU* 1&STU+ZM Uty 1— 1+2M1f+ 1/4 (Zut i ¢k ) Z 1?7011/4 (Zut 1' - d)k( )>

=yt + ZMz‘uutJrlfi + Z Moy (U a1 1yon) + ZM;f_U;M (Ugp—2i—1-1y © 15) ) -
i=1 k=1 k=1
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Using the parameters specified in (13) in the above we have that,

K
ytSTU — ytS’_IéU = (CB + D)ut + C’ABut_l — Dut_g + Z (Cll + 1)(0[ ® bl) (U{t—Z:t—l—L}) Z(N(al)T¢k)¢k
l:a; >0 k=1
=ji(a)
B K
+ Z (lal + (@ br) (Ugp—2:4-1-1y © 1*) Z(H(|0¢l‘)T¢k)¢k
l:a; <0 k=1
=p(lai])
Combining the above display with (12), we get that
yrPS =g T =yl =Y+ D (i D)@ @by) (Ug—au—i-1y) () — fi(a))
l:()qZO
+ ) (loul + (e @by) (Up—nie—1-1y © 1%) (u(leu]) = fi(|eul)) (14)
l:a; <0

Let || Blcot = max; ||bf]|, ||Cllcol = max; ||¢;|| be the maximum column norms of B and C respectively. Therefore we have
that for all I, the spectral norm of the matrix ¢; ® b; is bounded as || B|col - ||C|col. Further note that every column of U is an
input u; for some time ¢. Further we have assumed that ||u;|| < a for all ¢. Therefore we have that the frobenius norm (and
thus spectral norm) of U;_s.; 1, is bounded as

1U—2:4—1-2]| < |Ut—2:¢—1-1]|lr < VL - a.
Putting the above together we get that for all [,

I(er + 1)(er @ br) (Te—zie—r-2) || < lew + Dlll(er @ )| (Te—2:e-1-2) | < 2+ [1Bllcot - [|Cllcor - VL - a.

Therefore we have (using E.3 that,

| Z (1 4+ 1)(c®b) (Up—2:0-1-1) () — i) |

l:a; >0

< > M + (e ©b) (Temoi—a-r) || - || (1) = (@) |

l:a; >0

<5 |[Blleot * |C][cor - LY a-

Similarly we have that

1D (leal + (e @ b)) (Ugr—a:e-1-£y © 1F) (ulleul) = illeal)) | <5 [[Bleor - [|Clleot - L' - -
l:a; <0

Plugging the above into (14), we get that

2% = 5N < My — 922 1+ 10 | Blleot - [Clleot - L - a-
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Applying the above equation recursively and Lemma E.4 we get that for any K > log(L),

L 2

5.0 (-7 D)
3 o <co Bl [Cllar - L -a- T m®)
i=K+1

52 = 57 <5 [ Blleot - [Clleot - L*° - @

where ¢ = 5" < 2 x 109 is an absolute constant. This finishes the proof of the theorem.

E.1. Proofs of Lemmas

Proof of Lemma E.I. The lemma follows from the following simple calculations.

1 1
Z(i,j) = /0 (a—1)2a""2da = /0 ('t 4 o't772 — 20/ 1) day
1 1 2
— + — -
(i+j+1) (G+5-1) (i+))
2
G )

Lemma E.3 is immediate from the second part of Lemma E.2. We show Lemma E.2 below.

Proof of Lemma E.2. By definition p(a) = 0 for a € {0, 1}. Otherwise we have that for all & € (0, 1),

T
-1)?2 1-«
2 = _12272<(a < <1-—
()] ;(a ) 1-a2) " 1+a “

To prove the second part we consider drawing « from the uniform distribution between [0, 1]. We get that
El(u(e) )2 = v Zv

We now show that the worst case value is not significantly larger than the expectation. To this end we consider the function
f(a) = (u() "v)? and we show that this is a 6-Lipschitz function. To this end consider the following,

op(a) 2: ’1_ }
H O 2 2_0{ a)
T-1
= (1 - a)ia"" - ai)2
=0
T—1
<2(1-a)? ) ifa?0” 1)—1—2204 (a+b)2 <2(a® +b?)
1=1
2a2 2 o1 253
<2-of (1—a2> *(1—a2>>+1—a2 D LA (=
2 402 2

