
Global curvature for second-order optimization of neural networks

Alberto Bernacchia 1

Abstract

Second-order optimization methods, which lever-
age the local curvature of the loss function, have
the potential to dramatically accelerate the train-
ing of machine learning models. However, these
methods are often hindered by the computational
burden of constructing and inverting large curva-
ture matrices withO(p2) elements, where p is the
number of parameters. In this work, we present
a theory that predicts the exact structure of the
global curvature by leveraging the intrinsic sym-
metries of neural networks, such as invariance
under parameter permutations. For Multi-Layer
Perceptrons (MLPs), our approach reveals that
the global curvature can be expressed in terms
of O(d2 + L2) independent factors, where d is
the number of input/output dimensions and L is
the number of layers, significantly reducing the
computational burden compared to the O(p2) el-
ements of the full matrix. These factors can be
estimated efficiently, enabling precise curvature
computations. To evaluate the practical implica-
tions of our framework, we apply second-order op-
timization to synthetic data, achieving markedly
faster convergence compared to traditional opti-
mization methods. Our findings pave the way for
a better understanding of the loss landscape of
neural networks, and for designing more efficient
training methodologies in deep learning. Code:
github.com/mtkresearch/symo notebooks

1. Introduction
Neural network models are commonly trained using adap-
tive variants of gradient descent and momentum (Schmidt
et al., 2021). Second-order optimization methods, which
exploit the curvature of the loss function, have shown the
potential for significantly faster convergence compared to

1MediaTek Research, Cambridge, UK. Correspondence to:
Alberto Bernacchia <alberto.bernacchia@mtkresearch.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

first-order approaches (Bottou et al., 2018). These meth-
ods face a major challenge: the need to compute and invert
curvature matrices of size p × p, where p is the number
of model parameters. Several studies have explored block-
diagonal and Kronecker-factored approximations for cur-
vature computation in neural networks (Martens & Grosse,
2015; Eschenhagen et al., 2024). Recent advances have
scaled these methods effectively (Ba et al., 2017; Anil et al.,
2021; Kasimbeg et al., 2025), even enabling second-order
pre-training of large language models (Liu et al., 2025).
However, despite their computational efficiency, these ap-
proximations lack strong theoretical guarantees for nonlin-
ear problems (Bernacchia et al., 2018; Karakida & Osawa,
2020). Exact second-order optimization, avoiding block-
diagonal approximations, remains tractable only for small-
scale models (Cai et al., 2019; Arbel et al., 2023; Korbit
et al., 2024) or specific architectures, e.g. reversible neural
networks (Buffelli et al., 2024).

Most neural network architectures are built on a layered
structure, where the core operations consist of matrix-vector
products combined with relatively simple nonlinearities.
Due to this structural framework, neural networks exhibit
well-known symmetries: for example, permuting the rows of
a parameter matrix while applying the same permutation to
the columns of the matrix in the subsequent layer leaves the
overall computation of the network unchanged, as illustrated
in Figure 1 (Hecht-Nielsen, 1990; Chen et al., 1993). While
all neural networks exhibit symmetries, the specific symme-
tries vary by architecture. This raises a natural question: can
we harness the unique symmetries of a given neural network
architecture to design a tailored optimization algorithm?
Our key contribution is demonstrating that, by leveraging
the precise symmetries of a model, we can compute the cur-

W1W2 W1W2

Figure 1. Illustration of permutation symmetry. The output of
a neural network is invariant for swapping any pair of neurons
within a layer. That corresponds to simultaneously swapping the
rows of incoming and the columns of outgoing weight matrices.

1

https://github.com/mtkresearch/symo_notebooks

Global curvature for second-order optimization of neural networks

vature at significantly reduced computational cost, making
second-order optimization computationally feasible.

While prior work has leveraged continuous symmetries to
enhance optimization (Neyshabur et al., 2015; Meng et al.,
2018; Zhao et al., 2022; 2023b) and to impose constraints
on the curvature (Kunin et al., 2020), our study is the first to
utilize discrete symmetries for computing the full curvature
matrix. A key innovation of our approach is the computa-
tion of the global curvature, averaged over the parameter
space, rather than the local curvature, which depends on
specific parameter values. The primary motivation for con-
sidering global curvature is its efficient computation, which
serves as the main contribution of this work. Future research
will explore whether global curvature serves as a reliable
approximation of local curvature and whether it offers inher-
ent advantages (Yang et al., 2021; Yao et al., 2021; Titsias,
2024). A detailed discussion of the related work is given in
Appendix A.

We contribute the following:

• For Multi-Layer Perceptrons (MLPs), we derive an ex-
act expression for the global curvature matrix, reveal-
ing that it depends on O(d2 + L2) unknown factors,
where d is the number of input/output dimensions and
L is the number of layers. This significantly reduces
the computational complexity compared to the original
matrix size of O(p2).

• We analyze the impact of the activation function on
global curvature and find that less symmetric functions,
such as ReLU, exhibit a more intricate curvature struc-
ture compared to more symmetric functions, such as
linear or Tanh activations. This increased complexity
corresponds to a larger number of unknown factors in
the curvature matrix.

• We propose a simple algorithm for estimating the un-
known factors of the curvature and for computing the
second-order update, that significantly reduces com-
plexity by using a surrogate matrix with O(d2 + L2)
elements instead of the O(p2) elements of the full ma-
trix.

• We demonstrate the effectiveness of our approach by
running second-order optimization on a two-layer MLP
and synthetic data. Empirical results show that the
second-order update substantially accelerate conver-
gence.

2. Background
In this section, we recall known facts that are instrumental
for stating our main results, and we also provide a new
theorem that may be of independent interest, Theorem 2.2.

In Section 2.1, we review second-order optimization. In
Section 2.2 we describe all known symmetries of neural
networks, and we motivate our choice for this study. In
Section 2.3 we prove that probability distributions remain
invariant upon equivariant maps, under a more general case
than previously known. In Section 2.4, we describe how
the curvature is constrained by the symmetries of the neural
network.

2.1. Second-order optimization

We consider a scalar loss function L(θ) of parameters
θ ∈ Rp. In machine learning, the loss also depends on
either a dataset or a data distribution, but we do not make
this dependence explicit here. Second order optimization
corresponds to the following update

θt+1 = θt − αMt∇L(θt) (1)

where α is the learning rate and Mt is the pre-conditioning
matrix, usually the inverse of the curvature matrix. Vari-
ous studies have employed different formulations for the
curvature matrix, including the Fisher information matrix
(Martens & Grosse, 2015; Bernacchia et al., 2018; Garcia
et al., 2023), the Gauss-Newton matrix (Botev et al., 2017;
Yu et al., 2024; Buffelli et al., 2024), the Hessian matrix
(Goldfarb et al., 2020), and the gradient covariance matrix
(Duchi et al., 2011). Within our framework, all these matri-
ces transform identically under the symmetries of a neural
network (see Section 3). While their numerical values dif-
fer, they share the same underlying structure, making our
approach applicable to any of them.

In most previous work, the pre-conditioning matrix is local,
it depends on the current value of the parameters, M(θt).
Here we take a different approach, similar to Titsias (2024),
and we consider global averages of the curvature. In particu-
lar, we consider a probability distribution pt of parameters θ
at training step t, which is induced by a distribution of initial
conditions on parameters evolving under the same training
dynamics. We define the gradient mean and covariance

µt = E
θt

∇L(θt) (2)

Σt = E
θt

∇L(θt)∇L(θt)T − µtµ
T
t (3)

and we set the preconditioning matrix equal to the inverse
square root of the gradient covariance

Mt = Σ
− 1

2
t (4)

The choice of taking the square root is motivated by other
adaptive methods, such as Adam (Kingma & Ba, 2014),
Adagrad (Duchi et al., 2011), Shampoo (Gupta et al., 2018)
and RMSProp (Tieleman & Hinton, 2012). A debate on
whether the curvature matrix should be square rooted is

2

Global curvature for second-order optimization of neural networks

currently ongoing (Lin et al., 2024; Choudhury et al., 2024;
Morwani et al., 2025), our experience is that the square root
significantly stabilizes training. Appendix B argues that the
square root is also a reasonable choice for the toy case of a
quadratic loss function.

We note that previous methods take an average of gradients
over training iterations or data points, while we define the
covariance by an average over an ensemble of models with
different initialization. In practice, we estimate the covari-
ance within a single model (see Section 3), we assume that
the structure present in the global curvature is also present
in the local curvature and captures meaningful variations for
optimization purposes.

2.2. Symmetries of neural networks

Neural networks exhibit a rich variety of symmetries. The
most general and ubiquitous is permutation symmetry (see
Figure 1), whereby permuting the rows of a weight matrix
and simultaneously permuting the columns of the subse-
quent layer’s weight matrix leaves the network’s output
unchanged (Hecht-Nielsen, 1990). Permutation symmetry
applies to nearly all neural networks and is so fundamen-
tal that new architectures often require deliberate design
choices to break it (Lim et al., 2024). Beyond permutation
symmetry, additional symmetries arise in specific architec-
tures: sign flip for networks with odd activation functions
(Chen et al., 1993), rescaling in ReLU networks, exploiting
their homogeneity (Neyshabur et al., 2015), translation in
Softmax layers (Kunin et al., 2020), scaling in normalization
layers (Kunin et al., 2020), general linear transformations of
keys and queries in transformers (Ziyin, 2024), deep linear
networks (Zhao et al., 2022) and data-dependent transfor-
mations (Zhao et al., 2023a). It is unlikely that any other
symmetries exist, at least in common neural network archi-
tectures (Grigsby et al., 2023; Chen et al., 1993).

In Section 2.3, we introduce a critical assumption underpin-
ning our work. Specifically, we require not only that the
neural network output be invariant under a given symmetry
group acting on the parameters, but also that the probability
distribution over the initial parameters exhibits the same
invariance. As reviewed in Appendix C, this condition fur-
ther necessitates that the transformation must be similar
to an orthogonal transformation (Flytzanis, 1977). This
additional assumption excludes many of the symmetries
discussed earlier, such as scaling, translations and general
linear transformations, but retains permutations, sign flips,
rotations and reflections. Consequently, we restrict our anal-
ysis to these key symmetry groups, with a particular focus
on orthogonal transformations.

A Multi-Layer Perceptron (MLP) of L layers is defined by

the following expression

hℓ =Wℓ σℓ(hℓ−1) + bℓ ℓ = 1, . . . , L (5)

where σℓ is the actibvation function, a pointwise nonlinearity
(σ1 is the identity), h0 = x ∈ Rd0 is the input, hL = y ∈
RdL is the output and hℓ ∈ Rdℓ is the latent representation
of layer ℓ. The parameters of the neural network are the
biases bℓ ∈ Rdℓ and weights Wℓ ∈ Rdℓ×dℓ−1 . We consider
the following transformation, applying to all layers ℓ =
1, . . . , L.

bℓ −→ Vℓbℓ (6)

Wℓ −→ VℓWℓV
T
ℓ−1 (7)

where the matrix Vℓ ∈ Rdℓ×dℓ is assumed orthogonal for
each layer, V T

ℓ = V −1
ℓ . We denote by G the corresponding

transformation acting on the set of all parameters, which
combines the effect of Vℓ for all layers. This transformation
leaves the output of the neural network invariant if it belongs
to a symmetry group that depends on the activation function.
We consider three cases:

• Linear activations. The network is invariant if Vℓ
belongs to the set of orthogonal matrices O(dℓ), that
corresponds to the orthogonal group (rotations and
reflections). Across all layers, the transformation G
belongs to the product Go = O(d1)× . . .×O(dL−1).
The group is continuous and compact, of dimension∑L−1

ℓ=1
dℓ(dℓ−1)

2 (Zhao et al., 2022).

• Odd activations (e.g. Tanh) The network is invariant
if Vℓ belongs to the set of signed permutation matrices
B(dℓ), that corresponds to the signed symmetric group.
Across all layers, the transformation G belongs to the
product Gb = B(d1) × . . . × B(dL−1). The group
is discrete and includes

∏L−1
ℓ=1 2dℓdℓ! elements (Chen

et al., 1993).

• Other activations (e.g. ReLU) The network is in-
variant if Vℓ belongs to the set of permutation matrices
S(dℓ), that corresponds to the symmetric group. Across
all layers, the transformation G belongs to the product
Gs = S(d1)×. . .×S(dL−1). The group is discrete and
includes

∏L−1
ℓ=1 dℓ! elements (Hecht-Nielsen, 1990).

The three groups satisfy a decreasing set of constraints,
Go ⊃ Gb ⊃ Gs. Correspondingly, we show in Section 3
that the structure of the curvature increases in complexity as
the group gets smaller. We note that there is no symmetry
on the input and output side of the MLP, therefore V0 = Id0

and VL = IdL
are fixed to identity matrices. Additional

constraints may be introduced if the data has symmetries,
but we do not consider that case in this work.

3

Global curvature for second-order optimization of neural networks

t = 0 t = 20 theory

W1

b1

W2

b2

W1 b1 W2 b2

W1

b1

W2

b2

W1 b1 W2 b2

W1

b1

W2

b2

W1 b1 W2 b2

A B C

Figure 2. Gradient covariance matrix for two-layer MLP with Tanh activations, in a tiny model with 5 neurons in each layer. W1,W2

are the weights and b1,b2 are the biases of the two layers. A and B: Covariance is measured by averaging 10000 models with different
initialization, before training (A: t = 0) and after 20 steps of gradient descent (B: t = 20). C: Covariance generated by our theory for a
random draw of the factors. We highlight that theory predicts the overall structure, rather than the specific numerical values.

Throughout this work, we assume that the loss function
depends on the parameters only through the output of the
neural network, therefore the loss itself is also invariant for
the group action

L(Gθ) = L(θ) ∀G ∈ G (8)

where G is equal to either Go, Gb or Gs.

2.3. Invariant distribution throughout training

In this section, we assume that the parameter distribution is
invariant under the specified symmetry group at initializa-
tion. We then demonstrate that this invariance is preserved
throughout training, if the parameter update rule is equiv-
ariant with respect to the same symmetry group. Previous
studies have established that such invariance holds under
the assumption of a globally invertible map (Köhler et al.,
2019). Here we extend this result by proving that the same
invariance is maintained under the less restrictive assump-
tion of local invertibility, as stated in Theorem 2.2. This
generalization broadens the applicability of the result and
may be of independent interest.

Parameters are initialized at t = 0 according to a probabil-
ity distribution p0(θ0), and their evolution at subsequent
training steps is governed by the update rule

θt = ut(θt−1) (9)

At this stage, we do not impose a specific form on the update
rule, as the results in this section are derived under general
assumptions. However, these results will be utilized for the
update rule of Equation (1).

Assumption 2.1. The probability distribution on the initial
parameters θ0 is invariant under the action of group G

p0(Gθ0) = p0(θ0) ∀G ∈ G (10)

We consider different groups depending on the activation
function, as described in Section 2.2, namely G = Go, Gb

or Gs. Appendix D shows that Assumption 2.1 is satisfied
by the most common initialization routines used in deep
learning. In Pytorch for example, Assumption 2.1 holds
for nn.init.normal and nn.init.orthogonal,
with all groups Go,Gb,Gs. Also, it holds when us-
ing nn.init.uniform and nn.init.sparse with
Gb,Gs, but not with Go, and it still holds when using layer-
dependent parameters, for example nn.init.kaiming
and nn.init.xavier. See Appendix D for details.

