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ABSTRACT

Developing deep learning models that effectively learn object-centric representa-
tions, akin to human cognition, remains a challenging task. Existing approaches
facilitate object discovery by representing objects as fixed-size vectors, called
“slots” or “object files”. While these approaches have shown promise in cer-
tain scenarios, they still exhibit certain limitations. First, they rely on architec-
tural priors which can be unreliable and usually require meticulous engineering to
identify the correct objects. Second, there has been a notable gap in investigating
the practical utility of these representations in downstream tasks. To address the
first limitation, we introduce a method that explicitly optimizes the constraint that
each object in a scene should be associated with a distinct slot. We formalize this
constraint by introducing consistency objectives which are cyclic in nature. By
integrating these consistency objectives into various existing slot-based object-
centric methods, we showcase substantial improvements in object-discovery per-
formance. These enhancements consistently hold true across both synthetic and
real-world scenes, underscoring the effectiveness and adaptability of the proposed
approach. To tackle the second limitation, we apply the learned object-centric rep-
resentations from the proposed method to two downstream reinforcement learning
tasks, demonstrating considerable performance enhancements compared to con-
ventional slot-based and monolithic representation learning methods. Our results
suggest that the proposed approach not only improves object discovery, but also
provides richer features for downstream tasks.

1 INTRODUCTION

Having object-based reasoning capabilities is important for solving many real-world problems. The
world around us is complex, diverse, and full of distinct objects. Human beings possess the natural
ability to parse and reason about these objects in their environment. Frequently, changing or ma-
nipulating certain aspects of the world requires interacting with a single object or a combination of
objects. For instance, driving a car necessitates maneuvering a single object (the car) while avoiding
collisions with other objects or entities such as other cars, trees, and other obstacles. Developing
object-based reasoning capabilities is therefore crucial for improving the ability of deep learning
models to understand and solve problems in the real world.

Unsupervised discovery of objects from a scene is a challenging problem, as the notion of what an
object refers to may be hard to parse without any extra context. Many existing approaches (Greff
et al., 2017; 2019; Burgess et al., 2019; Goyal et al., 2019; Locatello et al., 2020; Goyal et al.,
2020; 2021b; Ke et al., 2021; Goyal et al., 2021a; Singh et al., 2022) learn a set of slots to represent
objects, where each slot is a fixed size vector. Most of these approaches use a reconstruction loss
coupled with certain architectural biases that depend on visual cues to learn to segment objects into
slots. There has been work that uses other auxiliary cues for supervision such as optical flow (Kipf
et al., 2021) and depth prediction (Elsayed et al., 2022). However, architectural priors may not be
always reliable and hence may not scale to real-world data while relying on auxiliary information
such as optical flow and motion is not feasible since many datasets and scenes do not come with
this information. To address these limitations, we augment existing slot-based methods with two
auxillary objectives called cycle consistency objectives.
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Figure 1: Cycle Consistency Objectives. Here we show the general architecture of the model.
The proposed approached augments two additional losses to existing object-centric methods (in this
case, slot attention). These losses encourage object discovery directly in the latent space. We refer to
these losses as SLOT-FEATURE-SLOT Consistency loss and FEATURE-SLOT-FEATURE consistency
loss. The SLOT-FEATURE-SLOT consistency loss is calculated as the cross-entropy between the slot-
feature-slot similarity matrix and the identity matrix. The FEATURE-SLOT-FEATURE consistency
loss is computed as the cross-entropy between the feature-slot-feature similarity matrix and a custom
matrix F̃ , the details of which we provide in Section 2.
The proposed cycle consistency objectives operate directly on the latent representations of the slots
and visual features (obtained from the neural encoder as shown in Figure 1). These objectives aug-
ment the architectural priors used in slot attention style models with an extra layer of reliability by
explicitly enforcing coherence and consistency between the representations of the visual features
and the learned slots. To apply the objectives, we consider the visual features and slots as nodes
in a directed graph. The problem of object-discovery can be then formulated as that of adding the
right edges into the graph such that - (1) the outgoing edges from a set of features belonging to the
same object should go into the same slot, and, (2) the outgoing edges from each slot should go into
a distinct subset of features. Both these constraints are formulated into two cycle consistency ob-
jectives called SLOT-FEATURE-SLOT consistency loss and FEATURE-SLOT-FEATURE consistency
loss. Further details regarding these objectives are elaborated in Section 2.

The proposed objectives are simple and can be integrated into any existing slot-based object-
discovery method. We apply them to two object-discovery tasks and two downstream RL tasks. We
find that augmenting slot-based methods with the proposed objectives improves object-discovery
performance and exhibits stronger generalization to unseen scenarios. The learned slot-based rep-
resentations also demonstrate strong transferrability to downstreal RL tasks as compared to various
baselines.

2 PROPOSED METHOD

In this section, we present the details of the proposed cycle consistency objectives and the un-
derlying intuition behind them. The proposed method is designed to operate on a set of N slots
S = {s0, s1, . . . , sN} and a set of M features F = {f0, f1, . . . , fM} which can be obtained using
any suitable backbone such as a convolutional encoder. Similarly, the slots S can be obtained using
any suitable object discovery or slot extractor method such as slot attention as shown in Figure 1:

S = slot extractor(F) (1)

Preliminary Setup We denote the directed graph between the nodes and the features as G. To find
the correct edges to add to this graph we first score all possible edges. Next, we optimize the scores
to satisfy the following two conditions -
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• A set of features belonging to the same object must have outgoing edges to the same slot.

• The outgoing edges from each slot should go to a distinct set of features.

The score for an edge between a slot and a feature is computed by taking the dot product of their
respective features. For example, an outgoing edge from feature fi to slot sj is scored as -

ϕ(fi, sj) = ϕ(fi → sj) =
fi · sj
τ1

(2)

Here, τ1 is the temperature which is generally set to 0.1 in our experiments. We convert these scores
into probabilities by normalizing across all possible target nodes.

p(fi → sj) =
exp(ϕ(fi → sj))∑k=N−1

k=0 exp(ϕ(fi → sk))
(3)

By computing these probabilities for all possible feature-slot pairs, we obtain a feature-slot similarity
matrix Af→s ∈ RM×N . Similarly, we compute a slot-feature similarity matrix As→f ∈ RN×M .
Note that, the scores in As→f are normalized across all features.

