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Abstract
Field-of-View (FoV) adaptive streaming significantly reduces band-
width requirement of immersive point cloud video (PCV) by only
transmitting visible points inside a viewer’s FoV. The traditional
approaches often focus on trajectory-based 6 degree-of-freedom
(6DoF) FoV predictions. The predicted FoV is then used to calculate
point visibility. Such approaches do not explicitly consider video
content’s impact on viewer attention, and the conversion from FoV
to point visibility is often error-prone and time-consuming. We
reformulate the PCV FoV prediction problem from the cell visibility
perspective, allowing for precise decision-making regarding the
transmission of 3D data at the cell level based on the predicted
visibility distribution. We develop a novel spatial visibility and
object-aware graph model (CellSight) that leverages the historical
3D visibility data and incorporates spatial perception, occlusion
between points, and neighboring cell correlation to predict the cell
visibility in the future. We focus on multi-second ahead prediction
to enable the use of long pre-fetching buffers in on-demand stream-
ing, critical for enhancing the robustness to network bandwidth
fluctuations. CellSight significantly improves the long-term cell
visibility prediction, reducing the prediction Mean Squared Error
(MSE) loss by up to 50% compared to the state-of-the-art models
when predicting 2 to 5 seconds ahead, while maintaining real-time
performance (more than 30fps) for point cloud videos with over 1
million points.

CCS Concepts
• Information systems→Multimedia streaming; • Comput-
ing methodologies → Machine learning approaches.
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1 Introduction
Augmented Reality (AR) and Virtual Reality (VR) applications are
gaining popularity rapidly. Streaming high-quality immersive videos,
such as 360-degree videos and point cloud videos, to viewers is one
of the most critical components for the wide adoption of AR/VR.
It can also be integrated with interactive methods, such as the
user force-aware approach in [33], further enhancing the user ex-
perience. However, immersive videos require significantly higher
bandwidth than the traditional 2D planar videos. For example, a
point cloud video consisting of 1 million points per frame requires
streaming bandwidth of more than 120 Mbps even with lossy com-
pression [22], while future production of high quality point cloud
can scale up to 10M points per frame. A promising solution is
FoV adaptive streaming that only streams video content within a
viewer’s current viewport. For 360-degree video, if the viewport
is 120 degree (horizontal) by 90 degree (vertical), only 1/6 video
data fall into a viewport, resulting into 6-fold bandwidth reduction.
For point cloud video, due to points occlusion in 3D space, not all
points falling into a viewport are visible. One can save even more
bandwidth by not just omitting the points outside the viewport,
but also removing the hidden points within the viewport. The com-
plete point cloud frame illustrated in Fig. 1 contains more than 1
million points. The number of points visible for the viewport given
in Fig. 1(a) are less than 150k, after removing the points outside the
viewport and the occluded points. In cell-based PCV streaming, a
point cloud frame is divided into cells, as shown in Fig. 1(c), and
each cell is independently coded and transmitted.1 To deliver the
actual view in Fig. 1(b), only cells covering those visible points
in Fig. 1(c) need to be transmitted, leading to 7-fold of streaming
bandwidth reduction.

In immersive video streaming, a viewer can freely change her
viewpoint (𝑋,𝑌, 𝑍 ), as well as her view angle (yaw, pitch, roll), re-
sulting in a total of 6 Degree-of-Freedom (6DoF). Cell-based FoV
adaptive streaming dynamically prefetches cells that are predicted
to be visible into local streaming buffer based on the viewer’s past
viewport trajectory. The key challenge is to accurately predict cell
visibility in real time so that more bandwidth can be allocated to
prefetch cells with higher visibility. The visibility of a cell can be
simplymeasured by its overlap ratio with the viewport. Considering
occlusion, cell visibility should be refined by discounting occluded
points. Finally, cells at different viewing distances contribute differ-
ently to the viewer’s viewing experience [9, 36]. More precise cell

1To clarify the terminology, we use “cell” to denote the geometry-based PCV unit, as
described in [9].
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Figure 1: Illustration of PCV Point Visibility. As in Fig. 1(a),
the content within the pyramid, defined by the near plane
and far plane, is potentially visible in the viewport, while
any content outside the pyramid will not be visible. Further-
more, some points inside the viewport are still not visible if
occluded by other points. When a viewer watches the point
cloud content from the viewpoint indicated in Fig. 1(a), only
the highlighted part in Fig. 1(a) would be visible. The actual
view for the viewer is shown in Fig. 1(b). If the point cloud is
divided into 3D cells like in Fig. 1(c), only the cells covering
the visible points need to be transmitted.

visibility metric should also take into account the cell-viewpoint
distance. For on-demand PCV streaming, a relative long streaming
buffer, e.g., 2 to 5 seconds, is preferred to provide sufficient margin
for smooth video streaming and video processing. Consequently,
predicting cell visibility in medium and long future horizons has
become an important and challenging research problem.

Naturally, most of the existing FoV-adaptive PCV streaming stud-
ies [9, 11, 16, 20] predict point/cell visibility in two steps: 1) predict
the viewer’s future viewport based on her past viewport trajectory;
2) calculate visible points and cell visibility using the predicted
viewport. This approach has several drawbacks: 1) trajectory-based
viewport prediction does not explicitly consider the impact of video
content on the viewer’s attention; 2) small errors in any 6DoF view-
port coordinates prediction may lead to large errors in visible points
prediction; and 3) Hidden Point Removal (HPR) at high point den-
sity is time consuming. These limitations motivate us to rethink FoV
prediction for PCV streaming: Can we directly predict cell visibility
based on the viewer’s viewport trajectory, cell visibility history, and
spatial features of objects to be viewed in PCV? There are several
advantages of this direct approach: 1) by directly predicting cell
visibility based on the cell visibility history (we assume that the
viewer’s past viewport is fed back to the sender so that the sender
can produce the visibility history data), we avoid the potential er-
ror amplification in the process of mapping 6DoF viewport to cell
visibility; 2) using the spatial features of PCV objects to be viewed
(for which we also have the ground-truth in on-demand streaming)
as an input, we explicitly take into account the impact of PCV ob-
jects and their movements on the viewer’s attention; 3) PCV object
movements and viewer viewpoint movements are both continuous
in time and space. As a result, point occlusion and visibility vary
continuously in time and space. Motivated by these observations,
we propose a TransGraph-GRU based spatial-temporal model for
predicting 3D cell visibility. For the spatial aspect, a graph-based

model is well-suited because if one cell lies within the FoV, its
neighbors are likely to be visible as well. For the temporal aspect,
an RNN-based model effectively captures dynamic dynamics [35],
such as when a cell begins moving out of the FoV, making it likely
to remain less visible in the near future. We opt for GRU over LSTM
due to its lighter computational overhead—a critical factor when
managing many cells. Prior work [10] has demonstrated the ef-
ficiency of integrating GRU with graph structures. Additionally,
Transformer-based techniques [25] can effectively learn hidden
spatial dependencies among neighboring cells, further enhancing
visibility prediction. A well-trained spatial-temporal machine learn-
ing model can thus leverage these continuous dynamics to achieve
accurate point/cell visibility prediction. Building on these insights,
we make the following contributions in this paper:

• We designCellSight, a novel PCV FoV prediction framework
that directly predicts the cell visibility in a future frame to a
viewer based on the viewer’s past viewport trajectory and
the point cloud spatial features to be viewed.

