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Abstract

Shape-texture conflict is key to our understanding
of the behavior of Convolutional Neural Networks
(CNNs) and their observably good performance.
This work proposes a domain adversarial training-
inspired technique as a novel approach to mitigate
texture bias. In our work, instead of looking at
the domains as the source from which the im-
ages are from, we look at the domains as inherent
features of the image. The model is trained in a
method similar to Domain Adversarial training,
where we define the source and target domains
as the dataset and its augmented versions with
minimal texture information (edge maps and styl-
ized images), respectively. We show that using
domain invariant learning to capture a prior based
on the shape-texture information helps models
learn robust representations. We perform exten-
sive experiments on three subsets of ImageNet,
namely, ImageNet-20, ImageNet-200, ImageNet-
9. The results show that the proposed method
outperforms standard Empirical Risk Minimiza-
tion (ERM) in terms of test accuracy and also
as evidenced by the high accuracy on the Out-
Of-Distribution (OOD) datasets ImageNet-R and
NICO.

1. Introduction

It is a widely held belief that the reason CNNs perform
well is by first detecting low-level features and gradually
moving towards higher level shapes, allowing them to cap-
ture the necessary details in images (Szegedy et al., 2014).
This hypothesis was recently challenged by (Geirhos et al.,
2019), which dubbed it the shape hypothesis. Although
there has been extensive work to solidify this shape hy-
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pothesis, (Geirhos et al., 2019) shows that, in fact, CNNs
primarily rely on object textures rather than their shapes.
Although the shape is as essential to learning as texture, it
must be noted that an absence of texture knowledge will
undoubtedly be detrimental to the model, as shown in (Li
et al., 2021). Texture plays a crucial role in fine-grained
classification, which can be thought of as differentiating
between German Shepherds and Poodles. Whereas shape
information is at a broader level of classification, differenti-
ating dogs from boats. This can also be observed in (Geirhos
et al., 2019) when training only on the stylized version of
ImageNet, which is argued to contain purely shape infor-
mation, performs much poorer than training on standard
ImageNet.

Though CNNs have shown that local textures are enough
to achieve good performance on a diverse dataset like Ima-
geNet, these models are not robust to corruptions or domain
shifts (Hendrycks et al., 2021). The performance of these
models drops significantly with minor distortions in the im-
age, which do not change the semantics of the object class.
For example, the accuracy of the ImageNet trained AlexNet
model drops by more than 50% on ImageNet-Sketch (Wang
et al., 2019). This drop in performance can be attributed to
the over-reliance on the local textures of the object rather
than the global shape. However, only the object’s shape
might not be enough to classify an object. Texture deter-
mines the specific fine-grained class, and shape determines
the coarse-grained class. Thus, this conflict is a critical
problem in visual representation learning for good OOD
generalization.

In this paper, we introduce the usage of a modified Domain
Adversarial training technique as an alternative to standard
ERM techniques to mitigate texture bias and improve OOD
generalization. We use the training dataset as the source
domain and use shape agnostic representations of the dataset
as the target domain. The shape agnostic representations that
we use are stylized images and edge maps. We look at the
target domain from the lens of a prior or a feature that can be
used to learn better representations for suitable downstream
tasks. We show that using augmented samples as the target
domain induces a prior to mitigate texture bias. (Fig. 1)
Throughout the rest of the paper, we use the term “shape
texture conflict” as the conflict in the bias towards object
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Figure 1. Overview of the proposed method. We propose the idea of using images with minimal texture information as the target domain
in Domain Adversarial Training and show that it induces a shape-prior. This leads to improved OOD generalization.

textures or object shapes for deep learning trained models.
We train on various flavors of ImageNet. We show results
on their respective test sets and also on OOD datasets like
ImageNet-Rendition (Hendrycks et al., 2021), and NICO
(He et al., 2020).

In summary, our contributions are as follows:

1. We propose using the idea of Domain Adversarial train-
ing as a means to capture priors for models to learn
robust representations. In this work, we use shape
agnostic augmentations as the target domain.

2. We propose the interpretation of domains as features
inherent to the object as opposed to originating from a
different input distribution.