We want both the similarity matrices to conform to the above two conditions. For example, each
row in As→f , which represents a particular slot si, should assign highest probability to the features
corresponding to that slot. Similarly, each row in Af→s should assign highest probability to the slots
that the feature corresponds to.

However, we cannot directly optimize these similarity matrices to satisfy the above conditions as
we do not have the ground truth slot to feature assignments. Instead, we consider cyclic paths
consisting of two edges - (1) SLOT-FEATURE-SLOT paths - Paths with an edge from a slot to a
feature and another edge from a feature to a slot; (2) FEATURE-SLOT-FEATURE paths - Paths with
an edge from a feature to a slot and another edge from a slot to a feature.

SLOT-FEATURE-SLOT Consistency Loss We want that for an outgoing edge from slot si to
feature fk, the outgoing edge from feature fk should cycle back to slot si. To develop an intuition
about this, consider a case where perfect object factorization has been achieved where each object
is represented by a distinct slot. In such a case, for an edge going from a slot si to a feature fk, the
outgoing edge from fk will always come back to si because in the case of perfect factorization each
feature belonging to a particular object will be represented by one slot only - the slot that represents
that particular object.

To achieve this constraint, we first calculate the scores of all possible SLOT-FEATURE-SLOT paths
i.e. paths with edges from a slot si to a feature fk and another edge from fk to slot sj as follows -
ϕ(si → fk → sj) = p(si → fk) · p(fk → sj). We convert this into probabilities by normalizing
over all possible paths beginning from slot si and ending in slot sj as follows -

As→f→s[i, j] =
exp(p(si → fk) · p(fk → sj))∑M−1

k′=0

∑N−1
j′=0 exp(p(si → fk′) · p(fk′ → sj′))

(4)

As→f→s = softmax(As→fAf→s, axis = 1) (5)

We refer to As→f→s ∈ RN×N as the slot-feature-slot similarity matrix as shown in the Figure
1. Since we want every path originating at slot si to return back to slot si, we want the probabil-
ities along the diagonal of As→f→s to be the highest hence we frame the SLOT-FEATURE-SLOT
consistency loss as -

Lsfs′ = −
N−1∑
i=0

log(As→f→s[i, i]) (6)
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FEATURE-SLOT-FEATURE Consistency Loss For a path originating at a feature fi, belonging
to an object o, going into a slot sk. The outgoing edge from slot sk must go into any of the features
fj that represent o. Note that in this case the outgoing path from slot sk may not go back to the
originating feature fi since multiple features belonging to one object map to the same slot.

To achieve this constraint, we first calculate the feature-slot-feature similarity matrix which is shown
in Figure 1 as follows -

Af→s→f = softmax(Af→sAs→f , axis = 1) (7)

Note that Af→s→f ∈ RM×M . In this case, we cannot optimize for the diagonals of Af→s→f to
have the highest probabilities since SLOT-FEATURE-SLOT paths can have different source and target
nodes. Therefore, we optimize it by computing the cross-entropy between Af→s→f and a custom
matrix F̃ -

Lfsf ′ = −
M−1∑
i=0

F̃ [i, i] log(Af→s→f [i, i]) (8)

Note that the above loss is only computed for the diagonal elements of Af→s→f .

F̃ is calculated as a function of the features F output by the encoder as indicated in Figure 1.
First we calculate the pairwise feature similarity values using F and sparsify the feature similarity
matrix based on a threshold T . Consider two features from F - fi and fj . The similarity score
between these features is calculated as δi,j =

fi·fj
τ2

. The threshold value T is computed as T =

c · (max(F) − min(F)) + min(F), where c is a hyperparameter. In all our experiments, we set
c to 0.8 unless specified otherwise. Once we obtain the sparse feature similarity matrix (denoted
as F̃ which is a M × M matrix), we normalize it across rows to convert the similarity scores into
probabilities -

F̃ = softmax(F̃ , axis = 1) (9)

Training Details The proposed method can be applied on top of any slot-based object discovery
method. To incorporate the proposed approach, we add the the cycle consistency objectives to the
original loss of the method. For example, slot attention (Locatello et al., 2020) utilizes a pixel-based
reconstruction loss. On adding the proposed objectives, the final loss becomes:

Lfinal = Lrecon + λsfs′Lsfs′ + λfsf ′Lfsf ′ (10)

To set the hyperparameters for our approach, we select λsfs′ and λfsf ′ as 0.1 and 0.01, respectively,
unless otherwise specified. We also employ an additional Exponential Moving Average (EMA)
visual encoder. The EMA encoder is used for calculating F̃ . This practice aligns with several self-
supervised learning studies (He et al., 2019; Chen & He, 2020; Grill et al., 2020) and ensures that the
features used in computing F̃ remain stable avoiding frequent changes caused by gradient updates
in the visual encoder. Also, we detach the calculation of F̃ from the gradient computation.

In methods involving multiple iterations of object discovery, such as slot attention, we apply the
cycle consistency objectives to the slots obtained from each iteration of the method, unless explicitly
stated otherwise.

We set τ1 to 0.1 and τ2 to 0.01 unless specified otherwise.

Connections to k-means clustering Locatello et al. (2020) mention that slot attention can be seen
as a form soft k-means clustering with dot product as the similarity function and a learned update
rule. Taking this view, the proposed cycle consistency objectives can be seen as a further enforcing
function on the clustering that acts by maximizing the similarity between features that belong to a
cluster and minimizing the similarity of features that belong to seperate clusters.
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Figure 2: Causal World Slot Masks In this figure, we show the learned slot masks for both the pre-
trained models. We can see that proposed approach captures obejcts more clearly than the baseline
Slate model.

