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ABSTRACT
Effective root cause analysis (RCA) is vital for swiftly restoring ser-
vices, minimizing losses, and ensuring the smooth operation and
management of complex systems. Previous data-driven RCA meth-
ods, particularly those employing causal discovery techniques, have
primarily focused on constructing dependency or causal graphs for
backtracking the root causes. However, these methods often fall
short as they rely solely on data from a single modality, thereby
resulting in suboptimal solutions.

In this work, we propose MULAN, a unified multi-modal causal
structure learning method designed to identify root causes in mi-
croservice systems. We leverage a log-tailored language model to
facilitate log representation learning, converting log sequences into
time-series data. To explore intricate relationships across different
modalities, we propose a contrastive learning-based approach to
extract modality-invariant and modality-specific representations
within a shared latent space. Additionally, we introduce a novel key
performance indicator-aware attention mechanism for assessing
modality reliability and co-learning a final causal graph. Finally, we
employ random walks with restarts to simulate system fault propa-
gation and identify potential root causes. Extensive experiments on
three real-world datasets validate the effectiveness of our proposed
framework.

1 INTRODUCTION
Root Cause Analysis (RCA) plays a critical role in identifying the
origins of system failures, especially in microservice systems. A
fault within any microservice can severely impact user experience
and lead to substantial financial losses. To ensure the reliability and
robustness of microservice systems, key performance indicators
(KPIs) like latency, metrics data such as CPU/memory usage, and log
data including pod-level Kubernetes entries are often collected and
analyzed. However, the complexity of these systems combined with
the vast amount of monitoring data can make manual root cause
analysis both costly and error-prone. Thus, a swift and effective
root cause analysis, enabling rapid service recovery and minimizing
losses, is vital for the consistent operation and management of
expansive, intricate systems.

Previous data-driven RCA studies, particularly those employ-
ing causal discovery techniques, have primarily focused on the
construction of dependency/causal graphs. These graphs capture
the causal relationships between various entities within a system
and the associated KPIs so that the operators can trace back to the
underlying causes by utilizing these established causal graphs. For
instance, in [16], historical multivariate metric data was leveraged
to construct causal graphs through conditional interdependence
tests, followed by the application of causal intervention techniques
to pinpoint the root causes within a microservice system. Further-
more, Wang et al. [39] introduced a hierarchical graph neural net-
works based approach to construct interdependent causal networks,
facilitating the localization of root causes.

Table 1: Abnormal patterns in multi-modal data for different
system failures. ‘-’ indicates no detected unusual patterns.

System Fault Type System Metric System Log
Database Query Failure - Error/Warning

Login Failure - Error/Warning
DDoS Attack High CPU Utilization -
Disk Space Full High Disk Utilization Error/Warning

However, these methods rely solely on data from a single modal-
ity, thus failing to capture the intricacies of various abnormal pat-
terns associated with system failures, ultimately resulting in sub-
optimal solutions. Table 1 illustrates an example of anomalous
information found in multi-modal data related to different types
of system failures. Some system failures, such as Database Query
Failures or Login Failures, may easily elude detection if we do not
harness system logs to pinpoint their root causes. Conversely, sys-
tem metrics and logs collectively contribute to the localization of
system faults like “Disk Space Full”. Leveraging multi-modal data
empowers us to gain a deeper and more thorough insight into
system failures, emphasizing the critical importance of adopting a
more holistic approach to root cause analysis.

In recent years, multi-modal learning has emerged as a promising
way in modeling diverse modalities across various domains, such as
natural language processing [11, 20], information retrieval [10, 25],
and computer vision [22, 30, 48]. Despite its prevalence, multi-
modal learning for RCA is still largely unexplored. Recent multi-
modal RCA approaches [13, 46] primarily aim to extract information
from individual modalities, often missing the potential interplay
between them. This oversight is particularly significant, given that
studies on non-RCA multi-modal algorithms [44, 45] emphasize
the pivotal role of harnessing relationships between modalities to
optimize generalization outcomes.

Enlightened by multi-modal learning, this paper aims to propose
a multi-modal causal structure learning method for identifying root
causes in microservice systems. Formally, given the system KPI data
and the multi-modal microservice data including metrics and log
data, our goal is to learn a multi-modal causal graph to identify the
top 𝑘 system entities that are most relevant to system KPI. There
are three major challenges in this task:

• C1: Learning effective representation of system logs
for causal graph learning. Traditional methods for learn-
ing causal graphs encounter difficulties when directly ap-
plied to system log data. Simply extracting statistical fea-
tures overlooks the rich semantic information within the
logmessages. An intriguing approach is to employ language
models to derive semantic insights. However, unstructured
system logs significantly differ from standard textual data.
They lack formal grammar rules and extensively employ
special tokens. This divergence poses a considerable chal-
lenge when attempting to extract contextual information
from log data using existing language models.
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• C2: Learning causal structure from multi-modal data.
Relying solely on the extraction of common information
may inadvertently overlook critical insights unique to a
single modality, potentially resulting in the failure to iden-
tify certain root causes. To enhance the applicability and
robustness of the multi-modal RCA approach, the chal-
lenge is how to capture both modality-invariant informa-
tion and modality-specific information and determine the
corresponding effects associated with the system failure.

• C3: Assessing modality reliability. Data collected for
root cause analysis often includes noisy metrics or over-
whelming redundant log messages. This can obscure crucial
patterns, making it a challenging task to identify significant
events within the noise. However, existing methods typi-
cally treat both modalities equally important, thus suffering
from the low-quality modality scenario. Consequently, it
becomes imperative to re-weight the importance of each
modality in noisy scenarios.

To tackle these challenges, in this paper, we propose MULAN,
a MULti-Modal CAusal Structure LearNing method for root cause
localization. MULAN consists of four major modules: 1) Represen-
tation Extraction via Log-Tailored Language Model; 2) Contrastive
Multi-modal Causal Structure Learning; 3) Causal Graph Fusion
with KPI-Aware Attention; and 4) Network Propagation based Root
Cause Localization. Specifically, the initial step of MULAN is ded-
icated to extracting effective log representations, converting log
sequences into time-series data to facilitate causal graph genera-
tion from system logs. To explore the relationships among different
modalities, we introduce a contractive learning-based method that
extracts both modality-invariant and modality-specific representa-
tions through node-level contrastive regularization and edge-level
regularization. In the third module, a novel KPI-aware attention
mechanism is designed to evaluate the reliability of each modal-
ity and fuse the final causal graph, ensuring the robustness of the
root cause analysis model, especially in the presence of low-quality
modalities. Finally, we employ random walk with restarts to simu-
late the propagation of a system fault and identify the root causes.
Extensive experimental results with real-world datasets demon-
strate the effectiveness of our proposed framework.