3. Our method outperforms baseline methods on
ImageNet-R, ImageNet-9, and NICO, which are Out-
of-Distribution datasets.

2. Related Work

Shape-Texture Conflict: Much work to mitigate texture
bias has been studied since (Geirhos et al., 2019). This paper
described using an augmented dataset that contained stylized
images to combat texture bias. This approach is shown to
reduce the texture bias in ResNet50 models. Another work
suggested that the difference between human and ImageNet
trained CNNs may stem from the training data that the
model sees and not due to the internal mechanics themselves
(Hermann et al., 2020). It is shown that CNNs trained with

natural augmentations on training data can outperform the
standard models by reducing their reliance on texture cues.

Random Convolutions (Xu et al., 2021) is a method of aug-
menting training data to remove local texture information.
Training with random convolutions shows the effectiveness
of shape-biased models in downstream tasks.

Another method, InfoDrop (Shi et al., 2020) is a Dropout
inspired, a model agnostic algorithm that incorporates lo-
cal self-information present in an image to increase shape-
bias. They also show the interplay between robustness and
shape bias. Shape texture debiased training (Li et al., 2021)
shows that both shape and texture labels are required in a
supervised setting to balance cue conflict correctly. They
propose a method to balance these cues by inter-class im-
age stylization and by using a label assignment strategy
based on MixUp. It is also shown that shape-biased and
texture-biased models rely on complementary cues. Patch-
wise adversarial regularization (Wang et al., 2019) penalizes
models when they can predict images using local patches
and encourage the model to learn global features. It is also
shown to be effective on a new proposed dataset, ImageNet-
Sketch, which contains sketch images of the various class
of ImageNet.

Recent works (Mummadi et al., 2021) have shown that
shape bias is not correlated to the corruption robustness by
training the model on the augmented dataset with edge maps
and other variants. One of the reasons for the prevalence
of texture over shape is shortcut learning (Geirhos et al.,
2020), which shows that deep neural networks may rely on
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spurious features (or shortcuts) to classify the data.

Domain Adaptation: Domain Adaptation methods have
been used to learn representations of the model trained on
the images from the source domain that generalizes well
on the images from the target domain. Domain Adversarial
Neural Networks (DANN) (Ganin et al., 2016) proposed an
adversarial framework for domain adaptation by introduc-
ing a domain classifier to classify which domain a feature
belongs to. DANN aims to learn domain-invariant represen-
tations that perform well on the target domain images. In
this work, we use this idea to learn better representations
and mitigate texture bias.

3. Proposed Method

‘We propose to use the idea of Domain adversarial training,
a popular Domain Adaptation algorithm, to mitigate texture
bias and learn more shape-related features. In previous
works, the source and target domains have been used as
two different sources of input. In this work, we propose to
interpret the target domain as a prior to the model that learns
invariant representations for specific tasks. This idea is used
to model specific invariances such as shape bias, by having
a shape agnostic augmentation in the target domain. We
also show that this can be effectively used to avoid spurious
correlations such as background (Table 4).

To remove the texture information from the images, we
use the pre-trained DexiNed (Soria et al., 2020) model to
generate edge maps of the image. The generated edge maps
preserve the global shape of the object and contain minimal
texture information. We also stylize the image using AdaIN
(Huang & Belongie, 2017) similar to (Geirhos et al., 2019).
Stylizing with painting changes the texture of the original
image while preserving the global shape.

Domain adversarial training introduces the domain discrim-
inator, which tries to classify the domain to which a feature
map belongs. We use the original image as the source do-
main and the union of edge map and stylized images as the
target domains. Using this choice of source and target, the
model has to learn discriminative features that the model
may not have learned with ERM to achieve good perfor-
mance. It also introduces a prior that can generalize to other
domains. We use DANN as the framework for our Domain
Adaptation technique. Recent work (Musgrave et al., 2021)
has shown that DANN is simple and effective for real-world
Domain Adaptation problems.

We introduce a weighted target class loss term in the Domain
adversarial training framework. This ensures that the model
is not only robust to the augmentations but also captures the
domain invariant prior. The target class loss is a standard
cross-entropy loss that minimizes the error on the images

in the target domain. Introducing such a loss enables the
model to be robust to texture transformations. We also need
the model to classify the edge map and stylized version
accurately, which is a measure of shape information in the
learned representation. Equation 1 captures the concept of
domain adversarial training.