• We construct and predict a set of cell visibility features that
quantify the importance of streaming a cell by considering
its overlap ratio with the viewport, the fraction of visible
points after occlusion, and its angular span in the viewport
determined by the viewing distance.

• We develop a spatial-temporal graph model which can cap-
ture the spatial and temporal correlations of cell visibility in
consecutive PCV frames for accurate prediction.

• Through comprehensive experiments, we demonstrate that
CellSight can generate real-time cell visibility predictions,
and improve the long-term prediction accuracy of the state-
of-the-art methods by up to 50% on the real point cloud video
and viewport trajectory datasets.

2 Related Work
Immersive video streaming, whether for 360-degree (3DoF) videos
or point cloud (6DoF) videos, demands strategies to reduce band-
width usage while preserving user experience. In this section, we
review prior work for 3DoF and 6DoF streaming scenarios and
discuss the limitations that motivate our approach.
3DoF 360-degree Video Streaming. To mitigate the high band-
width consumption inherent in 360-degree video streaming, many
studies focus on predicting the user’s Field-of-View (FoV) so that
only the most relevant parts of the video are streamed at high
quality. For instance, [2, 18] leverages personalized and cross-user
behaviors to forecast future FoV, while [8] enhances prediction
accuracy by incorporating content-based features in addition to
historical FoV data. Furthermore, [19] extends these ideas by using
variations of Long Short-Term Memory (LSTM) models to predict
future FoV from past viewport trajectories, and even applies 2D
spatial and temporal ConvLSTM models to forecast tile visibility.
Although effective for 360-degree video, these methods rely on the
assumption that all pixels within the 360-degree view are visible—a
condition that does not hold in the more complex PCV context.
6DoF Point Cloud Video Streaming. Point cloud videos intro-
duce additional challenges due to occlusions and vastly larger data
volumes. In these scenarios, closer objects can obscure those fur-
ther away, making the prediction of visibility more complicated.
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Research in this area has addressed quality assessment, compres-
sion,reconstruction, segmentation and system design etc. For exam-
ple, subjective studies in [23] and objective evaluations in [1, 29]
have characterized the quality of point cloud videos, while [3] ex-
plores quality assessment using 3D visual saliency. To handle high
data volumes, progressive coding strategies [24] and real-time 3D
compression frameworks [4] have been proposed. Additional work
includes human avatar reconstruction from few-shot views [32],
and medical point cloud image segmentation [6]. Besides, system-
level approaches for PCV streaming have been explored [5]. For
example, [21] developed a mobile transcoding framework, and [12]
proposed a real-time, human-centered method that segments the
human body from the static background to reduce bandwidth over-
head. When it comes to FoV prediction for point cloud videos, the
challenges intensify due to 6DoF. [26] employing a 3DoF Bundle
Adjustment to estimate 6DoF estimation. In [11], a combined LSTM
andMulti-Layer Perceptron (MLP) model is used to predict user mo-
tion and head orientation for the next frame—yielding a very short
prediction horizon (approximately 11 ms). The Vivo system [9] ex-
tends this horizon to 200 ms by incorporating factors like distance
and occlusion, yet its trajectory-based prediction remains limited
for long-term prediction. Similarly, CaV3 [20] improves prediction
accuracy by integrating content features, but still suffers from the
inherent limitations of trajectory-based approaches over long pre-
diction horizons.
Our Contribution: CellSight. Unlike the existing methods that
predominantly rely on trajectory-based FoV prediction, our ap-
proach, CellSight, leverages spatial and temporal models to cap-
ture detailed 3D cell visibility patterns. This design allows us to
extend the accurate FoV prediction horizon to 5 seconds, thereby
providing the streaming system with a substantially larger opti-
mization window. In doing so, CellSight improves the robustness of
adaptive streaming systems against network condition fluctuations.

3 Background and Problem Formulation
3.1 Point Cloud Video
A point cloud video (PCV) consists of a sequence of frames, each of
which is a cloud of points on the surface of objects in a captured
scene. Each point is described by it 3D coordinate and color. It
can be rendered on 2D displays or VR goggles based on the user’s
view point, allowing users to explore the 3D scene from any angle
and depth with 6 degrees of freedom (X, Y, Z, yaw, pitch, roll). We
assume a PCV is represented by a geometry-based method and can
be partitioned into 3D cells. Octree is one example that has been
used in previous PCV streaming system [9]. For streaming, each
PCV frame is typically partitioned into small 3D cells, which can
be encoded independently at multiple quality levels [30], as shown
in Fig. 1(c). For a given viewer viewport, only a small subset of cells
are visible. If we know exactly which cells are visible, we just need
to stream those visible cells at the highest quality allowed by the
bandwidth. To deal with the unavoidable cell visibility prediction
errors, we can also stream some cells with low visibility at low
quality similar to the 360-degree video streaming strategy [28]. The
final PCV quality perceived by a viewer and the PCV streaming
overhead is largely determined by the accuracy of cell visibility
prediction.

Symbol Description
𝑇𝜏 6-DoF coordinates trajectory at time 𝜏
Tℎ history trajectory
𝐶 3D cell set
𝑂𝜏 graph occupancy features at time 𝜏
𝐹𝜏 graph viewport overlap ratio feature at time 𝜏
𝑉 𝜏 graph occlusion-aware visibility features at time 𝜏
𝐸𝜏 graph other features at time 𝜏
𝐴𝜏 graph angular span feature at time 𝜏
𝐵𝜏 graph visible angular span feature at time 𝜏
𝐺𝜏 all graph raw features at time 𝜏
𝑆𝜏 hidden states output of GRU at time 𝜏
𝐻𝜏 hidden states output of GNN at time 𝜏
𝑜𝜏
𝑖

occupancy feature of cell 𝑖 at time 𝜏
𝑓 𝜏
𝑖

viewport overlap ratio feature of cell 𝑖 at time 𝜏
𝑣𝜏
𝑖

occlusion-aware visibility feature of cell 𝑖 at time 𝜏
𝛼𝜏
𝑖

angular span feature of cell 𝑖 at time 𝜏
𝛽𝜏
𝑖

visible angular span feature of cell 𝑖 at time 𝜏
𝑒𝜏
𝑖

other features of cell 𝑖 at time 𝜏
Table 1: Notation table

3.2 Problem Formulation
We assume that the client has a frame buffer of length 𝑓 , so that
when the client is displaying frame ℎ, the server needs to send
frame ℎ + 𝑓 . Our goal is to predict the cell visibility for a future
frame ℎ + 𝑓 from the viewer’s past history viewport trajectory, the
past point cloud frames and the future point cloud frames up to
frame ℎ + 𝑓 . We denote the viewer’s history viewport trajectory by