Theorem 2.2. Assume that the update rule θt = ut(θt−1)
is differentiable and its Jacobian is non-singular almost
everywhere. Furthermore, it is equivariant under a volume-
preserving transformation G, namely

ut(Gθ) = Gut(θ). (11)

Then, if the probability distribution of parameters is invari-
ant at step t − 1, then it must be invariant also at step
t

pt(Gθt) = pt(θt) (12)

The proof is provided in Appendix E. A similar result can
be found in Theorem 1 of Köhler et al. (2019), however they
assume that the mapping ut is globally invertible, which is
quite restrictive. Theorem 2.2 considers the more general
case in which the mapping is just locally invertible.

The assumption of equivariance of ut is satisfied by many
optimizers in deep learning, provided that the loss is invari-
ant. Appendix F shows that both gradient descent (with or
without momentum) and the second-order update of Equa-
tion (1) are equivariant for all groups Go,Gb,Gs, while the
Adam optimizer is equivariant for Gb,Gs, but not Go.

4

Global curvature for second-order optimization of neural networks

t = 0 t = 20 theory

W1

b1

W2

b2

A B C

W3

b3

W1

b1

W2

b2

W3

b3

W1

b1

W2

b2

W3

b3
W1 b1 W2 b2 W3 b3 W1 b1 W2 b2 W3 b3 W1 b1 W2 b2 W3 b3

Figure 3. Gradient covariance matrix for three-layer MLP with Tanh activations, similar to Figure 2 but with three layers. Most of the
correlations across layers are lost when adding the third layer. The covariance generated by our theory agrees with the observed structure.

Corollary 2.3. Assume the update is equivariant at all steps.
Given Assumption 2.1 and Theorem 2.2, by induction, the
distribution is invariant at all steps, pt(Gθt) = pt(θt),∀t.

Remark. This result does not help in finding the functional
form of the distribution, that remains unknown except in
very simple cases (see Appendix B for a toy example where
the distribution remains Gaussian at all time steps).

2.4. Constraints on mean and covariance of gradient

In this section, we demonstrate that the invariance of the
loss function, as outlined in Section 2.2, together with the in-
variance of the probability distribution, discussed in Section
2.3, imposes specific constraints on both the gradient mean
and covariance. Furthermore, we note that any transforma-
tion G belonging to one of the three groups Go,Gb,Gs is
orthogonal, meaning that all its elements satisfy the property
GT = G−1.
Lemma 2.4. Assume both the loss function and the proba-
bility distribution are invariant for an orthogonal transfor-
mation G, namely L(Gθt) = L(θt) and pt(Gθt) = pt(θt).
Assume that the mean µ and covariance Σ of the gradient
exist and are finite. Then, the mean satisfies the eigenvalue
equation

µt = Gµt (13)

and the covariance matrix is invariant upon the congruent
transformation

Σt = GΣtG
T (14)

Furthermore, any analytic matrix function f(Σ) of the co-
variance matrix satisfies the same equation

f(Σt) = Gf(Σt)G
T (15)

The proof is provided in Appendix G. It is important to note
that Equations (13) and (14) are linear and homogeneous,

which implies the possibility of infinitely many solutions
(see Lemma C.3). In Section 3, we identify a solution space
that remains valid for all members of a given symmetry
group. Since this space is infinite, both the mean µt and
the covariance Σt may evolve to different values at different
time steps, while still satisfying Equations (13) and (14).

Appendix H demonstrates that Equations (14) and (15) hold
identically for the Hessian matrix when averaged over the
parameter distribution. Additionally, it provides examples of
Hessians observed in experiments (Figures 7, 8, 9). Similar
results extend to other types of curvature matrices, including
the Fisher Information matrix and the Gauss-Newton matrix.

3. Results
In this section, we derive exact expressions for the mean
and covariance of the gradient in a MLP and compare them
with empirical results obtained from experiments on syn-
thetic data. Given the layered architecture of MLPs and
the distinction between weights and biases, we introduce a
flattened vector of parameters encompassing all layers, by
concatenating and vectorizing all tensors in column-major
order, given by

θ = Vec (W1,b1, . . . ,WL,bL) (16)

We visualize the gradient covariance matrix by vectorizing
the parameters according to Equation (16). For the Hessian
matrix, we present analogous results in Figures 7, 8, and 9
of Appendix H.

Figure 2 presents the gradient covariance matrix for a two-
layer MLP with Tanh activations in a tiny model with five
neurons per layer. The results are shown for both empirical
experiments (panels A and B, see Section 4 for details) and
our theoretical predictions (panel C, see Section 3.2 for de-
tails). The structure observed in experiments closely aligns
with theoretical predictions, both before training (panel A,

5

Global curvature for second-order optimization of neural networks

t = 0) and after 20 steps of gradient descent (panel B,
t = 20). We highlight that our theoretical framework cap-
tures the overall structure of the covariance matrix rather
than its exact numerical values. The estimation of specific
values is further discussed in Section 3.4.

Figure 2 further reveals that input weights exhibit column-
wise correlations, likely reflecting dependencies in their in-
put data, while output weights show row-wise correlations,
capturing similarities in their output. Additionally, correla-
tions are observed between the rows of the output weights
and the columns of the input weights, potentially indicating
input-output dependencies. Figure 3 extends this analysis
to a three-layer MLP. The observed gradient covariance
structure remains consistent with theoretical predictions.
However, the covariance matrix becomes block-diagonal,
indicating a significant reduction in inter-layer correlations
as the number of layers increases from two to three. As
demonstrated in Section 3.2, our theoretical framework pre-
dicts that this absence of correlations between layers persists
for architectures with more than three layers. We speculate
that the invariance with respect to sign changes of both the
incoming and outgoing weights of a neuron may lead to
cancellations in the covariance of these weights. However,
further studies are needed to understand this observation.

Figure 4 presents the gradient covariance matrix for a three-
layer MLP with ReLU activations and excluding biases.
Once again, our theoretical framework accurately captures
the observed structure of the covariance matrix, both before
training and after a few optimization steps. Notably, the
reduced symmetry of ReLU activations results in a more
intricate covariance structure, characterized by significant
correlations across layers. As demonstrated in Section 3.3,
these inter-layer correlations persist regardless of the net-
work’s depth. In the following sections, we provide the
theoretical framework used to derive the gradient covari-
ance structures observed in Figures 2, 3, and 4.

3.1. Theoretical results

In this section, we present solutions to Equations (13) and
(14) that remain valid for all possible transformations G
within a given symmetry group. These solutions are derived
for each of the three symmetry groups introduced in Section
2.2. Using the vectorization of parameters of Equation (16),
the transformation in Equations (6), (7) can be rewritten in
block-diagonal form

G =


V0 ⊗ V1

V1
. . .

VL−1 ⊗ VL
VL

 (17)

where ⊗ denotes Kronecker product. For the mean gradient,
we use a notation similar to the parameter vector, Equation
(16)

µ = E
θ
Vec

(
∂L
∂W1

,
∂L
∂b1

, . . . ,
∂L
∂WL

,
∂L
∂bL

)
= (18)

= Vec (µ1, µ̃1, . . . ,µL, µ̃L) (19)

where we define µℓ = Eθ
∂L
∂wℓ

, µ̃ℓ = Eθ
∂L
∂bℓ

, and wℓ =

Vec(Wℓ). Similarly, we define Σℓℓ′ = Eθ
∂L
∂wℓ

∂L
∂wℓ′

T
,

Σ̃ℓℓ′ = Eθ
∂L
∂bℓ

∂L
∂wℓ′

T
and ˜̃Σℓℓ′ = Eθ

∂L
∂bℓ

∂L
∂bℓ′

T
. Then,

the covariance of the gradient is written in terms of its con-
stituent blocks as

Σ =


Σ11 Σ̃T

11 . . . Σ1L Σ̃T
L1

Σ̃11
˜̃Σ11 . . . Σ̃1L

˜̃ΣLL

...
...

. . .
...

...
ΣL1 Σ̃T

1L . . . ΣLL Σ̃T
LL

Σ̃L1
˜̃ΣL1 . . . Σ̃LL

˜̃ΣLL

 (20)

Then, Equation (13) for the mean gradient becomes

µℓ = (Vℓ−1 ⊗ Vℓ)µℓ (21)
µ̃ℓ = Vℓ µ̃ℓ (22)

for all ℓ = 1, . . . , L. Equation (14) for the covariance of the
gradient becomes

Σℓℓ′ = (Vℓ−1 ⊗ Vℓ) Σℓℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(23)
˜̃Σℓℓ′ = Vℓ

˜̃Σℓℓ′ V
T
ℓ′ (24)

Σ̃ℓℓ′ = Vℓ Σ̃ℓℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(25)

for all ℓ, ℓ′ = 1, . . . , L. In the next sections, we provide
solutions to Equations (21), (22), (23), (24), (25).

3.2. Odd activations (e.g. linear or Tanh)

Here, we examine both linear and nonlinear odd activations
(e.g., Tanh) together, as they yield the same structure for the
mean and covariance of the gradient.

Theorem 3.1. Assume L > 1. If the loss and distribution
of parameters are invariant for either groups Go, Gb, then
the mean gradient is equal to

µℓ = 0 for ℓ = 1, . . . , L (26)
µ̃ℓ = 0 for ℓ = 1, . . . , L− 1 (27)
µ̃L = z̃L (28)

where z̃L is a vector of size dL. The covariance of the

6

Global curvature for second-order optimization of neural networks

t = 0 t = 20 theory

W1

W2

A B C

W3

W1

W2

W3

W1

W2

W3

W1 W2 W3 W1 W2 W3 W1 W2 W3

Figure 4. Gradient covariance matrix for three-layer MLP with ReLU activations. Similar to Figure 3 but without bias and averaging
over 100000 models. In contrast to Tanh activations, ReLU activations retain correlations across layers. The covariance shows a
remarkably complex structure that is well predicted by theory.

gradient, given in terms of its constituent blocks, is equal to

Σ11 = Φ1 ⊗ Id1
(29)

Σℓℓ = ϕℓ
(
Idℓ−1

⊗ Idℓ

)
for ℓ = 2, . . . , L− 1 (30)

ΣLL = IdL−1
⊗ ΦL (31)

Σ12 = (Ψ1 ⊗ Id1
)K if L = 2 (32)

˜̃Σℓℓ =
˜̃
ϕℓ Idℓ

for ℓ = 1, . . . , L− 1 (33)
˜̃ΣLL = ˜̃ΦL (34)

Σ̃11 = ϕ̃
T

1 ⊗ Id1
(35)

Σ̃L−1,L = IdL−1
⊗ ϕ̃

T

L−1 (36)

where ϕℓ,
˜̃
ϕℓ are positive scalars, ϕ̃1 ∈ Rd0 , ϕ̃L−1 ∈ RdL

are column vectors, Φ1 ∈ Rd0×d0 , ΦL ∈ RdL×dL , ˜̃ΦL ∈
RdL×dL , are positive-definite matrices and Ψ1 ∈ Rd0×d2 is
a matrix. All other terms are zero. K is the commutation
matrix (see Chapter 3.7 of Magnus & Neudecker (2019)).

Proof is in Appendix I. We refer to the set
(z̃L, ϕℓ,

˜̃
ϕℓ, ϕ̃1, ϕ̃L−1,Φ1,ΦL,

˜̃ΦL,Ψ1) as the factors,
which are undetermined. We provide an algorithm for
estimating the factors in Section 3.4 The number of
undetermined factors is of order O(d2 + L). We note that
the values of those factors should ensure that the covariance
is positive semi-definite.

3.3. Other activations (ReLU)

In the case of non-symmetric activations, we have the fol-
lowing

Theorem 3.2. Assume L > 1. If the loss and distribution
of parameters are invariant for the group Gs, then the mean
gradient is described by Equations (113)-(117) in Appendix
J. The covariance of the gradient, given in terms of its

constituent blocks, is described by Equations (118)-(142) in
Appendix J.

The proof is also provided in Appendix J. We note that
the number of undetermined factors is O(d2 + L2). The
number of factors is larger than the case of odd activations,
thus revealing a more complex structure. We interpret this
result as a consequence of the smaller size of the group Gs

with respect to Go, Gb (see Section 2.2).

3.4. A practical algorithm for second-order optimization

We observed in Figures 2,3,4, that the covariance is very
structured. In contrast to previous approximations (Martens
& Grosse, 2015; Eschenhagen et al., 2024), the matrix is not
block-diagonal, although it is Kronecker-factorized. This
structure may capture the most important variations in the
loss landscape, therefore we use it for computing the second-
order update in Equation (1). We break down the computa-
tion of the second-order update into three steps: 1) Estimate
the factors of the covariance; 2) Compute the factors of its
inverse square root; 3) Compute the matrix-vector product
between the inverse square root of the covariance and the
gradient. We demonstrate that all three steps can be per-
formed efficiently, leveraging the convenient properties of
the matrix. A detailed description of the complete proce-
dure is provided in Algorithm 1 in the Appendix, using the
simple case of a two-layer MLP with Tanh activation and
no bias. Similar steps can be applied to other cases.

The gradient covariance, as defined in Equation (3), requires
averaging over models initialized with different parame-
ters. However, we observe that the number of factors of
the covariance is much smaller than the total number of
elements in the covariance matrix. As shown in Figures
2, 3, and 4, many elements of the covariance matrix share
identical values. We leverage this observation to estimate

7

Global curvature for second-order optimization of neural networks

the covariance efficiently, even from the gradient of a single
model, by averaging over the corresponding pairs of param-
eters. An example of this estimation process is provided
for the case of a two-layer MLP with Tanh activations and
no bias. Similar equations can be derived for the case with
bias and ReLU activations. We estimate the factors using
the following equations:

(Φ1)jl =
1

d1

d1∑
i=1

(
∂L
∂W1

)
ij

(
∂L
∂W1

)
il

(37)

(Φ2)ik =
1

d1

d1∑
j=1

(
∂L
∂W2

)
ij

(
∂L
∂W2

)
kj

(38)

(Ψ1)jk =
1

d1

d1∑
i=1

(
∂L
∂W1

)
ij

(
∂L
∂W2

)
ki

(39)

These are matrix-matrix products of size equal to the neural
network width, that can be computed efficiently using a
GPU.

To quantify the error in estimating the factors of global
covariance by a single model, we computed their correlation
with a high-precision reference estimate. This reference
was obtained by averaging across an ensemble of 10000
models, which serves as our ground truth. Table 1 shows
that the correlation between the single-model estimate and
the ground truth increases with layer width d1, for all factors
Φ1, Ψ2, Φ2. To further improve the estimates and reduce
error, we apply momentum to Equations (37), (38), and (39)
across training iterations. Appendix K provides additional
details, along with an empirical analysis of the estimation
error in presence of momentum (see Figure 10).

Table 1. Correlation between single-model estimates of the factors
and ground truth, varying the width of the hidden layer. Single
model estimates improve with the layer width.

Layer widths
(d0, d1, d2)

Φ1 Ψ1 Φ2

(100, 10, 100) 0.67±0.05 0.38±0.06 0.30±0.05
(100, 100, 100) 0.90±0.02 0.61±0.04 0.52±0.03
(100, 1000, 100) 0.96±0.01 0.64±0.03 0.54±0.03
(100, 10000, 100) 0.97±0.01 0.65±0.03 0.56±0.03

We denote the flattened vector of all factors by ϕ. Af-
ter obtaining estimates of the factors ϕ by Equations (37),
(38), (39), we could construct the covariance matrix Σ us-
ing Theorem 3.1, and then compute its inverse square root
Σ− 1

2 . However, this process becomes computationally ex-
pensive for high-dimensional models. To make this step

more feasible, we leverage the fact that any analytic func-
tion of the covariance matrix retains the same structure as
the covariance itself, as shown by Lemma 2.4 and Equa-
tion (15). Therefore, the inverse square root Σ− 1

2 can be
fully described by another set of factors, denoted by the
vector ϕisr. Instead of computing the full matrix Σ and its
inverse square root Σ− 1

2 , we compute the factors ϕisr from
ϕ, without ever constructing the large matrices. Appendix
L provides a detailed procedure for efficiently computing
ϕisr. In short, because the factors do not depend on the layer
widths d1, . . . , dL−1, we compute a surrogate covariance
Λ where the layer widths are set to the smallest values al-
lowed (dℓ = 1 for Tanh activations and dℓ = 2 for ReLU
activations). The surrogate matrix Λ is significantly smaller
than the full matrix Σ. For an MLP, the surrogate matrix
has O(d20 + d2L + L2) elements, while the full matrix has
[
∑

ℓ dℓ (dℓ−1 + 1)]
2 elements. We then compute the inverse

square root Λ− 1
2 of the surrogate and derive the correspond-

ing factors ϕisr. Appendix L provides examples comparing
the full and surrogate matrices for small MLPs with Tanh or
ReLU activations (Figures 11, 12, 13).