T 0tel "0 ta2 T1-a®

Therefore we have that for all « € [0, 1],

20— 2(ute)” ) (220 < 2l

e
2 402 9
<2\/(1—OZ)* ((1+a)2 + (1—a?)(1+a)? + 1_0[2>
2(1—0[) 42 2
S2\,/<(1Jroz)2 * (1+a)3 + 1+a) <6
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Now for the positive function f(«) which is 6-Lipschitz on [0, 1] let the maximum value be R. It can be seen the lowest
expected value of f(«) over the uniform distribution over [0, 1], one can achieve is R?/2 * 6 and therefore we have that

R?/12<v"Zv= R < V120 Hv,

which finishes the proof.

F. Alternative Representation for capturing negative eigenvalues

In this section we setup an alternative version of STU wherein a different Hankel matrix is used but one can get a similar
result. As before a single layer of STU (depicted in figure 2) is parameterized by a number K, denoting the number of
eigenfactors and matrices MY ... M. € Riowxdin and M, My, M € Ru*din The matrices form the params of the
layer. We use a different Hankel matrix Z;, € RY*% whose entries are given by

8
G+i+3)GE+5i-1)6GE+75+1)

Zili, j1 & (1) + 1) (15)

and let {(c; € R, ¢, € RT) le be the eigenvalue-eigenvector pairs of Zj, ordered to satisfy o1 > 05 ... 0g.

Given an input sequence {u; ...ur} € R%=, as before we first featurize the input sequence by projecting the input sequence
till time ¢ on fixed filters ¢. The main difference is that we do not need to create a negative featurization now. We define

t—1
Ui = Zutfi - (D).
i=0

Note that for every k, the sequence of features X .7 ; can be computed efficiently via convolution. The output sequence

{y1---yr} is then given by
3 K

~ ~ 1/4
Y= Yr—2+ E M{'uppr— + E M;?Uk/ Xt 2k - (16)
=1 k=1
Auto—regressive Component Spectral Component

We prove the following representation theorem which shows that the above class approximately contains any marginally-
stable LDS with symmetric A.

Theorem F.1. Given any A, B,C,D such that A is a symmetric matrix with ||A|| < 1 and given any numbers
K € I, a € RY, there exists matrices M;*, MY, MY, Ml‘z’ . M;é € Reowxdin for qll I and all sequences ui.5, sat-
isfying ||ui|| < a for all t € [L] the following holds. Let y-D° be the sequence generated by execution of the LDS
given by A, B,C, D (via (10)) and y?FL be the sequence generated by Spectral Filtering (via (16)) using the matrices
M3, MY, M3, J\J{b+ e M}’;Jr, MfF . M;;f. Then for all t € [T, we have that

(=2 K __
9F°5 — 55112 < ¢ 1Bl - [l - L7 - - e (T 110

where ¢ < 10° is a universal constant and || B||co,
respectively.

C|lcor are the maximum column norm of the matrices B and C

In the following we prove the above theorem.

F.1. Proof of Theorem F.1

Without loss of generality we assume that A is a real-diagonal matrix. Before continuing with the proof, we will provide
some requisite definitions and lemmas. Define the following vector for any «, u(a) € RT, with pu(a)(i) = (a? — 1)a’ L.
Further define the Hankel matrix H as .
2% [ weu(e)Tda
-1
As the following lemma shows the Hankel matrix Z above is the same Hankel matrix Z, defined in the definition of STU
(15).
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Lemma F.2. Z is a Hankel matrix with entries given as

2(i.5) = (12 4+ 1) 5

(i+7+3)G+j-1(+5+1)

Proof. Consider the following simple computations

1
H(i,j) = / (a? —1)2a"™2da
-1

0 1
= / (@ —1)%a" " 2da —|—/ (@® —1)2a" 2 da
—1 0

0 1
= / (la|* = 1) (=1 2|a| 2da +/ (@® —1)2a" 2 da
0

-1

1 1
= / (a2 — 1)2(—1)i+j_2ai+j_2da + / (a2 — 1)2ai+j_2da
0 0

= ((—1)"72 4 1) /01(a2 — 120" 2da
8
(G+j+3)GE+i-1DGE+5+1)