Tℎ = {𝑇 1, ...,𝑇ℎ}
where 𝑇𝜏 = (𝑥𝜏 , 𝑦𝜏 , 𝑧𝜏 ,𝜓𝜏 , 𝜃𝜏 , 𝜙𝜏 ) is the 6-DoF coordinates at time
𝜏 , and the corresponding PCV frame sequence by Pℎ = {𝑃1, ..., 𝑃ℎ}.
Each frame 𝑃𝜏 is partitioned into a set 𝐶 of cells, each cell contains
a set of points. The visibility of a cell 𝑖 at time 𝜏 is defined as the
number of visible points in that cell, denoted by as 𝑣𝜏

𝑖
. The cell

visibility vector for frame 𝜏 is 𝑉 𝜏 = {𝑣𝜏
𝑖
, 𝑖 ∈ 𝐶}. Our goal is to

predict the cell visibility for a future frame 𝑌ℎ+𝑓 at time 𝜏 = ℎ + 𝑓
from Tℎ,Pℎ, 𝑃

ℎ+𝑓 using a learned function F :

𝑌ℎ+𝑓 = F (Tℎ,Pℎ, 𝑃
ℎ+𝑓 ),

where 𝑌ℎ+𝑓 denotes cell visibility features to be defined in Sec. 4.2.
In principle, all frames in Pℎ+𝑓 can be used for prediction. For
simplicity, we use Pℎ and 𝑃ℎ+𝑓 .

4 Methodology
Wepropose a graph-based predictionmodel that exploits Spatial Vis-
ibility and Temporal Dynamics of PCV. Fig. 2 presents an overview
of CellSight. We divide the space covered by the entire point cloud
video into multiple equal-sized cells. For the example in Fig 3, the
space is partitioned into 5 ∗ 6 ∗ 8 cells and all cells form a grid-like
graph. Neighboring cells in the same frame have strong visibility
correlations, which can be exploited by a graph model. Each node
in the graph model corresponds to a cell. Each node has its neigh-
boring cells as neighbors in the graph. For example, a cell can have
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Figure 2: Overview of our cell visibility prediction system.

(a) (b)

Figure 3: (a) is an example frame of a point cloud video. (b)
shows how the entire 3D space is divided into 3D cells. We
build a graph treating each cell as a node in the graph.

6 neighbors sharing the same side, or up to 26 neighbors sharing
the same corner/edge/side. To simplify the illustration, we use a
8-node graph to represent the whole graph in Fig. 2. For each node,
we have several features for visibility prediction. The curve on the
top is the viewer’s 6DoF viewport trajectory, illustrating one of the
6DoF coordinates (𝑥,𝑦, 𝑧,𝜓, 𝜃, 𝜙) at each frame time 𝜏 for a point
cloud sequence set Pℎ+𝑓 . For each frame, based on the 6DoF coor-
dinates and 𝑃𝜏 , we can calculate, for each cell 𝑖 , occupancy feature,
visibility features, as well as location and distance features, which
will be discussed in the following. We use 𝐺𝜏 = [𝑂𝜏 , 𝐹𝜏 ,𝑉 𝜏 , ..., 𝐸𝜏 ]
to represent the node features for each frame. We use a temporal
Bidirectional GRU model and a spatial transformer-based graph
model to capture patterns in viewer attention and cell visibility.
GRU model captures each node’s temporal pattern over time, which
is encoded into the hidden state. In the graph model, each node
aggregates its neighbor’s information and hidden state from GRU,
as the dash line shows. The bidirectional GRU can go through the
history forward and backward, and have an enhanced hidden state

to capture the history pattern. The details for Graph and GRU will
be introduced in Section. 4.4. After we get the 𝑆ℎ+1 and 𝑆

′
0 from

bi-directional GRU, a shared MLP is used to predict the cell vis-
ibility for each cell at the target time stamp 𝜏 = ℎ + 𝑓 . The final
prediction output 𝑌ℎ+𝑓 can be different cell visibility features de-
signed to quantify the importance of a cell for the rendered view
in different scenarios. The predicted cell visibility will be used by
streaming algorithms to optimize bandwidth allocation among cells
and improve streaming QoE. This proposed solution can be ap-
plied for video on demand or live streaming that can tolerate some
playback lags, e.g. 1-5 second. Longer prediction accuracy of the
solution will give more flexibility for the buffer-based streaming
algorithms. We will introduce those features considering the cell’s
overlap ratio with the viewport, occlusions among points, and the
viewing distance in Sec. 4.2. Before the final output, the 𝑂ℎ+𝑓 can
be optionally applied as a mask to refine the predicted visibility
𝑌ℎ+𝑓 , since in the streaming system, the server has the point cloud
at frame ℎ+ 𝑓 . In the following, we will introduce how we construct
features, including Cell Occupancy Feature, Cell Visibility Features,
and Locality and Distance Features.
4.1 Cell Occupancy Feature
After partitioning the point cloud video into cells, we can get the
number of points in each cell. Since viewer’s attention can be driven
by the objects in the point cloud video, the point density in a cell
will affect the viewer’s view interest for it and can be used as
an important feature for cell visibility prediction. For example,
work [14] studied the impact of video content on user FoV trajectory
and observed that “users’ gaze often follows the activity of the object
inside the video”, “for volumetric scenes with small movements,
the gaze may move back and forth with irregular movement, but
it generally still focuses on the target object”. Clearly, if a cell is
empty, it is unlikely to be viewed. We introduce the cell occupancy
feature for frame 𝜏 as:

𝑂𝜏 = {𝑜𝜏𝑖 , 𝑖 ∈ 𝐶}, (1)

where 𝑜𝜏
𝑖
is the number of points in cell 𝑖 of frame 𝜏 .
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4.2 Cell Visibility Features
We now introduce different cell visibility features that quantify the
contribution of a cell to the viewing quality by considering different
factors.