2 PRELIMINARIES
Key Performance Indicator (KPI). A KPI represents time series
data that evaluates the efficiency and efficacy of a microservice
architecture. For instance, latency and service response time are
two common KPIs used in microservice systems. A large value of
latency or response time usually indicates a low-quality system
performance or even a system failure.
Entity Metrics. Entity metrics typically refer to the set of mea-
surable attributes that give insight into the behavior and health
of individual services (or entities) in a system. The system entity
could be a physical machine, container, virtual machine, pod, etc.
Some common entity metrics in a microservice system include CPU
utilization, Memory utilization, disk IO utilization, etc. These entity
metrics are essentially time series data. An abnormal system entity
is usually a potential root cause of a system failure.

Causal Structure Learning for Time Series Data. Existing causal
structure learning methods for time series data can be classified into
four categories [2] including constrained-basedmethods [15, 26, 37],
score-basedmethods [16, 21, 39], noise-basedmethod [6, 19, 28], and
other uncategorized methods [7, 14]. Our work belongs to the score-
based category, which leverages the Vector Autoregression (VAR)
Model [34] to model multi-modal causal relationships between
different system entities.

One branch of score-based methods [16, 27, 39] aim to utilize
𝑝-th order VAR Model to capture the relationship between different
system entities as they change over time. Given the 𝑇 -length time-
series data 𝑿 = {𝒙0, ..., 𝒙𝑇 }, these methods utilize the 𝑝-th order
data before the 𝑡-th timestamp to predict the value at the timestamp
𝑡 via the VAR model as follows:

𝒙𝑡 = 𝑨1𝒙𝑡−1 + · · · +𝑨𝑝𝒙𝑡−𝑝 + 𝜖𝑡
where 𝒙𝑡 ∈ R𝑛−1, 𝑛−1 is the number of entities, 𝑝 denotes the time-
lagged order, 𝑨𝑝 ∈ R𝑛−1×𝑛−1 is the weight matrix at the 𝑝-th time-
lagged order, and 𝜖𝑡 ∈ R𝑛−1 is the error variables. The underlying
intuition is to predict the future value at the 𝑡-th timestamp by
utilizing the last 𝑝-length historical values.

Inspired by the message-passing mechanism of the graph neural
network [18, 38], [39] combined the VAR model with the graph
neural network to capture the non-linear relationship between
different system entities by:

�̃� = 𝑓 (
∑︁
𝑝

𝑨�̂�𝑝 ;𝜃 ) + 𝜖 (1)

where �̃� ∈ R(𝑛−1)×𝑚 denotes the future data,𝑚 = 𝑇 −𝑝+1 denotes
the length of the effective timestamp, 𝑨 ∈ R(𝑛−1)×(𝑛−1) is the
learnable weight matrix shared across different 𝑝 , �̂�𝑝 ∈ R(𝑛−1)×𝑚
is the 𝑝-lagged historical data and 𝜽 is the parameters of the graph
neural networks 𝑓 . Notice that different from the traditional graph
neural network where the adjacency matrix is given, in Equation. 1,
𝑨 is also a learnable adjacency matrix aiming to capture the non-
linear relationship between system entities. Therefore, [39] aimed
to minimize the following loss:

min( | |�̃� − 𝑓 (
∑︁
𝑝

𝑨�̂�𝑝 ;𝜃 ) | |2) (2)

Note that these methods [27, 39] are designed for one single
modality and simply extending it to include multiple modalities
would result in the sub-optimal performance, which is validated in
the experiment (i.e., Subsection 4.2.1 and Subsection 4.2.2).
Problem Statement. Let X𝑀 = {𝑿𝑀0 , ...,𝑿

𝑀
𝑎 } denotes 𝑎 multi-

variate time series metric data. The 𝑖-th metric data is 𝑿𝑀𝒊 =

[𝒙𝑀
𝑖,0, ..., 𝒙

𝑀
𝑖,𝑇

] ∈ R(𝑛−1)×𝑇 , the unstructured system logs 𝑿𝐿 , and
system key performance indicator y ∈ R𝑇 , the goal is to construct a
causal graph G = {𝑽 ,𝑨}∗ to identify the top 𝑘 system entities that
aremost relevant to y, where 𝑽 is the set of vertices,𝑨 ∈ R𝑛×𝑛 is the
adjacency matrix, 𝑛 is the number of entities plus the system KPI,
and 𝑇 is the length of time series. For simplicity, we concatenate
the 𝑖-th system metric and KPI together 𝑿𝑀

𝑖
= [𝑿𝑀

𝑖
; y] ∈ R𝑛×𝑇 †

to illustrate our model.
∗Note that the causal graph G consists of two types of nodes, including the system
entities and the system KPI.
†For ease of explanation, we use one system metric to introduce our model.
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Figure 1: The overview of the proposed framework MULAN. It consists of four main modules: representation extraction via
log-tailored language model, contrastive multi-modal causal structure learning, causal graph fusion with KPI-aware attention,
and network propagation-based root cause localization.

Figure 2: The overview of log representation extraction. It first uses a log parser to extract the log templates. The inputs of the
language model are log sequences, where unique log templates are followed by their frequencies within a fixed time window.
The label information (i.e., scores) are obtained through anomaly detection methods to guide the log sequence representation
learning. [CLS] is a special token used for downstream tasks.

3 METHODOLOGY
We present MULAN, a multi-modality causal structural learning
method for root cause analysis. As illustrated in Figure 1, MULAN
includes four key modules: (1) representation extraction via log-
tailored language model; (2) contrastive multi-modal causal struc-
ture learning; (3) causal graph fusion with KPI-aware attention;
and (4) network propagation based root cause localization.

3.1 Representation Extraction via Log-tailored
Language Model

The first step of MULAN is to transform raw system logs into
time series data, making it easier to generate causal graphs from
these logs. The main challenge is how to effectively learn high-
quality representations from these unstructured system logs (i.e.,
challenge C1 in Section 1). A straightforward method involves
fine-tuning a pre-trained large language model with system logs to
generate representations for log sequences. However, it’s essential
to understand that system logs are quite different from traditional
textual data. They lack formal grammar rules, make extensive use
of special tokens, and lack a structured format, which makes it
challenging to extract the necessary contextual information. As a
result, merely fine-tuning pre-trained language models on system
logs often leads to suboptimal representations. On the other hand,
it’s vital to extract semantic information from log event content to
obtain high-quality representations[47]. Unfortunately, most exist-
ing approaches [8, 43] fail to capture such important information,
thus suffering from the performance degradation.

