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Abstract

The manual design of scenarios for Air Traffic Control (ATC) training is a de-
manding and time-consuming bottleneck that limits the diversity of simulations
available to controllers. To address this, we introduce a novel, end-to-end approach,
AirTrafficGen, that leverages large language models (LLMs) to automate and
control the generation of complex ATC scenarios. Our method uses a purpose-
built, graph-based representation to encode sector topology (including airspace
geometry, routes, and fixes) into a format LLMs can process. Through rigorous
benchmarking, we show that state-of-the-art models like Gemini 2.5 Pro, OpenAl
03, GPT-0ss-120b and GPT-5 can generate high-traffic scenarios while maintaining
operational realism. Our engineered prompting enables fine-grained control over
interaction presence, type, and location. Initial findings suggest these models are
also capable of iterative refinement, correcting flawed scenarios based on simple
textual feedback. This approach provides a scalable alternative to manual scenario
design, addressing the need for a greater volume and variety of ATC training and
validation simulations. More broadly, this work showcases the potential of LLMs
for complex planning in safety-critical domains.

1 Introduction

Air traffic control is a complex, safety-critical task that necessitates rigorous selection and training of
new air traffic control officers [ATCOs, UK Civil Aviation Authority, |2024]. Trainee competency
is assessed in simulations using handcrafted traffic scenarios designed to test specific skills: for
example, recognising and resolving potential aircraft conflicts. The complexity of these scenarios
is maintained at a level appropriate for training. Designing such scenarios is therefore demanding,
time-consuming and expensive, requiring significant expert resource. This limitation restricts both
the number and the diversity of training scenarios. These challenges apply equally to the construction
of scenarios for validating proposed changes to operating procedures, forming a barrier to entry for
effective airspace change [EUROCONTROL! 2014].

Controlled airspace is divided into geographical units known as sectors, each governed by sector-
specific procedures. Hence, designing representative validation scenarios requires substantial domain
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Figure 1: Overview of the AirTrafficGen framework for fully configurable scenario generation
on arbitrary airspace geometries. Given a sector of airspace (a three-dimensional volume with
prescribed routes on which aircraft can fly — denoted by coloured lines) and a text-based scenario
specification, we engineer a prompt that encodes the relevant spatial information for an LLM to create
a highly specific air traffic scenario. The framework converts the sector geometry into a grid-based
graph, designed using key air traffic control safety length-scales. The output is in a structured JSON
format, which we feed into a simulation environment.

expertise and sector-specific knowledge. Automating scenario generation in both contexts could
markedly increase scenario quantity and diversity. Therefore, a method is needed to controllably
generate new interacting scenarios while respecting existing route structures and sector procedures.
This paper explores the novel application of Large Language Models [LLMs, |Devlin et al., 2019,
Radford et al.,|2018]] as a principled alternative to handcrafted scenario generation.

We present an end-to-end framework for fully configurable scenario generation: AirTrafficGen.
A core novelty is our rigorous benchmarking of LLM capabilities on this complex task. First, we
introduce a novel mapping from three-dimensional airspace sectors to discrete graphs, engineered
to fit within an LLM’s context window. Within this setting, we systematically benchmark the
reasoning capabilities of state-of-the-art LLMs across orthogonal subtasks required for scenario
generation. Specifically, we evaluate competency along four reasoning axes: (1) aircraft spatial
density — handling higher traffic loads; (2) temporal reasoning — varying scenario duration; (3)
sector complexity — adjusting route interactivity; and (4) interaction modelling — engineering
scenarios of differing complexity. Our benchmarks test LLM ability to generate scenarios with
differing aircraft counts, durations, and sector complexities, providing granular insight into model
strengths and limitations. Finally, we implement an end-to-end pipeline that demonstrates full
controllability and practical utility in producing realistic, challenging air traffic scenarios. See
Figure|l|for a concise overview.

The contributions of our paper are as follows:
* Novel benchmarking showcasing the strengths and limitations of LLMs in spatial, temporal,
and spatio-temporal reasoning crucial for complex air traffic scenario generation.

* A purpose-built, graph-based knowledge representation that enables LLMs to ingest and
reason over intricate spatio-temporal air traffic data.

* An engineered-prompting framework that provides fine-grained control over scenario
characteristics including interaction presence, type and location.

* Empirical demonstration of the method’s applicability across diverse route configurations.