0 20 40 60 80 100
iterations

10 7

10 5

10 3

10 1

101

te
st

 lo
ss

SymO
KFAC
Shampoo
GD
Adam

Figure 5. Optimization of a two-layer MLP with linear acti-
vations. Test loss vs training iterations. The Symmetry-based
Optimizer (SymO) is compared with other first- and second-order
optimizers.

In the final step, we compute the product between the inverse
square root of the covariance matrix Σ− 1

2 and the gradient
vector, as described in Equation (1). This computation can
be carried out efficiently by using the estimated factors ϕisr,
without the need to explicitly compute Σ− 1

2 . We observe
that each block of the covariance matrix (as well as its
inverse square root) consists of Kronecker products, which
enables efficient computation of matrix-vector products (see
e.g. Martens & Grosse (2015)). For the case of a two-layer
MLP with Tanh activations and no bias, the update is equal

8

Global curvature for second-order optimization of neural networks

to (see Equation (206) in Appendix L)

(W1)t+1 = (W1)t − α
(
∂L
∂W1

Φisr
1 +

∂L
∂WT

2

Ψisr
1

T
)
(40)

(W2)t+1 = (W2)t − α
(
Ψisr

1

T ∂L
∂WT

1

+Φisr
2

∂L
∂W2

)
(41)

0 20 40 60 80 100
iterations

10 2

10 1

100

te
st

 lo
ss

SymO
KFAC
Shampoo
GD
Adam

Figure 6. Optimization of a two-layer MLP with Tanh activa-
tions. Test loss vs training iterations. The Symmetry-based Op-
timizer (SymO) is compared with other first and second order
optimizers.

4. Experiments
We test second-order optimization on a two-layer MLP with-
out bias and synthetic data, using either linear or Tanh ac-
tivation. The model has layer width d0 = 100, d1 = 70,
d2 = 40, with a total of 9800 parameters. The synthetic
dataset consists of 5000 training and 5000 testing data
points, where the input is sampled from a Gaussian distribu-
tion with zero mean. The covariance matrix of the input is
generated using random orthogonal eigenvectors (Mezzadri,
2007), and the eigenvalues are set on a logarithmic grid
between 10−5 and 100. We optimize the square loss, where
the target output is provided by a neural network (teacher)
with identical architecture of the network to be optimized
(student). The weights of both the teacher and student net-
works are drawn randomly from a Gaussian distribution. We
use full-batch optimization, where the gradient is computed
over the entire training dataset in each iteration. Although
full batch training is uncommon in neural networks, second-
order optimizers usually benefit from large batches (Zhang
et al., 2019; Anil et al., 2021), therefore we leave the study
of mini-batch training to future work.

We compare five optimization algorithms: gradient descent
(GD), Adam (Kingma & Ba, 2014), KFAC (Martens &

Grosse, 2015), Shampoo (Gupta et al., 2018) and our opti-
mizer, which we call SymO (Symmetry-based Optimizer).
For all optimizers, learning rate is set by a grid search.
For second-order optimizers, we additionally set a second
hyperparameter by grid search: damping λ for KFAC, ini-
tialization ϵ for Shampoo and decay parameter β for SymO.
See Table 2 for the hyperparameter values used and Ap-
pendix M for details. Figures 5, 6 show the optimization
trajectories of the five optimizers for, respectively, linear
and Tanh activations. The symmetry-based optimizer SymO
tends to converge faster than all other optimizers with nearly
identical time per iteration.

5. Discussion
We introduce a novel theoretical framework for deriving the
exact structure of the global curvature of neural networks,
and for estimating a second-order optimizer. We provide
preliminary evidence suggesting that the structure of the
global curvature enhances convergence when applied as a
preconditioner. However, a comprehensive analysis of the
errors introduced by our approximation will be a subject of
future investigation. While we focus on the case of MLP and
synthetic data, our framework is general and can be extended
to other neural network architectures, including residual
networks, convolutional networks, recurrent networks, and
transformers. Future work will explore the symmetries and
corresponding curvature structures for these architectures,
and will evaluate the effectiveness of our approach on real-
world data and larger models.

We note that most prior studies on second-order optimiza-
tion have relied on block-diagonal and Kronecker-factored
approximations of the curvature matrix (Martens & Grosse,
2015), which are exact only in models that are either linear
in the input (Bernacchia et al., 2018) or in the parameters
(Karakida & Osawa, 2020). Our work demonstrates that the
global curvature matrix is not inherently block-diagonal, but
we do find that matrix blocks exhibit a Kronecker-factored
structure. We also note that the block-diagonal terms of the
update in Equations (40), (41) are similar to the update of
Shampoo (Gupta et al., 2018). Thus, our findings partially
justify the approximations used in previous studies and offer
a more nuanced understanding of their validity.

Our framework could have significant applications in fields
that require second-order estimates for large models. For
example, Bayesian deep learning relies on approximating
the posterior over parameters by a Gaussian distribution
(Blundell et al., 2015; Lin et al., 2019). The covariance of
this distribution is usually approximated using a diagonal or
block-diagonal structure (Daxberger et al., 2021). Our work
offers a method for efficiently computing the full covari-
ance, which may lead to more accurate Bayesian posterior
estimates.

9

Global curvature for second-order optimization of neural networks

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ainsworth, S. K., Hayase, J., and Srinivasa, S. Git re-basin:

Merging models modulo permutation symmetries. arXiv
preprint arXiv:2209.04836, 2022.

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.
Scalable second order optimization for deep learning.
arXiv, 2021.

Arbel, M., Menegaux, R., and Wolinski, P. Rethinking
Gauss-Newton for learning over-parameterized models.
Advances in Neural Information Processing Systems, 37,
2023.

Ba, J., Grosse, R., and Martens, J. Distributed second-order
optimization using kronecker-factored approximations.
In International Conference on Learning Representations,
2017.

Bernacchia, A., Lengyel, M., and Hennequin, G. Exact nat-
ural gradient in deep linear networks and its application
to the nonlinear case. Advances in Neural Information
Processing Systems, 31, 2018.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In International
conference on machine learning, pp. 1613–1622. PMLR,
2015.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
optimisation for deep learning. In International Confer-
ence on Machine Learning, pp. 557–565, 2017.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Buffelli, D., McGowan, J., Xu, W., Cioba, A., Shiu, D.-
s., Hennequin, G., and Bernacchia, A. Exact, tractable
gauss-newton optimization in deep reversible architec-
tures reveal poor generalization. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Cai, T., Gao, R., Hou, J., Chen, S., Wang, D., He, D., Zhang,
Z., and Wang, L. Gram-gauss-newton method: Learning
overparameterized neural networks for regression prob-
lems. arXiv, 2019.

Chen, A. M., Lu, H.-m., and Hecht-Nielsen, R. On the
geometry of feedforward neural network error surfaces.
Neural computation, 5(6):910–927, 1993.

Chen, F., Kunin, D., Yamamura, A., and Ganguli, S.
Stochastic collapse: How gradient noise attracts sgd dy-
namics towards simpler subnetworks. Advances in Neural
Information Processing Systems, 36, 2024.

Choudhury, S., Tupitsa, N., Loizou, N., Horváth, S., Takáč,
M., and Gorbunov, E. Remove that square root: A new
efficient scale-invariant version of adagrad. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R.,
Bauer, M., and Hennig, P. Laplace redux-effortless
bayesian deep learning. Advances in Neural Informa-
tion Processing Systems, 34:20089–20103, 2021.

Du, S. S., Hu, W., and Lee, J. D. Algorithmic regulariza-
tion in learning deep homogeneous models: Layers are
automatically balanced. Advances in neural information
processing systems, 31, 2018.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectivity
of neural networks. arXiv preprint arXiv:2110.06296,
2021.

Eschenhagen, R., Immer, A., Turner, R., Schneider, F., and
Hennig, P. Kronecker-factored approximate curvature for
modern neural network architectures. Advances in Neural
Information Processing Systems, 36, 2024.

Flytzanis, E. Linear operators as measure preserving trans-
formations. Annales scientifiques de l’Université de Cler-
mont. Mathématiques, 65(15):63–75, 1977.

Fukumizu, K. and Amari, S.-i. Local minima and plateaus in
hierarchical structures of multilayer perceptrons. Neural
networks, 13(3):317–327, 2000.

Garcia, J. R., Freddi, F., Fotiadis, S., Li, M., Vakili, S.,
Bernacchia, A., and Hennequin, G. Fisher-Legendre
(FishLeg) optimization of deep neural networks. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss surfaces, mode connectivity, and
fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

10

Global curvature for second-order optimization of neural networks

Goldfarb, D., Ren, Y., and Bahamou, A. Practical quasi-
newton methods for training deep neural networks. Ad-
vances in Neural Information Processing Systems, 33:
2386–2396, 2020.

Grigsby, E., Lindsey, K., and Rolnick, D. Hidden symme-
tries of relu networks. In International Conference on
Machine Learning, pp. 11734–11760. PMLR, 2023.

Grosse, R. and Martens, J. A Kronecker-factored approx-
imate Fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning, pp. 573–582.
PMLR, 2016.

Gupta, V., Koren, T., and Singer, Y. Sham-
poo: Preconditioned Stochastic Tensor Optimization.
arXiv:1802.09568 [cs, math, stat], March 2018. URL
http://arxiv.org/abs/1802.09568. arXiv:
1802.09568.

Hecht-Nielsen, R. On the algebraic structure of feedforward
network weight spaces. In Advanced Neural Computers,
pp. 129–135. Elsevier, 1990.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. Repair: Renormalizing permuted acti-
vations for interpolation repair. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Karakida, R. and Osawa, K. Understanding approximate
Fisher information for fast convergence of natural gradi-
ent descent in wide neural networks. Advances in neural
information processing systems, 33:10891–10901, 2020.

Kasimbeg, P., Schneider, F., Eschenhagen, R., Bae, J., Sas-
try, C. S., Saroufim, M., FENG, B., Wright, L., Yang,
E. Z., Nado, Z., et al. Accelerating neural network train-
ing: An analysis of the algoperf competition. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Köhler, J., Klein, L., and Noé, F. Equivariant flows: sam-
pling configurations for multi-body systems with sym-
metric energies. arXiv preprint arXiv:1910.00753, 2019.

Korbit, M., Adeoye, A. D., Bemporad, A., and Zanon, M.
Exact gauss-newton optimization for training deep neural
networks. arXiv preprint arXiv:2405.14402, 2024.

Krantz, S. G. and Parks, H. R. Geometric integration theory.
Springer Science & Business Media, 2008.

Kunin, D., Sagastuy-Brena, J., Ganguli, S., Yamins, D. L.,
and Tanaka, H. Neural mechanics: Symmetry and bro-
ken conservation laws in deep learning dynamics. arXiv
preprint arXiv:2012.04728, 2020.

Lim, D., Putterman, T. M., Walters, R., Maron, H., and
Jegelka, S. The empirical impact of neural parameter sym-
metries, or lack thereof. arXiv preprint arXiv:2405.20231,
2024.

Lin, W., Khan, M. E., and Schmidt, M. Fast and sim-
ple natural-gradient variational inference with mixture of
exponential-family approximations. In International Con-
ference on Machine Learning, pp. 3992–4002. PMLR,
2019.

Lin, W., Dangel, F., Eschenhagen, R., Bae, J., Turner, R. E.,
and Makhzani, A. Can we remove the square-root in
adaptive gradient methods? a second-order perspective.
In International Conference on Machine Learning, pp.
29949–29973. PMLR, 2024.

Liu, J., Su, J., Yao, X., Jiang, Z., Lai, G., Du, Y., Qin, Y.,
Xu, W., Lu, E., Yan, J., et al. Muon is scalable for llm
training. arXiv preprint arXiv:2502.16982, 2025.

Magnus, J. R. and Neudecker, H. Matrix differential calcu-
lus with applications in statistics and econometrics. John
Wiley & Sons, 2019.

Martens, J. and Grosse, R. Optimizing neural networks with
Kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pp. 2408–2417.
PMLR, 2015.

Martens, J., Ba, J., and Johnson, M. Kronecker-factored
curvature approximations for recurrent neural networks.
In International Conference on Learning Representations,
2018.

Meng, Q., Zheng, S., Zhang, H., Chen, W., Ma, Z.-M.,
and Liu, T.-Y. G-sgd: Optimizing relu neural networks
in its positively scale-invariant space. arXiv preprint
arXiv:1802.03713, 2018.

Mezzadri, F. How to generate random matrices from the
classical compact groups. Notices of the American Math-
ematical Society, 54(5):592–604, 2007.

Morwani, D., Shapira, I., Vyas, N., Malach, E., Kakade,
S., and Janson, L. A new perspective on shampoo’s
preconditioner. ICLR, 2025.

Navon, A., Shamsian, A., Fetaya, E., Chechik, G., Dym,
N., and Maron, H. Equivariant deep weight space align-
ment. In Forty-first International Conference on Machine
Learning, 2024.

Neyshabur, B., Salakhutdinov, R. R., and Srebro, N. Path-
sgd: Path-normalized optimization in deep neural net-
works. Advances in neural information processing sys-
tems, 28, 2015.

11

http://arxiv.org/abs/1802.09568

Global curvature for second-order optimization of neural networks

Schmidt, R. M., Schneider, F., and Hennig, P. Descend-
ing through a Crowded Valley - Benchmarking Deep
Learning Optimizers. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, pp. 9367–9376.
PMLR, July 2021. URL https://proceedings.
mlr.press/v139/schmidt21a.html. ISSN:
2640-3498.

Simoncini, V. Computational methods for linear matrix
equations. siam REVIEW, 58(3):377–441, 2016.

Simsek, B., Ged, F., Jacot, A., Spadaro, F., Hongler, C.,
Gerstner, W., and Brea, J. Geometry of the loss landscape
in overparameterized neural networks: Symmetries and
invariances. In International Conference on Machine
Learning, pp. 9722–9732. PMLR, 2021.

Stuart, J. L. and Weaver, J. R. Matrices that commute with a
permutation matrix. Linear Algebra and Its Applications,
150:255–265, 1991.

Stuart, J. L. and Weaver, J. R. Diagonally scaled permu-
tations and circulant matrices. Linear Algebra and Its
Applications, 212:397–411, 1994.

Tatro, N., Chen, P.-Y., Das, P., Melnyk, I., Sattigeri, P.,
and Lai, R. Optimizing mode connectivity via neuron
alignment. Advances in Neural Information Processing
Systems, 33:15300–15311, 2020.

Tieleman, T. and Hinton, G. Rmsprop: Divide the gradient
by a running average of its recent magnitude. coursera:
Neural networks for machine learning. COURSERA Neu-
ral Networks Mach. Learn, 17, 2012.

