
Multilingual Syntax-aware Language Modeling
through Dependency Tree Conversion

Anonymous ACL submission

Abstract

Incorporating stronger syntactic biases into001
neural language models (LMs) is a long-002
standing goal, but research in this area often003
focuses on modeling English text, where con-004
stituent treebanks are readily available. Ex-005
tending constituent tree-based LMs to the mul-006
tilingual setting, where dependency treebanks007
are more common, is possible via dependency-008
to-constituency conversion methods. However,009
this raises the question of which tree formats010
are best for learning the model, and for which011
languages. We investigate this question by012
training recurrent neural network grammars013
(RNNGs) using various conversion methods,014
and evaluating them empirically in a multilin-015
gual setting. We examine the effect on LM016
performance across nine conversion methods017
and five languages through seven types of syn-018
tactic tests. On average, the performance of019
our best model represents a 19 % increase020
in accuracy over the worst choice across all021
languages. Our best model shows the advan-022
tage over sequential/overparameterized LMs,023
suggesting the positive effect of syntax injec-024
tion in a multilingual setting. Our experiments025
highlight the importance of choosing the right026
tree formalism, and provide insights into mak-027
ing an informed decision.028

1 Introduction029

The importance of language modeling in recent030

years has grown considerably, as methods based031

on large pre-trained neural language models (LMs)032

have become the state-of-the-art for many problems033

(Devlin et al., 2019; Radford et al., 2019). However,034

these neural LMs are based on general architectures035

and therefore do not explicitly model linguistic036

constraints, and have been shown to capture only037

a subset of the syntactic representations typically038

found in constituency treebanks (Warstadt et al.,039

2020). An alternative line of LM research aims040

to explicitly model the parse tree in order to make041

the LM syntax-aware. A representative example of042

this paradigm, reccurent neural network grammar 043

(RNNG, Dyer et al., 2016), is reported to perform 044

better than sequential LMs on tasks that require 045

complex syntactic analysis (Kuncoro et al., 2019; 046

Hu et al., 2020; Noji and Oseki, 2021). 047

The aim of this paper is to extend LMs that inject 048

syntax to the multilingual setting. This attempt is 049

important mainly in two ways. Firstly, English has 050

been dominant in researches on syntax-aware LM. 051

While multilingual LMs have received increasing 052

attention in recent years, most of their approaches 053

do not explicitly model syntax, such as multilingual 054

BERT (mBERT, Devlin et al., 2019) or XLM-R 055

(Conneau et al., 2020). Although these models have 056

shown high performance on some cross-lingual 057

tasks (Conneau et al., 2018), they perform poorly 058

on a syntactic task (Mueller et al., 2020). Secondly, 059

syntax-aware LMs have interesting features other 060

than their high syntactic ability. One example is 061

the validity of RNNG as a cognitive model under 062

an English-based setting, as demonstrated in Hale 063

et al. (2018). Since human cognitive functions are 064

universal, while natural languages are diverse, it 065

would be ideal to conduct this experiment based on 066

multiple languages. 067

The main obstacle for multilingual syntax-aware 068

modeling is that it is unclear how to inject syn- 069

tactic information while training. A straightfor- 070

ward approach is to make use of a multilingual 071

treebank, such as Universal Dependencies (UD, 072

Nivre et al., 2016; Nivre et al., 2020), where trees 073

are represented in a dependency tree (DTree) for- 074

malism. Matthews et al. (2019) evaluated parsing 075

and language modeling performance on three ty- 076

pologically different languages, using a generative 077

dependency model. Unfortunately, they revealed 078

that dependency-based models are less suited to 079

language modeling than comparable constituency- 080

based models, highlighting the apparent difficulty 081

of extending syntax-aware LMs to other languages 082

using existing resources. 083
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Figure 1: The illustration of stack-RNNG behavior.
Stack-LSTM represents the current partial tree, in
which adjacent vectors are connected in the network.
At REDUCE action, the corresponding vector is up-
dated with composition function (as underlined).