2 Background on Air Traffic Control

The role of an ATCO is to ensure the safe, orderly and expeditious transit of aircraft through their
sector. Before each flight, the aircraft operator submits a flight plan specifying the route as a sequence
of GPS waypoints, or fixes. This plan informs the sector ATCO of the aircraft’s intended lateral
track and its requested exit flight level (the altitude at which it will leave the sector). Flight levels are



reported in hundreds of feet (e.g., FL 250 corresponds to 25, 000ft). Figure [2a depicts a sector and its
fixes. Because the sector contains only a finite set of fixes, the number of possible routes through it
is also finite. The 7™ aircraft within a scenario can be characterised by the following information:
aircraft-type, spawn time, initial flight level, h;, requested/exit flight level, e;, and route.
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(a) An illustrative airspace schematic. Fixes are denoted with black (b) The three fundamental pairwise interac-
boxes, and routes flown by aircraft are marked with coloured lines. tion types: cross-path, head-on and catch-up.

Figure 2: Overview of relevant airspace (left) and aircraft interaction types (right).

An ATCO’s overriding priority is to maintain separation minima between all aircraft in the sector.
They must formulate deconfliction plans that remain robust even in the event of communication
failure, greatly increasing task complexity. The task is further complicated by the presence of
large epistemic uncertainties concerning aircraft performance (see, e.g., Pepper and Thomas| [2024).
Aircraft pairs are deemed to be relevant traffic when the ATCO may need to issue instructions to
assure safety, at ranges that are much greater than the separation standards for that airspace. No
formal metric determines if two aircraft are relevant to one another; this depends on the ATCO’s
judgement, the specific sector, and the wider operational context. For this reason, we define a
relevancy metric, based on discussions with ATCOs. Under this metric, all aircraft in a scenario
are non-interacting if, on their current trajectories, no pair with overlapping flight level range{] come
within 20 nautical miles (nmi) of one another. This threshold equates to a 2—3-minute look-ahead
time depending on the ground speed of the aircraft, which is comparable to the timescales used in
short-term conflict detection (see, e.g. Radanovic et al.[2018)).

A non-interacting scenario is one where no aircraft are considered relevant to each other, allowing
them to operate independently. Independent aircraft reduce complexity because instructions issued to
one need not consider the safety of others. A constraint when designing air traffic scenarios is that an
aircraft should not be relevant traffic for at least 2 minutes after entering the controlled sector. This
reflects operations within a sectorised airspace, in which aircraft are passed between different sectors
in such a way that they do not pose an immediate safety issue in the new sector [EUROCONTROL]
2023

Interactive scenarios exhibit several distinguishing features. At a high level, specifying the number
of interactions, and frypes of these interactions, is an effective measure of “interactivity" or scenario
complexity. Interactions are classified into three types according to the configurations of the
participating aircraft (see Figure 2b). At the level of classification, any multi-aircraft interaction
can be decomposed into groups of pairwise interactions.

3 Related Work

Earlier studies generated air traffic scenarios by algorithmically re-working recorded data to insert
interactions [Oaks and Paglionel 2002} |Oaks et al., |2003|] or by keeping a human in the loop [Signor
et al.,2004]. More recently, Stefani et al.|[2025]] proposed an automated generator to validate machine
learning conflict-resolution tools. Yet few studies create realistic air traffic scenarios from scratch in
synthetic airspace.

"The flight level range of an aircraft is defined as the range (min(h;, e;), max(hi, e;)).



In contrast, machine learning methods have been used to generate complex scenarios across domains
as varied as economics [Flaig and Junike, [2022]], healthcare [Arvanitis et al., 2022]], energy [Dong
et al.| 2022], and transportation [Feng et al.l 2023]]. In transportation, scenario-based testing is
used to assess autonomous driving systems |Ding et al.|[2023],|Cai et al.|[2022]. Several advanced,
data-intensive methods such as diffusion [Xu et al.}|2025]] and generative adversarial networks [GANS,
Demetriou et al.| 2023]] have been investigated to generate automotive scenarios. However, these
data-intensive methods are poorly suited to our setting, where the synthetic airspace datasets for
ATCO trainees are small.

Road-traffic scenarios resemble air traffic ones: both involve multiple vehicles interacting on proce-
durally constrained route structures. Road traffic is tightly constrained by lanes and rules, whereas
aircraft have three-dimensional freedom as ATCOs can direct them off their filed routes. Safety
definitions also differ: air traffic management employs high redundancy and conservative thresholds,
making fine-grained controllability harder. Moreover, road-traffic scenarios typically revolve around
a single “ego-vehicle", whereas air traffic scenarios evaluate a controller’s handling of the complete
traffic flow. Furthermore, road traffic scenarios are primarily benchmarked by collision rates involving
an agent-controlled ego vehicle [Xu et al., [2022]]. In contrast, air traffic scenarios lack such an agent,
and safety is measured in a more subtle manner: the controlling technique of ATCOs is assessed
across a diverse range of competencies based on different configurations of aircraft. This difference
requires designing ATC scenarios with a unique degree of controllability over scenario characteristics.