4.2.1 Viewport Overlap Ratio. Viewport Overlap Ratio is the over-
lap ratio between the current viewport and each cell as the cell-
based viewport feature. To simplify the notation, we will use view-
port feature in the rest of the paper. To obtain the overlap ratio
between the viewport and cell 𝑖 , we randomly generate 𝑅𝑖 virtual
points in cell 𝑖 , and using the intrinsic and extrinsic matrices associ-
ated with the viewing camera (used for rendering according to the
viewer’s FoV) to calculate that. More specifically, given a set P of
points in the world coordinates, we transform them to the viewing
camera coordinates using:

Pcam = E ·
[
P
1

]
,

where E is the extrinsic matrix determined by which represents
the camera’s orientation (yaw, pitch, roll), and a translation vector,
which specifies the camera’s coordinate system relative to the world
coordinate system. We then project the transformed points onto
the image plane using:

Pimg = I · Pcam,

where I is the intrinsic matrix, which depends on the intrinsic
camera parameters including focal-length, etc. After we map all
points on the camera’s image, we can filter the points in actual FoV
based on image dimensions and depth:

Set of Points in Viewport =

Pimg :

�������
0 ≤ Pimg [0, :] < width
0 ≤ Pimg [1, :] < height
𝑑near < Pimg [2, :] < 𝑑far

�������


where𝑑near and𝑑far are the near and far plane as illustrated in Fig. 1.
Denoting the number of points in the Set of Points in Viewport by
𝐾𝜏
𝑖
at time 𝜏 in cell 𝑖 , the viewport overlap ratio feature is defined

as:

𝐹𝜏 =

{
𝑓 𝜏𝑖 =

𝐾𝜏
𝑖

𝑅𝑖
, 𝑖 ∈ 𝐶

}
(2)

where 𝑅𝑖 is the number of virtual points we randomly generated in
cell 𝑖 , and it’s time independent.

4.2.2 Occlusion-aware Visibility . As we mentioned earlier, unlike
360-degree video, point cloud video has a unique property that
requires consideration of occlusion in 3D space for any given 6DoF
viewport. The number of visible points within a cell is crucial for
describing occlusion. Given the 6DoF viewport coordinates and
the point cloud object, we can use the HPR algorithm [15] to de-
termine the number of visible points in a cell. However, applying
HPR to high-density point clouds is time-consuming. In [9], the au-
thors propose a cell-based occlusion estimation method. However,
cell-based methods can introduce significant quantization errors.
To achieve a better balance between accuracy and computational
overhead, we calculate HPR on voxels instead of individual points,
where each voxel covers an area of around (1𝑐𝑚)3 cube in the 3D
space. We assign the visibility of the voxel to all the points within.
HPR on voxels has small accuracy loss from HPR with the original

PCV, but remains more precise than the cell-based occlusion esti-
mation. This enables real-time cell visibility calculations, achieving
an average of approximately 45 fps on 8i data. After removing the
hidden points, we apply intrinsic and extrinsic matrix mapping to
the remaining points to exclude those points outside of the FoV.
The final cell visibility feature for frame 𝜏 is then:

𝑉 𝜏 =

{
𝑣𝜏𝑖 =

𝑄𝜏
𝑖

𝑁𝜏
𝑖

, 𝑖 ∈ 𝐶
}
, (3)

where 𝑁𝜏
𝑖
is the number of points in cell 𝑖 at time 𝜏 after down-

sampling, and 𝑄𝜏
𝑖
is the number of visible downsampled points. A

further illustration for these three features is shown in Fig. 4.

𝑛! = (9,0.8,1.0) 𝑛" = (0,1,0)

𝑛# = (10,0.7,0.8)

𝑛$ = (9,1.0,1.0)

𝑛% = (10,1,0.4)

𝑛& = (0,1,0)

𝑛' = (0,0,0)𝑛( = (8,0,0)

(𝑜) , 𝑓) , 𝑣))

Figure 4: Given a viewer’s 6DoF and the point cloud frame in
3D cells, we can get the occupancy feature, viewport overlap
ratio feature and occlusion-aware visibility feature, as 𝑜𝑖 , 𝑓𝑖 , 𝑣𝑖 .
We have 8 nodes in total, and 5 of the nodes with color are
occupied by points and have different numbers of points. For
example 𝑛6 has 𝑜𝑖 = 10 points in total, the entire cell falls
in the view port and hence 𝑓𝑖 = 1, some points are occluded
by other points and 𝑣𝑖 = 0.4. For nodes without points, the
occlusion-aware visibility feature is set as 0.

4.2.3 Angular Span and Visible Angular Span. Viewing distance
is another important consideration for PCV streaming. An early
subjective study on image viewing quality in [31] showed that
the human perceived quality for an object depends on the angular
resolution, i.e. the number of points per degree, which depends
on the viewing distance and physical size of the object, as well as
the image resolution. A recent subjective study on PCV in [9] also
suggested that viewers’ QoE changes significantly when they view
a rendered point cloud object at different distances. Motivated by
those studies, we model a cell’s visual impact on the viewer as a
function of the viewing distance. As illustrated in Fig. 5, all visible
points in a cell are projected into a finite angular range within
the viewer’s viewport. The angular span depends on the distance
of the cell to the viewpoint. A cell far away from the viewpoint
contributes to only a small angular range of the viewport, and the
angular resolutionmay saturate even at low point density [9, 36]. As
a result, it has low impacts on the viewer’s QoE and interest. Since
we want to predict the utility of streaming each cell, we propose a
new cell visibility feature to quantify the viewing distance effect.
Similar to the pan-in-degree in [36], if a cell is completely inside the
viewport and fully visible, as illustrated in Fig. 5, its contribution
to the viewport can be quantified by the projected angular range 𝜃 ,
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which can be estimated as:

𝜃 = 2 arctan
(
𝑙

2𝑑

)
(4)

For a cell partially overlapping with the viewport, its contribution
should be discounted by its overlap ratio with the viewport defined
in (2):

𝐴𝜏 = {𝛼𝜏𝑖 = 𝑓 𝜏𝑖 ∗ 𝜃𝜏𝑖 , 𝑖 ∈ 𝐶}, (5)
which is called cell angular span for cell 𝑖 at time 𝜏 in the rest of
the paper. Finally, if a cell is partially visible (due to occlusion), its
contribution should be discounted by its visibility weight defined
in (3):

𝐵𝜏 = {𝛽𝜏𝑖 = 𝑣𝜏𝑖 ∗ 𝜃𝜏𝑖 , 𝑖 ∈ 𝐶}, (6)
which can be called the cell visible angular span for cell 𝑖 at time 𝜏 .