This paper revisits the issue of the difficulty of084

constructing multilingual syntax-aware LMs, by ex-085

ploring the performance of multilingual language086

modeling using constituency-based models. Since087

our domain is a multilingual setting, our focus088

turns to how dependency-to-constituency conver-089

sion techniques result in different trees, and how090

these trees affect the model’s performance. We091

obtain constituency treebanks from UD-formatted092

dependency treebanks of five languages using nine093

tree conversion methods. These treebanks are in094

turn used to train an RNNG, which we evaluate on095

perplexity and CLAMS (Mueller et al., 2020).096

Our contributions are: (1) We propose a method-097

ology for training multilingual syntax-aware LMs098

through the dependency tree conversion. (2) We099

found an optimal structure that brings out the po-100

tential of RNNG across five languages. (3) We101

demonstrated the advantage of our multilingual102

RNNG over sequential/overparameterized LMs.103

2 Background104

2.1 Recurrent Neural Network Grammars105

RNNGs are generative models that estimate joint106

probability of a sentence x and a constituency tree107

(CTree) y. The probability p(x,y) is estimated108

with top-down constituency parsing actions a =109

(a1, a2,⋯, an) that produce y:110

p(x,y) =
n

∏
t=1

p(at∣a1,⋯, at−1)111

Kuncoro et al. (2017) proposed a stack-only 112

RNNG that computes the next action probability 113

based on the current partial tree. Figure 1 illustrates 114

the behavior of it. The model represents the current 115

partial tree with a stack-LSTM, which consists of 116

three types of embeddings: nonterminal, word, and 117

closed-nonterminal. The next action is estimated 118

with the last hidden state of a stack-LSTM. There 119

are three types of actions as follows: 120

• NT(X): Push nonterminal embedding of X 121

(eX ) onto the stack. 122

• GEN(w): Push word embedding of w (ew) 123

onto the stack. 124

• REDUCE: Pop elements from the stack un- 125

til a nonterminal embedding shows up. With 126

all the embeddings which are popped, com- 127

pute closed-nonterminal embedding eX′ using 128

composition funcion COMP: 129

eX′ = COMP(eX ,ew1 ,⋯,ewm) 130

RNNG can be regarded as a language model that 131

injects syntactic knowledge explicitly, and various 132

appealing features have been reported (Kuncoro 133

et al., 2017; Kuncoro et al., 2017; Hale et al., 2018). 134

We focus on its high performance on syntactic eval- 135

uation, which is described below. 136

Difficulty in extending to other languages In 137

principle, RNNG can be learned with any corpus 138

as long as it contains CTree annotation. However, it 139

is not evident which tree formats are best in a mul- 140

tilingual setting. Using the same technique as En- 141

glish can be inappropriate because each language 142

has its own characteristic, which can be different 143

from English. This question is the fundamental 144

motivation of this research. 145

2.2 Cross-linguistic Syntactic Evaluation 146

To investigate the capability of LMs to capture 147

syntax, previous work has attempted to create an 148

evaluation set that requires analysis of the sentence 149

structure (Linzen et al., 2016). One typical example 150

is a subject-verb agreement, a rule that the form of 151

a verb is determined by the grammatical category 152

of the subject, such as person or number: 153

The pilot that the guards love laughs/*laugh. (1) 154

In (1), the form of laugh is determined by the 155

subject pilot, not guards. This judgment requires 156
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Algorithm 1: lf is short for left-first conversion. We
omit right-first conversion because it can be defined just
by swapping the codeblocks 6-9 and 10-13 of left-first
conversion.

1 Function flat(w, ldeps, rdeps):
2 lNT← [flat(lw, lw.ldeps, lw.rdeps) for

lw in ldeps];
3 rNT← [flat(rw, rw.ldeps, rw.rdeps) for

rw in rdeps];
4 return [lNT [w] rNT].removeEmptyList;
5 Function lf(w, ldeps, rdeps):
6 if ldeps is not empty then

/* Pop left-most dependent */
7 lw ← ldeps.pop();
8 lNT← [lf(lw, lw.ldeps, lw.rdeps)];
9 rNT← [lf(w, ldeps, rdeps)];