A key requirement for testing automotive driving agents is the ability to generate automotive scenarios
controllably, allowing the user to select scenarios from the same distribution as the training data or to
adversarially generate scenarios. Hence, LLMs have recently been applied to the generation of road
traffic scenarios [Zhang et al.,[2024} |Chang et al., [2024, |Lu et al.} 2024} Cai et al.,|2025]. LLM-based
generation therefore requires an interpretable encoding of the road network topology. In this paper,
geometric information concerning sector routes is encoded in a graph-based representation, which is
described in the next section.

4 Graph Representation of Air Traffic Control Scenarios

Continuous airspace and aircraft trajectories must be discretised for an LLM framework. The structure
of our proposed discretisation is motivated by the length-scale used to determine whether aircraft are
relevant traffic to one another.

To represent the spatial relationships between the fixes along routes efficiently for LLM consumption,
we project the routes into a graph-based representation, where nodes of the graph are separated by
20 nmi. Figure [3]illustrates this process for two example routes, with Figure [3a] displaying example
routes prior to the encoding and Figure [3b]shows the corresponding graph. The process can aggregate
multiple fixes into a single graph node, which is a useful feature as sectors typically contain a high
density of fixes in proximity.

20nmi
& ]

(a) Two example routes prior to graph encoding. (b) The corresponding graph representation.

Figure 3: Converting sector routes to a graph representation. The three fixes encircled are all within 20
nmi, meaning that in the graph representation they will be projected onto the same node. The legs of
the routes are interpolated with nodes every 20 nautical miles. Notice that we throw away unimportant
kinks in the routes for maximal simplicity, retaining only the route lengths and intersections.



This method is motivated by the need to retain only essential information for configurable generation:
route length (to simulate traversal time) and route intersections (to manage aircraft interactions).
See [Google DeepMind and Kaggle, |2025]] for some related work involving the encoding of spatial
environments for LLMs within the context of games.

4.1 Aircraft Dynamics

Aircraft traverse the graph along their assigned routes. Each aircraft is classified as fast (one node
at each time-step) or slow (one node every two time-steps) to reflect a wide range of performance
characteristics present within controlled airspace [Hodgkin et al., 2025]. Slow speeds correspond to
turboprops, and fast speeds to jet engines when converting our discretised scheme to any simulator.
Due to the large discretisation length-scale and broad definition of relevant traffic, this simplification
is designed to have a limited impact on the fidelity of our method. See Figure [ for an example
scenario, with Figure [§|showing the route structure of the synthetic sector in greater detail.

4.2 Interactions on the Graph

In the discrete model, an interaction occurs when (1) two aircraft occupy the same node simultane-
ously, or (2) two aircraft swap nodes in one time-step. By design, the graph construction ensures that
no edges cross without meeting at a node; therefore, these two events capture every instance where
aircraft pass within the 20 nmi threshold.

t=0 t=2 t=4 t=7 t=10

Figure 4: An example non-interacting scenario for the traffic volume benchmark. Aircraft spawn at
the start of their routes, and move in discretised time units along the route, one grid cell at a time.

5 LLM Prompting Framework

This section details our multistep prompting framework. The full prompts used in this paper are
detailed in the Supplementary Material. The LLM receives two inputs: 1) Specification: a text
description of the required scenario, and 2) Sector geometry: permitted routes and their layout.
Routes are converted to the graph formalism of Section ]

The prompt first establishes the core task, defining the scenario rules and settings, and provides
detailed instructions on how aircraft move and the definition of an interaction. This is followed by a
“high-level strategy” section which acts as the core of the prompt. This explicitly directs the model to
split the task into three phases: 1) Sector analysis (identify route intersections), 2) Aircraft placement
strategy, and 3) Internal verification and iterative refinement.

The framework’s key feature is the third phase, where the model is prompted to internally verify
its own scenario by rolling out trajectories to check for unintended interactions. We prompt the LLM
to return a scenario in a fixed JSON format where each entry includes a spawn time (integer), a route
(string identifier), and aircraft speed (1 or 2). The JSON files generated by the LLMs were formatted
so that they could be parsed by BluebirdDT, a probabilistic digital twin of en route airspace [[The
Alan Turing Institutel 2024]). All scenario screenshots used in this work are generated using this twin.

6 Benchmarking Scenario Reasoning

In this section, we evaluate how well contemporary large language models perform each component
of air traffic scenario generation. The task provides a natural testing ground for spatial reasoning and
planning. To quantify these skills, we introduce four novel benchmarks.



To emulate the manual design process, where lateral conflicts are typically planned before vertical sep-
aration is assigned, our benchmarks are initially restricted to the 2D lateral plane (h; = e; = H , V4).
This isolates the problem of creating or avoiding lateral conflicts before Section [/]introduces the
vertical dimension. Handling large aircraft counts or dense interaction patterns demands strong
spatial awareness, temporal reasoning and careful forward planning. Succeeding in this task requires
simulating how aircraft move, tracking all possible interactions, and making tactical decisions about
parameters to best avoid or create them.