= (=)™ +1)-

Lemma F.3. We have that the following statements hold regarding p(«) for any o € [—1,1],

 lu@)? <1
* For any o € [—1, 1] and any unit vector v we have that

(u(e) "v)* < 6(v" Zv)

Proof. By definition u(a) = 0 for aw € {—1, 1}. Otherwise we have that for all « € (—1,1),

T 2 2
, -1
lu(Q)]? = E (@® —1)%* 2 < (" —1)" =1-a*<1.
i=1

To prove the second part we consider drawing « from the uniform distribution between [—1, 1]. We get that

9 v Zv
Bl(p(e) o)) =

We now show that the worst case value is not significantly larger than the expectation. To this end we consider the function
f(a) = (u(a) "v)? and we show that this is a 6-Lipschitz function. To this end consider the following,

o) P =10 g e
H e 2_;{ a—a(l—a o
T-1
_ ((1 — a?)iai"! — 20/+1)2
1=0
T-1 T-1
<2(1-0a?)?) %7 44y o2 (a+0)? < 2(a® +b?)
i=1 =0

242 1 202 4072 = 2 i1 1 26
<2(1—a?) ((1—a2)2+(1—a2)3)+1—042 Zzzﬂ 1_(1_5)2+(1—3)3

=1
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Therefore we have that for all « € [—1,1],

« « T [0
O] — afute)T) (Zpeo ) < 2@ ol

gQ\/(1_a2)*(2+(18j'i2,)>

<22+ 602 <6.

Now for the positive function f(«) which is 6-Lipschitz on [—1, 1] let the maximum value be R. It can be seen the lowest
expected value of f(«) over the uniform distribution over [0, 1], one can achieve is R?/2 * 6 and therefore we have that

9 AN =
R/12 < 5 = R < V6uT Zv,

which finishes the proof. O

A direct consequence of the above lemma is the following.

Lemma F.4. For any o € [0, 1], let i) be the projection of () on the subspace spanned by top k eigenvectors of Z,
then we have that

L
ln(@) = (@) <6 Y o

i=k-+1
Finally the following lemma with a proof similar to E.3 shows that the spectrum of the matrix Z decays exponentially.
Lemma F.5. Let o; be the top jth eigenvalue of Z. Then we have that
0; < T3/ log(L)
where ¢ = ™ /4 ~ 11.79 and T' = 235200 is an absolute constant.

We now move towards proving Theorem F.1. Consider the following calculation for the LDS sequence y-P5

T
y%DS = Z CA'Bu;_; + Duy,
i=0
and therefore we have that

T
yrPS — yPS — (CB + D)uy + CABuy_1 — Duy_o + Z C(A™? — A")Bug—o—;
i=0

Term of Interest

For any ¢; > t, we define the matrix Uy, .;, € Rut*1=t2+1 whose ¥ column is the input vector us, ;1. We allow ¢, to
be negative and by convention assume u; = 0 for any ¢ < 0. Denote the diagonal entries of A by {al}fil, ie. a; = A(l,1).
The term of interest above can then be written as

L dn L
Z C(A™2 — AYBuy_9_; = Z(cl ® by) <Z(o¢f+2 - af)ut_g_i>

1=0 =1 =0
dp, L
= Z(Cl X bl) <Z(O¢12 — ].)O[;Ut2i>
=1 =0
dp

= Z(Cl @) (Ug—2:4-1-ryp(a)) .

=1
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Therefore we get that

dn
yrPS — yPS — (CB + D)uy + CABuy_1 — Duy_o + Z(cl @ b)) (Upp—aie—1—ryp(e)) -
=1

Recall that we defined the sequence {0, ¢k}£:1 to be the eigenvalue and eigenvector pairs for the Hankel matrix Z. For

any « we define the projection of x(«) on the top k eigenvectors as ji(a), i.e. fi(a) = Zszl ((ay) T ¢x)@x. Further define
STU parameters as follows

M =CB+ D,M¥ =CAB,M¥ = —D

MY =" (ulen) dr)oy, e @ br)
l

The definition of STU prediction (using the above parameters) implies that the predicted sequence satisfies

K
;" = y?y = (CB+ D)uy + CABuy 1 — Duyo + » (a1 ®@b) (Up—au—1-1y) | D (1(en) " ér)x
l k=1