Titsias, M. Optimal preconditioning and fisher adaptive
langevin sampling. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Yang, Y., Hodgkinson, L., Theisen, R., Zou, J., Gonzalez,
J. E., Ramchandran, K., and Mahoney, M. W. Taxonomiz-
ing local versus global structure in neural network loss
landscapes. Advances in Neural Information Processing
Systems, 34:18722–18733, 2021.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. Adahessian: An adaptive second order
optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp.
10665–10673, 2021.

Yu, Y., Xia, R., Ma, Q., Lengyel, M., and Hennequin, G.
Second-order forward-mode optimization of recurrent
neural networks for neuroscience. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl,
G., Shallue, C., and Grosse, R. B. Which algorithmic
choices matter at which batch sizes? insights from a
noisy quadratic model. Advances in neural information
processing systems, 32, 2019.

Zhang, Y., Zhang, Z., Luo, T., and Xu, Z. J. Embedding
principle of loss landscape of deep neural networks. Ad-
vances in Neural Information Processing Systems, 34:
14848–14859, 2021.

Zhao, B., Dehmamy, N., Walters, R., and Yu, R. Symmetry
teleportation for accelerated optimization. Advances in
neural information processing systems, 35:16679–16690,
2022.

Zhao, B., Ganev, I., Walters, R., Yu, R., and Dehmamy, N.
Symmetries, flat minima, and the conserved quantities of
gradient flow. In International Conference on Learning
Representations, 2023a.

Zhao, B., Gower, R. M., Walters, R., and Yu, R. Improving
convergence and generalization using parameter symme-
tries. arXiv preprint arXiv:2305.13404, 2023b.

Ziyin, L. Symmetry induces structure and constraint of
learning. In Forty-first International Conference on Ma-
chine Learning, 2024.

Ziyin, L., Wang, M., Li, H., and Wu, L. Parameter symme-
try and noise equilibrium of stochastic gradient descent.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024.

12

https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html

Global curvature for second-order optimization of neural networks

A. Related work
Numerous efforts have been made to make second-order optimization feasible for deep neural networks. Like our work,
prior studies have explored architecture-specific curvature for various models, such as MLPs (Martens & Grosse, 2015),
ConvNets (Grosse & Martens, 2016), recurrent networks (Martens et al., 2018), and transformers (Eschenhagen et al.,
2024). However, these approaches rely on block-diagonal and kronecker-factored approximations, which lack theoretical
guarantees and are exact only in limited scenarios, such as when networks are linear either in their input (Bernacchia et al.,
2018) or their parameters (Karakida & Osawa, 2020). Recent research has aimed to compute curvature exactly, without
relying on block-diagonal approximations, but such methods are restricted to small-scale models (Cai et al., 2019; Arbel
et al., 2023; Korbit et al., 2024) or to reversible networks (Buffelli et al., 2024). Crucially, none of these studies leverage the
inherent symmetries present in neural network architectures. In contrast, our work introduces a novel framework that derives
the exact structure of curvature matrices by utilizing model symmetries for the first time. This approach is not limited by
model size and can be scaled to accommodate any large neural network with symmetries, providing a robust and widely
applicable solution to second-order optimization.

Neural networks exhibit a range of symmetries that can be broadly categorized into discrete (e.g., permutations and sign
flips, Chen et al. (1993)) and continuous (e.g., scaling, translations, and rotations, Kunin et al. (2020); Ziyin (2024)). While
continuous symmetries have been extensively studied for their potential to improve optimization (Neyshabur et al., 2015;
Meng et al., 2018; Zhao et al., 2022; 2023b), discrete symmetries have received comparatively less attention. Our work is the
first to leverage discrete symmetries specifically to enhance optimization. Prior research has employed discrete symmetries
in other contexts, such as model merging (Tatro et al., 2020; Entezari et al., 2021; Ainsworth et al., 2022; Jordan et al.,
2023; Navon et al., 2024) and analyzing the structure and stability of fixed points in the loss landscape (Fukumizu & Amari,
2000; Simsek et al., 2021; Zhang et al., 2021). Despite these applications, their direct use in optimization strategies remains
unexplored, and our work fills this critical gap. Additionally, the study of optimization dynamics has incorporated both
discrete (Chen et al., 2024; Ziyin, 2024) and continuous symmetries (Du et al., 2018; Kunin et al., 2020; Zhao et al., 2023a;
Ziyin et al., 2024), highlighting the broader interest in understanding how symmetries influence training. By focusing on
how discrete symmetries may improve optimization, we introduce a novel perspective that complements existing approaches.

A key distinction of our approach compared to prior work on second-order optimization and symmetries is our focus on
global rather than local curvature, also termed position-independent versus position-dependent curvature (Titsias, 2024).
Existing studies predominantly estimate local curvature, which depends on a specific set of model parameters and captures
the loss landscape’s behavior around a single point. Only two previous works, Yang et al. (2021) and Yao et al. (2021), have
explored global curvature, though with different interpretations. Yang et al. (2021) characterize global structure through
mode connectivity (Garipov et al., 2018), while Yao et al. (2021) define it via an exponential moving average of curvature.
Instead, we define global curvature by an average of the curvature matrix over an ensemble of model parameters, and we
show that it can be estimated efficiently.

Similar to our study, Kunin et al. (2020) explores symmetry-induced constraints on curvature. However, their work is
restricted to analyzing local curvature, which limits them to continuous symmetries and yields fewer constraints compared to
the stronger and more numerous constraints that emerge when analyzing the effect of discrete symmetries on global curvature.
Furthermore, global curvature estimation can offer more robust insights for optimization, as it is not tied to a specific
parameter configuration. The only previous study to incorporate global curvature is Titsias (2024), which investigates
position-independent preconditioning. However, their approach does not integrate symmetries into the computation, whereas
our approach uniquely combines global curvature estimation with symmetry constraints.

B. Quadratic loss
In this section, we study a toy example to build some intuition into the dynamics of parameters when optimizing a loss
function using the update introduced in Section 2.1, Equation (1). Given a parameter vector θ ∈ Rp, a constant and positive
definite Hessian matrix H ∈ Rp×p, we consider the quadratic loss function

L(θ) = 1

2
(θ − θ∗)TH(θ − θ∗) (42)

The global minimum of this loss is θ∗. When optimizing this loss by gradient descent, the path taken in the space of
parameters depends strongly on the Hessian matrix H . If H is a scalar matrix, H ∝ I, then the loss is isotropic and the
parameters follow a straight line to the minimum. Instead, if H is badly conditioned, then some directions in parameter

13

Global curvature for second-order optimization of neural networks

space are much more curved than others, and gradient descent takes a convoluted path, which may significantly slow down
convergence. Second-order optimization straightens the path and accelerates convergence.

The gradient of the quadratic loss is equal to ∇L = H(θ − θ∗). We are given an ensemble of models following a normal
distribution p(θ) = N (θ|µθ,Σθ), where µθ and Σθ are, respectively, the mean and covariance of the parameters. Since
the gradients are a linear function of the parameters, gradients also follow a normal distribution, ∇L ∼ N (µg,Σg), where
the mean and covariance are given by

µg = H(µθ − θ
∗) and Σg = HΣθH (43)

We define the optimization dynamics by the continuous flow

dθ

dt
= −αΣγ

g∇L = −αΣγ
gH(θ − θ∗) (44)

This is the continuous-time version of the second-order optimization update considered in Section 2.1, Equation (1), with
γ = − 1

2 . In our derivation, we keep a generic value of γ and we later argue in favor of the choice γ = − 1
2 .

Since the update of Equation (44) is linear in the parameters, the distribution of parameters remains Gaussian at all time
steps, and so does the distribution of gradients. However, the mean and covariance of both distributions change in time.
The dynamics of the mean is obtained by averaging Equation (44), while the dynamics of the covariance is obtained by
averaging the same equation multiplied by the parameter vector. We find

dµθ

dt
= −αΣγ

gH(µθ − θ
∗) (45)

dΣθ

dt
= −α

(
Σγ

gHΣθ +ΣθHΣγ
g

)
(46)

Using the identity Σg = HΣθH , and assuming that H and Σθ commute, we obtain

dµθ

dt
= −α H1+2γ Σγ

θ(µθ − θ
∗) (47)

dΣθ

dt
= −2α H1+2γ Σ1+γ

θ (48)

We note that these equations simplify by setting γ = − 1
2 , because the dependence on H disappears. In that case, the

equation for the covariance becomes dΣθ

dt = −2α Σ
1/2
θ . We further assume an isotropic initialization of parameters, Σθ ∝ I

at t = 0. The isotropic initialization is a natural choice in absence of any structured prior. In that case, the distribution
remains isotropic at all times, Σθ = sI, where the scalar s is time-dependent. This also ensures commutation of Σθ and H .
Then, the optimization dynamics is described by

dµθ

dt
= − α√

s
(µθ − θ

∗) (49)

ds

dt
= −2α

√
s (50)

In this case, the mean of the distribution takes a straight path to the minimum θ∗. When considering optimization in discrete
time, this implies that a large learning rate can be used and convergence is faster.

For a constant learning rate α, we show that the continuous dynamics converge in finite time. The solutions of Equations
(49),(50) are

µθ =

(
1− αt
√
s0

)
(µ0 − θ

∗) + θ∗ (51)

14

Global curvature for second-order optimization of neural networks

s = (
√
s0 − αt)2 (52)

where µ0 and s0 are the initial values at t = 0, and the dynamics stops at t =
√
s0
α , when all models have converged to the

minimum θ∗. We note that discretization of the dynamics in Equations (49),(50) has a large error near convergence, even
if the learning rate α is small. Therefore, we expect that discrete parameter updates would differ significantly from the
predicted solution in Equations (51),(52). To avoid this problem, we consider an exponentially decaying learning rate

α = α0β
t (53)

with 0 < β < 1. With this choice of the learning rate, and assuming that α0 and β are chosen to satisfy
√
s0 = α0

log(1
β)

, the

solutions of Equations (49),(50) are equal to

µθ = βt(µ0 − θ
∗) + θ∗ (54)

s =

(
α0β

t

log(β)

)2

(55)

In this case as well, all models converge quickly (exponentially fast) to the minimum of the loss. With the choice of an
exponentially decaying learning rate, the discretization error of the dynamics in Equations (49),(50) remains small, therefore
we expect the discrete updates to follow closely the solution in Equations (54),(55). The assumed equality

√
s0 = α0

log(1
β)

is satisfied, for example, when s0 ∼ 1, α0 is small and β ∼ 1 − α0. We find the relationship β ∼ 1 − α0 to hold in our
experiments, see Table 2.

C. Existence of invariant measures
In this section, we discuss the conditions for a transformation G to accept an invariant probability density and, given a
suitable G, what can we say about the mean and covariance of the invariant probability. Those conditions are identical to
those of the mean and covariance of the loss gradient, discussed in the main text, therefore the results of this section can be
used to analyze the properties of the gradient statistics as well. While in the main text we assume that G is orthogonal, the
results of this section do not use that assumption and are valid also for non-orthogonal G.

A necessary condition for the existence of an invariant probability density is that the transformation is volume-preserving.
This can be shown by computing the normalization condition. Denoting the probability density p(θ) and the linear
transformation G, invariance is given by p(Gθ) = p(θ). The domain of p is also invariant. Using the change of variable
θ = Gθ′, dθ = |det(G)|dθ′, the normalization condition can be written as

1 =

∫
dθ p(θ) = |det(G)|

∫
dθ′ p(Gθ′) = |det(G)|

∫
dθ′ p(θ′) = |det(G)| (56)

Therefore, |det(G)| must be equal to one, which means that the transformation must be volume-preserving. For example,
the distribution δ(θ), the Dirac delta function, is invariant for any volume-preserving transformation, since δ(Gθ) =

|det(G)|−1
δ(θ). However, besides volume preservation, the transformation G must satisfy stronger requirements to accept

non-trivial invariant distributions.

A useful example is provided by rescaling transformations, in which a parameter w1 is multiplied by a constant λ and
another parameter w2 is multiplied by its inverse 1/λ. Rescaling is volume-preserving and keeps ReLU neural networks
invariant (Neyshabur et al., 2015). However, besides the delta function, it is not possible for any other probability distribution
of w1 and w2 to be invariant for rescaling, because it would have to be constant along the one-dimensional curves with
constant w2w1, which are unbounded.

It was shown in Flytzanis (1977) that, to accept an invariant distribution whose domain spans the entire space, the linear
transformation must be similar to an orthogonal transformation. Technically speaking, that is equivalent to the requirement
that all eigenvalues of G lie on the unit circle of the complex plane. That condition implies volume-preservation, but is
much stronger. However, transformations that are similar to orthogonal transformations are not necessarily orthogonal (see
Lemma C.2).

15

Global curvature for second-order optimization of neural networks

We provide a proof that is valid for the case of distributions with finite and positive definite covariance. The proof includes
a procedure for constructing an invariant covariance Σ, given the transformation G. First, Lemma C.1 shows that the
covariance of an invariant distribution must be invariant upon a congruent transformation, akin to a Lyapunov equation
(Simoncini, 2016). Lemma C.2 provides conditions on the transformation G to accept an invariant distribution, and lemma
C.3 shows how to construct the covariance of an invariant distribution.

Lemma C.1. Assume that a probability density is invariant for a linear volume-preserving transformation, p(Gθ) = p(θ),
and it has a finite mean and covariance. The mean µ and covariance Σ of the distribution must satisfy the following
equations

µ = Gµ (57)

Σ = GΣGT (58)

We note that the equation for µ is an eigenvalue equation, while the equation for Σ is a congruent transformation, also
known as homogeneous discrete-time Lyapunov equation (Simoncini, 2016).

Proof. The result can be obtained by a change of variable θ = Gθ′, dθ = |det(G)|dθ′, using volume preservation,
|det(G)| = 1 and the invariance of the probability density:

µ =

∫
dθ θ p(θ) = |det(G)|

∫
dθ′ Gθ′ p(Gθ′) = G

∫
dθ′ θ′ p(θ′) = Gµ (59)

Σ =

∫
dθ θθT p(θ)− µµT = |det(G)|

∫
dθ′ Gθ′θ′

T
GT p(Gθ′)−GµµTGT = (60)

= G

[∫
dθ′ θ′θ′

T
p(θ′)− µµT

]
GT = GΣGT (61)

Lemma C.2. If the homogeneous discrete-time Lyapunov equation

Σ = GΣGT (62)

has a positive definite solution Σ, then G must be similar to an orthogonal matrix, thus it can be diagonalized and its
eigenvalues must lie on the unit circle of the complex plane.

Proof. Since Σ is positive definite, its square root and inverse exist and are unique. We define the matrix U as

U = Σ− 1
2GΣ

1
2 ⇐⇒ G = Σ

1
2UΣ− 1

2 (63)

Substituting this expression into the Lyapunov equation (62), we obtain

Σ = Σ
1
2UΣ− 1

2ΣΣ− 1
2UTΣ

1
2 = Σ

1
2UUTΣ

1
2 ⇐⇒ UUT = I (64)

Therefore, U must be an orthogonal matrix, andG is similar to U , therefore it must be diagonalizable and have all eigenvalues
in the unit circle of the complex plane.

For example, a Gaussian distribution with zero mean and covariance equal to Σ is invariant for G = Σ
1
2UΣ− 1

2 , for a fixed
Σ and any orthogonal U . However, other distributions, not necessarily Gaussian, may be invariant for the same group of
transformations, for example any distribution with the same level sets. Many other distributions may be invariant only for a
small subset of U values, for example permutations, or reflections / rotations with respect to a specific axis.