10 else if rdeps is not empty then
/* Pop right-most dependent */

11 rw ← rdeps.pop();
12 lNT← [lf(w, ldeps, rdeps)];
13 rNT← [lf(rw, rw.ldeps, rw.rdeps)];
14 else return [w];
15 return [lNT rNT];

syntactic analysis; guards is not a subject of target157

verb laugh because it is in the relative clause of the158

real subject pilot.159

Marvin and Linzen (2018) designed the En-160

glish evaluation set using a grammatical frame-161

work. Mueller et al. (2020) extended this frame-162

work to other languages (French, German, Hebrew,163

and Russian) and created an evaluation set named164

CLAMS (Cross-Linguistic Assessment of Models165

on Syntax). CLAMS covers 7 categories of agree-166

ment tasks, including local agreement (e.g. The au-167

thor laughs/*laugh) and non-local agreement that168

contains an intervening phrase between subject and169

verb as in (1). They evaluated LMs on CLAMS170

and demonstrated that sequential LMs often fail to171

assign a higher probability to the grammatical sen-172

tence in cases that involve non-local dependency.173

Previous work has attempted to explore the syn-174

tactic capabilities of LMs with these evaluation sets.175

Kuncoro et al. (2019) compared the performance176

of LSTM LM and RNNG using the evaluation set177

proposed in Marvin and Linzen (2018), demon-178

strating the superiority of RNNG in predicting the179

agreement. Noji and Takamura (2020) suggested180

that LSTM LMs potentially have a limitation in181

handling object relative clauses. Since these analy-182

ses are performed on the basis of English text, it is183

unclear whether they hold or not in a multilingual184

setting. In this paper, we attempt to investigate this185

point by learning RNNGs in other languages and186

evaluating them on CLAMS.187

3 Method: Dependency Tree Conversion 188

As a source of multilingual syntactic information, 189

we use Universal Dependencies (UD), a collection 190

of cross-linguistic dependency treebanks with a 191

consistent annotation scheme. Since RNNG re- 192

quires a CTree-formatted dataset for training, we 193

perform DTree-to-CTree conversions, which are 194

completely algorithmic to make it work regardless 195

of language. Our method consists of two proce- 196

dures: structural conversion and nonterminal la- 197

beling; obtaining a CTree skeleton with unlabeled 198

nonterminal nodes, then assigning labels by lever- 199

aging syntactic information contained in the depen- 200

dency annotations. While our structural conversion 201

is identical to the baseline approach of Collins et al. 202

(1999), we include a novel labeling method that 203

relies on dependency relations, not POS tags. 204

Structural conversion We performed three 205

types of structural conversion: flat, left-first, and 206

right-first. Algorithm 1 shows the pseudo code and 207

Figure 2 illustrates the actual conversions. These 208

approaches construct CTree in a top-down manner 209

following this procedure: 1) Introduce the root non- 210

terminal of the head of a sentence (NTgive). 2) For 211

each NTw, introduce new nonterminals according 212

to the dependent(s) of w. Repeat this procedure 213

recursively until w has no dependents. 214

The difference between the three approaches is 215

the ordering of introducing nonterminals. We de- 216

scribe their behaviors based on the example in Fig- 217

ure 2. (a) flat approach lets w and its dependents 218

be children in CTree simultaneously. For example, 219

NTgive has four children: NTman, NTgive, NThim, 220

NTbox, because they are dependents of the head 221

word give. As the name suggests, this approach 222

tends to produce a flat-structured CTree because 223

each nonterminal can have multiple children. (b) 224

left-first approach introduces the nonterminals from 225

the left-most dependent. If there is no left depen- 226

dent, the right-most dependent is introduced. In 227

the example of Figure 2, the root NTgive has a left 228

child NTman because man is the left-most depen- 229

dent of the head give. (c) right-first approach is 230

the inversed version of left-first; handling the right- 231

most dependent first. For methods (b) and (c), the 232

resulting CTree is always a binary tree. 233

Nonterminal labeling We define three types of 234

labeling methods for each NTw; 1) X-label: Assign 235

“X” to all the nonterminals. 2)POS-label: Assign 236

POS tag of w. 3) DEP-label: Assign dependency 237
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Figure 2: The illustration of structural conversion. NTw is a temporal label of nonterminal which will be assigned
at nonterminal labeling phase.