6.1 Benchmark Suite

We begin with the fundamental spatial and temporal reasoning required to understand air traffic
scenarios. Each benchmark asks the LLM to produce a non-interacting scenario that meets specific
constraints. See Table[Tlfor the full list of models we benchmark in this work. To ensure statistical
confidence in our results, we test every parameter set on ten synthetic sectors (Figure | shows one
example). The code required to run these benchmarks, including these synthetic sectors, is included
in the Supplementary Material. All benchmarks are automatically verifiable: after generating
trajectories on the graph, we can directly count the number of interactions.

Traffic Volume Benchmark. For a fixed scenario length and sector complexity, we measure LLM
performance at creating non-interacting scenarios with increasing numbers of aircraft. See Table 2]
for the results of this benchmark.

N e {25 3,4,5,6,7,8,9,10, 15, 20, 25, 30} , T'=12, Niues =7, Ninersections = 7. (1)

Here, N is the number of aircraft, 7' is the number of scenario time units, N yues 1S the number of
routes in the sector and Nipgersections 1S the number of graph nodes occupied by more than one route (a
proxy for sector complexity). Figure ] illustrates an example sector used in this benchmark.

Scenario Length Benchmark. For a fixed number of aircraft and sector complexity, we measure
LLM performance at creating non-interacting scenarios of increasing length. See Table [3] for the
results of this benchmark.

T e {127 157 187 217 24}a N = 87 Nroutes = 7; Nimersections =7. (2)

Sector Complexity Benchmark. Next, we design a benchmark to focus on measuring the capability
of models to handle sectors of increasing intrinsic complexity (measured by the number of intersection
points of the routes in the sector). We do this for a fixed number of aircraft and scenario length. See
Table @ for the results of this benchmark.

Ninterseclions € [47 14} 5 N = 8; T = 12, Nroutes =7. (3)

Success is measured by the mean number of unique pairs of interacting aircraft (MUIP) across
the 10 synthetic sectors; the ideal value is zero. All models are compared with a random baseline
score which is computed by averaging over 500 scenarios created by sampling spawn times, routes
and speeds from their valid sets uniformly. In Figures[IT]and[I2] we give two examples of Gemini-
2.5-Pro’s responses on the N = 30 traffic volume benchmark, on two different sectors.

Lastly, we design a controllability benchmark, which assesses an LLM’s ability to construct a target
number of interactions. We use the parameters

T=12, N = 107 Nroutes = 7, Nintersections = 7, @

and prompt for {1, 2,3, 4,5} unique interacting pairs. Success is gauged by the mean absolute
difference between the number of unique interacting pairs and the input number of interacting
pairs (MADIP) across the 10 synthetic sectors. See Table 5| and Figure [9] for the results of this
benchmark.

All experiments used the OpenRouter inference platform OpenRouter| [2025]]. Specific prompts for
each benchmark are given in the Supplementary Material. For all experiments, we used a temperature
of 1.0, top_p = 1.0, top_k = 0.0, and a maximum token budget of 35, 000. For each task, we use the
first scenario generated by the LLM that satisfies the required format, rather than generating multiple
candidates. If a model failed to produce a valid output due to token limits, the token budget was
increased in steps of 10, 000 until success. No model required more than 50, 000 tokens to produce a
valid response on all benchmarks. The combined cost of all the experiments carried out in this paper
was under $150 USD.
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Figure 5: LLM capabilities across four benchmarked axes.

6.2 Benchmarking Results

The complete benchmark results appear in Appendix [C] Figure [5 summarises model capabilities;
here ability is measured as a normalised score € [0, 1] relative to the mean score of the random
baseline (labelled with the rand subscript). The scores are calculated as follows:

_ [, mur [, MADIP )
H128 = 0 MUIPwna), 7 ||~ MADIPaana] |’
where [z]; = max(0,z), a value of 0 matches or underperforms the random baseline, and 1

corresponds to perfect performance.

We observe considerable variation in model performance. Interestingly, performance across capability
dimensions is not fully correlated. For example, mistral-small-24b-it handles scenario length better
than llama-405b-it, but not sector complexity. The most advanced models, GPT-5, 03 and Gemini-2.5-
Pro, are the most effective, with GPT-5 performing near-optimally across all benchmarks, whereas
Gemini-2.5-Pro falters at the upper end of the interaction task. We also observe strong performance
of the open-source GPT-oss models, in particular with the 120b variant outperforming most advanced
proprietary models. This result is clearly demonstrated in Appendix [C| Figure[T0] where we compare
model performance against cost - plotting the Pareto frontier.

We observe that most models struggle to perform better than random at the fourth benchmark. It
should be noted that the latter elements of the controllability benchmark, involving generating 4 or 5
interactions in a scenario with 10 aircraft, are incredibly difficult and go beyond the scope of design
control required to make realistic air traffic scenarios. Moreover, the full task includes the vertical
dimension, giving designers an extra degree of freedom to alleviate congestion.