Lemma C.3. Given a transformation G that is similar to an orthogonal transformation, with real Jordan form given by

G = V BV −1 (65)

16

Global curvature for second-order optimization of neural networks

where B is orthogonal and block-diagonal, with a +1 or −1 diagonal entry for each real eigenvalue of G and a 2 × 2
rotation block for each pair of complex conjugate eigenvalues of G. The columns of the real matrix V are the real and
imaginary parts of all the right eigenvectors of G.

Then, a solution Σ of the Lyapunov equation (62) is equal to

Σ = V DV T (66)

If G has distinct eigenvalues, the matrix D is diagonal with a 1× 1 block, with an arbitrary positive value, for each real
eigenvalue of G (either +1 or −1), and a 2× 2 diagonal scalar matrix block, with an arbitrary positive value, for each
complex conjugate pair of eigenvalues of G.

If G has degenerate eigenvalues, D is block-diagonal with an arbitrary µ× µ positive definite matrix block for each real
eigenvalue of G, where µ is its multiplicity, and a 2µ× 2µ block of the form Dµ ⊗ I2 where Dµ is an arbitrary positive
definite matrix of size µ× µ, for each complex conjugate pair of eigenvalues of G, where µ is their multiplicity.

Proof. Using the Jordan form (65), we rewrite the Lyapunov equation (62) as

Σ = V BV −1ΣV −1TBTV T ⇐⇒ V −1ΣV −1T = BV −1ΣV −1TBT (67)

We define the positive definite matrix

D = V −1ΣV −1T ⇐⇒ Σ = V DV T (68)

then the above equation is rewritten as

D = BDBT (69)

Since B is orthogonal, this equation implies that D and B commute. Therefore, for either +1 or −1 diagonal entries in B,
the matrix D has a single scalar positive value on the diagonal. For each complex conjugate pair of eigenvalues e±iϕ, the
matrix B has a 2× 2 block (

cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
(70)

The only symmetric matrix that commutes with a 2-dimensional rotation is the identity matrix, therefore D must have a
2× 2 positive scalar matrix block.

The case in which G has degenerate eigenvalues is a straightforward generalization of the case with distinct eigenvalues. In
that case: when B has an identity block Iµ0 where µ0 is the multiplicity of eigenvalue 1, then D has a corresponding block
with an arbitrary positive definite matrix Dµ0

of size µ0 × µ0; when B has a minus identity block −Iµπ
where µπ is the

multiplicity of eigenvalue −1, then D has a corresponding arbitrary positive definite matrix Dµπ
of size µπ × µπ; When B

has blocks of size 2µϕ × 2µϕ

Iµϕ
⊗
(

cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
(71)

where µϕ is the multiplicity of conjugate eigenvalue pairs of angle ϕ, then D has a corresponding block of size 2µϕ × 2µϕ

of the form Dµϕ
⊗ I2 where Dµϕ

is an arbitrary positive definite matrix of size µϕ × µϕ,

D. Invariant initialization of parameters
In this section, we discuss which of the most common parameter inizialization routines used in deep learning are consistent
with Assumption 2.1. In other words, we ask whether the probability distribution used to initialize parameters is invariant for
the given symmetry group. As described in Section 3, the transformation in Equations (6), (7) can be rewritten in terms of a

17

Global curvature for second-order optimization of neural networks

single vector of parameters encompassing all layers, by concatenating and vectorizing all tensors. Then, the transformation
can be written as θ → Gθ, where the vector of all parameters is equal to

θ = Vec (W1,b1, . . . ,WL,bL) (72)

and the transformation has a block-diagonal structure

G =


V0 ⊗ V1

V1
. . .

VL−1 ⊗ VL
VL

 (73)

In the next sections, we discuss whether different initialization routines are invariant for the transformation G, when G
belongs to the three different groups considered in this study, Go,Gb,Gs.

D.1. Gaussian (normal) initialization

In this case, the probability distribution used to initialize parameters is given by the standard multivariate Gaussian

p0(θ) = (2πσ2)−
p
2 exp

(
−|θ|

2

2σ2

)
(74)

where σ2 is the variance of the distribution. This distribution is invariant for any orthogonal transformation θ → Uθ, where
U is any orthogonal matrix. It is straightforward to verify that the transformation given by Equation (73) is orthogonal,
when all Vℓ for ℓ = 1, . . . , L are all orthogonal. Therefore, Gaussian initialization is invariant for all Go,Gb,Gs.

D.2. Orthogonal initialization

In this case, each tensor in {W1,b1, . . . ,WL,bL} is generated according to a uniform distribution in the compact set of
orthogonal matrices (Mezzadri, 2007), by a QR decomposition of a random Gaussian matrix (e.g. generated as in Section
D.1), and then dropping the excess rows or columns. An additional step of flipping the sign of some rows and columns is
necessary for technical reasons, to make the distribution uniform (see Mezzadri (2007)).

We recall that Vℓ are orthogonal for all ℓ = 1, . . . , L, thus V T
ℓ Vℓ = VℓV

T
ℓ = Idℓ

. The transformation G in Equation (73)
corresponds to transforming each weight matrix as W ′

ℓ = VℓWℓV
T
ℓ−1. When dℓ−1 ≤ dℓ, then Wℓ

TWℓ = Idℓ−1
implies

W ′
ℓ
T
W ′

ℓ = Vℓ−1Wℓ
TV T

ℓ VℓWℓV
T
ℓ−1 = Vℓ−1Wℓ

TWℓV
T
ℓ−1 = Vℓ−1V

T
ℓ−1 = Idℓ−1

(75)

Similarly, when dℓ−1 ≥ dℓ, then WℓW
T
ℓ = Idℓ

implies

W ′
ℓW

′
ℓ
T
= VℓWℓV

T
ℓ−1Vℓ−1Wℓ

TV T
ℓ = VℓWℓWℓ

TV T
ℓ = VℓV

T
ℓ = Idℓ

(76)

Furthermore, the transformation keeps the uniformity of the group (Mezzadri, 2007), therefore the orthogonal initialization
is also invariant for all Go,Gb,Gs.

D.3. Uniform initialization

In this case, each parameter is initialized by drawing a number from a uniform distribution U(a, b), where a and b are,
respectively, the lower and upper bound of the distribution.

It is straightforward to verify that this distribution is not invariant for orthogonal transformations, therefore ruling out
the group Go. In fact, the domain of the distribution is a hypercube, which is not invariant for rotations. However, any
permutation of the parameters leaves the distribution invariant, therefore the distribution is invariant for the group Gs. If the
lower and upper bound are opposite, a = −b, then the distribution is also invariant for sign flips and therefore it is invariant
for the group Gb.

18

Global curvature for second-order optimization of neural networks

D.4. Sparse initialization

In this case, a random fraction of parameters is set to zero, and the others are initialized following a Gaussian distribution.
This distribution is not invariant for orthogonal transformation, because rotations do not preserve sparsity in general.
Therefore the group Go is again ruled out. However, the distribution is invariant for both permutations and sign flips, and
thus for the groups Gb, Gs.

D.5. Layer-dependent initialization

In some circumstances, different distributions are used to initialize distributions in different layers. For example, layer-
dependent variances when using the normal distribution, or layer-dependent lower and upper bounds when using the uniform
distribution. All results of previous sections apply to this case as well, because the transformation of Equation (73) is
block-diagonal and therefore applies separately to different layers. In other words, parameters of different layers are not
mixed in Equation (73).

E. Proof of Theorem 2.2
By assumption, the Jacobian matrix of u is nonsingular except on a set of measure zero. Then, we can use the Coarea
formula for computing the probability density after the mapping (Krantz & Parks, 2008). Since the dimension of the image
and preimage are equal, then the set of preimages is discrete. Therefore, the probability of θt+1 at step t+ 1 is given by the
change of variable formula

pt+1(θt+1) =
∑

θt∈Ut(θt+1)

pt(θt) | det (Jut
(θt))|−1 (77)

where Ju is the Jacobian matrix of u, and Ut(θt+1) is the set of pre-images of θt+1, namely all values θt such that
ut

(
θt
)
= θt+1. Given the assumption of equivariance, we have that ut

(
Gθt

)
= Gθt+1 and therefore Gθt ∈ Ut(Gθt+1)

for all θt ∈ Ut(θt+1). On the other hand, for all θ̃ ∈ Ut(Gθt+1), since G is invertible and using again equivariance, it
must be ut(G

−1θ̃) = θt+1, and therefore G−1θ̃ ∈ Ut(θt+1). Those two observations together imply that the elements of
Ut(Gθt+1) are equal to the elements of Ut(θt+1) multiplied by G. Therefore, we can compute the transformed probability
density as

pt+1(Gθt+1) =
∑

θt∈Ut(Gθt+1)

pt(θt) | det (Jut
(θt))|−1

=
∑

θt∈Ut(θt+1)

pt(Gθt) | det (Jut
(Gθt))|−1 (78)

We use invariance of the probability at step t, namely pt(Gθt) = pt(θt), and we note that equivariance and chain rule imply
Jut(Gθt) = Jut(θt)G

−1 and therefore det(Jut(Gθt)) = det(Jut(θt))det(G)−1. Finally, since G is volume-preserving,
|det(G)| = 1, then

pt+1(Gθt+1) =
∑

θt∈Ut(θt+1)

pt(θt) | det (Jut(θt))|
−1

= pt+1(θt+1) (79)

F. Equivariance of optimizers
In this section, we ask whether common optimizers used in deep learning are equivariant for the three groups considered in
the main text. All results are derived under the assumption that the loss is invariant. We show that both gradient descent
(with or without momentum) and the second-order update of Equation (1) are equivariant for all groups Go,Gb,Gs, while
Adam optimizer is equivariant for Gb,Gs, but not Go.

The gradient descent update is

θt = u(θt−1) = θt−1 − α∇L(θt−1) (80)

First, we note that the gradient is equivariant when the linear transformation G is orthogonal. Given the loss L(θ) and the
change of variable θ′ = Gθ, we define the transformed loss L̃(θ) = L(θ′). Using the chain rule, we have

∇L̃(θ) = GT∇L(θ′) = GT∇L(Gθ) =⇒ ∇L(Gθ) = GT−1∇L̃(θ) (81)

19

Global curvature for second-order optimization of neural networks

by assumption, the loss is invariant, L = L̃, and G is orthogonal, GT−1
= G, therefore

∇L(Gθ) = GT−1∇L(θ) = G ∇L(θ) =⇒ u(Gθ) = Gu(θ) (82)

We note that the gradient is not equivariant in general, however it is equivariant when the transformation G is orthogonal.
The extension to momentun is straightforward, although the update depends on all previous values of the parameters. In that
case

θt = ut ({θt−1, . . . ,θ0}) = θt−1 − α(1− β)
t−1∑
t′=0

βt−t′−1∇L(θt′) (83)

Similar to the case of gradient descent, the update is equivariant for any orthogonal transformation (acting at all steps)

ut ({Gθt−1, . . . , Gθ0}) = Gut ({θt−1, . . . ,θ0}) (84)

Since all groups considered in this work consists of orthogonal transformations, gradient descent (with or without momentum)
is equivariant for all groups Go,Gb,Gs.

In the case of Adam optimizer, the update is equal to (we summarize time-dependent scalars in αt)

θt = ut ({θt−1, . . . ,θ0}) = θt−1 − αt

∑t−1
t′=0 β

t−t′−1
1 ∇L(θt′)√∑t−1

t′=0 β
t−t′−1
2 ∇L(θt′)⊙∇L(θt′) + ϵ

(85)

Because of the denominator, this update is not equivariant for all orthogonal transformations. However, it is equivariant
for signed permutations. We note that the numerator changes sign while the denominator does not, therefore the update is
equivariant for sign flips. Furthermore, the update of a parameter depends only on the gradient of that parameter, therefore
the update is equivariant for permutations. Therefore, Adam optimizer is equivariant for Gb,Gs, but not Go.

In the case of the second-order update of Equation (1), we note that Lemma 2.4 applies at t = 0 under assumption 2.1. Since
the inverse and square root are analytic functions of positive definite matrices, then M0 in Equation (1) satisfies Equation
(15), provided that Σ0 is positive definite. By induction, we can iteratively apply Theorem 2.2 to prove that the update is
equivariant at all steps t, for all groups Go,Gb,Gs.

G. Proof of Lemma 2.4
Given the loss L(θ) and the change of variable θ′ = Gθ, we define the transformed loss L̃(θ) = L(θ′). Using the chain
rule, we have

∇L̃(θ) = GT∇L(θ′) = GT∇L(Gθ) =⇒ ∇L(Gθ) = GT−1∇L̃(θ) (86)

by assumption, the loss is invariant, L = L̃, and G is orthogonal, GT−1
= G, therefore

∇L(Gθ) = GT−1∇L(θ) = G ∇L(θ) (87)

We note that the gradient is not equivariant in general, however it is equivariant when the transformation G is orthogonal.
Similarly, it follows that

∇L(Gθ)∇L(Gθ)T = G ∇L(θ)∇L(θ) GT (88)

Using the invariance of the probability distribution, p(Gθ) = p(θ), and a volume-preserving change of variable θ′ = Gθ,
with |det(G)| = 1, it is easy to show that

E
θ
∇L(Gθ) =

∫
dθ p(θ)∇L(Gθ) =

∫
dθ p(Gθ)∇L(Gθ) = |det(G)|−1

∫
dθ′ p(θ′)∇L(θ′) = E

θ
∇L(θ) (89)

Using similar steps, we obtain

E
θ
∇L(Gθ)∇L(Gθ)T = E

θ
∇L(θ)∇L(θ)T (90)

20

Global curvature for second-order optimization of neural networks

Averaging Equations (87),(88), it follows that

µ = Gµ and Σ = GΣGT (91)

Furthermore, since G is orthogonal (GTG = I), any power of Σ satisfies the same equation

Σm =
(
GΣGT

)
. . .
(
GΣGT

)
= GΣmGT (92)

and so does any analytic function of Σ, because analytic functions are defined by power series.

t = 0 t = 20 theory

W1

b1

W2

b2

W1 b1 W2 b2

W1

b1

W2

b2

W1 b1 W2 b2

W1

b1

W2

b2

W1 b1 W2 b2

A B C

Figure 7. Global Hessian matrix for two-layer MLP with Tanh activations. Same as Figure 2 but shows the global Hessian instead of
the gradient covariance. We highlight that theory predicts the overall structure, rather than the specific numerical values.

t = 0 t = 20 theory

W1

b1

W2

b2

A B C

W3

b3

W1

b1

W2

b2

W3

b3

W1

b1

W2

b2

W3

b3
W1 b1 W2 b2 W3 b3 W1 b1 W2 b2 W3 b3 W1 b1 W2 b2 W3 b3

Figure 8. Global Hessian matrix for three-layer MLP with Tanh activations. Same as Figure 3 but shows the global Hessian instead of
the gradient covariance. We highlight that theory predicts the overall structure, rather than the specific numerical values.

H. Hessian matrices
In this section, we show that results similar to Theorem 2.4 and Figures 2, 3, 4, hold not only for the gradient covariance, but
also for the Hessian. Given the loss L(θ) and the change of variable θ′ = Gθ, we define the transformed loss L̃(θ) = L(θ′).
Applying the chain rule twice, noting that the transformation is linear, we have

∇2L̃(θ) = GT∇2L(θ′)G = GT∇2L(Gθ)G =⇒ ∇2L(Gθ) = GT−1∇2L̃(θ)G−1 (93)

by assumption, the loss is invariant, L = L̃, and G is orthogonal, GT−1
= G, therefore

∇2L(Gθ) = GT−1∇2L(θ)G−1 = G ∇2L(θ)GT (94)

21

Global curvature for second-order optimization of neural networks

t = 0 t = 20 theory

W1

W2

A B C

W3

W1

W2

W3

W1

W2

W3

W1 W2 W3 W1 W2 W3 W1 W2 W3

Figure 9. Global Hessian matrix for three-layer MLP with ReLU activations. Same as Figure 4 but shows the global Hessian instead
of the gradient covariance. We highlight that theory predicts the overall structure, rather than the specific numerical values.