X-label POS-label DEP-label
NTThe X DETP det
NTman X NOUNP nsubj
NTgive X VERBP root
NThim X PRONP iobj
NTa X DETP det
NTbox X NOUNP obj

Table 1: Actual labels assigned to nonterminals.

relation between w and its head. Table 1 shows the238

actual labels that are assigned to CTrees in Figure 2.239

Each method has its own intent. X-label drops240

the syntactic category of each phrase, which min-241

imizes the structural information of the sentence.242

POS-label would produce the most common CTree243

structure because traditionally nonterminals are la-244

beled based on POS tag of the head word. DEP-245

label is a more fine-grained method than POS-label246

because words in a sentence can have the same247

POS tag but different dependency relation, as in248

man and box in Figure 2.249

Finally, we performed a total of nine types of250

conversions (three structures × three labelings). Al-251

though they have discrete features, they are com-252

mon in that they embody reasonable phrase struc-253

tures that are useful for capturing syntax. Figure 3254

shows the converted structure of an actual instance255

from CLAMS. In all settings, the main subject256

phrase is correctly dominated by NTpilot, which257

should contribute to solving the task.258

4 What Is the Robust Conversion Which259

Works Well in Every Language?260

In Section 3, we proposed language-independent261

multiple conversions from DTree to CTree. The262

intriguing question is; Is there a robust conversion263

that brings out the potential of RNNG in every 264

language? To answer this question, we conducted a 265

thorough experiment to compare the performances 266

of RNNGs trained in each setting. 267

4.1 Experimental Setup 268

Treebank preparation Following Mueller et al. 269

(2020), we extracted Wikipedia articles of target 270

languages using WikiExtractor1 to create corpora2. 271

We fed it to UDify (Kondratyuk and Straka, 2019), 272

a multilingual neural dependency parser trained on 273

the entire UD treebanks, to generate a CoNLL-U 274

formatted dependency treebank. Sentences are tok- 275

enized beforehand using Stanza (Qi et al., 2020) be- 276

cause UDify requires tokenized text for prediction. 277

The resulting dependency treebank is converted 278

into the constituency treebank using methods pro- 279

posed in Section 3. Our treebank contains around 280

10% non-projective DTrees for all the language 281

(between 9% in Russian and 14% in Hebrew), and 282

we omit them in the conversion phase because we 283

cannot obtain valid CTrees from them3. As a train- 284

ing set, we picked sentences with 10M tokens at 285

random for each language. For a validation and a 286

test set, we picked 5,000 sentences respectively. 287

Training details We used batched RNNG (Noji 288

and Oseki, 2021) to speed up our training. Follow- 289

ing Noji and Oseki (2021), we used subword units 290

(Sennrich et al., 2016) with a vocabulary size of 291

1https://github.com/attardi/
wikiextractor

2Although Mueller et al. (2020) publishes corpora they
used, we extracted the dataset ourselves because they contain
<unk> token which would affect parsing.

3Since other language can contain more non-projective
DTrees, we have to consider how to handle it in the future.
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Figure 3: Examples of converted CTrees. A sentence is taken from CLAMS, which requires recognition of long
distance dependency intervened by object relative clause (sentence (1)). For simplicity, we omit the corresponding
word of each nonterminal except for pilot, the main subject of the sentence.