3 RELATED WORK
Unsupervised Object Discovery Our work addresses the problem of object discovery in visual
scenes. While this challenge has been tackled using supervised, semi-supervised, and unsupervised
methods, our approach falls into the category of unsupervised object discovery techniques (Greff
et al., 2017; 2019; Burgess et al., 2019; Eslami et al., 2016; Lin et al., 2020; Goyal et al., 2020;
Crawford & Pineau, 2019; Zoran et al., 2021; Locatello et al., 2020; Ke et al., 2021; Engelcke
et al., 2019; Goyal et al., 2019; 2021b). These papers mainly consider only synthetic datasets. They
rely on a set of vectors, known as slots, to represent objects, and use various architectural priors
and objectives to group image features into slots that correspond to distinct objects. Many recent
works (Singh et al., 2022; Jia et al., 2022; Seitzer et al., 2023; Choudhury et al., 2021; Wang et al.,
2022; 2023) have proposed improvements that have managed to scale these slot-based methods to
real-world datasets. While most of these datasets use pixel-wise reconstruction objectives, (Seitzer
et al., 2023; Wang et al., 2023) are the only two works that utilize objectives in the latent space like
the proposed approach. (Seitzer et al., 2023) introduce a model called Dinosaur which applies slot
attention on the features output by a pretrained self-supervised encoder such as DINO (Caron et al.,
2021) and use feature reconstruction as the training objective. (Wang et al., 2023) also apply slot
attention to the features output by a pretrained encoder. They use an objective which is very similar
to the cycle consistency objective proposed in this paper. The main difference between our work
and theirs is that they mostly consider pretrained and frozen encoder backbones while we mainly
consider encoders trained from scratch.
Cycle Consistency Cycle consistency is a concept in deep learning that enables the learning of a
consistent mapping between two domains in cases where 1-to-1 data is not available. It relies on
the property of transitivity to enforce structure in representations, and has been successfully used
for learning good representations in images, videos, and language. Numerous studies (Wang et al.,
2013; 2014; Wilson & Snavely, 2013; Zach et al., 2010; Zhou et al., 2015a; 2016; 2015b; Hoffman
et al., 2018; Zhu et al., 2017) have employed cycle consistency in image-based tasks such as co-
segmentation, domain transfer, and image matching. In these works, cycle consistency is typically
used as an objective function that ensures the consistency of the mapping between the source and
target domains, and the inverse mapping from the target domain back to the source domain. For
example, in (Zhu et al., 2017), the source and target domains are images from distinct styles. Cycle
consistency has also been utilized as a self-supervised representation learning technique in videos.
Various studies (Dwibedi et al., 2019; Wang et al., 2019; Li et al., 2019; Lai & Xie, 2019; Jabri et al.,
2020; Hadji et al., 2021) have used the cycle consistency objective to enforce temporal consistency
in videos, ensuring that there is a path forward from frame i to frame k, and the path backward from
frame k lands back on frame i. Our work differs from previous works in that we apply the cycle
consistency objective for object discovery. Additionally, the cycle consistency objective is applied to
the latent space consisting of the slots and features in this case while previous studies have primarily
focused on applying the objective to the domains of language, images, or video.

4 EXPERIMENTS

In our experiments, we assess the performance of the proposed objectives on object-discovery tasks.
Then we evaluate the efficacy of the learned representation on two distinct downstream RL tasks.
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Object Discovery Approaches We consider four unsupervised object discovery approaches as
our base approaches: (1) Slot Attention (Locatello et al., 2020) - Slot-attention uses a top-down
iterative attention mechanism to discover slots from image features ; (2) SLATE (Singh et al., 2022)
- SLATE also uses slot-attention to discover slots but replaces the convolutional encoder in slot
attention by a dVAE (van den Oord et al., 2017; Ramesh et al., 2021) and performs reconstruction
in vector-quantzed space using an auto-regressive transformer; (2) Dinosaur (Seitzer et al., 2023)
- Dinosaur applies slot attention on the features from a pretrained encoder; (4) MoTok (Bao et al.,
2023) - MoTok applies slot-attention to discover objects in videos. It uses motion segmentation
annotations to supervise the attention maps in slot attention. We incorporate the proposed CYCLIC
objectives in each of these models.

Datasets and Environments For object-discovery we consider both synthetic and real-world
datasets. For the synthetic datasets, we use Shapestacks (Groth et al., 2018), ObjectsRoom (Kabra
et al., 2019), ClevrTex (Karazija et al., 2021). We evaluate the segmentation performance on these
synthetic datasets using the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) and reconstruction
performance using the mean-squared error (MSE). Specifically, we calculate FG-ARI for all these
datasets which is same as ARI but ignores the background information. For real-world datasets, we
consider the task of multi-object segmentation in COCO (Lin et al., 2014) and scannet (Dai et al.,
2017) datasets. For this task, we report the AP score (Everingham et al., 2014), precision score and
recall score.

We also apply the proposed approach to object discovery in videos where we consider the Movi-
E video dataset (Greff et al., 2022). We use MoTok (Bao et al., 2023) as our base model for this
experiment. For the experiments with Dinosaur (Seitzer et al., 2023), we use the Movi-C and Movi-
E datasets (Greff et al., 2022). We consider them as image datasets for these experiments rather than
as video datasets.

For our downstream RL tasks we use the atari and causal world environments (Ahmed et al., 2020).
In atari, we consider various different games and we report the mean returns across 10 episodes
similar to (Chen et al., 2021). In causal world, we consider 2 variants of the object goal task where
the agent is tasked with moving the robotic arm towards a target object. We use success rate as the
performance metric in causal world.