To address the challenge C1, we introduce a log-tailored lan-
guage model (as illustrated in Figure 2). This model unfolds in three
key phases:
Phase 1: We utilize an existing log parsing tool (e.g., Drain) to
transform unstructured system logs into structured log messages,
represented as log templates.
Phase 2: The entire system logs are partitioned into multiple time
windows with fixed sizes. For each time window, we assemble a log
sequence𝑿𝐿

𝑖,𝑗
, 𝑗 ∈ [0,𝑇 ] for the 𝑖-th entity. These sequences consist

of unique log templates that occur within that specific time range.
Rather than treating individual words in log templates as tokens, we
treat each event template as a token, and the log templates within
a sequence are organized based on their first appearance times-
tamp in ascending order. This strategy significantly reduces the
token count and minimizes the maximum sequence length, which
speeds up the training process. Moreover, it enables the encoding
of semantic information into representations and models the re-
lationships among log templates within a log sequence. We also
consider the frequency of each unique log template, assuming that
more frequently occurring log event templates carry more impor-
tant information. This assumption proves useful in dealing with
certain failure cases, such as DDoS attacks. In the event of a DDoS
attack, the frequency of certain log templates may suddenly and
dramatically increase, indicating unusual behavior. To address this,
we include the frequency right after each log template, providing
extra information for monitoring unusual patterns in potential fail-
ure cases. Additionally, we leverage log-based anomaly detection

3
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algorithms (e.g., OC4Seq [43] or Deeplog [8]) to measure the anom-
aly score denoted as 𝑦𝑙𝑜𝑔 . This score is used as label information
to assist language models in learning better representations. The
objective function is formulated as follows:

L𝑙𝑜𝑔 = E𝑖, 𝑗 | |𝑦
𝑙𝑜𝑔

𝑖
− 𝑓 (𝑿𝐿𝑖,𝑗 , 𝒄

𝐿
𝑖,𝑗 ) | |

2 (3)

where 𝒄𝐿
𝑖,𝑗

denotes a list of the frequency of the unique log templates
within a log sequence𝑿𝐿

𝑖,𝑗
, and 𝑓 (·) is the proposed language model

that predicts the anomaly score. The details of extracting high-
quality label information can be found in Appendix A.
Phase 3: We train a regression-based language model by optimizing
L𝑙𝑜𝑔 (Eq. 3). The core of our proposed language model consists
of a bidirectional transformer, followed by a one-layer multilayer
perceptron for predicting the anomaly scores. We then employ this
model to generate the representation of the special token [CLS],
which serves as the representation of the log sequence 𝒙𝐿

𝑖,𝑗
∈ R𝑑

for the 𝑖-th entity at the 𝑗-th time window. Note that the feature
dimension, typically 𝑑 = 768 in traditional large language models,
can be further reduced using feature reduction techniques like
PCA [1]. This reduction can potentially bring the dimension down
to a much lower value (e.g., 𝑑 = 1 in this paper), facilitating the
causal structure learning process. Therefore, for the 𝑖-th system
entity, we obtain �̂�𝑳

𝑖
= {𝒙𝐿

𝑖,0, ..., 𝒙
𝐿
𝑖,𝑇

} ∈ R𝑇 . The structured log
representations for the 𝑛 − 1 other system entities are denoted as
�̂�𝑳 = [�̂�𝑳

0 ; ...; �̂�
𝑳
𝑛−1] ∈ R(𝑛−1)×𝑇 . Similarly, we concatenate the

system log and KPI together �̂�𝐿 = [�̂�𝐿 ; y] ∈ R𝑛×𝑇 .

3.2 Contrastive Multi-modal Causal Structure
Learning

As previously mentioned, existing methods [23, 29, 39, 46] often
struggle to handle multi-modal data or fail to effectively correlate
different modalities, resulting in suboptimal solutions. Furthermore,
exclusively extracting modality-invariant information may lead to
a loss of valuable insights within individual modalities. To address
this challenge (i.e., challenge C2 in Section 1), we propose a con-
trastive learning based method for extracting both the modality-
invariant representation and the modality-specific representation
via encoder-decoder pairs.
Contrastive Learning-based Encoders. Given the system met-
ric data �̂�𝑀 = 𝑿𝑀 ∈ R𝑛×𝑇 and the system log representation
�̂�𝑳 ∈ R𝑛×𝑇 , we first extract both modality-invariant and modality-
specific representation by:

𝑹𝑣𝑐 = 𝐸𝑣𝑐 (�̂� 𝑣,𝑨𝑣)
𝑹𝑣𝑠 = 𝐸𝑣𝑠 (�̂� 𝑣,𝑨𝑣)

𝑹𝑐 = 𝛼𝑹
𝐿
𝑐 + (1 − 𝛼)𝑹𝑀𝑐

𝑯 𝑣 = 𝑀𝐿𝑃𝑣 (𝑹𝑣𝑐 )

(4)

where 𝑣 ∈ {𝑀, 𝐿} represents the two modalities, 𝑹𝑣𝑐 ∈ R𝑛×𝑚×𝑑1 de-
notes the modality-invariant representation extracted from the 𝑣-th
modality, 𝑹𝑣𝑠 ∈ R𝑛×𝑚×𝑑1 represents the modality-specific represen-
tation from the 𝑣-th modality, and𝑚 is the length of the effective
timestamps. 𝑹𝑐 is the combined modality-invariant representation,
𝑯 𝑣 ∈ R𝑛×𝑑2 can be viewed as the entity representations, while 𝑑1

and 𝑑2 denote the hidden feature dimensions. And 𝛼 ∈ [0, 1] is a
constant parameter balancing two modality-invariant representa-
tions.

Here, we employ GraphSage [12] as the backbone for both 𝐸𝑣𝑐
and 𝐸𝑣𝑠 to extract modality-invariant representation and modality-
specific representation, respectively. And𝑀𝐿𝑃𝑣 (·) is a Multi-Layer
Perception (MLP) used to map the representation 𝑅𝐿𝑐 and 𝑅𝑀𝑐 to
another latent space to get the entity representations. It’s important
to note that, in contrast to traditional graph neural networks, where
the adjacency matrix is predefined, in Eq. 4, 𝑨𝑣 is also a learnable
adjacency matrix designed to capture the non-linear relationships
among system entities.