𝟑𝑫	𝒄𝒆𝒍𝒍

Distance:	𝒅

𝜽 ≈ 𝟐𝒂𝒓𝒄𝒕𝒂𝒏(
𝒍
𝟐𝒅
)

𝒍

Figure 5: Inside a viewport, all points of a cell are viewed
within an angular span determined by the viewing distance.

4.3 Locality and Distance Features
Other features 𝐸𝜏 = {𝑒𝜏

𝑖
, 𝑖 ∈ 𝐶𝜏 } for cell 𝑖 include the cell center

coordinates and the distance from the cell center to the viewer’s
viewpoint. These features help the model account for changes in the
viewer’s position over time, similar to the way 𝑥,𝑦, 𝑧 coordinates
are used in trajectory-based methods. It is important to note that
the cell/node index remains fixed throughout the duration of the
point cloud video.

4.4 TransGraph and GRU Model
We utilize a Transformer-based graph network [25] to build our
graph model. The Transformer-based approach employs attention
mechanisms [17] of transformers to capture dynamic relationships
between neighbors. Given the hidden state 𝑆𝜏 = {𝑠𝑖 , 𝑖 ∈ 𝐶} at time
𝜏 , we first concatenate 𝑆𝜏 with the raw node feature 𝐺𝜏 to form
new feature for all cells:

𝐻𝜏 = {ℎ𝜏𝑖 = 𝑠𝜏𝑖 ⊕ 𝑔𝜏𝑖 , 𝑖 ∈ 𝐶} = 𝑆𝜏 ⊕ 𝐺𝜏 (7)

We then update the feature at each node using a weighted average
of transformed features at its neighboring nodes, described by the
following equations:

𝑞𝜏𝑐,𝑖 =𝑊𝑐,𝑞ℎ
𝜏
𝑖 + 𝑏𝑐,𝑞 (8)

𝑘𝜏𝑐,𝑗 =𝑊𝑐,𝑘ℎ
𝜏
𝑗 + 𝑏𝑐,𝑘 (9)

𝛼𝜏𝑐,𝑖 𝑗 =
⟨𝑞𝜏
𝑐,𝑖
, 𝑘𝜏

𝑐,𝑗
⟩∑

𝑢∈N(𝑖 ) ⟨𝑞𝜏𝑐,𝑖 , 𝑘
𝜏
𝑐,𝑢⟩

(10)

𝑣𝜏𝑐,𝑗 =𝑊𝑐,𝑣ℎ
𝜏
𝑗 + 𝑏𝑐,𝑣 (11)

ℎ̂𝜏𝑖 =
∑︁

𝑗∈N(𝑖 )
𝛼𝜏𝑐,𝑖 𝑗𝑣

𝜏
𝑐,𝑗 (12)

where𝑊𝑐,𝑞,𝑊𝑐,𝑘 ,𝑊𝑐,𝑣 and 𝑏𝑐,𝑞, 𝑏𝑐,𝑘 , 𝑏𝑐,𝑣 are trainable weights and

bias matrix and ⟨𝑞, 𝑘⟩ = exp
(
𝑞𝑇𝑘√
𝑑

)
is the exponential scale dot-

product function and 𝑑 is the hidden size of each head [25]. We
denote the above operations over all nodes collectively as

𝐻̂𝜏 = 𝑇𝑟𝑎𝑛𝑠𝐺𝑟𝑎𝑝ℎ(𝐻𝜏 ) (13)

This is a single-layer graph model update; multiple layers can be
used sequentially based on the output of the previous layer. For
the GRU model, similar to the approach in [10], we employ a bi-
directional GRU to capture temporal patterns. At each time step,
the original hidden state 𝑠𝜏

𝑖
at node 𝑖 is updated to ℎ̂𝜏

𝑖
using the

graph operation described above, which propagates information
from its neighbors in the graph. This updated hidden state will then
serve as the hidden state for the next time step in the GRU model
in both directions:

𝑆𝑡+1 = 𝐺𝑅𝑈𝑓 (𝐻̂𝑡 ,𝐺𝑡 ) (14)

𝑆 ′𝑡−1 = 𝐺𝑅𝑈𝑟 (𝐻̂ ′
𝑡 ,𝐺𝑡 ) (15)

At the end of the GRU, one MLP module, which is shared by all
cells, will take the combined hidden states 𝑆ℎ+1 and 𝑆

′
0 of each cell

to predict the visibility or viewport overlap ratio of this cell.
Since in a streaming system, when the system decides to send

frame 𝑃ℎ+𝑓 , we can use occupancy feature at timeℎ+ 𝑓 ,𝑂ℎ+𝑓 , as the
mask on the output of MLP module to get the final prediction 𝑌ℎ+𝑓 .
This masking operation, for example, can correct the situation when
the predicted visibility is high but the actual occupancy is zero. The
mask will be used for when 𝑌ℎ+𝑓 is visibility feature𝑉 𝜏 and visible
angular span feature 𝐵𝜏 .

𝑌ℎ+𝑓 = 𝑀ℎ+𝑓 ◦ 𝑍ℎ+𝑓 (16)

where𝑀ℎ+𝑓 is an indicator variable defined as:

𝑚𝑖 =

{
1 if 𝑜𝑖 ≥ 0
0 otherwise

and 𝑍ℎ+𝑓 is the output of MLP module. A binary mask is applied
here because if a cell has no points, there is no need to transmit that
cell. Conversely, we do not rely on the number of points within a
cell, as having more points does not necessarily equate to higher
visibility, which ultimately depends on the viewer’s interest.

Combining all the elements, CellSight is capable of generating
the cell features in real time using the historical viewport trajectory
and point cloud video data. Conceptually, the graph model captures
the interaction of the cell features among neighboring nodes, while
the GRU model captures the temporal dynamics of the cell features.
By concatenating the cell feature with the cell’s hidden state as
the input feature to the graph model, and using the output of the
graph model as the updated hidden state of the GRU model, our
overall model is able to exploit the impact of the hidden states of
neighboring cells on the temporal dynamics of a chosen cell. The
model’s output may be cell visibility based on the streaming system
or cell-based viewport feature, and the prediction accuracy will be
assessed in the following section.
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5 Evaluation
5.1 Dataset
We use two public point cloud video datasets with user FoV traces to
train and evaluate CellSight. The first dataset is 8i [7], which con-
tains four videos, longdress, loot, redandblack, and soldier,
each with over one million points per frame, along with a 6DoF
viewing navigation trajectory dataset [27]. Trajectories were col-
lected from 26 users watching these videos (looped every 5 sec-
onds) at 30 fps. Although the PCV loops every 5 seconds due to its
original design, user trajectories remain continuous and can vary
from loop to loop. Consequently, the only truly repeating feature
is the cell occupancy feature (e.g., the number of points in each
cell). All the other features reflect continuous user FoV trajecto-
ries and thus do not repeat. As a result, the looping content has
minimal impact on our evaluation, since most features remain dis-
tinct and capture realistic viewing behaviors. In total, these videos
amount to approximately 40k frames. We use the trajectories from
the first three videos (longdress, loot, redandblack) for training,
and the trajectory from the fourth video (soldier) is split into
testing (first half) and validation (second half) sets. The second
dataset is the Full Scene Volumetric Video Dataset (FSVVD) [13],
which represents complex indoor scenes. Its accompanying trajec-
tory dataset [14] comprises data from over 10 users watching six
different point cloud videos. We selected four videos—Chatting,
Pulling trolley, News interviewing, and Sweeping—and fo-
cused on the 12 users who watched all four. We excluded the other
two videos because they contain dual full-scene rooms and differ
significantly in scale. Similarly, we use the trajectories from the
first three videos for training, while the last video (Sweeping) is
equally divided between testing and validation. Since FSVVD is
recorded at 60 fps, we downsample both the videos and the user
trajectories to 30 fps to align with the 8i data. Overall, FSVVD
provides over 50k frames. Notably, user FoVs in FSVVD are more
dynamic than those in 8i, making prediction more challenging at
longer prediction intervals.