4.1 OBJECT DISCOVERY

Synthetic Datasets We study the object discovery performance of the proposed approach on syn-
thetic tasks. We follow the setup used in (Dittadi et al., 2022). We augment the slot-attention
auto-encoder (Locatello et al., 2020) model with the cycle consistency objectives. Slot attention
uses a convolutional encoder to obtain image features and a mixture-based decoder for reconstruc-
tion (Watters et al., 2019). The encoder outputs features F̃ ∈ Rt×t×D, where t = 64. Before
applying the cycle consistency objectives, we downsample the features to t̃ = 16 and then project
them using an MLP to have the same dimension as the slots. We also normalize the slots using their
L2 norm before applying the cycle consistency objectives. More details regarding the architecture
and hyper-parameters can be found in the Appendix.

Table 1: Synthetic Datasets Segmentation. In this table we compare the slot attention model
augmented with the proposed CYCLIC objectives against the original slot attention model (Locatello
et al., 2020). As shown in the table, we observe that the proposed objectives result in performance
gains across all the considered datasets. Results averaged across 3 seeds.

ObjectsRoom ShapeStacks ClevrTex

Model λsfs′ λfsf′ MSE ↓ FG-ARI ↑ MSE ↓ FG-ARI ↑ MSE ↓ FG-ARI ↑
Slot-Attention 0 0 0.0018±0.0004 0.7819±0.08 0.004±0.0004 0.7738±0.05 0.007±0.001 0.6240±0.223

1

+ CYCLIC > 0 0 0.0019±0.0003 0.7832±0.05 0.004±0.0010 0.5491±0.4521 0.007±0.0001 0.6640±0.05

+ CYCLIC 0 > 0 0.0015±0.0002 0.8120±0.06 0.004±0.0003 0.7755±0.06 0.007±0.0001 0.4974±0.03

+ CYCLIC > 0 > 0 0.0015±0.0002 0.8169±0.03 0.0037±0.0001 0.7838±0.02 0.007±0.0001 0.7245±0.01

1We took the result for SA from (Karazija et al., 2021), as we were unable to reproduce the same result in a
statistically consistent manner. With our implementation, we got FG-ARI score of 0.5864±0.01. To be fair, we
have reported the score from the original paper (Karazija et al., 2021).
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Results. Table 1 presents the quantitative results on all three datasets. We observe that augmenting
Slot Attention with the proposed objectives leads to better factorization (as measured by FG-ARI)
and superior reconstruction (measured by MSE). We also observe that while the presence of only one
of the objectives does not affect the reconstruction performance significantly, having both objectives
is crucial for achieving good factorization.
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Figure 3: ClevrTex Generalization. Here we
present transfer results on clevrtex. We find that
the proposed approach outperforms the baseline
on both the transfer splits. Results averaged across
5 seeds.

ClevrTex Generalization. The ClevrTex
dataset provides two generalization splits
which allow us to probe the generalization
capabilities of the proposed approach: (1)
CAMO - Contains scenes where certain objects
are camouflaged, and (2) OOD - uses 25 new
materials that were not seen during training.
We train the models on the full training set of
ClevrTex and transfer them to both the splits.
Figure 3 presents the results, which demon-
strate that the proposed method consistently
outperforms the baseline on the generalization
splits.

Table 2: Real World Datasets Segmentation. Here we present results for multi-object segmenta-
tion on real-world datasets. We augment the improved Slate model presented in (Jia et al., 2022)
with the proposed cyclic objectives. We can see that the proposed approach outperforms all base-
lines on all metrics on both datasets. Results averaged across 3 seeds.

COCO Scannet
Model AP@05 ↑ PQ ↑ Precision ↑ Recall ↑ AP@05 ↑ PQ ↑ Precision ↑ Recall ↑

MONet (Burgess et al., 2019) 11.8±2.0 12.5±1.1 16.1±0.9 21.9±1.7 24.8±1.6 24.6±1.6 31.0±1.6 40.7±1.8
IODINE (Greff et al., 2019) 4.0±1.2 6.3±1.2 9.9±1.8 10.8±2.0 10.1±2.9 13.7±2.7 18.6±4.2 24.4±3.8

Slot Attention (Locatello et al., 2020) 0.8±0.3 3.5±1.2 5.3±1.7 7.3±2.2 5.7±0.3 9.0±1.5 12.4±2.5 18.3±2.7
Implicit Slot Attention (Chang et al., 2023) 12.8±4.8 13.7±4.5 20.4±6.0 24.6±7.3 21.4±6.8 23.4±1.5 29.1±7.8 34.5±7.0

BO-Slate (Jia et al., 2022) 16.64±1.00 17.48±0.9 25.49±1.2 31.13±1.5 24.67±3.2 23.55±0.3 34.03±0.4 38.74±0.6

BO-Slate + CYCLIC 18.96±0.9 18.81±0.8 27.50±1.4 33.20±1.6 29.20±1.1 26.09±1.4 37.03±1.4 42.09±1.8

Model FG-ARI
MoTok 67.38

MoTok + Cyclic 72.48

Table 3: Cycle Consistency Objectives with mo-
tion guidance. Here we incorporate the cycle
consistency objectives into the MoTok model pre-
sented in Bao et al. (2023). We find that incor-
porating the proposed objectives into MoTok re-
sults in improved performance on the considered
video-based object discovery task. We consider
the Movi-E dataset for this experiment.

Model MOVi-C MOVi-E
FG-ARI mBO FG-ARI mBO

DINOSAUR (ViT-B/8) 68.9±0.4 38.0±0.2 65.1±1.2 33.5±0.1

+ CYCLIC 72.4±2.1 40.2±0.5 69.7±1.6 37.2±0.4

Table 4: Cycle Consistency Objectives with
Pretrained Encoders In this table we demon-
strate the improvements achieved by the cyclic
objectives when added to the DINOSAUR model
from (Seitzer et al., 2023) based on the pre-
trained ViT-B/8 encoder. We can see that pro-
posed method achieves superior performance on
both the datasets.