30K. We set the hyperparameters so as to make292

the model size 35M. We trained each model for 24293

hours on a single GPU.294

Evaluation metrics To compare the perfor-295

mance among conversions, we evaluated the model296

trained on each dataset in two aspects: perplexity297

and syntactic ability based on CLAMS.298

Perplexity is a standard metric for assessing the299

quality of LM. Since we adopt subword units, we300

regard a word probability as a product of its sub-301

words’ probabilities. To compute it on RNNG, we302

performed word-synchronous beam search (Stern303

et al., 2017), a default approach implemented in304

batched RNNG. Following Noji and Oseki (2021),305

we set a beam size k as 100, a word beam size306

kw as 10, and fast-track candidates ks as 1. Syn-307

tactic ability is assessed by accuracy on CLAMS,308

which is calculated by comparing the probabilities309

assigned to a grammatical and an ungrammatical310

sentence. If the model assigns a higher probabil-311

ity to a grammatical sentence, then we regard it as312

correct. Chance accuracy is 0.5.313

We run the experiment three times with different314

random seeds for initialization of the model, and315

report the average score with standard deviation.316

4.2 Result317

From now on, we refer to each conversion method318

according to a naming of the procedure, such as319

“left-first structure” or “flat-POS conversion”.320

Perplexity Table 2 shows the perplexities in each321

setting. As a whole, flat structures show the low-322

est perplexity, followed by left-first and right-first,323

which is consistent across languages. While flat324

structure produces stable and relatively low per-325

plexity regardless of labeling methods and lan-326

guages, left-first and right-first structures perform327

very poorly on X-label.328

flat left right
X 259±1 707±19 1507±14

EnglishPOS 278±3 417±2 512±3
DEP 241±30 390±4 463±1

X 133±0 405±10 691±10
FrenchPOS 129±1 206±2 262±1

DEP 137±22 190±5 223±2
X 341±1 830±8 1124±18

GermanPOS 366±1 321±3 482±2
DEP 330±43 291±3 398±4

X 100±1 294±3 450±8
HebrewPOS 97±0 153±1 183±1

DEP 93±1 143±1 161±1
X 508±5 1413±16 1910±59

RussianPOS 527±3 845±2 1067±16
DEP 473±61 834±5 1030±27

Table 2: Test set perplexity of each setting. Lower is
better. “left” and “right” in the table are abbreviations
of “left-first” and “right-first”, respectively.

Syntactic ability Figure 4 shows the accuracies 329

of CLAMS in each setting, and Table 3 shows the 330

average scores. From Table 3, we observe clear 331

distinctions across methods; the best model (shown 332

in bold) is 19% more accurate in average than the 333

worst one (shown in italic), across all languages, 334

indicating the model’s certain preference for the 335

structure. Similar to perplexity, flat structure per- 336

forms better and more stably than the others, re- 337

gardless of labels and languages. While Mueller 338

et al. (2020) reported a high variability in scores 339

across languages when an LSTM LM is used, flat 340

structure-based RNNGs do not show such a ten- 341

dency; almost all the accuracies are above 90%. 342

Looking closely at the Figure 4, we can see that 343

left-first and right-first structures exhibit unstable 344

behavior depending on the labeling; the accuracy 345

on X-label tends to be lower especially for the cate- 346

gories that require the resolution of a long-distance 347

dependency, such as ‘VP coord (long)’, ‘Across 348

subj. rel.’, ‘Across obj. rel.’, and ‘Across prep’. 349
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Figure 4: Accuracies of CLAMS for RNNGs trained on each setting.

flat left right
X 0.89±.01 0.68±.01 0.75±.01

EnglishPOS 0.87±.02 0.89±.01 0.67±.01
DEP 0.90±.02 0.84±.01 0.78±.04

X 0.99±.00 0.75±.00 0.88±.02
FrenchPOS 0.99±.00 0.93±.02 0.92±.01

DEP 0.98±.01 0.96±.01 0.94±.01
X 0.95±.00 0.78±.01 0.86±.01

GermanPOS 0.95±.01 0.93±.01 0.88±.01
DEP 0.96±.01 0.95±.02 0.87±.02

X 0.91±.01 0.72±.01 0.78±.01
HebrewPOS 0.91±.01 0.91±.03 0.87±.01

DEP 0.90±.01 0.92±.00 0.86±.01
X 0.93±.00 0.84±.01 0.89±.02

RussianPOS 0.90±.01 0.87±.01 0.83±.01
DEP 0.93±.01 0.89±.00 0.82±.01

Table 3: CLAMS scores averaged by task category.