5.2 Implementation Details
We pre-process the point cloud videos with Open3D [34] and gener-
ate cell features on a laptop with Apple M1 Pro chip, while training
the graph model on an NVIDIA A100 GPU. Our graph model is im-
plemented using PyTorch 2.3.0 and CUDA 12.2. We set the learning
rate to 1e-4 and use a latent feature dimension of 128 for both the
graph model and the GRU. Unless otherwise specified, a history
length of 90 frames (3 seconds) is used for all methods. The model is
trained for 30 epochs, with early stopping applied if the validation
loss does not decrease for 5 consecutive epochs. For the 8i dataset,
the entire space is partitioned into 5 × 6 × 8 = 240 cells. The point
cloud videos span approximately 1.8m in height (Y-axis), with each
3D cell measuring around 0.2m along all dimensions. For FSVVD,
the space is partitioned into 7 × 5 × 8 cells. The viewing camera
image resolution is (1920*1080). The intrinsic matrix of camera is
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 , where 𝑓𝑥 = 𝑓𝑦 = 525, 𝑐𝑥 = 1920/2, 𝑐𝑦 = 1080/2.

To deploy CellSight in a real system, we must consider two main
sources of latency: feature calculation latency and model inference

latency. Take the 8i dataset as an example: on Mac M1 Pro Chip,
we achieved 32.5fps without occlusion-aware features and 18.1fps
with occlusion-aware features. And model inference time is 0.279
seconds. The GPU memory usage is 45GB to train the model when
the batch size is 32. For faster HPR, the downsampled frame has
around 15k points.

5.3 Baseline Methods and Evaluation Metrics
We compare our proposed model against several trajectory-based
baseline models to evaluate its performance in predicting cell visi-
bility. The trajectory-based models first predict the future viewport
6DoF coordinates (𝑥,𝑦, 𝑧,𝜓, 𝜃, 𝜙) based on the historical viewport
trajectory. These predicted coordinates are then used to calculate
cell features defined in the Methodology section. In contrast, Cell-
Sight directly predicts cell features, including cell viewport overlap
ratio, angular span, occlusion-aware visibility, and visible angular
span, which are ready to be directly used in point cloud streaming
systems for bit-rate allocation to 3D cells.

For trajectory-based methods, the angle values of 𝜓 , 𝜃 , and 𝜙
wrap around, e.g. from 2𝜋 to 0. There are different approaches
to address this issue. In our approach, we convert the orientation
coordinates to the sine and cosine domains, using two coordinates
to represent each angle coordinate. After prediction, we convert
these coordinates back to the original angle value using the arc-
tangent function. The baselines are as follows:

• Linear Regression (LR): We employ linear regression to
predict each 6DoF coordinate individually by using a lin-
ear combination of historical values over a fixed window.
This simple model serves as a fundamental baseline and, as
demonstrated in [9], can sometimes yield higher FoV predic-
tion accuracy thanMLP. To accommodate different scenarios,
we implement two variants—LR90 and LR30—using history
window lengths of 90 and 30 frames, respectively.

• Truncated Linear Regression (TLR): This method lever-
ages the most recent monotonically increasing or decreasing
segment of the history window to linearly extrapolate future
values. TLR has shown good performance in short-term FoV
prediction [19] and, similar to LR, is applied to predict each
coordinate individually.

• Multi-task Multilayer Perceptron (MLP): Following [11],
we utilize a feedforward neural network to capture non-
linear relationships between the input features and the fu-
ture FoV. As demonstrated in [11], predicting all coordinates
simultaneously using the entire history window can enhance
performance. Consequently, we use an MLP model with two
hidden layers, each comprising 60 neurons in a fully con-
nected architecture, and employ the ReLU activation func-
tion. This configuration is consistent with [9, 11, 20].

• Multi-task LSTM (LSTM): LSTM, a type of recurrent neural
network (RNN), is well-suited for sequence prediction by
learning long-term dependencies in time series data. In line
with [11], we implement a two-layer LSTM with 60 neurons
per layer to predict future FoV coordinates from historical
data, with all coordinates predicted simultaneously.

There are also some other SOTA methods, e.g. [9, 20]. For [20], it
is not open-sourced and the system is hard to reproduce. But we
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infer its performance based on its reported improvement over [9].
Authors of [9] built a point cloud streaming system considering
Viewport Visibility (VV), Occlusion Visibility (OV), and Distance
Visibility (DV), which are counterparts of our cell-based viewport
feature, visibility feature and angular span feature. MLP and LSTM
are used for FoV prediction. For the cell visible angular span pre-
diction, we use MLP and LSTM to compare its performance with
CellSight. Besides, we also use point-wise HPR to estimate the oc-
clusion visibility to improve the its cell-based occlusion estimation.

We evaluate the performance of CellSight and the baselines by
comparing the MSE across all cells for the predicted frame, includ-
ing empty cells. This is because some cell may be temporarily empty
when the objects move out of the space occupied by the cell. In
CellSight, we will predict the visibility weight for each cell and the
predicted weights can be directly used to determine the bit-rates al-
located to all cells, not just cells falling into the predicted viewport.
MSE is an accuracy metric for the visibility weight prediction. More
accurate prediction leads to better cell bit-rate allocation for im-
proved streaming quality. Besides, we use the 𝑅2 score to assess the
MSE relative to the variance of the ground truth variables, defined

as 𝑅2 = 1 − MSE
GT variance = 1 −

∑
𝑖

∑
𝑓 (𝑦𝑖 𝑓 −𝑦̂𝑖 𝑓 )2∑

𝑖

∑
𝑓 (𝑦𝑖 𝑓 −𝑦)2 . In our experiments,

we calculate residual variance and total variance over all cells and
all frames. It measures the proportion of variance in the dependent
variable that is predictable from the independent variables. An 𝑅2

score of 1 indicates perfect prediction, and a ground truth mean
prediction will a score of 0. It can be negative when model intro-
duces more error than simply using the mean of the target data
as the prediction. Good visual results are demonstrated when 𝑅2>
0.43 in Fig. 11.