Notation: S refers to samples from the source domain,
which refers to original images, and 7' refers to the sam-
ples from the target domain, which refers to the generated
edge maps and the stylized images. Ng and N refer to
the number of source samples and target samples, respec-
tively. z;, y;, and d; refer to the image, its class label, and
domain label, respectively. The domain label is zero for
source samples and one for target samples. L, refers to
the class loss for which we use cross-entropy loss, and Ly
refers to domain loss. Gy refers to feature extractor, G,
refers to feature classifier, and G4 refers to domain classifier.
0,0y, 0q refers to the trainable parameters of the feature
extractor, feature classifier, and domain classifier, respec-
tively. R refers to the gradient reversal layer. The modified
learning objective is as follows:
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The first two terms refer to the source and target class loss re-
spectively and the next two terms refer to the source and tar-
get domain loss. The second term is the additional weighted
source target loss term that we have introduced which cap-
tures domain invariant priors.

The modified domain adversarial training algorithm does
not allow the model to exploit shortcuts in the dataset and
thus captures more generalizable features. The proposed
method leads to much better performance on OOD datasets,
indicating the efficacy of the learned representations.

4. Results

We compare our result with standard baselines on three sub-
sets of ImageNet: ImageNet-20, ImageNet-9, and ImageNet-
200. We also compare our proposed method with baselines
on the NICO dataset. Additional information about each
dataset is reported in Appendix A and experimental details
in Appendix D.
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Table 1. Validation accuracies of various models on IN20 and
ImageNet-R (20 classes).

Model IN-20 Top-1 Acc  ImageNet-R
IN20 91.50 39.30
SIN 76.60 50.95
EIN 27.00 20.28
IN20 + EIN 92.30 52.81
IN20 + SIN 91.00 55.61
IN20 + EIN + SIN 92.20 60.07
ShapeTexture-Debiased Training (Li et al., 2021) 92.65 42.24
RandomConvolutions (Xu et al., 2021) 81.46 29.58
InfoDrop (Shi et al., 2020) 81.60 39.62
DANN - IN20, EIN+SIN (Ours) 91.90 62.25

Table 2. Validation accuracies of baseline and domain adversarial
models on IN-200 and ImageNet-R (200 classes).

Model IN-200 Top-1 Acc  ImageNet-R
IN200 - Baseline 89.30 33.02
DANN- IN200, SIN+EIN (Ours) 86.68 44.02

4.1. Datasets

ImageNet-20 (IN-20): A subset of 20 classes from Im-
ageNet dataset which are in common with classes of
ImageNet-R.

Stylized ImageNet (SIN): Stylized images of the corre-
sponding dataset, generated using AdalN style transfer.

EdgeMaps ImageNet (EIN): Edgemaps of the dataset gen-
erated using pretrained DexiNed model. Details about
edgemap generation are available in Appendix C.

ImageNet-200 (IN-200): A subset of 20 classes from
ImageNet dataset which are in common with classes of
ImageNet-R.

Non-LIL.D. Image dataset with Contexts (NICO): is a
dataset designed for OOD settings.

4.2. Experiments

Results on IN-20: Table 1 shows the results on the IN-20
dataset. We compare our method with other state-of-the-art
methods Shape-Texture Debiased training (Li et al., 2020),
Random Convolutions, and Informative Dropout. IN20 +
SIN indicates that the model is trained with standard ERM
on the union of the two datasets, similar to (Geirhos et al.,
2019).

The proposed method outperforms a standard ERM model
trained on IN-20+SIN+EIN on ImageNet-R by 1.6%. We
observe that the model’s performance on ImageNet-R, an
OOD dataset, is heavily influenced by the training data from
which the model learns. Comparing ERM models trained
on standard IN20 and its stylized counterpart, we can see

Table 3. Validation accuracies of baseline and domain adversarial
models on NICO.

Model Val Acc  Test Acc
NICO 73.84 73.00
NICO + SIN + EIN 77.38 75.23
DANN - NICO, SIN+EIN 78.38 76.15

Table 4. Performance on the ImageNet-9 dataset. BG-GAP refers
to the difference in accuracy between MIXED-RAND (MR) and
MIXED-SAME (MS) and indicates the impact of backgrounds on
the model’s prediction. (Lower BG-GAP is better)

Source  Target Test MS MR BG-GAP |
IN-9 - 85.95 73.80 53.58 20.22
IN9L - 94.61 89.90 75.60 14.30
IN-9L  SIN-9L + EIN-OL 9343 8746 78.69 8.77

IN-9 MR 92.81 91.08 84.89 6.19

IN-9 MS+MR 90.69 9096 87.73 3.23

a significant improvement of 11% in the OOD accuracy.
Furthermore, training on all flavors of IN-20 improves the
OOD accuracy by 20%. Adding either only EIN or SIN
to the original dataset also significantly improves OOD
accuracy. However, only a slight increase can be seen on
the In-distribution test set. The domain adversarial models
described in our proposed method outperform the standard
models in terms of In-distribution test accuracy and OOD
test accuracy.