Discussion Basically, we observed a similar ten-350

dency in perplexity and CLAMS score; (1) flat351

structures show the highest scores. (2) left-first352

and right-first structures perform poorly on X-label.353

We conjecture that these tendencies are due to354

the resulting structure of each conversion; while355

flat structure is non-binary, the rest two are bi-356

nary. Since nonterminals in a non-binary tree can357

have multiple words as children, parsing actions358

obtained from it contain more continuous GEN359

actions than a binary tree. This nature helps the360

model to predict the next word by considering lexi-361

cal relations, which would contribute to its lower 362

perplexity. Although binary trees get better with 363

the hint of informative labels (POS/DEP), it is diffi- 364

cult to reach the performance of flat structures due 365

to their confused actions; GEN actions tend to be 366

interrupted by other actions. Besides, there are too 367

many NT actions in a binary tree, which can hurt 368

the prediction because the information of an impor- 369

tant nonterminal (e.g. NTpilot in Figure 3) can be 370

diluted through the actions. The situation becomes 371

worse on X-label; the model cannot distinguish 372

the nonterminal of the main subject and that of the 373

other, resulting in missing what the subject is. 374

It is worth noting that perplexity does not always 375

reflect the CLAMS accuracy. For example, while 376

right-X conversion produces the worst perplexity 377

for all the languages, it achieves better CLAMS 378

accuracy than left-X conversion for almost all the 379

cases. This observation is in line with Hu et al. 380

(2020), who report a dissociation between perplex- 381

ity and syntactic performance for English. 382

4.3 Why Does Flat Structure Perform Well? 383

As one possible reason why flat structure is optimal 384

among the three structures presented, we conjec- 385

ture that the parseability of the structure is involved. 386

To test this hypothesis, we calculated the F1 score 387
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flat left right
X 0.80±.00 0.34±.00 0.48±.00

EnglishPOS 0.79±.00 0.57±.00 0.70±.00
DEP 0.82±.01 0.59±.01 0.70±.00

X 0.79±.00 0.37±.00 0.58±.00
FrenchPOS 0.86±.00 0.63±.00 0.74±.00

DEP 0.86±.01 0.65±.01 0.75±.00
X 0.90±.00 0.44±.00 0.59±.00

GermanPOS 0.85±.00 0.74±.00 0.76±.00
DEP 0.91±.08 0.76±.00 0.77±.00

X 0.81±.01 0.41±.00 0.58±.00
HebrewPOS 0.83±.00 0.65±.00 0.73±.00

DEP 0.83±.00 0.65±.00 0.72±.00
X 0.80±.00 0.41±.00 0.59±.00

RussianPOS 0.83±.00 0.62±.00 0.73±.00
DEP 0.82±.01 0.58±.00 0.68±.00

Table 4: F1 score of predicted CTree. We regard a re-
sulting CTree of each conversion as a gold tree.

Figure 5: Structures of a CLAMS example predicted by
{flat, left-first, right-first}-POS RNNG. This example is
solvable only by flat-POS RNNG across all seeds.