5.4 Prediction without Considering Occlusion:
Cell Viewport Overlap Ratio and Angular
Span

In this section, we will evaluate the viewport and angular span
prediction. As discussed earlier, occlusion takes time to calculate,
and even though we can downsample the point cloud video for
HPR to achieve a real-time prediction, it is still a big overhead for a
streaming system, which may be serving many clients. For some
practical streaming system, sometimes it may be more appropriate
to predict cell viewport overlap ratio without considering occlusion.
We also notice that in 8i and FSVVD, if we only transmit the points
inside the viewport (without considering occlusion), the total traffic
for streaming can still be reduced to 1/2 and 1/6 of the original traf-
fic. We apply CellSight on the cell viewport overlap ratio prediction
and angular span prediction.

5.4.1 Viewport Overlap Ratio. For cell viewport overlap ratio pre-
diction, the input features are occupancy feature, cell-based view-
port feature, and other features, i.e., 𝐺 = {𝑂, 𝐹, 𝐸}. The Model will
predict 𝐹 . Fig. 6a illustrates the MSE for viewport overlap ratio
prediction on the 8i dataset, demonstrating that CellSight consis-
tently outperforms the others across varying prediction horizons,
with substantially more gains at longer horizons. Similarly, Fig. 6b
depicts the MSE for the prediction on the FSVVD dataset, where
CellSight also achieves the lowest error compared to baseline meth-
ods, highlighting its robustness and accuracy.

(a) 8i Cell Viewport Overlap Ra-
tio

(b) FSVVD Cell Viewport Overlap
Ratio

Figure 6: MSE losses for Cell Viewport Overlap Ratio

Table. 2 presents the 𝑅2 scores for viewport overlap ratio pre-
diction on the 8i dataset across different prediction horizons. Our
proposed model consistently achieves the highest 𝑅2 scores at all
time steps. And the performance advantage of CellSight becomes
more pronounced as the prediction horizon increases. Results on
FSVVD dataset in Table. 3 show similar trend to 8i dataset, and
CellSight outperforms the baselines, especially at longer predic-
tion horizons. Since the user’s trajectory data are more dynamic
in FSVVD datset, some methods even produce negative 𝑅2 scores
at long time horizons, indicating poor performance. But CellSight
still maintains positive scores, demonstrating its robustness and
predictive capability even under challenging conditions.

Table 2: Viewport Overlap Ratio R2 Scores on 8i

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.941 0.824 0.982 0.983 0.989 0.995
333 0.809 0.718 0.879 0.873 0.893 0.928
1000 0.563 0.504 0.644 0.669 0.693 0.743
2000 0.294 0.246 0.378 0.514 0.497 0.682
5000 0.135 0.114 0.116 0.178 0.370 0.618

Table 3: Viewport Overlap Ratio R2 Scores on FSVVD

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.876 0.621 0.978 0.987 0.995 0.994
333 0.597 0.425 0.738 0.706 0.769 0.828
1000 0.112 0.100 0.153 -0.049 0.127 0.512
2000 -0.240 -0.195 -0.268 -0.362 -0.220 0.355
5000 -0.562 -0.558 -0.595 -0.539 -0.385 0.232

We also visualize the predicted viewport overlap ratio.We choose
2 second ahead as the prediction horizon to visualize it. In Fig. 7,
the MSE loss for CellSight and LSTM are 0.05 and 0.14, respec-
tively. Visually, our predicted viewport overlap ratio is closer to
the ground-truth, especially at the edges of the viewport. LSTM
prediction missed a large part of the leg, hands and gun, since its
FoV coordinates were overly influenced by the historical trajectory
alone. Our prediction can cover more around the edges of the view-
port. In addition, CellSight exhibits smoother boundaries compared
to trajectory-based models. This smoothness arises because neural
networks typically filter out high-frequency signals, resulting in
a naturally smoother output. When the predicted cell visibility is
used to determine streaming bandwidth allocation, cells surround-
ing the FoV are also allocated with non-zero rates. This increases
the streaming system’s robustness against FoV prediction errors.
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(a) (c)(b)

Figure 7: Cell viewport overlap ratio prediction results on the
8i dataset, where the prediction horizon is 2000ms. Visual
comparison of predicted viewport using (a) LSTM model, (b)
Ground Truth, and (c) CellSight. The color represents the pre-
diction confidence, transitioning from dark (low confidence)
to bright (high confidence).

Beyond using one video for testing/validation to provide a straight-
forward demonstration of generalization, we also conduct cross-
validation by rotating the testing/validation videos among four
PCVs. The cross-validation results are shown in Table. 4. CellSight
has lower MSE and higher 𝑅2 compared with LSTM, which further
demonstrates the generalization of CellSight.

Table 4: Viewport Overlap Ratio Prediction Cross Validation
on 8i

Testing CellSight LSTM

MSE↓ R2↑ MSE↓ R2↑
Longdress 0.0714 0.675 0.095 0.573
Redandblack 0.0610 0.720 0.100 0.545
Loot 0.0683 0.679 0.099 0.534
Soldier 0.0710 0.682 0.112 0.497

Average 0.0679 0.689 0.1015 0.5373

5.4.2 Angular Span. To predict the angular span for each cell, the
history angular spans for all cells are added beyond the features of
viewport overlap ratio prediction feature set, i.e., 𝐺 = {𝑂, 𝐹, 𝐸,𝐴}.
The model will predict 𝐴. The prediction MSE is reported in Fig. 8a
and Fig. 8b respectively. CellSight consistently outperforms base-
lines, except in one case for the FSVVD dataset. In that case, LSTM
is slightly better than CellSight for the very short predicted horizon
of 33 ms (1 frame). 𝑅2 score is displayed in Table 5 and Table 6.