Results on IN-200: On the larger IN-200 subset of Im-
ageNet, we compare our proposed method with standard
ERM training on the dataset. Table 2 shows our results on
IN-200. Although the standard model shows a slight im-
provement over the proposed method in the Top-1 accuracy
on the validation set, it can be observed that the proposed
method clearly outperforms the standard model in terms of
OOD generalization, as indicated by the test accuracy on
ImageNet-R by 11%.

Results on NICO: We train our baseline and domain ad-
versarial model on seven contexts and test them on three
unseen contexts. Table 3 shows the superior performance
of our domain Adversarial model over the baseline model,
which indicates that our Domain Adversarial model has
captured better representations by focusing on the object,
unlike the baseline model, which focuses more on the con-
text of the object. It is important to note that we compare
our model with a baseline consisting of a stylized version
and edge maps of NICO, and yet our model surpasses the
performance of the ERM model.

Results on ImageNet-9: We conduct experiments using
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Table 5. Comparison of Shape-Texture cue conflict score and 4 x 4
patch accuracy of models trained on IN-200.

Model Top-1 Acc  Shape Score  Texture Score  4x4 Patch Acc
IN200 89.30 135 157 61.36
DANN - IN200, EIN+SIN (Ours) 86.68 206 136 47.21

the source as IN-9 and targets as MIXED-RAND (MR)
and MIXED-SAME (MS), and only MIXED-RAND. We
also conduct experiments using IN-9L as the source domain
and edgemaps and stylized images of IN-9L as the target
domain. We observe in Table 4 that we obtain higher test ac-
curacy when using stylized images and edgemaps. We also
show that having target domains such as MIXED-RAND
and MIXED-SAME teaches the model better background
invariant representations, as shown by the background gap.
It can be seen that using stylized images and edgemaps as
the target domain allows the model to learn background
invariant features, leading to only a 3% background gap.
We also show an ablation study (Table 6) in Appendix B.

4.3. Evidence of Shape Bias

To verify that the proposed method is more shape biased, we
perform experiments on Shape-texture cue-conflict dataset
(Geirhos et al., 2019). For the IN-200 dataset, there are
around 560 images which we evaluate on. It can be seen
from Table 5 that the proposed method is more shape bi-
ased compared to the baseline model. The accuracy on
the shuffled image patches is also an indication of shape
bias (Luo et al., 2019). A high accuracy on the randomly
shuffled patches indicates that the model is focusing more
on the local patches rather than the global shape. Though
Top-1 Accuracy of baseline method is higher than that of
our method, the 4 x 4 patch accuracy shows that our method
has a much higher patch accuracy compared to our method
indicating higher texture bias of the baseline method.

5. Conclusion

We have introduced Domain Adversarial techniques as a
means to mitigate shape-texture conflicts in CNNss. In this
work, we show that domain adaptation methods can be ef-
fectively used to train models that are generalizable to OOD
datasets. With Domain Adversarial training, the model
learns both domain-specific and domain invariant features,
thereby mitigating texture bias and learning generalizable
representations. The results on various datasets show that
the proposed method outperforms all other techniques, es-
pecially in challenging datasets like ImageNet-R. We also
show results on NICO and IN-9 datasets, which evaluate
the performance of the models in different contexts and
background invariance, respectively.
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A. Datasets
A.1. ImageNet-20

We use a subset of 20 classes from ImageNet dataset which are in common with classes of ImageNet-R (Hendrycks et al.,
2021). To ensure a balanced dataset, we construct a hierarchy of ImageNet classes of ImageNet-R. Two subclasses are
randomly sampled from ten superclasses which have more than six subclasses. IN-20 comprises 20 classes with 26,000
training images and 1,000 validation images. The subset consists of birds (vulture, hen), bugs (mantis, bee), cats (tiger,
leopard), dogs (golden retriever, Weimaraner), fish (anemone fish, goldfish), fruits (banana, pineapple), food (espresso,
burrito), instrument(harmonica, flute), tools (candle, bucket), vehicles (jeep, tank).