between the gold CTrees of the test set and the388

structures predicted by RNNG for each setting. Ta-389

ble 4 shows the result. The tendencies of F1 scores390

are consistent across languages: 1) Flat structures391

show highest F1 score. 2) While scores of flat struc-392

tures are stable regardless of their labelings, the rest393

two structures exhibit lower score on X-label. As a394

whole, the result reflects the tendency discussed in395

Section 4.2, which supports our hypothesis.396

To further investigate the link between parseabil-397

ity and the capability of solving the task, we ob-398

tained parse trees of CLAMS examples that are399

solvable only by flat RNNG across all seeds. We400

found that only flat RNNG produces a correct con-401

stituency tree, and structures obtained from left-402

first and right-first RNNGs are incorrect on a crit-403

ical point. For example, in Figure 5, while the404

relation between the subject “author” and the target405

verb “laughs” is analyzed clearly in the flat struc-406

ture, it is ambiguous in the rest, possibly causing407

the misinterpretation that the subject is “guards”. 408

These findings indicate the importance of choos- 409

ing the correct tree structure for syntax-aware lan- 410

guage modeling; it should be not only hierarchical, 411

but also as parseable as possible. 412

Through analysis of the conversions, we found 413

that (1) flat structure performs stably well in every 414

setting. (2) while CLAMS accuracy of flat structure 415

does not differ significantly depending on its label- 416

ing, for perplexity, flat-DEP performs the best for 417

more than half of the languages and no inferiority 418

can be observed for the other languages. Therefore, 419

we conclude that flat-DEP conversion is the most 420

robust conversion among languages. 421

5 Advantage of Syntax Injection to LMs 422

in a Multilingual Setting 423

In this section, we demonstrate the benefits of in- 424

jecting syntactic biases into the model in a multi- 425

lingual setting. We obtained the CLAMS score of 426

RNNG trained on the flat-DEP treebank (flat-DEP 427

RNNG for short) and compared it against baselines. 428

Experimental setup The experiment was con- 429

ducted in as close setting to the previous work as 430

possible. Following Mueller et al. (2020), we ex- 431

tracted Wikipedia articles of 80M tokens as train- 432

ing set. The hyperparameters of LSTM LM are 433

set following Noji and Takamura (2020) because 434

it performs the best for the dataset of Marvin and 435

Linzen (2018)4. We used subword units with a vo- 436

cabulary size of 30K, and the sizes of RNNG and 437

LSTM LM are set to be the same (35M). 438

Result Table 5 shows the result. In addition 439

to scores from the models we trained (flat-DEP 440

RNNG, LSTM (N20)), we display scores of LSTM 441

LM and mBERT reported in the original paper 442

(LSTM (M20) and mBERT (M20), Mueller et al., 443

2020). Overall, we can see the superiority of 444

RNNG across languages, especially for the tasks 445

that require analysis on long distance dependency; 446

‘VP coord (long)’, ‘Across subj. rel.’, ‘Across obj. 447

rel.’, and ‘Across prep’. While previous work sug- 448

gested that LSTM LMs potentially have a limita- 449

tion in handling object relative clauses (Noji and 450

Takamura, 2020), our result suggests that RNNG 451

does not have such a limitation thanks to explicitly 452

injected syntactic biases. 453

4Since English set of CLAMS is a subset of Marvin and
Linzen (2018), it is reasonable to choose this model to validate
the multilingual extendability.
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Simple VP coord
(short)

VP coord
(long)

Across
subj. rel.

Within
obj rel.

Across
obj rel.

Across
prep.

Average

flat-DEP RNNG 0.99±.01 0.87±.02 0.91±.04 0.95±.02 0.92±.05 0.92±.06 0.93±.04 0.93±.02
EnglishLSTM (N20) 0.93±.03 0.85±.01 0.83±.04 0.85±.04 0.83±.05 0.77±.04 0.87±.02 0.85±.02

LSTM (M20) 1.00±.00 0.94±.01 0.76±.06 0.60±.06 0.89±.01 0.55±.05 0.63±.02 0.77±.03
mBERT (M20) 1.00 1.00 0.92 0.88 0.83 0.87 0.92 0.92

flat-DEP RNNG 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00
FrenchLSTM (N20) 1.00±.00 1.00±.00 0.97±.03 0.92±.06 0.85±.03 0.75±.01 1.00±.00 0.93±.01

LSTM (M20) 1.00±.00 0.97±.01 0.85±.05 0.71±.05 0.99±.01 0.52±.01 0.74±.02 0.83±.02
mBERT (M20) 1.00 1.00 0.98 0.57 — 0.86 0.57 0.83

flat-DEP RNNG 1.00±.00 0.99±.01 0.98±.01 1.00±.00 0.88±.04 0.99±.01 0.97±.02 0.97±.01
GermanLSTM (N20) 0.99±.01 0.97±.03 0.92±.05 0.99±.01 0.72±.01 0.97±.02 0.94±.01 0.93±.01

LSTM (M20) 1.00±.00 0.99±.02 0.96±.04 0.94±.04 0.74±.03 0.81±.09 0.89±.06 0.90±.04
mBERT (M20) 0.95 0.97 1.00 0.73 — 0.93 0.95 0.92

flat-DEP RNNG 0.97±.01 0.99±.00 0.92±.03 0.95±.02 1.00±.00 0.84±.05 0.95±.01 0.95±.01
HebrewLSTM (N20) 0.97±.00 0.95±.04 0.85±.02 0.89±.02 0.94±.01 0.63±.04 0.93±.01 0.88±.00