To ensure mutual information agreement between the modality-
invariant representations extracted from both metric and log data,
we propose maximizing the mutual information between these two
representations using contrastive learning regularization:

L𝑛𝑜𝑑𝑒 = − 1
𝑛

𝑛∑︁
𝑖=1

sim(𝐻𝑀
𝑖
, 𝐻𝐿
𝑖
)∑

𝑘 sim(𝐻𝑀
𝑖
, 𝐻𝐿
𝑘
)

(5)

where sim(𝐻𝑀
𝑖
, 𝐻𝐿
𝑘
) = 𝐻𝑀

𝑖
(𝐻𝐿

𝑘
)𝑇

|𝐻𝑀
𝑖

| |𝐻𝑀
𝑘

| is the cosine similarity measure-

ment between two entity representations 𝐻𝐿
𝑖
and 𝐻𝑀

𝑘
.

To ensure that there is no information overlapping between
the modality-invariant and modality-specific representations, we
leverage the orthogonal constraint [41], defined as:

L𝑜𝑟𝑡ℎ =
∑︁

𝑣∈{𝑀,𝐿}

𝑛∑︁
𝑖=1

| | (𝑹𝑣𝑠,𝑖 )
𝑇 𝑹𝑣𝑐,𝑖 | |

2
𝐹 (6)

However, minimizing L𝑛𝑜𝑑𝑒 and L𝑜𝑟𝑡ℎ alone cannot guarantee
that the modality-invariant representations contain only informa-
tion relevant to learning causal graphs. To further ensure the quality
of modality-invariant representations, we propose predicting the
adjacency matrix of the causal graph based on the representation
of edges as follows:

L𝑒𝑑𝑔𝑒 =
∑︁

𝑣∈{𝑀,𝐿}

∑︁
𝑖, 𝑗

| |𝐺 (𝒆𝑣𝑖 𝑗 ) −𝐴
𝑣
𝑖 𝑗 | |

2 (7)

where 𝒆𝑣
𝑖 𝑗

= [𝐻 𝑣
𝑖
, 𝐻 𝑣

𝑗
] denotes the concatenation of the representa-

tions of two entities, and 𝐺 (·) is a one-layer MLP followed by the
sigmoid activation function used to predict the existence of an edge
in 𝐴𝑣 . Note that the causal graph (e.g., G𝑣 = {𝑽 ,𝑨𝑣}) includes both
the system entities and the system KPI. Encoding the topological
structure of the causal graph in Eq. 7 allows us to better capture
the relationship between the root causes and the system KPI.
VAR-based Decoders. After extracting both modality-invariant
and modality-specific representations, we aim to predict the future
value �̃� 𝑣 with the previous 𝑝-th lagged data �̂� 𝑣 via VAR model:

L𝑣𝑎𝑟 =
∑︁

𝑣∈{𝑀,𝐿}
| |�̃� 𝑣 − 𝐷𝑣 (𝑹𝑐 + 𝑹𝑣𝑠 ) | |2 (8)

Similarly, we choose GraphSage as the backbone for the decoder
𝐷𝑣 (·).
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3.3 Causal Graph Fusion with KPI-Aware
Attention

From the metric decoder and log decoder, we can obtain the causal
graph G𝑀 and the causal graph G𝐿 , respectively. Combining these
two causal graphs through simple addition is not suitable, as it may
lead to dense and cyclical graphs. Furthermore, in scenarios with
low-quality modalities (as discussed in challenge C3 in Section 1),
treating both modalities as equally important would yield undesir-
able results. Following the assumption that KPI is highly associated
with the root cause [39], we propose a KPI-aware attention-based
causal graph fusion. This module measures the cross-correlation [3]
between the raw feature of each entity for each modality and the
KPI to alleviate the potential negative impact of low-quality modal-
ities by:

𝒔𝑣 = max
𝑝∈[0,𝜏 ]

(𝑿 𝑣 ⊙ y) (𝑝) = max
𝑝∈[0,𝜏 ]

∫ +∞

𝑡=0
𝑿 𝑣 (𝑡 + 𝑝) · y(𝑡)𝑑𝑡 (9)

where 𝑝 represents the time lag and 𝜏 is the maximum time lag.
Intuitively, 𝒔𝑣 quantifies the maximum similarity between each
entity and the KPI while considering a time lag of up to 𝜏 . A higher
value of 𝒔𝑣 indicates a stronger causal relationship between the
system entity and the KPI.

Given that the temporal patterns of the top 𝑘 entities within a
high-quality modality are expected to closely resemble the temporal
pattern of the KPI, and that smaller values of 𝒔𝑣 typically indicate
low-quality modalities, we employ 𝒔𝑣 to measure the importance
of each modality as follows:

𝑎𝑣 = 𝜎 (
∑︁

𝑖∈𝑖𝑑𝑥𝑣
𝒔𝑣𝑖 ) =

𝑒
∑

𝑖∈𝑖𝑑𝑥𝑣 𝒔
𝑣
𝑖

𝑒
∑

𝑖∈𝑖𝑑𝑥𝐿 𝒔𝐿
𝑖 + 𝑒

∑
𝑖∈𝑖𝑑𝑥𝑀 𝒔𝑀

𝑖

𝑖𝑑𝑥𝑣 = Topk(𝒔𝑣 [−1, :];𝑘)
(10)

where 𝜎 (·) is the softmax function. We validate this assumption in
Section 4.2.2. Notably, we can leverage the modality importance
score 𝑎𝑣 to replace the hyper-parameter 𝛼 in Eq. 4 and get the final
fused adjacency matrix for the causal graph G as follows:

𝑹𝑐 = 𝑎
𝐿𝑹𝐿𝑐 + 𝑎𝑀𝑹𝑀𝑐

𝑨 = 𝑎𝐿𝑨𝐿 + 𝑎𝑀𝑨𝑀
(11)

Optimization. Therefore, the final objective function is written as:
L = 𝜆1L𝑣𝑎𝑟 +𝜆2L𝑜𝑟𝑡ℎ +𝜆3L𝑛𝑜𝑑𝑒 +𝜆4L𝑒𝑑𝑔𝑒 +𝜆5 | |𝑨| |1+ℎ(𝑨) (12)

where | | · | |1 is the sparsity constraint imposed on the adjacency
matrix. The trace exponential function ℎ(𝑨) = (𝑡𝑟 (𝑒𝑨∗𝑨) − 𝑛) = 0
holds if and only if 𝑨 is acyclic [27], where ∗ denotes Hadamard
product of two matrices. 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5 are the positive
constant hyper-parameters. The parameter analysis can be found
in Subsection 4.2.3.