A.2. ImageNet-R

ImageNet-R is collection of various renditions of images like cartoons, deviantart, graffiti, embroidery etc. consisting of
200 ImageNet classes resulting in 30,000 images. We use ImageNet-R as a primary benchmarking dataset for measuring
out-of-distribution performance.

IN-200: represents the 200 classes of ImageNet which are in common with ImageNet-R. IN-200 contains 258,951 training
images and 10,000 validation images.

A.3.NICO

Non-LI.D. Image dataset with Contexts (NICO) is a dataset designed for OOD settings. NICO dataset contains 19 object
classes, 188 contexts and 25,000 images in total. It simulates the real world by arbitrarily shifting image contexts. NICO
comprises two superclasses, animal and vehicle. We follow the experimental settings of (Wang et al., 2021) wherein images
of only the animal superclass with 10 contexts are used, out of these 10 contexts 7 are used for training and 3 are used for
testing. During testing, the number of test samples across the 7 contexts is 50, and for remaining 3 contexts number of
samples is 100. Unlike the original settings, long-tailed distribution is omitted during training.

A.4. ImageNet-9

We experiment with ImageNet-9 (Xiao et al., 2020), a dataset created to measure the background invariance of image
classification models. The base dataset contains 9 superclasses of ImageNet, namely, dog, bird, vehicle, reptile, carnivore,
insect, instrument, primate, and fish. This dataset is then used to generate other datasets with varying foreground and
background information. The background gap, an indication of the model’s reliance on the background is measured
as the difference in test accuracy between MIXED-SAME and MIXED-RAND. We conduct experiments based on our
proposed method on training on the IN-9. ONLY-BG-B contains the background of the image with the bounding box of the
enclosed object blacked out. ONLY-BG-T is the background of the image with the bounding box of the object replaced
with a background tile of the same image. NO-FG contains the background with the foreground object blacked out using
foreground detection methods. Similarly, ONLY-FG contains the foreground object extracted using a foreground detection
technique with a black background. MIXED-SAME contains images where the background has been swapped with another
background of the same class, and MIXED-RAND contains images where the background is swapped with the background
of a randomly chosen class.

B. Ablation

Ablation of different source-target pairs: We experiment with the source domain containing the images and their
edgemaps, and the target domain having the stylized images. We observe that we obtain optimal performance when
we use the original dataset as the source domain and use both of these augmented datasets as the target domain. Table
6 shows the impact of using different source and target pairs in the dataset. It can be seen that using IN20 as the
source and EIN+SIN as the target works best among all the pairs. It can be seen that just using the EIN as the target
significantly decreases the model’s performance, and using stylized data is vital for the model to generalize well to OOD data.
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Table 6. Ablation study of different source and target datasets for Domain Adversarial model.

Source Target IN-20 Top-1 Acc  ImageNet-R
IN20 EIN 86.30 48.24
IN20 SIN 91.10 58.65
IN20 + EIN SIN 90.70 61.24
IN20 + SIN EIN 89.10 57.33
IN20 EIN+SIN 91.90 62.25

C. EdgeMap Generation Technique

EdgeMaps are generated via pretrained DexiNed network (Soria et al., 2020).. DexiNed is a combination of two networks,
Dense extreme inception network (Dexi), which receives an RGB image as input, and an up-sampling block (UB), which
receives feature maps as input from each block of Dexi. The edge map generated from each upsampling block is combined
to produce fused edge maps. DexiNed is capable of adapting to domain shifts and can outperform other state-of-the-art edge
map models. DexiNed produces two variants of EdgeMaps i.e., DexiNed-averaged and DexiNed-fused. We use the authors
official implementation ! and utilize DexiNed-averaged in all our experiments.

D. Experimental details

We use ResNet50 architecture as the backbone for our Domain Adversarial model and the baseline model. The baseline
refers to the model trained with ERM. The baseline model is trained for 100 epochs with a learning rate of 0.01, reduced by
a factor of 10 at the 60th and 90th epochs, respectively. We use a batch size of 128 and train using SGD with momentum and
weight decay of 0.01. We use the standard data augmentations used for training ImageNet models. The Domain Adversarial
model is trained with the same hyperparameters as the baseline model. Unlike (Ganin et al., 2016), the same learning rate is
kept across the feature extractor and feature classifier since we do not initialize the model with pre-trained weights. We use
a « of 0.5 for all our experiments.

"https://github.com/xavysp/DexiNed