7 Configurable and Flexible Air Traffic Scenario Generation

We have observed that some advanced reasoning models are capable of designing high-traffic non-
interacting scenarios and produce promising results when prompted to generate interactions in the
lateral plane. We therefore turn to the central requirement of realistic simulation: fine-grained
controllability. To meet the full complexity and fidelity demanded by operational air traffic control
simulations, we add the vertical dimension: each aircraft now carries an initial flight level and a
requested exit flight level in the structured JSON output. Human controllers find the task markedly
easier once the vertical dimension is available, because potential lateral conflicts can be resolved by
altitude separation.

This section demonstrates the breadth of controllable parameters that scenario designers can exploit
when generating air traffic scenarios. For illustration, we employ Gemini-2.5-Pro to generate a wide



(a) Generate a scenario with four (b) Generate a scenario with four air- (c) Generate a scenario with six air-
aircraft. There should be two air- craft. Three aircraft should follow craft. There should be an interac-
craft which interact in a cross-path one another in trail, but not interact- tion in which three aircraft are in-
manner. The remaining two aircraft ing. The fourth should be a climber volved. All other aircraft should be
should not interact with anything. ~ which climbs through all the levels non-interacting.

of the three in trail.

Figure 6: Three examples of fine-grained scenario controllability using AirTrafficGen. Each sub-
caption details the prompt used. Images are generated using BluebirdDT, where labels next to each
aircraft show its ground speed (GXXX, in knots), initial flight level (in orange), and exit flight level
(in blue). The scenarios show: (a) an interaction between AC1 and AC2, while a fourth aircraft is yet
to spawn; (b) AC1, AC2, and AC3 in trail, while AC4 climbs through their levels and across their
route as requested; and (c) a triple interaction created using AC1, AC2, and AC3.

spectrum of specific scenarios. Our testing includes fine-grained instructions with detailed require-
ments including number of aircraft, conflicts (including location, time and type), as well as general
traffic patterns (including features like “in trail" or “climbing through levels"). A further strength is
the ability to adapt existing scenarios to new requirements. This includes adding new aircraft or
modifying the parameters of existing aircraft to precisely tailor a scenario to specific requirements.
This adaptability highlights the flexibility and operational relevance of AirTrafficGen.

To illustrate the control offered by AirTrafficGen, we provide concrete examples:

1. Pairwise Interactions: Appendix [E|and Figure [13] show precisely engineered scenarios
with all three fundamental pairwise interactions: cross-path, head-on, and catch-up.

2. Sophisticated Controllability: Figure[6] presents three complex scenarios that involve a
higher number of aircraft, intricate and detailed instructions, and combinations of various
control parameters.

3. Scenario Modification: Finally, in Figure[7] we provide an example of controllability in
terms of modifying an existing scenario. This demonstrates how our method can take a pre-
existing traffic scenario and adapt it to new requirements, such as increasing its complexity
or introducing new elements.

The method is both powerful and generalisable across sectors and operational contexts, and it
directly addresses the laborious and time-intensive nature of handcrafting scenarios. Although the full
complexity of high-traffic scenarios is challenging to convey in static images, the provided screenshots
with lower traffic densities effectively demonstrate the precise and controlled generation capabilities
of our method. It is worth stressing that the end-to-end pipeline, including the graph-based knowledge
representation, LLM-driven generation, and simulation of scenarios within BluebirdDT, delivers a
complete and fully functional system for controllable air traffic scenario generation.

Furthermore, we observed that advanced reasoning models can respond to corrective feedback,
refining a scenario based on its evaluated outcome; see Appendix D] In particular, when asked to
generate non-interacting scenarios, we observe that, given the ability to respond to automatically
generated feedback highlighting any interacting aircraft pairs that violate the requirement, several
models achieve perfect performance on the varying number of aircraft benchmark. For example,
in Figure [I2] we show one of the N = 30 traffic volume benchmarks that Gemini-2.5-Pro fails to
solve. Given the feedback on how it failed, the model was able to adapt its solution and pass the
benchmark. For verifiable scenario specifications (e.g., the specific number of aircraft or interactions),
this feedback mechanism is automatic and scalable.



(a) Original scenario. (b) LLM-adapted scenario to make the aircraft in-
teractions more difficult to solve.

Figure 7: When prompted to make the interaction in (a) harder to solve by adding a new aircraft, the
LLM has added ACS5. ACS has flight level overlap with AC2 and AC4, adding to the complexity of
the scenario. An ATCO may solve (a) by climbing AC4 to an intermediate (but still safe) level of 280.
However, the presence of ACS5 at this level blocks this potential solution.