3.4 Network Propagation based Root Cause
Localization

The final fused causal graph G = {𝑽 ,𝑨},𝑨 ∈ R𝑛×𝑛 consists of two
types of nodes: system entities and system KPI. Malfunctioning
effects can propagate from the root cause to its neighboring entities,
meaning that the first-order neighbors of system KPIs may not
necessarily be the root causes. To pinpoint the root cause, we first
derive the transition probability matrix based on the causal graph

G and then employ a random walk with restart method [36] to
mimic the propagation patterns of malfunctions. Specifically, the
transition probability matrix 𝑷 is formulated as follows:

𝑷𝒊𝒋 =
(1 − 𝛽)𝑨 𝑗,𝑖∑𝑛
𝑘=1𝑨𝑘,𝑖

(13)

where 𝛽 ∈ [0, 1] represents the probability of transitioning from
one node to another. The probability transition equation for the
random walk with restart is given by:

𝒑𝑡+1 = (1 − 𝑐)𝒑𝑡 + 𝑐𝒑0 (14)

where 𝒑𝑡 denotes the jumping probability at the 𝑡-th step, 𝒑0 is the
initial starting probability, and 𝑐 ∈ [0, 1] is the restart probability.
Once the jumping probability 𝒑𝑡 converges, the probability scores
of the nodes are used to rank the system entities. The top 𝑘 entities
are then selected as the most likely root causes for the system
failure.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of our proposed MU-
LAN through a comparative analysis with state-of-the-art root
cause analysis methods. Additionally, we conduct a comprehensive
case study and an ablation study to further validate the assumptions
outlined in the Methodology section.

4.1 Experiment Setup
4.1.1 Datasets. We evaluate the performance of our method, MU-
LAN, using three real-world datasets for root cause analysis: (1).
Product Review [39]: This microservice system, dedicated to on-
line product reviews, encompasses 234 pods and is deployed across
6 cloud servers. It recorded four system faults between May 2021
and December 2021. (2). Online Boutique [46]: This dataset rep-
resents a microservice system designed for e-commerce, and it
includes five system faults. (3). Train Ticket [46]: This dataset is
a microservice system for railway ticketing service with 5 system
faults. All three datasets contain two modalities: system metrics
and system logs.

4.1.2 Evaluation Metrics. To measure the model performance, we
choose threewidely-usedmetrics [24, 39]: (1).Precision@K (PR@K):
This metric measures the probability that the top-K predicted root
causes are accurate. (2).Mean Average Precision@K (MAP@K):
It provides an assessment of the top-K predicted causes from an
overall perspective. (3).Mean Reciprocal Rank (MRR): This met-
ric evaluates the ranking capability of the models. The details of
these three metrics can be found in Appendix B.2.

4.1.3 Baselines. We compare MULAN with six causal discovery
models: (1). PC [4]: This classic constraint-based causal discovery
algorithm is designed to identify the causal graph’s skeleton using
an independence test. (2) Dynotears [27]: It constructs dynamic
Bayesian networks through vector autoregression models. (3). C-
LSTM [35]: This model utilizes LSTM to model temporal depen-
dencies and capture nonlinear Granger causality. (4). GOLEM [26]:
GOLEM relaxes the hard Directed Acyclic Graph (DAG) constraint
of NOTEARS [49] with a scoring function. (5). REASON [39]: An
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Table 2: Results on Product Review dataset w.r.t different metrics.
Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

Metric Only

Dynotears 0 0 0.50 0.070 0 0 0.075
PC 0 0 0.25 0.053 0 0 0.050

C-LSTM 0.25 0.75 0.75 0.474 0.5 0.25 0.675
GOLEM 0 0 0.25 0.043 0 0 0.025
REASON 0.75 1.0 1.0 0.875 0.917 0.95 0.975

Log Only

Dynotears 0 0 0.25 0.058 0 0 0.075
PC 0 0 0.25 0.069 0 0 0.075

C-LSTM 0 0 0.25 0.059 0 0 0.075
GOLEM 0 0 0.25 0.058 0 0 0.075
REASON 0 0.50 0.75 0.216 0.167 0.25 0.400

Multi-Modality

Dynotears 0 0 0.50 0.095 0 0 0.150
PC 0 0 0.25 0.064 0 0 0.125

C-LSTM 0.50 0.75 0.75 0.592 0.583 0.65 0.700
GOLEM 0 0 0.25 0.065 0 0 0.050
REASON 0.75 1.0 1.0 0.875 0.917 0.95 0.975
Nezha 0 0.5 0.75 0.193 0.083 0.25 0.475
MULAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3: Results on Online Boutique dataset w.r.t different metrics.
Modality Model PR@1 PR@3 PR@5 MRR MAP@2 MAP@3 MAP@5

Metric Only

Dynotears 0.20 0.40 0.40 0.344 0.20 0.267 0.320
PC 0.20 0.40 0.80 0.390 0.30 0.333 0.400

C-LSTM 0 0.40 0.80 0.30 0.10 0.200 0.440
GOLEM 0 0.40 0.80 0.291 0.20 0.267 0.360
REASON 0.40 0.80 1.0 0.617 0.50 0.200 0.440

Log Only

Dynotears 0 0.20 0.60 0.207 0 0.067 0.240
PC 0 0.40 0.60 0.257 0.10 0.200 0.320

C-LSTM 0 0.40 0.60 0.267 0.10 0.200 0.360
GOLEM 0 0.40 0.80 0.248 0 0.133 0.360
REASON 0.20 0.80 0.80 0.458 0.30 0.467 0.600

Multi-Modality

Dynotears 0.20 0.60 1.0 0.467 0.30 0.400 0.640
PC 0.40 0.80 1.0 0.573 0.40 0.533 0.680

C-LSTM 0.20 0.40 1.0 0.450 0.30 0.333 0.600
GOLEM 0.20 0.60 1.0 0.467 0.30 0.400 0.640
REASON 0.40 1.0 1.0 0.667 0.60 0.733 0.840
Nezha 0.60 1.0 1.0 0.767 0.70 0.800 0.880
MULAN 0.80 1.0 1.0 0.900 0.90 0.933 0.960

interdependent network model that focuses on learning both intra-
level and inter-level causal relationships. (6). Nezha [46]: A multi-
modal method designed to identify root causes by detecting abnor-
mal patterns.