Table 5: Angular Span R2 Scores on 8i

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.957 0.835 0.975 0.934 0.941 0.994
333 0.857 0.733 0.890 0.835 0.882 0.917
1000 0.639 0.516 0.687 0.651 0.696 0.787
2000 0.387 0.308 0.418 0.490 0.516 0.668
5000 0.174 0.162 0.156 0.199 0.246 0.585

(a) 8i Angular Span (b) FSVVD Angular Span

Figure 8: MSE losses for Angular Span

Table 6: Angular Span R2 Scores on FSVVD

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.881 0.617 0.978 0.983 0.993 0.988
333 0.594 0.403 0.743 0.698 0.766 0.794
1000 0.069 0.058 0.131 -0.033 0.117 0.493
2000 -0.275 -0.227 -0.334 -0.269 -0.251 0.338
5000 -0.524 -0.560 -0.564 -0.453 -0.329 0.261

5.5 Prediction considering Occlusion: Cell
Occlusion-aware Visibility and Visible
Angular Span

To achieve more bandwidth saving in point cloud streaming, FoV
prediction can additionally consider occlusion after HPR. In this sec-
tion, we evaluate the occlusion-aware visibility and visible angular
span predictions.

5.5.1 Occlusion-aware Visibility. For the cell occlusion-aware visi-
bility prediction, beyond all features used in cell viewport overlap
ratio prediction, the cell occlusion-aware visibility history is added,
i.e., 𝐺 = {𝑂, 𝐹,𝑉 , 𝐸}. The model will predict 𝑉 . In Fig. 9a, while
our proposed model demonstrates superior performance in longer
prediction horizons, some baseline methods, such as LSTM, achieve
slightly better results in shorter horizons due to the less dynamic
nature of user behaviors in the 8i dataset. However, CellSight’s
long-term accuracy shows its robustness and effectiveness. For the
more dynamic user FoV data FSVVD, as shown in Fig. 9b, CellSight
consistently achieves the best performance across all prediction
horizons. This highlights the adaptability and reliability of Cell-
Sight in handling scenarios with frequent changes in user focus,
making it well-suited for dynamic FoV prediction. 𝑅2 scores on 8i
and FSVVD datasets are shown in Table 7 and Table 8. CellSight
achieves the best performance for medium and long term horizon,
especially on more dynamic FSVVD dataset.

(a) 8i Occlusion-aware Visibility (b) FSVVD Occlusion-aware Visi-
bility

Figure 9: MSE losses for Occlusion-aware Visibility
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Table 7: Occlusion-aware Visibility R2 Scores on 8i

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.965 0.897 0.986 0.985 0.990 0.987
333 0.898 0.836 0.934 0.916 0.926 0.896
1000 0.761 0.702 0.803 0.786 0.814 0.774
2000 0.595 0.537 0.636 0.684 0.699 0.739
5000 0.468 0.475 0.494 0.473 0.637 0.736

Table 8: Occlusion-aware Visibility R2 Scores on FSVVD

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.883 0.683 0.974 0.978 0.988 0.969
333 0.685 0.530 0.765 0.757 0.792 0.807
1000 0.331 0.284 0.349 0.244 0.362 0.578
2000 0.067 0.074 0.053 0.193 0.144 0.480
5000 -0.094 -0.046 -0.092 0.001 0.094 0.402

5.5.2 Visible Angular Span. To consider viewport, visibility and
angular span all together, we evaluate CellSight when predicting
the visible angular span 𝛽 on the two datasets. We incorporate the
cell’s visible angular span feature 𝛽 history along with the history
of all the other features, i.e., 𝐺 = {𝑂, 𝐹,𝑉 , 𝐸,𝐴, 𝐵}. The model will
predict 𝐵. Figure 10a and Fig. 10b show that CellSight consistently
achieves the best performance, particularly for longer prediction
horizons and even in less dynamic user scenarios, highlighting
its ability to effectively predict visible angular span. These results
show that CellSight is not only accurate in combining viewport,
visibility, and angular features but also robust across datasets with
varying levels of user interaction dynamics. Table 9 and Table 10
present the 𝑅2 scores for visible angular span for 8i and FSVVD.

Additionally, we visualize the visible angular span prediction on
one frame, where prediction horizon is 2000ms in FSVVD data in
Fig. 11, where the prediction MSE values for CellSight and LSTM
are 0.0016 and 0.0026, respectively, which is close to the average
MSE across all frames for both methods in Fig. 10b. The prediction
by CellSight closely matches the ground-truth, whereas LSTM pro-
duces significantly different results due to error amplification in
the degrees of freedom, leading to substantial discrepancies in the
final visible cell angular spans.

(a) 8i Visible Angular Span (b) FSVVD Visible Angular Span

Figure 10: MSE losses for Visible Angular Span

6 Conclusion & Future Work
In this paper, we introduce CellSight, a novel approach for pre-
dicting long-term cell visibility in PCV. CellSight leverages both
the spatial and temporal dynamics of PCV content and viewer
behaviors to directly predict cell visibility for streaming systems.
It outperforms state-of-the-art methods in terms of accuracy and

Table 9: Visible Angular Span R2 Scores on 8i

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.873 0.827 0.888 0.826 0.829 0.990
333 0.788 0.777 0.855 0.779 0.794 0.924
1000 0.687 0.650 0.766 0.692 0.722 0.828
2000 0.587 0.550 0.639 0.707 0.717 0.822
5000 0.504 0.530 0.562 0.503 0.614 0.760

Table 10: Visible Angular Span R2 Scores on FSVVD

Time (ms) LR30 LR90 TLR MLP LSTM CellSight
33 0.871 0.649 0.961 0.965 0.974 0.955
333 0.671 0.484 0.741 0.728 0.713 0.728
1000 0.388 0.297 0.400 0.175 0.286 0.544
2000 0.189 0.210 0.206 0.136 0.111 0.436
5000 0.124 0.095 0.087 -0.041 -0.008 0.364

(a) (c)(b)

Figure 11: Visible angular span prediction for each cell on
one frame of FSVVD dataset, where the prediction horizon is
2000ms. (a) LSTM model, (b) Ground Truth, and (c) CellSight.
The color transition from gray to red corresponds to visible
angular span from small to large.

robustness, particularly at long prediction horizons (beyond 2 sec-
onds). By integrating Transformer-based Graph Neural Networks
with recurrent neural networks, CellSight efficiently captures the
complex interactions between PCV content and viewer interests,
as well as the correlations among neighboring cells. Unlike the
trajectory-based FoV prediction methods, which often overlook the
full spatial context, our method yields more accurate and stable
predictions for long-term 6-DoF FoV prediction.

For future work, we plan to utilize the predicted cell visibility
metrics to guide cell-level bandwidth allocation in on-demand PCV
streaming. Furthermore, while the current approach relies on a
centralized architecture—where all computations are performed on
the streaming server—we intend to explore distributed computing
strategies to reduce server load and enhance system scalability.
We have made the code and technical report publicly available2 to
support further research and development in this area.
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