Cycle Consistency Objective for Video Datasets We use the Movi-E video dataset for this study
considering the MoTok model (Bao et al., 2023) as the base model. MoTok uses motion segmenta-
tion annotations as auxiliary information to discover objects in the video. We incorporate the cycle
consistency objectives in the slot attention module from the MoTok model presented in Bao et al.
(2023). We present the results for this experiment in Table 3. We find that augmenting MoTok with
the cycle consistency objectives result in improved performance on the Movi-E dataset compared to
the MoTok baseline.
Cycle Consistency Objective with Pretrained Encoders We use the DINOSAUR model (Seitzer
et al., 2023) as the base model. DINOSAUR applies slot attention to the pretrained features obtained
from a DINO encoder (Caron et al., 2021). For the proposed method, we add the cyclic objectives
to the DINOSAUR model, applying them only to the slots obtained from the last iteration of slot
attention. In this case, we do not use an EMA encoder, as the DINO image encoder is kept frozen
through training. We perform this comparison on the MOVI datasets Greff et al. (2022). The
results in Table 4 show that DINOSAUR augmented with cyclic objectives outperform the base
DINOSAUR model on both the datasets. This further shows that the proposed cycle consistency
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objectives are agnostic to the underlying object discovery approach and only require the underlying
approach to use slot attention.
Effect of Loss coefficients We study the effect of the loss coefficients (λsfs′ and λfsf ′ ) on the
ClevrTex dataset in Figure 4. We can see that for the variation in λsfs′ (Figure 4 (a)), the per-
formance degrades rapidly for higher values. We conjecture that the reason behind this is that
SLOT-FEATURE-SLOT consistency can be trivially satisfied if all features are mapped to one slot.
Therefore, having a high λsfs′ may bias the model towards the trivial solution thereby hurting per-
formance. From Figure 4(b), we can see that the performance variation is much more stable in the
case where we vary the value of λfsf ′ . This shows that the model is fairly agnostic to the value of
λfsf ′ .
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(a) λsfs′ variation
for λfsf ′ = 0.01
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(b) λfsf ′ variation
for λsfs′ = 0.1

Figure 4: Effect of Loss Coefficients (a) In this we vary
the SLOT-FEATURE-SLOT weight (λsfs′ ) and keep the
FEATURE-SLOT-FEATURE weight (λfsf ′ ) fixed to 0.01.
We can see that the model reaches peak performance for
λsfs′ = 0.1 and the performance degrades rapidly for
higher values. (b) In this we vary λfsf ′ and keep λsfs′ fixed
to 0.1. We can see that the performance is much more stable
here as compared to varying λsfs′ .

Real-World Datasets For these ex-
periments, we use the BO-SLATE
model (Jia et al., 2022) as our base
model. BO-Slate is an improved
version of Slate (Singh et al., 2022)
where the main improvements come
from having learnable slot initializa-
tions. For the proposed method, we
add the cycle consistency objectives
to the BO-SLATE model. We refer to
this model as BO-Slate + Cyclic. We
defer further details to the Appendix.
The underlying task which we con-
sider for real-world datasets is multi-
object segmentations. The results for
this task are presented in Table 2. We
use the same versions of the datasets
used in (Jia et al., 2022). We compare
the proposed approach to various object-centric models that exist in literature. We observe that the
BO-Slate model augmented with the proposed objectives outperforms all the baselines on all the
metrics. More information about these metrics is presented in the appendix.

4.2 REPRESENTATION LEARNING FOR DOWNSTREAM RL TASKS

Table 5: Atari. Here we present results on vari-
ous games from the Atari suite. Results averaged
across 5 seeds.

Game DT DT + SA DT + SA + Cyclic

Pong 11.0±5.727 7.4±6.184 14.8±2.482

Breakout 70.6±20.539 93.4±24.121 110.2±11.107

Seaquest 1172.4±175.779 444.0±179.738 663.2±111.014

Qbert 5485.2±1995.256 5275.2±862.894 7393.8±1982.989

Asterix 523.333±61.146 471.667±253.388 785.0±153.677

Assault 387.333±23.099 430.667±83.003 462.0±128.693

Boxing 78.0±1.633 77.333±1.247 78.667±0.943

Carnival 486.0±343.872 814.0±49.423 836.667±91.277

Freeway 26.667±0.471 21.0±0.816 23.0±0.816

Crazy Climber 76564.0±24713.859 51490.0±28676.178 94254.0±7569.641

BankHeist 11.4±6.974 105.0±88.808 144.8±116.68

Space Invaders 602.2±67.972 392.0±189.67 598.2±52.147

MsPacman 1461.4±329.76 1220.8±237.301 1900.0±206.364

Atari One important aspect of any represen-
tation learning method is that the learned rep-
resentations should be useful in downstream
tasks. In this section, we explore the useful-
ness of the proposed approach in the context
of atari games. (Chen et al., 2021) introduced
the decision transformer model which learns to
play various games in the Atari suite by im-
itating suboptimal trajectories from a learned
agent. We present more details of the decision
transformer model in Appendix Section 9. In
this work, we change the monolithic state rep-
resentation used in decision transformer to an
object-centric one.

The monolithic state representation of an obser-
vation is a D-dimensional vector obtained by
passing the atari observations through a convo-
lutional encoder. Note that each observation is
a stack of 4 frames. To obtain the correspond-
ing object-centric version of this, we use the
convolutional encoder and the slot attention module from (Locatello et al., 2020) to encode each
observation. Therefore, each observation is encoded into N slots instead of a single vector.

To ensure that slots learn the correct object-centric representation we augment the decision trans-
former loss with the slot attention loss- L = LDT + LReconstruction. Additionally, we also add the
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cycle consistency objectives to the loss - L = LDT + LReconstruction + λsfs′Lsfs′ + λfsf ′Lfsf ′ .
We compare our method to the baseline decision transformer and an object-centric variant of deci-
sion transformer (DT + SA) where we have the slot attention style reconstruction loss but omit the
cycle consistency objectives.