4.2 Performance Evaluation
4.2.1 Experimental Results. Tables 2, 3, and 4 present a compre-
hensive performance evaluation of all methods. For methods ex-
clusively designed for a single modality (e.g., PC, C-LSTM, REA-
SON, Dynotears, and GOLEM), we assess their performance in both
single-modality scenarios (e.g., system metrics only or system logs
only) and the multi-modality case. To enable multi-modality model-
ing, we initially convert the system logs into time-series data using
the Regression-based language model introduced in Section 3.1.
This time-series data is then treated as an additional system met-
ric for evaluation. We calculate an average ranking score based
on the evaluation of different system metrics as the final result
for all single-modality methods and MULAN. Our observations
are as follows: (1) In contrast to single-modality scenarios, most
baseline methods demonstrate improved performance when lever-
aging multi-modality data across three distinct datasets and various

metrics. (2) MULAN consistently outperforms all baseline methods
across the three datasets. Notably, MULAN exhibits a remarkable
improvement in MRR on the Product Review dataset, surpassing
the second competitor (i.e., REASON) by 12.5%. Furthermore, on the
Online Boutique dataset, MULAN outperforms Nezha, achieving im-
provements of over 13.2% and 8% with respect to MRR and MAP@5,
respectively. This superiority can be attributed to MULAN’s adept-
ness in exploring correlations among different modalities and its
robust KPI-aware attention mechanism, while all baseline methods,
including REASON and Nezha, fall short in this regard.

4.2.2 Case Study. In this case study, we aim to demonstrate the
robustness of our proposed method in the context of low-quality
modality scenarios. It’s important to distinguish this setup from
the experimental configuration detailed in Section 4.2.1, where
multiple system metrics were utilized. In this case study, we keep
the representation of the system log constant and only select a
single system metric to investigate its impact on the performance
of all models. The procedure unfolds as follows: Initially, we assess
the performance of each single-modality baseline method using
distinct system metrics (e.g., CPU usage, memory usage, transmit
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Table 4: Results on Train Ticket Dataset w.r.t. Different Metrics.
Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

Metric Only

Dynotears 0 0 0.2 0.046 0 0 0
PC 0 0.2 0.8 0.170 0.133 0.16 0.243

C-LSTM 0 0.2 0.4 0.096 0 0 0.100
GOLEM 0 0.2 0.4 0.098 0 0 0.100
REASON 0.2 0.6 0.8 0.323 0.2 0.28 0.343

Log Only

Dynotears 0 0.4 0.8 0.160 0 0.16 0.271
PC 0 0.4 0.8 0.219 0.133 0.24 0.343

C-LSTM 0 0.4 0.8 0.160 0 0.16 0.271
GOLEM 0 0.4 0.8 0.164 0 0.16 0.274
REASON 0.2 0.4 1.0 0.315 0.2 0.28 0.343

Multi-Modality

Dynotears 0 0.4 0.8 0.141 0 0.16 0.228
PC 0 0 0.4 0.083 0 0 0.071

C-LSTM 0.2 0.4 0.8 0.310 0.2 0.28 0.314
GOLEM 0 0.4 0.8 0.160 0 0.16 0.271
REASON 0.2 0.4 0.8 0.299 0.2 0.28 0.300
Nezha 0.2 0.2 1.0 0.297 0.2 0.2 0.285
MULAN 0.2 0.4 1.0 0.381 0.333 0.36 0.414

(a) Metric Only (b) Log + Metric (c) Modality Weight

Figure 3: Case study on Product Review dataset. (a): MRR score of all methods evaluated with a single system metric only.
(b): MRR score of all methods evaluated with one system metric and system log. (c): Modality weight measured by KPI-aware
mechanism of MULAN with four system fault cases, where𝑀+, 𝐿(𝑀+),𝑀− , and 𝐿(𝑀−) are the weight of the high-quality metric,
the weight of the system log with the high-quality metric, the weight of the low-quality metric and the weight of the system
log with the low-quality metric, respectively.

(a) log(𝜆1) w.r.t.MRR (b) log(𝜆2) w.r.t.MRR (c) log(𝜆3) w.r.t.MRR (d) log(𝜆4) w.r.t.MRR (e) log(𝜆5) w.r.t.MRR

Figure 4: Parameter analysis on Product Review dataset w.r.t MRR. The red dashed line denotes the value used in Table 2.

rate, etc). Subsequently, we identify the system metric with the
highest median ranking score as the high-quality metric, denoted
as 𝑀+, and the system metric with the lowest median ranking
score as the low-quality metric, denoted as𝑀− . Detailed results of
the ranking score are available in Appendix B.3. We evaluate all
methods’ performance on the Product Review Dataset and present
the results in Figures 3 (a) and (b). Notably, the performance of the
log-only setting can be found in Table 2. Additionally, to underscore
the robustness of MULAN, we also examine the weights assigned
to the two modalities, as illustrated in Figure 3 (c).

We have four key observations: (1). REASON andC-LSTMdemon-
strate impressive results on the Product Review dataset when utiliz-
ing a high-quality metric. However, their performance undergoes
a significant decline when the high-quality metric is substituted
with the low-quality system metric, as shown in Figure 3 (a). (2).
Comparing Figures 3 (a) and 3 (b) reveals that the performance
of most baseline methods improves when incorporating system
logs, regardless of whether the chosen system metric is of high
or low quality. This underscores the value of integrating multiple
modalities for enhanced performance. (3). In Figure 3 (b), the per-
formance of most baseline methods experiences a notable decrease
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Table 5: Ablation study on three datasets w.r.t MRR.

Model Product Review Online Boutique Train Ticket
MULAN 1.0 0.9 0.347
MULAN-V 0.875 0.8 0.343
MULAN-O 0.833 0.9 0.326
MULAN-N 0.813 0.7 0.343
MULAN-E 0.833 0.667 0.225

when replacing the high-quality metric with the low-quality one.
Remarkably, our proposed method (MULAN) consistently main-
tains robust and promising performance in such scenarios. (4) In
Figure 3 (c), when the high-quality system metric (𝑀+ or blue bar)
is replaced by the low-quality system metric (𝑀− or green bar),
MULAN dynamically adjusts the weight assigned to the system
metric in all four cases. This adaptability ensures that MULAN does
not overly rely on any specific metric modality. Findings 3 and 4
underscore the effectiveness of the KPI-aware attention mechanism
and the inherent robustness of the proposed method.