8 Discussion

This paper introduces AirTrafficGen, a novel, end-to-end framework for configurable generation
of air traffic scenarios, leveraging advanced reasoning capabilities of large language models. It
offers a systematic, scalable alternative to the labour-intensive process of handcrafting scenarios. By
encoding the three-dimensional problem into a graph-based representation that LLLMs can process,
we achieve fine-grained control over the characteristics of scenarios.

Our benchmarking methodology provides granular insights into LLM performance across crucial
spatial, temporal and interaction reasoning axes. Our graph representation ensures that every generated
scenario can be automatically rolled out and verified by counting interactions. State-of-the-art models
such as Gemini-2.5-Pro and OpenAl’s 03, GPT-oss and GPT-5 models reliably create high-traffic non-
interacting scenarios and precisely engineer diverse interaction types, including pairwise conflicts and
more complex multi-aircraft interactions. In the future, given the automatically verifiable nature of
our benchmarks, it would be interesting to study the effect of recent methods in prompt optimisation
Agrawal et al.[[2025]].

A key strength of our method is its ability to adapt existing scenarios, tailoring them to specific
instructions by adding new aircraft or modifying existing scenario data. This flexibility, along
with sector-agnostic deployment, supports rapid prototyping and the creation of varied, challenging
scenarios. Section [/|demonstrated fine-grained controllability in a range of examples. Future work
will include quantitative human-in-the-loop trials in which human ATCOs assess how well generated
scenarios meet more nuanced specifications.

Looking ahead, future work will explore the integration of more complex operational elements, such
as holding patterns, standard airport terminal departure and arrival procedures (SIDs and STARSs),
and the dynamic introduction of unexpected events. Investigating mechanisms for human feedback
and editing within the generation loop could provide valuable refinements, combining an LLM’s
generative power with expert domain knowledge.

In conclusion, this research demonstrates the remarkable potential of LLMs in complex planning
tasks within air traffic control. The framework overcomes the limits of traditional scenario generation
and creates an opportunity for more efficient, adaptable, and diverse simulations for ATCO training
and operational validation.
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A Example synthetic sector for benchmarking experiments

Figure [§]illustrates the route structures in one of the synthetic sectors used for benchmarking.

Set of Allowed Routes Through Sector (with directionality)

— B
C
D = ] ] ]
E
F
_—c = ] ] ] ] ]

Figure 8: One of the synthetic sectors used in the benchmarking.

B Full List of Models

We provide a full list of models included in our benchmarking experiments in Table[T]

Table 1: The models used in the benchmarking experiments and whether they support extended
reasoning or thinking modes. Where not stated, the model versions used were the latest available
models on OpenRouter as of 12" August 2025. Pricing data reflects the average cost per million
output tokens on the OpenRouter platform as of 12" August 2025.

Model Reasoning | $/M Output Tokens
gwen-3-8b-it|Qwen Team |[2025] v 0.138
mistral-small-3.2-24b-instruct-2506 Mistral AI|[2025] - 0.20
Ilama-3.3-70b-it Meta AI|[2024a] - 0.23
gpt-0ss-20b |(OpenAl|[2025a] v 0.28
gemma-3-12b-it|Gemma Team |[2025] - 0.33
gemini-2.5-flash-lite-preview-06-17 |DeepMind |[2025a] v 0.40
gpt-0ss-120b (OpenAl|[2025a] v 0.48
llama-3.1-405b-itMeta AI|[2024b] - 2.51
deepseek-r1-0528 [DeepSeek-Al|[2025] v 2.55
kimi-k2 [Moonshot AI|[2025] - 2.58
gpt-4.1-2025-04-14 |OpenAl|[2025a] - 8.0
03 OpenAlI|[2025b] v 8.0
gpt-5|0OpenAl|[2025b] v 10.0
gemini-2.5-pro |DeepMind |[2025b] v 12.50

C Benchmark Results

In Tables 2] [3] ] and [5] we present the benchmarking results for the varying scenario traffic volume,
length, sector complexity, and interaction number benchmarks, respectively.
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Table 2: Benchmarking Results for varying number of aircraft. Values quoted are the average number
of unique interacting pairs of aircraft computed across 10 generated scenarios on 10 synthetic sectors.
Optimal behaviour (marked with a checkmark) is zero interacting pairs.