The performance comparison in Table 5 reveals that the decision transformer, when augmented
with object-centric representations solely obtained from slot attention (DT + SA) exhibits competi-
tive performance across most games to the original decision transformer (DT). However, when the
object-centric decision transformer is combined with the proposed cycle consistency objectives, it
surpasses the baseline decision transformer in 10 out of 13 games. This outcome showcases the
significance of the proposed cycle consistency objective in learning strong object-centric represen-
tations capable of performing downstream tasks.
Causal World We consider the object goal task from the causal world environment (Ahmed et al.,
2020). We follow the same setup as (Yoon et al., 2023). In the Object Goal task, the agent controls
a tri-finger robot placed in a bowl. The bowl contains a target object and a few distractor objects.
The task for the agent is to move the trifinger robot towards the target objects without touching the
distractors.

Static Initial Robot Pos. Dynamic Initial Robot Pos.
Task
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Slate + Cyclic

Figure 5: Causal World RL In this figure, we
present results for both causal world tasks. We can
see that Slate models pretrained with the cyclic
objectives achieve a superior success rate com-
pared to the baseline Slate Model. Results aver-
aged across 5 seeds.

Similar to (Yoon et al., 2023), we first pretrain
a Slate model augmented with the cycle con-
sistency objectives on random rollouts from the
object goal task. The baseline for this task is a
Slate model pretrained on the same dataset of
random rollouts. We visualize the learned ob-
ject masks in Figure 2. We can see that the the
proposed objectives enable the model to learn
more accurate object masks as compared to the
baseline.

Next, we train a policy using proximal pol-
icy optimization (PPO) (Schulman et al., 2017).
We use a transformer-based policy network.
The inputs are the slot representations from the
object-centric models along with a CLS token.
The resulting output corresponding to the CLS
token is used to output the action distribution
and the value. The object-centric model is kept
frozen at this stage.

We consider two variants of the object-goal task
- (1) Static Initial Robot Position - Initial posi-
tion of the tri-finger robot is the same across
episodes; (2) Dynamic Initial Robot Position - Initial position of the tri-finger is different across
episodes. We show results for this task in Figure 5. We can see that in both cases, models pretrained
with the cyclic objective outperform those without it. We present more details about the pretraining
procedure and the policy in the Appendix Section 10.

5 FUTURE WORK AND LIMITATIONS

Significant research efforts have been dedicated to learning object-centric representations. However,
the evaluation of these representations has primarily focused on unsupervised segmentation perfor-
mance using metrics like ARI or IoU. Regrettably, there is a dearth of studies demonstrating the
practical utility of object-centric representations across diverse downstream tasks. To address this
gap, our work takes a step forward by showcasing the effectiveness of our approach in the context of
Atari and Causal World. We do not address all limitations of object-centric methods on downstream
tasks, more work is still needed to showcase the effectiveness of these models on more complex and
real-world downstream tasks. Moving forward, our objective is to shift our focus towards develop-
ing object-centric representations that prove valuable in a wide array of downstream tasks, spanning
reinforcement learning to visual tasks like visual question answering and captioning. We aim to
explore the efficacy of cycle consistency objectives in learning such representations and study what
is lacking in building more pervasive object-centric representations.
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ObjectsRoom ShapeStacks ClevrTex Movi-C Movi-E

Figure 6: Here we show an example image from each synthetic dataset that we consider.

ObjectsRoom ShapeStacks ClevrTex
Layer Channels Kernel Size Padding Stride Channels Kernel Size Padding Stride Channels Kernel Size Padding Stride

Convolutional Encoder
Conv 32 5 2 1 32 5 2 1 64 5 2 1
Conv 32 5 2 1 32 5 2 1 64 5 2 1
Conv 32 5 2 1 32 5 2 1 64 5 2 1
Conv 32 5 2 1 32 5 2 1 64 5 2 1

Convolutional Decoder
Conv. Trans 32 5 2 1 32 5 2 1 64 5 2 2
Conv. Trans 32 5 2 1 32 5 2 1 64 5 2 2
Conv. Trans 32 5 2 1 32 5 2 1 64 5 2 2
Conv. Trans 4 5 1 1 32 5 2 1 4 5 2 1

Table 6: Detailed architecture for the encoder and decoder used by the slot attention model used in
the synthetic dataset experiments. Note that we use relu activations after every layer except the last
layer.

APPENDIX

7 SYNTHETIC DATASET EXPERIMENTS

We consider the Shapestacks (Groth et al., 2018), ObjectsRoom(Kabra et al., 2019), ClevrTex
(Karazija et al., 2021), and MOVi datasets (Ghorbani et al., 2020). Figure 6 shows an example
image from each dataset.

Slot Attention Implementation Details For ObjectsRoom, ShapeStacks, and ClevrTex, we use
slot attention as our base model. Table 6 shows the detailed architecture of the convolutional encoder
and decoder used by the slot attention model. Table 7 indicates values of various hyperparameters
used in these experiments. For each experiment, we use 1 RTX8000 GPU.

Ablation on Lfsf ′ application In our case, we calculate Lfsf ′ as follows: Lfsf ′ =
−pi→j log(P (fj | fi)) ∀ i = j. Therefore, instead of computing the loss for all pairs of i
and j, we only compute it for the cases where i is equal to j. This design choice is made because the
supervision signal, pi→j , is a function of the pairwise feature similarity values. Obtaining accurate
pairwise feature similarity values for all i, j in a model trained from scratch is challenging. Hence,
we limit the loss calculation to only the diagonal elements of the matrix, where i = j. To assess
the significance of this design choice, we compare the performance of the proposed model with a
model that computes Lfsf ′ for all i, j. The results of this study are presented in Table 8. Notably,
computing Lfsf ′ solely for i = j yields considerably better performance compared to computing it
for all i, j.