We define the averaged (or global) Hessian as

H = E
θ
∇2L(θ) (95)

Using steps similar to Equation (89), it is straightforward to show that the global Hessian satisfies Equations (14), (15),
namely

H = GHGT and f(H) = Gf(H)GT (96)

for any analytic function f of the global Hessian matrix. Therefore, the statements of Lemma 2.4 for the gradient covariance
hold identically for the global Hessian.

Figures 7, 8, 9 show similar results as Figures 2, 3, 4, but for the global Hessian instead of the gradient covariance. The
figures show that the global Hessian has a structure similar to the gradient covariance, which is predicted equally well by our
theory. Again, theory predicts the structure, rather than the specific values of the matrix. The specific values need to be
estimated, as explained in Section 3.4.

I. Proof of Theorem 3.1
We have either Vℓ ∈ O(dℓ), the set of orthogonal matrices, or Vℓ ∈ B(dℓ), the set of signed permutations, for ℓ = 1, . . . , L−1,
while V0 = Id0

and VL = IdL
. The gradient mean of the bias is given by. Equation (22), equal to

µ̃ℓ = Vℓ µ̃ℓ (97)

First we note that, since VL = IdL
, then µ̃L is not zero and remains undetermined. Besides that special case, this equation

has a non-zero solution for µ̃ℓ only if all transformations within the group have a common eigenvector corresponding to
an eigenvalue equal to one. However, no such eigenvector exists for either groups: for orthogonal matrices, eigenvectors
with eigenvalue equal to one correspond to axes of rotation and/or reflection, that can point at any direction for different
orthogonal tranformations; For signed permutations, flipping simultaneously the sign of one row and the same column of a
matrix translates to flipping the sign of the corresponding component in its eigenvector. Therefore signed permutations also
do not have a common eigenvector and µ̃ℓ must be equal to zero.

The mean gradient of the weights is given by Equation (21), equal to

µℓ = (Vℓ−1 ⊗ Vℓ)µℓ (98)

This equation has a non-zero solution forµℓ only if all possible products Vℓ−1⊗Vℓ within a group have a common eigenvector
corresponding to an eigenvalue equal to one. However, for the same reasons described above, no such eigenvector exists for
either groups and therefore it must be µℓ = 0.

22

Global curvature for second-order optimization of neural networks

Now we turn to the covariance of the gradient. The bias-bias covariance must satisfy Equation (24), equal to

˜̃Σℓℓ′ = Vℓ
˜̃Σℓℓ′ V

T
ℓ′ (99)

Since ˜̃Σℓ′,ℓ =
˜̃ΣT
ℓ,ℓ′ , we only need to study the cases ℓ ≤ ℓ′. First, we note that it must be ˜̃Σℓ,ℓ′ = 0 for all ℓ ̸= ℓ′, because

Equation (99) must hold for all orthogonal or signed permutation matrices Vℓ, Vℓ′ , but that is impossible. For example,
setting Vℓ′ = Idℓ′ , there is no matrix ˜̃Σℓ′,ℓ satisfying ˜̃Σℓ′,ℓ = Vℓ

˜̃Σℓ′,ℓ for all possible Vℓ in the group. Next, we consider the

case ℓ = ℓ′. We note that, since VL = IdL
, then ˜̃ΣLL remains undetermined. For ℓ < L, we multiply Equation (99) by Vℓ

and use its orthogonality (V T
ℓ Vℓ = Idℓ

), we obtain

˜̃Σℓℓ Vℓ = Vℓ
˜̃Σℓℓ (100)

The only matrix that commutes with all orthogonal or signed permutation matrices is a scalar matrix (Stuart & Weaver,
1994), therefore we must have

˜̃Σℓℓ =
˜̃
ϕℓ Idℓ

(101)

for some scalar value ˜̃
ϕℓ.

The weight-weight covariance must satisfy Equation (23), equal to

Σℓℓ′ = (Vℓ−1 ⊗ Vℓ) Σℓℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(102)

Since Σℓ′ℓ = ΣT
ℓℓ′ , we only need to study the cases ℓ ≤ ℓ′. First, we study the case ℓ = ℓ′ and ℓ ̸= 1, L. In that case, using

the orthogonality of Vℓ, Vℓ′ , we rewrite Equation (102) as

Σℓℓ (Vℓ−1 ⊗ Vℓ) = (Vℓ−1 ⊗ Vℓ) Σℓℓ (103)

Similar to the case of the bias, the only matrix that commutes with all products of orthogonal or signed permutation matrices
is a scalar matrix, therefore it must be

Σℓℓ = ϕℓ
(
Idℓ−1

⊗ Idℓ

)
(104)

for some scalar value ϕℓ. For ℓ = 1, L, we have the following two equations

Σ11 = (Id0 ⊗ V1) Σ11

(
Id0 ⊗ V T

1

)
and ΣLL = (VL−1 ⊗ IdL

) ΣLL

(
V T
L−1 ⊗ IdL

)
(105)

Using similar arguments as above, since these equations must be valid for all orthogonal or signed permutation matrices V1
and VL−1, we must have

Σ11 = Φ1 ⊗ Id1 and ΣLL = IdL−1
⊗ ΦL (106)

for some matrices Φ1, ΦL. Next, we study the case ℓ′ = ℓ + 1. We use the commutation matrix K, which is a
symmetric permutation, thus K = KT , K2 = I. The commutation matrix exchanges the factors in a Kronecker product:
K(A⊗B)K = B ⊗A (see Chapter 3.7 of Magnus & Neudecker (2019)). We rewrite Equation (102) as

Σℓ,ℓ+1K = (Vℓ−1 ⊗ Vℓ) Σℓ,ℓ+1K
(
V T
ℓ+1 ⊗ V T

ℓ

)
(107)

and solve for Σℓ,ℓ+1K instead of Σℓ,ℓ+1. This equation must be valid for all orthogonal or signed permutation matrices Vℓ
(ℓ = 1, . . . , L− 1). We show that, if either ℓ > 1 or ℓ < L− 1, then Σℓ,ℓ+1K = 0→ Σℓ,ℓ+1 = 0. In the former case, we
set Vℓ = Idℓ

, Vℓ+1 = Idℓ+1
, then there is no finite matrix Σℓ,ℓ+1K that satisfies Σℓ,ℓ+1K = (Vℓ−1 ⊗ Idℓ

) Σℓ,ℓ+1K for all
Vℓ−1 in the group. In the latter case, we set Vℓ−1 = Idℓ−1

and Vℓ = Idℓ
, then there is no finite matrix Σℓ,ℓ+1K that satisfies

Σℓ,ℓ+1K = Σℓ,ℓ+1K
(
V T
ℓ+1 ⊗ Idℓ

)
for all Vℓ+1 in the group. If L = 2, Equation (107) is equal to

Σ12K = (Id0
⊗ V1) Σ12K

(
Id2
⊗ V T

1

)
(108)

23

Global curvature for second-order optimization of neural networks

that has the finite solution

Σ12K = (Ψ1 ⊗ Id1
) =⇒ Σ12 = (Ψ1 ⊗ Id1

)K (109)

for some matrix Ψ1. Lastly, we study the case ℓ′ > ℓ + 1. In that case, we can set Vℓ−1 = Idℓ−1
, Vℓ′ = Idℓ′ and either

Vℓ = Idℓ
or Vℓ′−1 = Idℓ′−1

in Equation (102) to show that Σℓ,ℓ′ must be equal to zero.

The bias-weight covariance must satisfy Equation (25), equal to

Σ̃ℓℓ′ = Vℓ Σ̃ℓℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(110)

We note that, in this case, Σ̃ℓℓ′ ̸= Σ̃T
ℓ′ℓ, therefore we must consider all pairs of values ℓ, ℓ′. For ℓ′ = ℓ > 1, it must

be Σ̃ℓℓ′ = 0. In that case, we set Vℓ = Idℓ
and there is no finite matrix Σ̃ℓℓ satisfying Σ̃ℓℓ = Σ̃ℓ,ℓ

(
V T
ℓ−1 ⊗ Idℓ

)
for all

Vℓ−1 in the group, thus Σ̃ℓℓ = 0. For ℓ′ = ℓ + 1 and ℓ′ < L, we set Vℓ = Idℓ
and there is no finite matrix Σ̃ℓ,ℓ+1

satisfying Σ̃ℓ,ℓ+1 = Σ̃ℓ,ℓ+1 (Idℓ
⊗ Vℓ+1) for all Vℓ+1 in the group, thus Σ̃ℓ,ℓ+1 = 0. For the special cases ℓ = ℓ′ = 1 and

ℓ′ = ℓ+ 1 = L, we rewrite Equation (110) as, respectively

Σ̃11 = V1 Σ̃11

(
Id0
⊗ V T

1

)
and Σ̃L−1,L = VL−1 Σ̃L−1,L

(
V T
L−1 ⊗ IdL

)
(111)

Since these equations must be valid for all orthogonal or signed permutation matrices V1 and VL−1, we must have

Σ̃11 = ϕ̃
T

1 ⊗ Id1
and Σ̃L−1,L = IdL−1

⊗ ϕ̃
T

L−1 (112)

For some column vectors ϕ̃1 and ϕ̃L−1. For other values of ℓ, ℓ′, we set Vℓ = Idℓ
in Equation (110) and note that there is no

matrix satisfying Σ̃ℓ,ℓ′ = Σ̃ℓ,ℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′

)
for all Vℓ′−1, Vℓ′ in the group, therefore it must be Σ̃ℓ,ℓ′ = 0.

J. Non-symmetric activations (ReLU)
For the mean of the bias gradients, we have

µ̃ℓ = ζ̃ℓ1dℓ
ℓ = 1, . . . , L− 1 (113)

µ̃L = z̃L (114)

where z̃L ∈ RdL , ζ̃ℓ ∈ R remain undetermined, dL + L− 1 unknowns. For the weights

µ1 = z0 ⊗ 1d1
= Vec

(
1d1

zT0
)

(115)

µℓ = ζℓ(1dℓ−1
⊗ 1dℓ

) = ζℓVec
(
1dℓ

1T
dℓ−1

)
ℓ = 2, . . . , L− 1 (116)

µL = 1dL−1
⊗ zL = Vec

(
zL1

T
dL−1

)
(117)

where z0 ∈ Rd0 , zL ∈ RdL , ζℓ ∈ R remain undetermined, d0 + dL + L− 2 unknowns. In total, for the mean gradient we
have d0 + 2dL + 2L− 3 unknowns.

For covariance of the biases, since ˜̃Σℓ′,ℓ =
˜̃ΣT
ℓ,ℓ′ , we only need to study the cases ℓ ≤ ℓ′. We have

˜̃Σℓℓ =
˜̃
ϕ
(1)
ℓ Idℓ

+
˜̃
ϕ
(2)
ℓ

dℓ
1dℓ

1T
dℓ

ℓ = 1, . . . , L− 1 (118)

˜̃Σℓℓ′ =
˜̃ωℓℓ′√
dℓdℓ′

1dℓ
1T
dℓ′

ℓ, ℓ′ = 1, . . . , L− 1, ℓ < ℓ′ (119)

˜̃ΣℓL =
1√
dℓ

1dℓ
˜̃ωT
ℓ ℓ = 1, . . . , L− 1 (120)

˜̃ΣLL = ˜̃ΩL (121)

where ˜̃ΩL,L is a symmetric matrix of size dL × dL, ˜̃ωℓ ∈ RdL , ˜̃ωℓℓ′ ,
˜̃
ϕ
(1)
ℓ ,

˜̃
ϕ
(2)
ℓ ∈ R, remain undetermined, a total of

dL(dL + 1)/2 + (L− 1)dL + L(L− 1)/2 + 2(L− 1) unknowns.

24

Global curvature for second-order optimization of neural networks

For the weights, since Σℓ′ℓ = ΣT
ℓℓ′ , we only need to study the cases ℓ ≤ ℓ′. In layers ℓ = 2, . . . , L− 1, we have

Σℓℓ = ϕ
(1)
ℓ

(
Idℓ−1

⊗ Idℓ

)
+
ϕ
(2)
ℓ

dℓ

(
Idℓ−1

⊗ 1dℓ
1T
dℓ

)
+
ϕ
(3)
ℓ

dℓ−1

(
1dℓ−1

1T
dℓ−1
⊗ Idℓ

)
+

ϕ
(4)
ℓ

dℓdℓ−1

(
1dℓ−1

1T
dℓ−1
⊗ 1dℓ

1T
dℓ

)
(122)

For ℓ = 2, . . . , L− 2, we have

Σℓ,ℓ+1 =
ψ
(1)
ℓ√

dℓ−1dℓ+1

(
1dℓ−1

1T
dℓ+1
⊗ Idℓ

)
K +

ψ
(2)
ℓ

dℓ
√
dℓ−1dℓ+1

(
1dℓ−1

1T
dℓ+1
⊗ 1dℓ

1T
dℓ

)
K (123)

For 2 < ℓ+ 1 < ℓ′ < L, we have

Σℓℓ′ =
ωℓ,ℓ′√

dℓ−1dℓ′−1dℓdℓ′

(
1dℓ−1

1T
dℓ′−1

⊗ 1dℓ
1T
dℓ′

)
(124)

Note that this form depends on 4(L − 2) + 2(L − 3) + (L − 3)(L − 4)/2 unknowns. Terms including the first and last
layers have slightly different form

Σ11 =
(
Φ

(1)
1 ⊗ Id1

)
+

1

d1

(
Φ

(2)
1 ⊗ 1d1

1T
d1

)
(125)

Σ12 =
1√
d2

(
ψ

(1)
1 1T

d2
⊗ Id1

)
K +

1

d1
√
d2

(
ψ

(2)
1 1T

d2
⊗ 1d11

T
d1

)
K (126)

Σ1ℓ′ =
1√

dℓ′−1d1dℓ′

(
ω1,ℓ′1

T
dℓ′−1

⊗ 1d1
1T
dℓ′

)
(127)

Σ1L =
1√

dL−1d1dL

(
ω

(1)
1,L1

T
dL−1

⊗ 1d11
T
dL

)
+

1√
d0dL−1d1

(
1d01

T
dL−1

⊗ 1d1ω
(2)
1,L

T
)

(128)

ΣℓL =
1√

dℓ−1dL−1dℓ

(
1dℓ−1

1T
dL−1

⊗ 1dℓ
ωT

ℓ,L

)
(129)

ΣL−1,L =
1√
dL−2

(
1dL−2

ψ
(1)
L−1

T
⊗ IdL−1

)
K +

1

dL−1

√
dL−2

(
1dL−2

ψ
(2)
L−1

T
⊗ 1dL−1

1T
dL−1

)
K (130)

ΣLL =
(
IdL−1

⊗ Φ
(1)
L

)
+

1

dL−1

(
1dL−1

1T
dL−1

⊗ Φ
(2)
L

)
(131)

In the special case L = 2, we have instead

Σ12 =
(
Ψ

(1)
1 ⊗ Id1

)
K +

(
Ψ

(2)
1 ⊗ 1d1

1T
d1

)
K (132)

For the cross-terms, we note that Σ̃ℓℓ′ ̸= Σ̃T
ℓ′ℓ, therefore we must consider all pairs of values ℓ, ℓ′. In all layers except the

first and last one, we have

Σ̃ℓℓ =
ϕ̃
(1)
ℓ√
dℓ−1

(
1T
dℓ−1
⊗ Idℓ

)
+

ϕ̃
(2)
ℓ

dℓ
√
dℓ−1

(
1T
dℓ−1
⊗ 1dℓ

1T
dℓ

)
ℓ ̸= 1, L (133)