4.2.3 Parameter Analysis. In this subsection, we conduct a thor-
ough analysis of the parameter sensitivity of MULAN framework
on the Product Review dataset. For a detailed parameter sensitivity
analysis of the Online Boutique and Train Ticket datasets, please
refer to Appendix B.4. We specifically examine the impact of varia-
tions in five parameters: 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5. Our study involves
individually adjusting the value of each parameter while keeping
the remaining four fixed. Figure 4 presents the experimental re-
sults in terms of Mean Reciprocal Rank (MRR), where the x-axis
represents log(𝜆𝑖 ), 𝑖 ∈ [1, 2, 3, 4, 5], and the y-axis represents MRR.
Notably, a substantial value for 𝜆1 (e.g., 𝜆1 = 50) tends to yield su-
perior performance, highlighting the crucial role of the VAR model
in capturing temporal dependencies among diverse system entities.
For 𝜆2, MULAN achieves the best performance when 𝜆2 is set to
1, with a noticeable decline in performance as 𝜆2 increases. This
suggests a delicate balance in the contribution of 𝜆2 to the overall
model effectiveness. Regarding 𝛼3 and 𝛼4, optimal performance is
observed when both are set to 20, underscoring their critical role
in achieving superior results. Similarly, the best performance for
MULAN aligns with a smaller value for 𝜆5, e.g., 𝜆5 = 0.1. Further
decreasing 𝜆5 results in a decline in performance, highlighting the
importance of sparse regularization in the loss function.

4.2.4 Ablation Study. In this subsection, we conduct an ablation
study to thoroughly assess the effectiveness of each component
within the overarching objective function (Eq. 12). We consider four
distinct variants of MULAN: MULAN-V, which excludes the VAR
models responsible for modeling temporal dependencies among
diverse system entities; MULAN-O, which disregards the orthogo-
nal constraint (L𝑜𝑟𝑡ℎ); MULAN-N, which omits the extraction of
modality-invariant information by excluding the node loss (L𝑛𝑜𝑑𝑒 )
from the objective function; and MULAN-E, which removes the
edge loss (L𝑒𝑑𝑔𝑒 ). We assess the performance of these variants in
terms of Mean Reciprocal Rank (MRR), with performance evaluated
by MAP@K available in Appendix B.5. A comparative analysis of
MULAN against its variants consistently reveals performance degra-
dation when any component is removed from the proposed method.
For example, removing the edge loss induces a performance drop

of 16.7% and 23.3% on the Product Review and Online Boutique
datasets, respectively. Similarly, excluding the node loss results in
an 18.7% performance reduction on the Product Review dataset.
These findings underscore the pivotal role of each component in
ensuring the overall effectiveness of the proposed method.

5 RELATEDWORK
Root Cause Analysis. Root cause analysis (RCA) is a systematic
process aimed at uncovering the fundamental reasons for system
failures using observed symptoms [31]. Numerous domain-specific
RCA approaches [5, 9, 21, 24, 31–33, 42] have been developed to
enhance the resilience of applications. Notably, in the context of
the microservice systems, Li et al. [21] constructed a dependency
graph based on system architecture knowledge and proposed a
regression-based hypothesis testing to identify the root cause. An-
other study [16] integrated a hierarchical learning method with
the PC algorithm, facilitating rapid identification of interventional
targets. Additionally, [40] introduced a hierarchical graph neural
networks-based algorithm to capture both intra-level and inter-level
causal relationships for identifying the root causes in interdepen-
dent networks. Different from the existing works that primarily fo-
cus on unimodal data (e.g., system metrics data), MULAN is a multi-
modal learning approach that extracts both modality-invariant and
modality-specific information to enhance RCA performance.
Multi-modal Learning. Multi-modal learning has been exten-
sively studied across various domains, such as natural language
processing [11, 20], information retrieval [10, 25], and computer
vision [22, 30, 48]. For example, within the domain of natural lan-
guage processing, [11] explored the interplay among text, visual,
and acoustic modalities to enhance sentiment analysis. In computer
vision, numerous methods [17, 25] have been proposed to align text
and image representations in the latent space. Nevertheless, in the
context of RCA, the exploration of multi-modal RCA remains in
a nascent stage. Research presented in [13, 46] has attempted to
extract information from multi-modal data for root cause analysis.
Regrettably, these studies primarily focus on eachmodality as a stan-
dalone entity, overlooking the intricate interconnections between
them. In contrast, this paper systematically examines the interplay
between different modalities, specifically between time-series data
and unstructured text data, and co-constructs a comprehensive
causal graph for root cause localization.

6 CONCLUSION
In this paper, we investigated the challenging problem of multi-
modal root cause localization in microservice systems. We proposed
MULAN, a unified framework for localizing root causes by co-
learning a causal graph from multi-modal data. MULAN leverages
a log-tailored language model to facilitate causal graph generation
from system logs. To explore the relationships among different
modalities, both modality-invariant and modality-specific represen-
tations were extracted through node-level contrastive regulariza-
tion and edge-level regularization. Additionally, we introduced a
KPI-aware attention mechanism to assess modality reliability and
facilitate the co-learning of the final causal graph. We validated
the effectiveness of MULAN through extensive experiments on
three real-world datasets. A promising direction for future work is
extending MULAN to handle streaming data in an online setting.
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A EXTRACTING LABEL INFORMATION FOR
LOG REPRESENTATION LEARNING

The extracting label information process involves partitioning the
collected system logs into fixed time windows. For each of these
windows, we create a log sequence, capturing unique log templates
occurring within that specific time frame. In typical large language
models, individual words in a sentence are treated as tokens. How-
ever, this approach isn’t suitable for log sequence representation
learning for two main reasons.

Firstly, the presence of a significant number of infrequent special
tokens makes it challenging to learn effective representations for
these tokens, given the limited sample size. Secondly, tokenizing
log templates into lists of word tokens requires setting a very large
maximal sequence length to accommodate all sequences within
that limit. However, this can be problematic since, in practice, time
windows are often set to 10 to 30 minutes to gather more valuable
and reliable information. In some cases, the number of unique log
templates exceeds 50, and when each word in these log templates
is tokenized, the sequence length of the log sequence surpasses the
default maximal sequence length (e.g., 512) used in traditional large
language models. When the sequence length exceeds this limit, the
exceeding part is truncated, leading to information loss.

Conversely, having an extensive maximal sequence length poses
multiple challenges. Firstly, it demands a substantial GPU memory
and prolongs the training time, making it less feasible for practical
deployment. This becomes particularly problematic when imple-
menting an online system, which typically operates under tight
time constraints. Online systems need to produce results before
the arrival of the next batch of new data. Therefore, a large max-
imal sequence length becomes a hindrance to the deployment of
online systems. Moreover, obtaining precise label information for
log event templates presents a substantial challenge. The labeling
process can be costly, and it often necessitates expert knowledge.
The absence of high-quality label information poses a significant
impediment to the ability of large language models to effectively
learn the desired high-quality representations.