Effect of applying the objectives on all iterations of slot attention One implementation detail
for the proposed method is that we apply the cycle consistency objectives to slots from all iterations
of slot attention. We ablate on this design choice by comparing against a model where the cycle
consistency objectives are only applied to the last iteration of slot-attention. We present the results
in Table 9. We can see that the performance drops significantly when the cycle consistency objectives
are only applied to the last iteration thus showing the importance of applying the objectives on all
iterations.
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ObjectsRoom ShapeStacks ClevrTex
Num. Slots 7 7 11
Num. Iter 3 3 3
Slot size 64 64 64
MLP size 128 128 128
Batch Size 64 64 64
Optimizer Adam Adam Adam

LR 0.0004 0.0004 0.0004
Total steps 500k 500k 500k

Warmup Steps 10k 10k 5k
Decay Steps 100k 100k 50k

λsfs′ 0.1 0.1 0.1
λfsf ′ 0.01 0.01 0.01
τ 0.1 0.1 0.1

τsfs′ 1 1 1
τfsf ′ 0.01 0.01 0.01
θi 0.8 0.8 0.8

Downsampled feature size 16× 16 16× 16 32× 32
EMA Decay rate 0.995 0.995 0.995

Table 7: This table indicates all the values for various hyperparameters used in the synthetic dataset
experiments.

ObjectsRoom ShapeStacks ClevrTex
Model FG-ARI FG-ARI FG-ARI

SA + Cyclic (Lfsf ′ ∀ i, j) 0.7341±0.07 0.7161±0.01 0.6349±0.11

SA + Cyclic (Lfsf ′ ∀ i = j) 0.8169±0.03 0.7838±0.02 0.7245±0.01

Table 8: Here we compare the performance of the model where Lfsf ′ is computed for all i, j to the
model which computes Lfsf ′ for all i = j. We can see that the latter performs better than former
thus showing the importance of computing the Lfsf ′ only for i = j. We perform this ablation on the
ObjectsRoom, ShapeStacks, and ClevrTex datasets.
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Figure 7: Foreground Extraction Visualization. This figure showcases the reconstruction and
segmentation masks produced by the baseline model (BO-Slate) and the proposed cyclic model.
Notably, we observe that the baseline model tends to mix the foreground with parts of the back-
ground, particularly for the Stanford Dogs and Stanford Cars datasets. In contrast, the use of our
cyclic objectives leads to a significantly clearer separation of the foreground and background, result-
ing in a more accurate and refined representation of the objects of interest.

Effect of EMA Encoder Another implementational detail of our approach is that we use an EMA
encoder to compute the feature-slot-feature supervision matrix F̃ . We examine the importance of
using an EMA encoder by comparing the performance of the proposed approach on the shapestacks
datasets with and without it. We present the results of this comparison in Table 10. We can see that
the performance of the model with the EMA encoder is much better than the performance without it
thus showing the importance of the EMA encoder.

Model FG-ARI
SA + Cyclic (last iteration only) 0.5453±0.06

SA + Cyclic (all iterations) 0.7245±0.01

Table 9: Iteration Ablation We observe that the
performance suffers a significant drop when the
cycle consistency objecives are only applied to the
last iteration of slot attention. We run this experi-
ment on the ClevrTex dataset.

Model FG-ARI
SA + Cyclic (No EMA Encoder) 0.7028±0.03

SA + Cyclic (EMA Encoder) 0.7838±0.02

Table 10: EMA Encoder Ablation We can see
that the performance of the model without the
EMA encoder is much worse than with it thus
showing the importance of the EMA encoder. We
run this experiment on the shapestacks dataset.

Dinosaur Implementation Details We use DINOSAUR (Seitzer et al., 2023) as the base model
to which we augment the cycle consistency objectives for our experiments on the MOVi-E and
MOVi-C datasets. We use a pretrained ViT-B/8 model pretrained using the approach presented in
DINO (Caron et al., 2021). We use 10 slots for experiments on the MOVi-C dataset and 23 slots
for experiments on the MOVi-E dataset. For both datasets, we use 3 slot attention iterations. In this
case, we apply the cycle consistency objectives on the slots obtained from the last iteration of slot
attention. We set λsfs′ to 5 and λfsf ′ to 1. We use Adam optimizer with a learning rate of 4e-4. We
run each experiment on 1 RTX8000 GPU.

8 REAL WORLD DATASET EXPERIMENTS

For these experiments, we use the BO-Slate (Jia et al., 2022) as the base model to which we augment
the cycle consistency objectives. The values of all hyperparameters used for these experiments are
shown in Table 11.
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Training

batch size 64
warmup steps 10000
learning rate 1e-4

max steps 250k
Input image size 96× 96

dVAE

vocabulary size 1024
Gumbel-Softmax annealing range 1.0 to 0.1
Gumbel-Softmax annealing steps 30000

lr-dVAE (no warmup) 3e-4

Transformer Decoder

layer 4
heads 4

dropout 0.1
hidden dimension 256

Slot Attention Module
slot dimension 256

iterations 3
σ annealing steps 30000

Cycle Consistency Objective

λsfs′ 10
λfsf ′ 1
τ 0.1

τsfs′ 1
τfsf ′ 0.01
θi 0.8

EMA Decay rate 0.900
Downsampled Feature size 24× 24

Table 11: This table shows various hyperparameters used in the real-world dataset experiments
where we use BO-Slate as the base model.

Unsupervised Foreground Extraction For foreground extraction, we use the Stanford dogs
dataset (Khosla et al., 2012), Stanford cars dataset (Krause et al., 2013), CUB200 Birds dataset
(Wah et al., 2011), and flowers dataset (Nilsback & Zisserman, 2006). We evaluate the performance
using the IoU (Intersection over union) and the Dice metrics. IoU is calculated by dividing the over-
lapping area between the ground-truth and predicted masks by the union area of the ground-truth
and predicted masks. Dice is calculated as twice the area of overlap between the ground-truth and
predicted mask divide by the combined number of pixels between the ground-truth and predicted
masks.

We use the BO-SLATE model (Jia et al., 2022) as our base model. BO-SLATE is an improved
version of Slate (Singh et al., 2022) where the main improvements come from having learnable slot
initializations. We apply the cycle consistency objectives as auxillary objectives to BO-Slate.