Σ̃ℓ,ℓ+1 =
ψ̃
(1)
ℓ√
dℓ+1

(
Idℓ
⊗ 1T

dℓ+1

)
+

ψ̃
(2)
ℓ

dℓ
√
dℓ+1

(
1dℓ

1T
dℓ
⊗ 1T

dℓ+1

)
ℓ ̸= L− 1, L (134)

Σ̃ℓℓ′ =
ω̃ℓ,ℓ′√

dℓdℓ′−1dℓ′

(
1dℓ

1T
dℓ′−1

⊗ 1T
dℓ′

)
ℓ′ ̸= ℓ, ℓ+ 1, ℓ ̸= L, ℓ′ ̸= 1, L (135)

25

Global curvature for second-order optimization of neural networks

Terms involving the first and last layer are equal to

Σ̃11 =

(
ϕ̃

(1)

1

T

⊗ Id1

)
+

1

d1

(
ϕ̃

(2)

1

T

⊗ 1d1
1T
d1

)
(136)

Σ̃ℓ1 =
1√
dℓd1

(
1dℓ
ω̃T

ℓ1 ⊗ 1T
d1

)
ℓ = 2, . . . , L− 1 (137)

Σ̃L1 =
1√
d1

(
Ω̃L1 ⊗ 1T

d1

)
(138)

Σ̃Lℓ =
1√

dℓ−1dℓ

(
ω̃Lℓ1

T
dℓ−1
⊗ 1T

dℓ

)
ℓ = 2, . . . , L− 1 (139)

Σ̃LL =
1√
dL−1

(
1T
dL−1

⊗ Φ̃L

)
(140)

Σ̃L−1,L =

(
IdL−1

⊗ ψ̃
(1)

L

T
)
+

(
1dL−1

1T
dL−1

⊗ ψ̃
(2)

L

T
)

(141)

Σ̃ℓL =
1√

dL−1dℓ

(
1dℓ

1T
dL−1

⊗ ω̃T
ℓL

)
ℓ = 2, . . . , L− 2 (142)

Proof

We have Vℓ ∈ S(dℓ), the set of permutation matrices, while V0 = Id0
and VL = IdL

. We start from the gradient mean of the
bias, given by Equation (22)

µ̃ℓ = Vℓ µ̃ℓ (143)

First we note that, since VL = IdL
, then µ̃L remains undetermined.

For ℓ < L, we note that all permutations Vℓ have a common eigenvector, corresponding to the eigenvalue equal to one, given
by a vector with components all equal. That is the only eigenvector common to all permutations, therefore µ̃ℓ = ζ̃ℓ1dℓ

for
ℓ < L and some scalar ζ̃ℓ.

The gradient mean of the weights is given by Equation (21)

µℓ = (Vℓ−1 ⊗ Vℓ)µℓ (144)

For ℓ ̸= 1, L, the only eigenvector common to all possible products Vℓ−1 ⊗ Vℓ within the group, corresponding to an
eigenvalue equal to one, is again the vector will all components equal. Therefore it must be µℓ = ζℓ(1dℓ−1

⊗ 1dℓ
) for some

scalar ζℓ. For ℓ = 1, L, by similar arguments we find, respectively

µ1 = z0 ⊗ 1d1
and µL = 1dL−1

⊗ zL (145)

for some column vectors z0, zL.

Now we turn to the covariance of the gradient. The bias-bias covariance must satisfy Equation (24), equal to

˜̃Σℓℓ′ = Vℓ
˜̃Σℓℓ′ V

T
ℓ′ (146)

Since ˜̃Σℓ′,ℓ = ˜̃ΣT
ℓ,ℓ′ , we only need to study the cases ℓ ≤ ℓ′. First, we study the case ℓ = ℓ′. For ℓ = L, we note that

VL = IdL
and therefore ˜̃ΣLL is undetermined. For ℓ < L, we multiply Equation (146) by Vℓ and use its orthogonality

(V T
ℓ Vℓ = Idℓ

), we obtain

˜̃Σℓℓ Vℓ = Vℓ
˜̃Σℓℓ (147)

We note that a matrix that commutes with all permutation matrices Vℓ must be the sum of a scalar matrix and a matrix with
all elements equal (Stuart & Weaver, 1991). Therefore, for ℓ < L we have

˜̃Σℓℓ =
˜̃
ϕ
(1)
ℓ Idℓ

+
˜̃
ϕ
(2)
ℓ

dℓ
1dℓ

1T
dℓ

(148)

26

Global curvature for second-order optimization of neural networks

for some scalars ˜̃
ϕ
(1)
ℓ , ˜̃ϕ(2)ℓ . For ℓ ̸= ℓ′, since the only eigenvector common to all permutations is a vector with all components

equal, then Equation (146) is satisfied by

˜̃Σℓℓ′ =
˜̃ωℓℓ′√
dℓdℓ′

1dℓ
1T
dℓ′

if ℓ < ℓ′ < L, and ˜̃ΣℓL =
1√
dℓ

1dℓ
˜̃ωT
ℓ if ℓ < L (149)

For some scalar ˜̃ωℓℓ′ and column vector ˜̃ωℓ.

The weight-weight covariance must satisfy Equation (23), equal to

Σℓℓ′ = (Vℓ−1 ⊗ Vℓ) Σℓℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(150)

Since Σℓ′ℓ = ΣT
ℓℓ′ , we only need to study the cases ℓ ≤ ℓ′. First, we study the case ℓ = ℓ′ and ℓ ̸= 1, L. In that case, using

the orthogonality of Vℓ, Vℓ′ , we rewrite Equation (150) as

Σℓℓ (Vℓ−1 ⊗ Vℓ) = (Vℓ−1 ⊗ Vℓ) Σℓℓ (151)

Similar to the case of the bias, a matrix that commutes with a product of permutation matrices must have the form (Stuart &
Weaver, 1991)

Σℓℓ = ϕ
(1)
ℓ

(
Idℓ−1

⊗ Idℓ

)
+
ϕ
(2)
ℓ

dℓ

(
Idℓ−1

⊗ 1dℓ
1T
dℓ

)
+
ϕ
(3)
ℓ

dℓ−1

(
1dℓ−1

1T
dℓ−1
⊗ Idℓ

)
+

ϕ
(4)
ℓ

dℓdℓ−1

(
1dℓ−1

1T
dℓ−1
⊗ 1dℓ

1T
dℓ

)
(152)

For some scalars ϕ(1)ℓ , ϕ(2)ℓ , ϕ(3)ℓ , ϕ(4)ℓ . For ℓ = 1, L, since V0 = Id0
, VL−1 = IdL−1

, the covariance block satisfies,
respectively

Σ11 = (Id0
⊗ V1) Σ11

(
Id0
⊗ V T

1

)
and ΣLL = (VL−1 ⊗ IdL

) ΣLL

(
V T
L−1 ⊗ IdL

)
(153)

Using similar arguments as above, since these equations must be valid for all permutation matrices V1 and VL−1, we must
have

Σ11 =
(
Φ

(1)
1 ⊗ Id1

)
+

1

d1

(
Φ

(2)
1 ⊗ 1d1

1T
d1

)
and ΣLL =

(
IdL−1

⊗ Φ
(1)
L

)
+

1

dL−1

(
1dL−1

1T
dL−1

⊗ Φ
(2)
L

)
(154)

for some matrices Φ(1)
1 , Φ(2)

1 , Φ(1)
L , Φ(2)

L . Next, we study the case ℓ′ = ℓ+ 1. We use the commutation matrix K, which is a
symmetric permutation, thus K = KT , K2 = I. The commutation matrix exchanges the factors in a Kronecker product:
K(A⊗B)K = B ⊗A (see Chapter 3.7 of Magnus & Neudecker (2019)). We rewrite Equation (150) as

Σℓ,ℓ+1K = (Vℓ−1 ⊗ Vℓ) Σℓ,ℓ+1K
(
V T
ℓ+1 ⊗ V T

ℓ

)
(155)

and solve for Σℓ,ℓ+1K instead of Σℓ,ℓ+1. We start with ℓ ̸= 1, L− 1, then this equation must be valid for all permutation
matrices Vℓ−1, Vℓ, Vℓ+1. Using similar arguments as above, we find

Σℓ,ℓ+1 =
ψ
(1)
ℓ√

dℓ−1dℓ+1

(
1dℓ−1

1T
dℓ+1
⊗ Idℓ

)
K +

ψ
(2)
ℓ

dℓ
√
dℓ−1dℓ+1

(
1dℓ−1

1T
dℓ+1
⊗ 1dℓ

1T
dℓ

)
K (156)

for some scalars ψ(1)
ℓ , ψ(2)

ℓ . For ℓ = 1, L− 1, Equation (155) becomes, respectively

Σ12K = (Id0 ⊗ V1) Σ12K
(
V T
2 ⊗ V T

1

)
and ΣL−1,LK = (VL−2 ⊗ VL−1) ΣL−1,LK

(
IdL
⊗ V T

L−1

)
(157)

These equations must be valid for all permutations V1, V2 and VL−2, VL−1. We find

Σ12 =
1√
d2

(
ψ

(1)
1 1T

d2
⊗ Id1

)
K +

1

d1
√
d2

(
ψ

(2)
1 1T

d2
⊗ 1d11

T
d1

)
K (158)

ΣL−1,L =
1√
dL−2

(
1dL−2

ψ
(1)
L−1

T
⊗ IdL−1

)
K +

1

dL−1

√
dL−2

(
1dL−2

ψ
(2)
L−1

T
⊗ 1dL−1

1T
dL−1

)
K (159)

27

Global curvature for second-order optimization of neural networks

For some column vectors ψ(1)
1 , ψ(2)

1 , ψ(1)
L−1, ψ2

L−1. The case L = 2 is distinct, since Equation (155) is equal to

Σ12K = (Id0 ⊗ V1) Σ12K
(
Id2 ⊗ V T

1

)
(160)

that has the solution

Σ12 =
(
Ψ

(1)
1 ⊗ Id1

)
K +

(
Ψ

(2)
1 ⊗ 1d1

1T
d1

)
K (161)

for some matrix Ψ1. Lastly, we study the case ℓ′ > ℓ+ 1, starting with ℓ > 1 and ℓ′ < L. In that case, Equation (150) must
be valid for all different possible permutations Vℓ−1, Vℓ, Vℓ′−1, Vℓ′ . The solution is

Σℓℓ′ =
ωℓ,ℓ′√

dℓ−1dℓ′−1dℓdℓ′

(
1dℓ−1

1T
dℓ′−1

⊗ 1dℓ
1T
dℓ′

)
(162)

If ℓ = 1, ℓ′ < L, Equation (150) must be valid for all different possible permutations Vℓ, Vℓ′−1, Vℓ′ , and

Σ1ℓ′ =
1√

dℓ′−1d1dℓ′

(
ω1,ℓ′1

T
dℓ′−1

⊗ 1d1
1T
dℓ′

)
(163)

If ℓ > 1, ℓ′ = L, Equation (150) must be valid for all different possible permutations Vℓ−1, Vℓ, VL−1, and

ΣℓL =
1√

dℓ−1dL−1dℓ

(
1dℓ−1

1T
dL−1

⊗ 1dℓ
ωT

ℓ,L

)
(164)

Lastly, for ℓ = 1, ℓ′ = L (with L > 2), Equation (150) must be valid for all different possible permutations V1, VL−1, and

Σ1L =
1√

dL−1d1dL

(
ω

(1)
1,L1

T
dL−1

⊗ 1d1
1T
dL

)
+

1√
d0dL−1d1

(
1d0

1T
dL−1

⊗ 1d1
ω

(2)
1,L

T
)

(165)

The bias-weight covariance must satisfy Equation (25), equal to

Σ̃ℓℓ′ = Vℓ Σ̃ℓℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(166)

We note that, in this case, Σ̃ℓℓ′ ̸= Σ̃T
ℓ′ℓ, therefore we must consider all pairs of values ℓ, ℓ′. We start with ℓ′ = ℓ. For

ℓ ̸= 1, L, Equation (166) must hold for all possible different permutation matrices Vℓ−1, Vℓ, therefore

Σ̃ℓℓ =
ϕ̃
(1)
ℓ√
dℓ−1

(
1T
dℓ−1
⊗ Idℓ

)
+

ϕ̃
(2)
ℓ

dℓ
√
dℓ−1

(
1T
dℓ−1
⊗ 1dℓ

1T
dℓ

)
(167)

for some scalars ϕ̃(1)ℓ , ϕ̃(2)ℓ . For the special cases ℓ = ℓ′ = 1 and ℓ′ = ℓ = L, we rewrite Equation (166) as, respectively

Σ̃11 = V1 Σ̃11

(
Id0 ⊗ V T

1

)
and Σ̃LL = Σ̃LL

(
V T
L−1 ⊗ IdL

)
(168)

Since these equations must be valid for all permutation matrices V1 and VL−1, we must have

Σ̃11 =

(
ϕ̃

(1)

1

T

⊗ Id1

)
+

1

d1

(
ϕ̃

(2)

1

T

⊗ 1d11
T
d1

)
and Σ̃LL =

1√
dL−1

(
1T
dL−1

⊗ Φ̃L

)
(169)

For some column vectors ϕ̃
(1)

1 , ϕ̃
(2)

1 and some matrix Φ̃L. Next, we look at the case ℓ′ = ℓ+ 1. For ℓ < L− 1, we rewrite
Equation (166) as

Σ̃ℓ,ℓ+1 = Vℓ Σ̃ℓ,ℓ+1

(
V T
ℓ ⊗ V T

ℓ+1

)
(170)

This equation must be valid for all permutations Vℓ, Vℓ+1, therefore

Σ̃ℓ,ℓ+1 =
ψ̃
(1)
ℓ√
dℓ+1

(
Idℓ
⊗ 1T

dℓ+1

)
+

ψ̃
(2)
ℓ

dℓ
√
dℓ+1

(
1dℓ

1T
dℓ
⊗ 1T

dℓ+1

)
(171)

28

Global curvature for second-order optimization of neural networks

for some scalars ψ̃(1)
ℓ , ψ̃(2)

ℓ . For the special case ℓ′ = ℓ+ 1 = L, we rewrite Equation (166) as

Σ̃L−1,L = VL−1 Σ̃L−1,L

(
V T
L−1 ⊗ IdL

)
(172)

This equation must be valid for all permutations VL−1, therefore we find

Σ̃L−1,L =

(
IdL−1

⊗ ψ̃
(1)

L

T
)
+

(
1dL−1

1T
dL−1

⊗ ψ̃
(2)

L

T
)

(173)

for some column vectors ψ̃
(1)

L , ψ̃
(2)

L . Lastly, we study the case ℓ′ ̸= ℓ, ℓ+ 1. For ℓ ̸= L and ℓ′ ̸= 1, L, Equation (166) must
hold for all possible different permutation matrices Vℓ, Vℓ′−1, Vℓ′ , therefore we have

Σ̃ℓℓ′ =
ω̃ℓ,ℓ′√

dℓdℓ′−1dℓ′

(
1dℓ

1T
dℓ′−1

⊗ 1T
dℓ′

)
(174)

For some scalar ω̃ℓ,ℓ′ . For ℓ = L and ℓ′ ̸= 1, L, Equation (166) becomes

Σ̃Lℓ′ = Σ̃Lℓ′
(
V T
ℓ′−1 ⊗ V T

ℓ′
)

(175)

This equation must hold for all possible different permutation matrices Vℓ′−1, Vℓ′ , therefore we have

Σ̃Lℓ′ =
1√

dℓ′−1d′ℓ

(
ω̃Lℓ′1

T
dℓ′−1

⊗ 1T
d′
ℓ

)
(176)

For some column vector ω̃Lℓ′ . For ℓ ̸= 1, L and ℓ′ = 1, Equation (166) becomes

Σ̃ℓ1 = Vℓ Σ̃ℓ1

(
Id0
⊗ V T

1

)
(177)

This equation must hold for all possible different permutation matrices V1, Vℓ, therefore we have

Σ̃ℓ1 =
1√
dℓd1

(
1dℓ
ω̃T

ℓ1 ⊗ 1T
d1

)
(178)

For some column vector ω̃ℓ1. For ℓ ̸= 1, L− 1, L and ℓ′ = L, Equation (166) becomes

Σ̃ℓL = Vℓ Σ̃ℓL

(
V T
L−1 ⊗ IdL

)
(179)

This equation must hold for all possible different permutation matrices Vℓ, VL−1, therefore we have

Σ̃ℓL =
1√

dL−1dℓ

(
1dℓ

1T
dL−1

⊗ ω̃T
ℓL

)
(180)

For some column vector ω̃ℓL. Lastly, we have the case ℓ = L, ℓ′ = 1. In that case Equation (166) becomes

Σ̃L1 = Σ̃L1

(
Id0
⊗ V T

1

)
(181)

This equation must hold for all possible different permutation matrices V1, therefore we have

Σ̃L1 =
1√
d1

(
Ω̃L1 ⊗ 1T

d1

)
(182)

for some matrix Ω̃L1.