LSTM (M20) 0.95±.01 1.00±.01 0.84±.06 0.91±.03 1.00±.01 0.56±.01 0.88±.03 0.88±.02
mBERT (M20) 0.70 0.91 0.73 0.61 — 0.55 0.62 0.69

flat-DEP RNNG 0.89±.02 0.94±.02 1.00±.00 0.93±.00 0.99±.01 0.92±.02 0.85±.03 0.93±.01
RussianLSTM (N20) 0.91±.01 0.97±.00 0.97±.02 0.98±.00 0.90±.04 0.85±.07 0.86±.02 0.92±.01

LSTM (M20) 0.91±.01 0.98±.02 0.86±.04 0.88±.03 0.95±.04 0.60±.03 0.76±.02 0.85±.03
mBERT (M20) 0.65 0.80 — 0.70 — 0.67 0.56 0.68

Table 5: CLAMS scores for flat-DEP RNNG and baselines. LSTM (N20) is a model of which hyperparameters
are set as with Noji and Takamura (2020). LSTM (M20) and mBERT (M20) scores are quoted from Table 1, 2 and
5 in Mueller et al. (2020). Hyphen means that all focus verb for the corresponding setting were out-of-vocabulary.

6 Discussion454

We discussed the CTree structure that works ro-455

bustly regardless of the language and the supe-456

riority of injecting syntactic bias to the model.457

Our claim is that we can construct language-458

independent syntax-aware LMs by seeking the best459

structure for learning RNNGs, which is backed460

up by our experiments based on five languages.461

To make this claim firm, more investigations are462

needed from two aspects: fine-grained syntactic463

evaluation and experiment on typologically di-464

verse languages.465

Fine-grained syntactic evaluation The linguis-466

tic phenomenon covered in CLAMS is only an467

agreement. However, previous works have invented468

evaluation sets that examine more diverse syntactic469

phenomena for English (Hu et al., 2020, Warstadt470

et al., 2020). We need such a fine-grained evalua-471

tion even in a multilingual setting, as superiority472

in agreement does not imply superiority in every473

syntactic knowledge; Kuncoro et al. (2019) sug-474

gested that RNNG performs poorer than LSTM475

LM in capturing sentential complement or simple476

negative polarity items. It is challenging to design477

a multiliugnal syntactic test set because even an478

agreement based on grammatical categories is not479

a universal phenomenon. It is required to seek480

reasonable metrics that cover broad syntactic phe-481

nomena and are applicable to many languages.482

Experiment on typologically diverse languages483

Languages included in CLAMS (English, French,484

German, Hebrew and Russian) are actually not ty-485

pologically diverse. Apart from language-specific 486

features, all of them take the same ordering of (1) 487

subject, verb, and object (SVO) (2) relative clause 488

and noun (Noun-Relative clause) (3) adposition and 489

noun phrase (preposition), and so on5. If we run 490

the same experiment for a typologically different 491

language, the result could be somewhat different. 492

Although some previous work focused on syntac- 493

tic assessment of other languages (Ravfogel et al., 494

2018; Gulordava et al., 2018), such attempts are 495

scarce. As future work, it is needed to design an 496

evaluation set based on other languages and explore 497

the extendability to more diverse languages. 498

7 Conclusion 499

In this paper, we propose a methodology to learn 500

multilingual RNNG through dependency tree con- 501

version. We performed multiple conversions to 502

seek the robust structure which works well multilin- 503

gually, discussing the effect of multiple structures. 504

We demonstrated the superiority of our model over 505

baselines in capturing syntax in a multilingual set- 506

ting. Since our research is the first step for multilin- 507

gual syntax-aware LMs, it is necessary to conduct 508

experiments on more diverse languages to seek a 509

better structure. We believe that this research would 510

contribute to the field of theoretical/cognitive lin- 511

guistics as well because an ultimate goal of lin- 512

guistics is finding the universal rule of natural lan- 513

guage. Finding a reasonable structure in engineer- 514

ing would yield useful knowledge for that purpose. 515

5Typological information is obtained from WALS:
https://wals.info/
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