—ii(a)

Combining the above displays we get that

yrPS — 7T =yl = Y D (@ b) (Ug—aie1-1y) (u(a) — ji(e)) .
l

Using a similar derivation as in the proof of Theorem 2.1 we get that

||y%DS - ytSTU” < ||ytLP2S - ytS:F2UH + 10 - [| Bllcot * |C][cor - LY -a-

Applying the above equation recursively and Lemma F.5 we get that for any K > log(L)

L
> oi e IBla Ol I -a- ol ),
i=K+1

HytLDS - ytSTUH <5- ||BHCOI : ||C||col SL?5 . a-

where ¢ = 2.5 x I’ < 10° is an absolute constant. This finishes the proof of the theorem.

G. Experiment Details
G.1. Synthetic Experiments with a marginally-stable LDS

The random system we generated for the experiments displayed in Figure 3a is as follows -

—0.9999 0. 0. 0. 0.36858183 —0.34219486  0.1407376
A— 0. 0.9999 0. 0. B 0.18933886  —0.1243964  0.21866894
0. 0. —0.9999 0. ’ 0.14593862  —0.5791096 —0.06816235
0. 0. 0. 0.9999 —0.3095346 —0.21441863  0.08696061
0.5528727  —0.51329225 0.21110639  0.2840083 1.5905786 0. 0.
C = | —0.18659459  0.3280034 0.21890792  —0.8686644 | , D= 0. —0.45901108 0.
—0.10224352 —0.46430188 —0.32162794  0.1304409 0. 0. 0.3238576
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Hyperparameters for STU: We only tuned the learning rate in the set ([5e — 2, le — 1, 5e¢ — 1, 1,5, 10]) for vanilla STU
and used K = 25.

Hyperparameters for LRU:

* Model Hyperparameters (Orvieto et al., 2023) provide a few recommendations for the LRU model. We tested
exhaustively over the following hyperparameter choices:

— Stable Exp-parameterization: We searched over [True, False]

— Logarithmic Representation of Recurrent Parameters: We searched over [True, False]

— ~-Normalization: We searched over [True, False]

- Ring Initialization: We searched over min_rade {0.0,0.9,0.99,0.999} and max_rade {0.9,0.99,0.999,1.0}.

— Setting the max_-init_phasee {1.57,3.14,6.28}

We found the Stable Exp-parameterization, Logarithmic Representation of Recurrent Parameters and y-normalization
to be essential for training in this problem. We did not observe any particular benefit of Ring Initialization or reducing
the phase at initialization and we set them to defaults eventually. We provide the learning curves over our search space
in Figure 5.

¢ Optimization Hyperparameters Given the comparatively higher sample complexity of the LRU model we employed
standard deep-learning optimization tricks like tuning weight-decay as well as applying a cosine learning rate schedule
with warmup. These optimization tricks did not lead to gains over standard training with Adam and a fixed learning
rate in this problem. We tuned the learning rate in the set ([5e — 2, le — 1,5e — 1,1, 5, 10)).

106

— LRU-LR 0.05
LRU - LR 0.1
— LRU-LRO.5
— LRU-LR 1.0
LRU - LR 5.0
—— LRU-LR 10.0
----- STU - LR 0.05
STU-LRO.1
----- STU-LR 0.5
----- STU-LR 1.0
STU-LR 5.0
----- STU - LR 10.0

1054

1024

0 200 400 600 800
Samples

Figure 4: (Smoothed) Learning curves for learning a marginally stable LDS for a single STU layer (dashed) vs a single LRU
layer (solid). Different colors represent different learning rates highlighting that the training becomes unstable for LRUs
quickly as LR increases while the STU trains at much higher learning rates. Curiously at stable LRs we observe that LRUs
show a platea-ing of learning for a large fraction of the training time.
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Figure 5: LRU Hparam search vs STU. All the gray curves represent the hyperparameters for LRU we tried. The STU
curve is the best taken from Figure 4. For LRU we searched over choices of enabling stable exp-parameterization, gamma-
normalization, ring-initialization, phase-initialization, learning rate, weight decay and constant vs warmup+cosine decay Ir
schedule.