K. Estimation of factors
In this section, we provide some details on how to estimate the factors of the gradient covariance. First, we provide a
derivation of Equations (37),(38),(39) in the main text. We then describe how to improve the estimates by adding momentum,
and provide an empirical analysis of the estimation error (Figure 10).

29

Global curvature for second-order optimization of neural networks

0 200 400 600 800 1000
iterations

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

m
ea

n
pa

irw
ise

 c
or

re
la

tio
n

betah = 0
betah = 0.9
betah = 0.95
betah = 0.98

Figure 10. The factors of the covariance can be estimated by a single model. Mean pairwise correlation of estimated factors across 10
independently initialized models (45 pairs of models) as a function of training iteration (gradient descent), for different values of the
momentum parameter βh. A correlation value close to 1 would imply that hyperparameter estimates agree across independent models.
Without momentum (βh = 0), the hypeparameters of independent models display a correlation of 0.5. With momentum, correlations
reach about 0.7.

We consider the example of a two-layer MLP with Tanh activations and no bias, but a similar procedure can be followed for
other cases. The covariance is described in Theorem 3.1, in this case is equal to

Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
=

(
Φ1 ⊗ Id1

(Ψ1 ⊗ Id1
)K

K
(
ΨT

1 ⊗ Id1

)
Id1
⊗ Φ2

)
(183)

First, we assume that the covariance Σ is given, and we are asked to obtain the factors {Φ1,Φ2,Ψ1}. Later we consider the
case in which we have an estimate of Σ, instead of its true value. Given Σ, to obtain the factors {Φ1,Φ2,Ψ1} we need to
invert the following expressions, describing each block of the covariance

Σ11 = Φ1 ⊗ Id1
Σ22 = Id1

⊗ Φ2 Σ12 = (Ψ1 ⊗ Id1
)K (184)

It is convenient to rewrite these equations including the indices of all matrix elements

(Σ11)ij,kl = (Φ1)jl δik (Σ22)ij,kl = δjl (Φ2)ik (Σ12)ij,kl = (Ψ1)jk δil (185)

The problem of inverting these equations is underparameterized, therefore we look for the least square solution. That is
equal to

(Φ1)jl =
1

d1

d1∑
i=1

(Σ11)ij,il (186)

(Φ2)ik =
1

d1

d1∑
j=1

(Σ22)ij,kj (187)

(Ψ1)jk =
1

d1

d1∑
i=1

(Σ12)ij,ki (188)

In practice, the covariance Σ is not given, we only have access to an estimate from the observation of a gradient vector. We
note that the mean gradient is zero in this case (Theorem 3.1), therefore, we substitute the values of Σ11,Σ12,Σ22 with the
observed outer product of the observed gradient, and we obtain Equations (37),(38),(39) in the main text.

These equations show sums over neurons of the first layer, of dimension d1. The larger is d1, the lower is the expected
error in the estimates, because there will be a correspondingly large number of repeated values in the gradient covariance,
therefore the value can be estimated by summing over the corresponding pairs of parameters. In practice, the expected
value of the error in the estimate depends on the distribution of the gradients, which is unknown and likely non-Gaussian,
therefore it is not easy to estimate.

30

Global curvature for second-order optimization of neural networks

To improve the estimate of the factors, we use momentum, a standard method for noise reduction. Equations (37),(38),(39)
provide an estimate of the factors for a fixed iteration step during training. We rewrite those equations here in matrix form
for convenience

Φ1 =
1

d1

(
∂L
∂W1

)T (
∂L
∂W1

)
(189)

Φ2 =
1

d1

(
∂L
∂W2

)(
∂L
∂W2

)T

(190)

Ψ1 =
1

d1

(
∂L
∂W1

)T (
∂L
∂W2

)T

(191)

Across training iterations, instead of using the equations above, we use the following standard instance of momentum for
estimating the factors at step t given the estimate at step t− 1

(Φ1)t = βh (Φ1)t−1 +
1− βh
d1

(
∂L
∂W1

)T

t

(
∂L
∂W1

)
t

(192)

(Φ2)t = βh (Φ2)t−1 +
1− βh
d1

(
∂L
∂W2

)
t

(
∂L
∂W2

)T

t

(193)

(Ψ1)t = βh (Ψ1)t−1 +
1− βh
d1

(
∂L
∂W1

)T (
∂L
∂W2

)T

(194)

All factors are set to zero at t = 0, and estimates at step t are divided by the factor (1− βt
h) to remove the bias in the

estimate, as in standard practice (Kingma & Ba, 2014).

We study the estimation error by running 10 models, each one with its own random initialization and its own individual
esimate of the hyperparametsrs. We training each model separately by gradient descent. At each iteration, we estimate the
hyperparamaters of each model and save it into a flattened vector containing all factors. Then, we compare the models by
computing correlation between each pair of models (a total of 45 pairs) and compute the mean correlation across pairs. A
large correlation would imply that estimates of different models agree, suggesting that the estimates are good. We run the
same model described in Section 4, with layer widths d0 = 100, d1 = 70, d2 = 40, for a total of 9800 parameters, 5000
training input data points drawn from a Gaussian distribution with badly conditioned covariance and the output given by a
teacher network with identical architecture and random weights (see Section 4 for details).

Figure 10 shows the mean correlation as a function of training iterations for different values of βh. Without momentum
(βh = 0), the factors estimated from different individual models display a correlation of about 0.5, showing that individual
models estimate similar but not identical factors. The introduction of momentum allows increasing the correlation up to
about 0.7, therefore it provides a significant improvement. However, the correlation drops back to about 0.5 after a number
of iterations that depends on the value of βh. We note that the number of steps it takes to drop is equal to about 10 times the
intrinsic timescale of momentum, equal to (1− βh)−1.

W1

b1

W2

b2

W1 b1 W2 b2

W1

b1

W2

b2

W1 b1 W2 b2

A B C Dfull surrogatefull surrogate

Figure 11. Comparison of full (A) and surrogate (B) matrix for a two-layer MLP with Tanh activations. Panels C and D compare the
eigenvalues of the two matrices. We note that the eigenvalues are identical, although some of the eigenvalues of the full matrix are
repeated multiple times.

31

Global curvature for second-order optimization of neural networks

W1

b1

W2

b2

W1 b1 W2 b2

W1

b1
W2
b2

W1 b1W2 b2

A B C Dfull surrogatefull surrogate

W3

b3
W3 b3

W3

b3

W3 b3

Figure 12. Similar to Figure 11, for a three-layer MLP with Tanh activations.

W1

W2

W1 W2

W1

W2

W1 W2

A B C Dfull surrogatefull surrogate

W3

W3

W3

W3

Figure 13. Similar to Figures 11 and 12, for a three-layer MLP with ReLU activations.

L. Surrogate matrix
In this section, we describe how to perform operations on the covariance matrix using a smaller surrogate matrix. In
particular, we need to compute its inverse square root, that is required by the second-order update of Equation (1). First we
recall that, using either Theorem 3.1 (Tanh activation) or Theorem 3.2 (ReLU activation), we can describe the covariance
matrix by a set of factors. We consider the case of Tanh, but a similar argument can be used for the case of ReLU. We define
the flattened vector of all factors by

ϕ = Vec
(
{ϕ2, . . . , ϕL−1}, { ˜̃ϕ1, . . . , ˜̃ϕL−1}, ϕ̃1, ϕ̃L−1,Φ1,ΦL,

˜̃ΦL,Ψ1

)
(195)

Using Theorem 3.1, We can compute the covariance matrix given the factors ϕ and the layer widths {dℓ}, and vice versa.

ϕ, {d1, . . . , dL−1} ←→ Σ (196)

The next important observation is that, by Lemma 2.4, Equation (15), any analytic function of the covariance matrix must
have the same structure of the covariance itself. Therefore, provided that the covariance is positive definite, the inverse
square root is also described by a vector of factors, identified by the “isr” superscript

ϕisr = Vec
(
{ϕisr2 , . . . , ϕisrL−1}, {

˜̃
ϕisr1 , . . . ,

˜̃
ϕisrL−1}, ϕ̃

isr

1 , ϕ̃
isr

L−1,Φ
isr
1 ,Φisr

L , ˜̃Φisr
L ,Ψisr

1

)
(197)

Also in this case, we can compute the matrix given the factors and the layer widths, and vice versa

ϕisr, {d1, . . . , dL−1} ←→ Σ− 1
2 (198)

A naive approach for computing the factors ϕisr of the inverse square root Σ− 1
2 would be to compute Σ from ϕ, then its

inverse square root Σ− 1
2 and finally ϕisr from Σ− 1

2 .

ϕ, {d1, . . . , dL−1} −→ Σ −→ Σ− 1
2 −→ ϕisr (199)

32

Global curvature for second-order optimization of neural networks

However, the matrix Σ may be very large and exceed the available memory. Furthermore, computing its inverse square root
may be computationally very expensive. Therefore, we would like to compute ϕisr directly from ϕ, without ever computing
and square rooting / inverting the big matrix Σ.

We solve this problem by noting that the factors do not depend on the choice of the layer widths. In other words, any
alternative choice {d∗ℓ} of the layer widths would give the same outcome ϕisr.

ϕ,
{
d∗1, . . . , d

∗
L−1

}
−→ Λ −→ Λ− 1

2 −→ ϕisr (200)

where Λ is a surrogate matrix with the same factors as Σ but different layer widths. Therefore, we can set the layer widths
to very small numbers, corresponding to a surrogate matrix Λ that is easy to store in memory and to square root / invert. In
particular, the smallest number that retains the factors is d∗ℓ = 1 for case of Tanh and d∗ℓ = 2 for the case of ReLU.

For example, in the case of a two-layer MLP (L = 2) with Tanh activation and no bias, the full matrix has size (d0d1 +
d1d2)× (d0d1 + d1d2) and is equal to

Σ =

(
Φ1 ⊗ Id1

(Ψ1 ⊗ Id1
)K

K
(
ΨT

1 ⊗ Id1

)
Id1
⊗ Φ2

)
(201)

while the surrogate matrix has size (d0 + d2)× (d0 + d2) and is equal to

Λ =

(
Φ1 Ψ1

ΨT
1 Φ2

)
(202)

Therefore, the surrogate matrix has a factor d21 less elements than the full matrix. The main point of this section is that any
analytic function of Σ has the same form of Σ, for some other values of the factors, and that the same operation applies to Λ.
In the case of the inverse square root, we thus have

Σ− 1
2 =

(
Φisr

1 ⊗ Id1

(
Ψisr

1 ⊗ Id1

)
K

K
(
Ψisr

1
T ⊗ Id1

)
Id1
⊗ Φisr

2

)
(203)

Λ− 1
2 =

(
Φisr

1 Ψisr
1

Ψisr
1

T
Φisr

2

)
(204)

We note that the knowledge of the surrogate matrix is sufficient to compute the product between the full matrix and any
vector. For example, given the gradient vector

∇L = Vec

(
∂L
∂W1

,
∂L
∂W2

)
(205)

Using the properties of Kronecker product, we derive the update for a two-layer Tanh MLP without bias

Σ− 1
2∇L = Vec

(
∂L
∂W1

Φisr
1 +

∂L
∂WT

2

Ψisr
1

T
, Ψisr

1

T ∂L
∂WT

1

+Φisr
2

∂L
∂W2

)
(206)

Figures 11, 12, 13 compare the full and surrogate matrix for a few example MLPs. They show that the eigenvalues of the
full and surrogate matrices are identical, although some of the eigenvalues are repeated multiple times in the full matrix.

M. Hyperparameter settings
Table 2 shows the hyperparameter values for the experiments illustrated in Figures 5, 6. We note that most optimizers are
quite robust with respect to small changes of the hyperparameter values. An exception is KFAC, we found that it was very
sensitive to the combination of learning rate α and damping λ. In Table 2, boldface values are set by grid search, while
others are set to standard values. The latter include momentum parameters for Adam (β1 = 0.9, β2 = 0.999) and KFAC
(β = 0.9), and the exponent of Shampoo, set to p = 1

4 as common to most applications. For SymO, we set the momentum
parameter to βh = 0.95, as that value seemed to stabilize training in all our experiments (See Figure 10 in Appendix K).

In the case of SymO, we choose an exponentially decreasing learning rate, α = α0β
t. While this choice is uncommon in

neural network optimization, it is motivated by the analytical study of a toy quadratic problem, which is detailed in Appendix
B. While neural network optimization is very far from a quadratic problem, it may represent a reasonable approximation
near a fixed point, and we found that it worked fine in the non-convex optimization problems illustrated in Figures 5, 6.
More work is necessary to find out the optimal settings of SymO.

33

Global curvature for second-order optimization of neural networks

Algorithm 1 Symmetry-based Optimization update (SymO)
Input: gradient ∇L, previous factors {Φ1,Φ2,Ψ1}t−1, momentum parameter βh
Compute current factors {Φ1,Φ2,Ψ1}t using Equations (192),(193),(194)
Compute surrogate covariance matrix Λ by Equation (202)
Divide Λ by (1− βt

h) (bias correction)
Compute inverse square root of surrogate matrix Λ− 1

2 by numerical algebra
Compute factors {Φisr

1 ,Φisr
2 ,Ψisr

1 } of Λ− 1
2 by Equation (204)

Compute SymO update by Equation (206)
Return: SymO update, current factors {Φ1,Φ2,Ψ1}t

Table 2. Hyperparameter values used in experiments, for all optimizers, either in the case of linear activations (Figure 5), or Tanh
activations (Figure 6). Values in boldface are set by grid search, others are set to standard values.

GD Adam KFAC Shampoo SymO

Linear activation α= 0.8
α= 0.01
β1 = 0.9
β2 = 0.999

α= 1e− 5
λ= 1.3e− 4
β = 0.9

α= 0.8
ϵ= 1e− 10
p = 1

4

α0= 0.05
β= 0.95
βh = 0.95

Tanh activation α= 0.8
α= 0.01
β1 = 0.9
β2 = 0.999

α= 0.006
λ= 0.017
β = 0.9

α= 0.8
ϵ= 1e− 8
p = 1

4

α0= 0.09
β= 0.91
βh = 0.95

34