To address these challenges, our approach begins by capturing
all unique log event templates within the specified time windows.
We then transform the log sequence into a sequence of event tem-
plate tokens using a specialized tokenizer. In this unique approach,
each event template is treated as an individual token, as illustrated
in Figure 2. In addition, different from the traditional large lan-
guage, we also consider the frequency of each unique log template
as the more frequently a log event template appears, the more
important message it carries. This assumption proves highly valu-
able in addressing certain failure scenarios, such as Distributed
Denial of Service (DDoS) attacks. During a DDoS attack, certain
log event templates may experience a sudden, significant increase
in frequency, signaling unusual behavior. Thus, we include the fre-
quency information alongside each log event template, providing
extra context to detect unusual patterns in potential failure cases.

To address the challenge of lacking label information, we pro-
pose two viable solutions. The first method is a "golden signal"
approach that leverages domain knowledge. For instance, consider
a microservice system, where system failures can be classified into
various types, including DDoS attacks, storage failures, high CPU

utilization, high memory utilization, and more. Each type of system
failure is associated with specific keywords or "golden signals."
By identifying these keywords within log event templates, we can
determine whether a particular template is abnormal. These key-
words may include terms like "error," "exception," "critical," "fatal,"
"timeout," "connection refused," "No space left on the device," "out
of memory," "terminated unexpectedly," "backtrace," "stack trace,"
"service unavailable," "502 Bad Gateway," "503 Service Unavailable,"
"504 Gateway Timeout," "unable to connect to," "rate limit exceeded,"
"request limit exceeded," "cloud system down," "cloud service not
responding," "failure," "corrupted data," "data loss," "file not found,"
"high CPU utilization," "CPU spike," "CPU saturation," "excessive
CPU usage," "failed," "shutdown," "Permission denied," "DEBUG,"
and more. The presence and extent of these abnormal log event
templates within a log sequence are measured to compute the over-
all abnormality of the sequence, which serves as label information.
When domain knowledge is not readily available, our second solu-
tion involves using anomaly detection models, such as Deeplog [8]
or OC4Seq [43], to evaluate the abnormality of a log sequence.

B ADDITIONAL EXPERIMENT
B.1 Implementation Details
All experiments are conducted on a server running Ubuntu 18.04.5
with an Intel(R) Xeon(R) Silver 4110 CPU @2.10GHz and a 4-way
11GB GTX2080 GPU.

B.2 Evaluation Metric
We evaluate themodel performancewith the following threewidely-
used metrics [24, 39]:
(1). Precision@K (PR@K): It measures the probability that the
top 𝐾 predicted root causes are real, defined as:

𝑃𝑅@𝐾 =
1
|A|

∑︁
𝑎∈A

∑
𝑖<𝑘 𝑅𝑎 (𝑖) ∈ 𝑉𝑎
min(𝐾, |𝑣𝑎 |)

(15)

where A is the set of system faults, 𝑎 is one fault in A,𝑉𝑎 is the real
root causes of 𝑎, 𝑅𝑎 is the predicted root causes of 𝑎, and i is the
𝑖-th predicted cause of 𝑅𝑎 .
(2). Mean Average Precision@K (MAP@K): It assesses the top
𝐾 predicted causes from the overall perspective, defined as:

𝑀𝐴𝑃@𝐾 =
1

𝐾 |A|
∑︁
𝑎∈A

∑︁
𝑖≤ 𝑗≤𝐾

𝑃𝑅@ 𝑗 (16)

where a higher value indicates a better performance.
(3).Mean Reciprocal Rank (MRR): It evaluates the ranking ca-
pability of models, defined as:

𝑃𝑅@𝐾 =
1
|A|

∑︁
𝑎∈A

1
𝑟𝑎𝑛𝑘𝑅𝑎

(17)

where 𝑟𝑎𝑛𝑘𝑅𝑎 is the rank number of the first correctly predicted
root cause for system fault 𝑎.

B.3 How to Choose High-quality and
Low-quality System Metrics?

In the experiment, we first measure the performance of each single-
modality baseline method by only using one single system metric
(e.g., CPU usage, memory usage, rate transmit rate, etc). Then, we
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Figure 5: Parameter analysis on the Online Boutique dataset w.r.t MRR.

(a) log(𝜆1) w.r.t.MRR (b) log(𝜆2) w.r.t.MRR (c) log(𝜆3) w.r.t.MRR (d) log(𝜆4) w.r.t.MRR (e) log(𝜆5) w.r.t.MRR

Figure 6: Parameter analysis on Train Ticket dataset w.r.t MRR.

Table 7: Ablation study on three datasets evaluated by
MAP@K.

Model Product Review Online Boutique Train Ticket
- MAP@10 MAP@5 MAP@10

MULAN 1.0 0.96 0.386
MULAN-V 0.98 0.92 0.385
MULAN-O 0.96 0.96 0.357
MULAN-N 0.94 0.88 0.371
MULAN-E 0.96 0.84 0.357

Table 6: Quality measurement of high-quality metric and
low-quality metric on Product Review dataset. The median
ranking scores are used to evaluate the quality of different
metrics. The best metric is denoted as High-quality while the
worst metric is denoted as Low-quality.

Metric Case 1 Case 2 Case 3 Case 4
High-quality 21 30 11 25
Low-quality 82 68 30 40

select the system metric with the highest median ranking score as
the high-quality system metric denoted𝑀+, and the system metric
with the lowest median ranking score as the low-quality system
metric denoted𝑀− . The ranking results are shown in Table 6.

B.4 Additional Parameter Analysis
In this subsection, we delve into an analysis of parameter sensitivity
within the MULAN framework on the Online Boutique and Train
Ticket datasets, specifically examining the impact of variations in
𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5. Figure 5 and Figure 6 present the experimental
results with respect to Mean Reciprocal Rank (MRR), where the
x-axis is log(𝜆𝑖 ), 𝑖 ∈ [1, 2, 3, 4, 5] and the y-axis is MRR. By obser-
vations on Figure 5, we find that the value of 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5
does not influence the performance of MULAN on Online Boutique
dataset. Our conjecture for this observation is that the number of
system entities is only 10 and it’s an easy task to identify the root
cause by our method. Based on the experimental results on the
Train Ticket dataset, we found that the change of the values for
𝜆1, 𝜆2, and 𝜆3 do not have a great impact on the performance of
MULAN. MULAN achieves the best result with 𝜆5 = 1 on the Train
Ticket dataset.

B.5 Additional Results for Case Study
Table 7 shows the performance evaluated by MAP@K. Comparing
the performance of MULAN with other variants, removing any
component of the proposed methods consistently results in perfor-
mance degradation. For instance, removing the edge loss causes
the performance to drop by 12% on the Online Boutique dataset
while removing the node loss leads to a 6% performance reduction
on the Product Review dataset.
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