| Number of Aircraft | 2 3 4 5 6 7 8 9 10 15 20 25 30 |

| random |01 02 04 06 09 14 18 23 29 67 122 193 284 |
kimi-k2 v 01 02 02 03 11 08 15 08 4496 11.1 208
gpt-4.1-2025-04-14 v v v 01 01 02 v 03 04 27 36 57 160
gemini-2.5-flash-lite-preview-06-17 | v 0.1 v 02 02 07 03 06 11 22 56 66 146
qwen3-8b-it v 01 01 06 06 09 20 20 12 62 84 173 122
llama-3.3-70b-it v v v 01 03 11 13 10 1.1 29 47 29 112
llama-3.1-405b-it v 01 01 02 04 12 09 15 15 35 80 66 110
deepseek-r1-0528 v v v v v 01 02 v 04 13 40 6.1 9.2
gemma-3-12b-it v v 01 01 03 04 08 09 15 54 33 88 90
mistral-small-3.2-24b-instruct-2506 | vv v 02 v 05 11 07 1.1 13 42 70 99 54
gemini-2.5-pro v v v v v v v v 01 06 03 0.3 0.9
gpt-0ss-20b v v v v v v v v 01 01 07 1.0 0.2
03 v v v v v v v v 02 02 v
gpt-0ss-120b v v v v v 01 01 v 02 v 01 v v
gpt-5-low v v v v v v v v v v v
gpt-5-high v v v v v v v v v v v

Table 3: Benchmarking results for varying scenario length. Values quoted are the average number of
unique interacting pairs of aircraft computed across 10 generated scenarios on 10 synthetic sectors.
Optimal behaviour (marked with a checkmark) is zero interacting pairs.

| Scenario Length | 12 15 18 21 24 |

| random baseline | 1.8 1.7 16 14 12 |
qwen3-8b-it 1.3 12 1.0 17 12
kimi-k2 10 16 1.0 04 09
Ilama-3.1-405b-it 1.3 09 13 07 09
gemma-3-12b-it 06 09 09 12 06

mistral-small-3.2-24b-instruct-2506 | 0.6 1.0 0.7 1.0 0.5
gemini-2.5-flash-lite-preview-06-17 | 04 04 03 02 0.2

opt-4.1-2025-04-14 v 04 01 01 0.1
llama-3.3-70b-it 08 04 09 03 0.1
gemini-2.5-pro v v v v 0.1
deepseek-r1-0528 02 v 01 V v
gpt-0ss-20b 0.1 Vv v 01 Vv
03 v v v v
gpt-oss-120b v v v v Y
gpt-5-low v v v v v
gpt-5-high v v v v Y

Figure [0 summarises the controllability benchmark: box plots of the number of interactions each
model generates at different targets, revealing systematic under- and over-generation. While 03 stays
close to the targets in all settings, Gemini-2.5-Pro struggles with higher targets. Most models increase
conflicts as the target increases, but do not reliably match the requested counts, indicating limited
fine-grained control.

Figure [I0] compares the overall skill level across the four benchmarks (computed as the sum of
the normalised skills) against inference cost. The dotted red line represents the Pareto front. It
is particularly interesting to observe that the GPT-oss models achieve close to optimal scores at a
fraction of the cost.

C.1 Case Study: High-Volume Scenario Generation (N = 30)
We present two Gemini-2.5-Pro outputs on the N = 30 traffic-volume benchmark (Figures[TT]and[I2).

The model is successful in Figure[TT]and fails in Figure[T2] illustrating both the complexity of the
task and, in the success case, the strategy employed by a reasoning-capable model.
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Table 4: Benchmarking results for increasing sector complexity. Values quoted are the average
number of unique interacting pairs of aircraft computed across 10 generated scenarios on 10 synthetic
sectors. Optimal behaviour (marked with a checkmark) is zero interacting pairs.

| Sector Route Intersections | 4 5 6 7 8 9 10 11 12 13 14 |

‘ random ‘ 19 19 19 23 23 27 25 27 29 27 31 ‘
qwen3-8b-it 13 16 12 23 14 24 23 26 38 35 3.1
kimi-k2 12 16 09 14 17 20 20 14 21 22 30
mistral-small-3.2-24b-instruct-2506 | 1.0 0.7 1.1 14 19 18 19 19 23 18 29
gemma-3-12b-it 12 12 08 17 09 15 11 21 23 28 28
Ilama-3.1-405b-it 05 12 06 10 09 19 18 18 16 19 24
deepseek-r1-0528 v v 01 06 08 07 02 04 08 05 1.7
gemini-2.5-flash-lite-preview-06-17 | 0.6 09 04 02 04 09 09 12 10 13 15
1lama-3.3-70b-it 1.0 05 04 10 12 08 12 07 17 15 12
gpt-4.1-2025-04-14 03 01 02 05 04 07 02 02 09 07 08
gemini-2.5-pro v v v v v v v 01 05 01 V
gpt-0ss-20b v Ve v 0.1 0.1 0.1 0.1 ve 0.1 Ve v
03 v v v v v v v v v v v
gpt-oss-120b v Ve v 0.2 v 0.1 v v 02 03 v
gpt-5-low v v v v v v v v 01 Vv v
opt-5-high V Vv v v v v v v v ool v

Table 5: Benchmarking results for increasing number of input conflicts. Values quoted are the mean
absolute difference between the number of generated interacting pairs of aircraft and the input number.
This average is computed across 10 generated scenarios on 10 synthetic sectors. Checkmarks denote
perfect performance across all 10 synthetic sectors (a mean absolute difference of zero).