G.2. Experimental setup for LRA experiments

Our training setup closely follows the experimental setup used by (Orvieto et al., 2023). We use the same batch sizes and
training horizons for all the tasks as employed by (Orvieto et al., 2023).

Hyperparameter tuning For all of our experiments on the LRA benchmark for both the vanilla STU model and the
auto-regressive AR-STU model we searched the learning rate in the set {1le — 4,3e — 4,5e¢ — 4,1e — 3,2.5¢ — 3,5e — 3}
and tune the weight decay in the set {le — 3,1e — 2,1e — 1,5e¢ — 1,1.0}. We fix the number of filters K to be 24. We
use Adam as the training algorithm with other optimization hyperparameters set to their default values. We use the same
learning rate schedule as (Orvieto et al., 2023), i.e. 10% warmup followed by cosine decay to 0. For the AR-STU model we
searched over two values of k,, € {2,32}. In Table 2 we present a comparison of vanilla STU with AR-STU with k, = 2
and AR-STU with £k, = 32. We find that both vanilla STU and AR-STU £, = 2 reach comparable accuracy which is better
than the baselines S4 and LRU on non-image datasets. On image datasets we found k, = 32 to be helpful in getting better
test accuracies.

Initialization For the STU model we initialized all the M matrices at 0.

Finally while training the AR-STU model as employed by the training setup of (Orvieto et al., 2023) and previous SSM
implementations, we found that using a smaller value of LR specifically for MY matrices to be useful. We decreased the
value of LR by a factor 0.1 or 0.05 and searched over this parameter.

H. Power of Auto-regression: Dimension-dependent representation for LDS

In this section we give a short proof that any partially-observed LDS can be perfectly predicted via a linear predictor acting
over at most d of its past inputs and outputs where d is the hidden-state dimensionality (i.e. A € R4*¢). In particular

Theorem H.1. Given an LDS parameterized by A € Ré*d B C, D, there exist coefficients a.q and matrices I'g.q such
that given any input sequence u1.r,, the output sequence 1.1, generated by the action of the LDS on the input satisfies for all
t

d d
Yr = Z QiY—i + Z Liug—;
i=1 =0

Proof. By unrolling the LDS we have that y, = ZE:O CA*Bu;_; + Duy.. By the Cayley Hamilton theorem, the matrix A
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CIFAR | ListOps | Text | Retrieval | Pathfinder | PathX

S4 (Gu et al., 2021a) 88.65 59.60 | 86.82 90.90 94.20 96.35
LRU (Orvieto et al., 2023) &9 60.2 89.4 89.9 95.1 94.2
STU 83.73 61.04 | 90.48 90.40 91.70 89.71

AR-STU (k, = 2) 86.56 61.14 | 90.47 90.52 93.85 90.49
AR-STU (k, = 32) 91.34 57.66 | 88.51 87.39 95.45 93.24

Table 2: Comparison of the STU model against various proposed SSM models on the LRA benchmark: Bold values indicate
the best for that task. We find that STU is competitive across all the workloads without the need for carefully designed
initializations, discretizations or normalizations. We report the median over 5 trials for our experiments.

has a characteristic polynomial p of degree d, namely there exists d numbers c;.4 such that

satisfies p(A) = 0. Without loss of generality we can assume the constant term in the polynomial is 1. We can now consider
the series for y;, 41, ... as

yr — Duy = CBu; CABu;—; .. CA'Buy
Yi—1 — Dug_q1 = 0 CBui_q .. CA*™ By
Yt—a — Dugq = 0 0 ... CA'" 9By,

Now, if we take the combination of the above rows according to the coefficients of the characteristic polynomial, we get that

d t d
D ciyii=» Rj+> Du (17)
i=0 §=0 i=0

where R; is the appropriate sum along the j'th column of the matrix above. For all j > d, this amounts to an expression of
the form:

d d
j>d = Rj=) ¢CA-A"IBu_j=C(> c;A")- A" Buy_j = C-p(A)- A"/ Buy_; = 0.
=0 =0

Since all but the first d columns are zero, rearranging (17) and collecting terms, we get that there exists coefficients a;.4 and

matrices I'g.4 such that
d d
Yt = Z QilYi—q + Z jug—j.
i=1 =0
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