The results for this task are presented in Table 12. We observe that the proposed objectives helps
the model achieve a superior performance compared to the baseline on all datasets. Additionally, in
Figure 7, we visualize the reconstruction and segmentation masks from the model. We note that in
certain cases, the baseline model tends to mix foreground and background information, whereas the
same model augmented with the cyclic objectives is able to segregate the foreground and background
information perfectly.

Table 12: Unsupervised Foreground Extraction. Here we present results for unsupervised fore-
ground extraction on the Stanford Dogs, Stanford Cars, and CUB 200 birds dataset. We augment our
cyclic objectives to the improved version of Slate (Singh et al., 2022) presented in (Jia et al., 2022).
We can see that the performance of the Slate model improves when augmented with the proposed
objectives thus showing the efficacy of our approach. Results averaged across 3 seeds.

Dogs Cars Birds Flowers
Model IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑

BO-Slate 0.7875±0.05 0.6681±0.06 0.7686±0.10 0.8647±0.07 0.6129±0.05 0.7473±0.05 0.7461±0.03 0.8340±0.02

+ CYCLIC 0.8456±0.04 0.7462±0.06 0.8447±0.02 0.9145±0.02 0.6497±0.01 0.7797±0.009 0.7745±0.01 0.8525±0.01
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We follow the hyperparameters mentioned in Table 11. We use 2 slots for all foreground extraction
experiments except for Birds for which we use 3 slots. To downsample the features obtained from the
encoder for computing the cycle consistency objectives, we use a 2 layered convolutional network
in which each layer has kernel size 4, stride 2, and padding 1. We use a relu activation between the
two layers. We run each experiment on 1 RTX8000 GPU.

Multi-Object Segmentation For multi-object segmentation, we use the coco (Lin et al., 2014)
and scannet (Dai et al., 2017) datasets. We use the following metrics to evaluate performance -

• AP@05: AP is a metric used in object detection to measure the accuracy and relevance of
detection results based on precision and recall values.

• Panoptic Quality (PQ): PQ is a comprehensive metric for evaluating object segmentation
that combines segmentation quality and instance-level recognition performance into a sin-
gle score.

• Precision score: Precision measures the proportion of correctly predicted foreground pixels
among all the pixels predicted as foreground, indicating the accuracy of the segmentation
results.

• Recall Score: Recall measures the proportion of correctly predicted foreground pixels
among all the ground truth foreground pixels, indicating the completeness or coverage of
the segmentation results.

We use the same hyperparameters as presented in Table 11. For calculating the cycle consistency
objective, we downsample the features output by the encoder using a similar convolutional network
as used in the Foreground Extraction task.

9 OBJECT CENTRIC MODELS IN ATARI

We follow the exact setup from decision transformer (Chen et al., 2021) for this experiment.
Decision Transformer models the offline RL problem as a conditional sequence modelling task.
This is done by feeding into the model the states, actions, and the return-to-go R̂c =

∑C
c′=c rc,

where c denotes the timesteps. This results in the following trajectory representation: τ =(
R̂1, s1, a1, R̂2, s2, a2, R̂3, s3, a3, . . .

)
, where ac denotes the actions and sc denotes the states. At

test time, the start state s1 and desired return R̂1 is fed into the model and it autoregressively gener-
ates the rest of the trajectory.

The original state representations si are D-dimensional vectors obtained by passing the atari ob-
servations through a convolutional encoder. Note that each observation is a stack of 4 frames.
To obtain the corresponding object-centric version of this, we use the convolutional encoder
and the slot attention module from (Locatello et al., 2020) to encode each observation. There-
fore, each observation is encoded into N slots resulting in a decision transformer trajectory -
τ =

(
R̂1, {s11, s21 . . . , sN1 }, a1, R̂2, {s12, s22 . . . , sN2 }, a2, R̂3, {s13, s23 . . . , sN3 }, a3, . . .

)
.

As mentioned in the main text, we augment the action-prediction loss from decision transformer
with the reconstruction loss from slot attention and the proposed cycle consistency objectives.

We use a 6-layered transformer and 8 attention heads with an embedding size 128. We use a batch
size of 64. We use a context length of 50 for Pong and a context length of 30 for Seaquest, Breakout,
and Qbert. We keep all other hyperparameters same as mentioned in (Chen et al., 2021). For the slot
attention implementation, we define the architecture of the encoder and decoder in Table 13. The
values of the other hyperparameters related to the slot attention module and the cycle consistency
objectives are presented in Table 14. The input image size for the atari experiments is 84× 84. We
downsample the features to size 21 × 21 to compute the cycle consistency objectives. We use a
2-layered convolutional network for this downsampling where each layer has kernel size 4, stride 2,
and padding 1.
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Channels Layer Kernel Size Padding Stride output padding

Convolutional Encoder

Conv. 64 5 2 1
Conv. 64 5 2 1
Conv. 64 5 2 1
Conv 64 5 2 1

Convolutional Decoder

Conv Trans. 64 7 0 2 0
Conv Trans. 32 3 1 2 1
Conv Trans. 5 (4 for frames + 1 for mask) 3 1 2 1

Table 13: Architecture of the encoder and decoder used in the slot attention module for the decision
transformer model.

Hyperparameter Value
slot dimension 256

iterations 3
λsfs′ 0.1
λfsf ′ 0.01
τ 0.1

τsfs′ 1
τfsf ′ 0.01
θi 0.8

EMA Decay rate 0.995
Downsampled Feature size 21× 21

Table 14: Here we present the values for the various hyperparameters used in the slot attention
module for the decision transformer experiments.

10 OBJECT CENTRIC MODELS IN CAUSAL WORLD

We follow the same setup as (Yoon et al., 2023) for this experiment. We first petrain the object
centric model on 1000000 trajectories from the object goal task of the causal world environment.
The baseline object centric model in our case is Slate. We augment it with the proposed cycle
consistency objectives for our model. Both the object-centric models utilize 6 slots. We train them
for 200k steps.

For training the policy, we use PPO. The agent is a transformer-based model which takes the slots as
input along with a CLS token and outputs a distribution over actions and a value. We train the agent
for 1000000 interaction steps.
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