| Number of Interactions | 1.0 20 30 40 50 |
random baseline | 195 155 149 192 258 |
llama-3.3-70b-it 1.30 130 1.70 2.20 4.20

deepseek-r1-0528 030 0.60 090 120 3.90

openai/gpt-oss-20b v v 1.10  3.00 3.80

gpt-4.1-2025-04-14 050 220 140 240 340

gemini-2.5-flash-lite-preview-06-17 | 1.90 2.00 = 3.30 1.20 3.00

gemma-3-12b-it 1.20 120 1.60 220 290

llama-3.1-405b-it 090 150 220 2.10 2.80

qwen3-8b-it 1.80 190 2.10 220 2.80

mistral-small-3.2-24b-instruct-2506 | 0.90 1.50 1.50 190 2.50

kimi-k2 090 120 130 220 1.90

gemini-2.5-pro v 0.10 0.60 1.50 1.70

openai/gpt-oss-120b v 0.50 0.50 1.60 0.80

03 v v v 0.40 0.30

gpt-5-high v v 0.10 0.20 0.20

gpt-5-low v v 0.10 v 0.10
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Distribution of Number of Unique Conflicting Pairs by Target Number of Conflicts
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Figure 9: Benchmarking results for increasing number of input conflicts. 03 and GPT-5 saturate the
metric, and therefore we include their individual data points to maintain readability.
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model which is both cheaper and more skilful.
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Figure 11: Gemini-2.5-Pro solving the NV = 30 benchmark: there are no interactions in this scenario.
It devises a strategy where aircraft are systematically spawned in sequences along the same route,
thus avoiding conflicts. Sequences of aircraft on intersecting routes avoid one another by careful
selection of spawn times. (Snapshots shown every two time units for convenience).

D Feedback Loop Experiments

In this section, we study the effect of giving models access to feedback on their attempts. We evaluate
the four best-performing models from the varying number of aircraft benchmark (excluding GPT-5,
which saturated the benchmark). In Table[6] we present their performance affer receiving feedback
about their performance. Using our automated verifier, we give each model five scored attempts to
produce a non-interacting scenario. Specifically, we inform the model which aircraft are involved
in interactions when it fails to create a non-interacting scenario. We observe that in all cases, the
models achieve perfect performance after a single round of feedback.

Furthermore, it is interesting to note that the models achieve this by making significant changes to
the scenario. In all cases, they modify the parameters of multiple aircraft, not just those involved in
the highlighted interactions.
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Figure 12: Gemini-2.5-Pro failing to solve an N = 30 benchmark: there are three interactions in
this scenario. In this case, at time ¢ = 10 and ¢t = 11 aircraft 11 interacts with aircraft 21 and 22
respectively, in a head-on manner. Similarly, at ¢ = 11, aircraft 12 interacts with aircraft 22. Notice
that, similar to Figure [IT] the model has attempted to thread sequences of aircraft along the same
route one-by-one. In this case, it has miscalculated the time at which aircraft 21 would reach the end
of its route. (Snapshots shown every two time units for convenience).

Table 6: Benchmarking results for varying numbers of aircraft. On a subset of the benchmark, we
compare the performance of five models to their performance after being given access to automated
verification of their solutions and up to five opportunities to correct any errors. Values quoted
are the average number of unique interacting pairs of aircraft computed across 10 generated scenarios
on 10 synthetic sectors. Optimal behaviour (marked with a checkmark) is zero interacting pairs. All
models in all cases needed only one attempt to correct all their mistakes.

| Number of aircraft | 10 | 15 | 20 | 25 | 30 |

| With Feedback | No Yes | No Yes | No Yes | No Yes | No Yes |
gemini-2.5-pro 0r v |06 v |32 v |03 v |09 V
gpt-0ss-20b 01 v |01 v |07 V 1.0 v |02 V
03 v v v v 0.2 v 0.2 v v Ve
gpt-0ss-120b 02 Vv v v |01 v v v v
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E Extra Controllability Experiments

In Figure [13]| we show that the method is able to accurately generate all three types of pairwise
interactions.

(a) Generate a scenario in which two  (b) Generate a scenario in which two (c) Generate a scenario in which two
aircraft interact in a crossing-paths aircraft interact in a head-on man- aircraft interact in a catch-up config-
manner. ner. uration.

Figure 13: Three examples of fine-grained scenario controllability using AirTrafficGen. Note that
in (c) the two aircraft have two very different ground speeds (denoted GXXX), meaning that AC2
will catch up and overtake AC1. Note that differing ground speeds arise from the simulator when
converting “slow" and “fast" movers in our discretised scheme to turboprops and jets respectively.
The same aircraft type will fly at different speeds according to its flight level.
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