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ABSTRACT

Detecting anomalies and the corresponding root causes in multivariate time series
plays an important role in monitoring the behaviors of various real-world systems,
e.g., IT system operations or manufacturing industry. Previous anomaly detection
approaches model the joint distribution without considering the underlying mech-
anism of multivariate time series, making them computationally hungry and hard
to identify root causes. In this paper, we formulate the anomaly detection problem
from a causal perspective and view anomalies as instances that do not follow the
regular causal mechanism to generate the multivariate data. We then propose a
causality-based framework for detecting anomalies and root causes. It first learns
the causal structure from data and then infers whether an instance is an anomaly
relative to the local causal mechanism whose conditional distribution can be di-
rectly estimated from data. In light of the modularity property of causal systems
(the causal processes to generate different variables are irrelevant modules), the
original problem is divided into a series of separate, simpler, and low-dimensional
anomaly detection problems so that where an anomaly happens (root causes) can
be directly identified. We evaluate our approach with both simulated and public
datasets as well as a case study on real-world AIOps applications, showing its
efficacy, robustness, and practical feasibility.

1 INTRODUCTION

Multivariate time series is ubiquitous in monitoring the behavior of complex systems in real-world
applications, such as IT operations management, manufacturing industry and cyber security (Hund-
man et al., 2018; Mathur & Tippenhauer, 2016; Audibert et al., 2020). Such data includes the mea-
surements of the monitored components, e.g., the operational KPI metrics such as CPU/Database us-
ages in an IT system. An important task in managing these complex systems is to detect unexpected
observations deviated from normal behaviors, figure out the root causes of abnormal behaviors, and
notify the operators timely to resolve the underlying issues. Detecting anomalies and corresponding
root causes in multivariate time series aims to accomplish this task and has been actively studied in
machine learning, which automate the identification of issues and incidents for improving system
availability in AIOps (AI for IT Operations) (Dang et al., 2019).

Various algorithms have been developed to detect anomalies in multivariate time series data. In gen-
eral, there are two kinds of directions commonly explored, i.e., treating each dimension individually
using univariate time series anomaly detection algorithms (Hamilton, 1994; Taylor & Letham, 2018;
Ren et al., 2019), and treating all the dimensions as an entity using multivariate time series anomaly
detection algorithms (Zong et al., 2018; Park et al., 2017; Su et al., 2019). The first direction ignores
the dependencies between different time series, so it may be problematic especially when sudden
changes of a certain dimension do not necessarily mean failures of the whole system, or the relations
among the time series become anomalous (Zhao et al., 2020). The second direction takes the de-
pendencies into consideration, which are more suitable for real-world applications where the overall
status of a system is more concerned about than a single dimension. Recently, deep learning receives
much attention in anomaly detection, e.g., DAGMM (Zong et al., 2018), LSTM-VAE (Park et al.,
2017) and OmniAnomaly (Su et al., 2019), which infer dependencies between different time series
and temporal patterns within one time series implicitly. Recently, Dai & Chen (2022) developed a
graph-augmented normalizing flow approach that models the joint distribution via the learned DAG.
However, the dependencies inferred by deep learning models do not represent the underlying pro-
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cess of generating the observed data and the causal relationships between time series are ignored;
such methods do not provide a mechanistic understanding of anomalies and it is hard for them to
identify the root causes when an anomaly occurs.

In real-world applications, root cause analysis (RCA) is traditionally treated as a module separated
from anomaly detection, identifying potential root causes given the detected anomalous metrics by
analyzing the dependencies between the monitored metrics (Soldani & Brogi, 2021). Because RCA
requires to know which metric is anomalous, univariate (instead of multivariate) time series anomaly
detection algorithms are mostly applied to detect anomalies, and then RCA analyzes system/service
graphs obtained via domain knowledge or observed data to determine root causes. Both univariate
and multivariate algorithms have drawbacks and cannot be integrated with RCA seamlessly.

To overcome these issues, we take a causal perspective (Pearl, 2009; Spirtes et al., 1993) to natu-
rally view anomalies in multivariate time series as instances that do not follow the regular causal
mechanism, and propose a novel causality-based framework for detecting anomalies and root
causes simultaneously. Specifically, our approach leverages the causal structure discovered from
data so that the joint distribution of multivariate time series is factorized into simpler modules where
each module corresponds to a local causal mechanism, reflected by the corresponding conditional
distribution. Those local mechanisms are modular or autonomous (Pearl, 2009), and can then be
handled separately, which is known as the modularity property of causal systems. In light of this
property, the problem is then naturally decomposed into a series of low-dimensional anomaly detec-
tion problems. Each sub-problem is concerned with a local mechanism. Because we focus on issues
with separate local causal mechanisms, the root causes of an anomaly can be identified at the same
time. The main contributions of this paper are summarized below.

• We reformulate anomaly detection and root cause analysis of multivariate time series from
a causality perspective, which helps understand where and how anomalies happen and fa-
cilitates anomaly detection in light of the understanding.

• We propose a novel framework that decomposes the multivariate time series anomaly de-
tection problem into a series of separate low-dimensional anomaly detection problems by
exploiting the causal structure discovered from data, which not only detects the anomalies
more accurately but also offers a natural way to find their root causes.

• We perform empirical studies of evaluating our approach with both simulation and public
datasets as well as a case study of an internal real-world AIOps application, validating its
efficacy and robustness to different causal discovery techniques and settings.

Our formulation offers an alternative understanding of anomalies: an anomaly is a data point that
does not follow the regular data-generating process. The modularity property makes our approach
simpler to train, suitable for real-world applications and easier for root cause analysis. Our method
can detect those anomalies that are hard for the approaches based on modeling marginal/joint distri-
butions only, illustrating the benefit of the causal view and treatment of anomalies.

2 THE CAUSAL APPROACH

Given a multivariate time series X with length T and d variables, i.e., X = {x1,x2, · · · ,xd} ∈
RT×d, let xi(t) be the observation of the ith variable measured at time t. The task in this paper is to
detect anomalies after time step T that differ from the regular points in X significantly and identify
the corresponding root causes, i.e., test whether Xj for j > T follows its regular distribution or not.

2.1 WHY THE CAUSAL VIEW MATTERS

Let us consider a simple example shown in Figure 1, i.e., the measurements of three components
x, y, z with causal structure x → y → z. An anomaly labeled by a black triangle happens at
time step 40, where the causal mechanism between x and y becomes abnormal. Typically it is
hard to find such an anomaly based on the marginal distributions or the joint distribution. But
from local causal mechanism p(y|x), such anomaly becomes obvious, e.g., p(y|x) is much lower
than its normal values. In this example, at time step 40 the probability densities p(x) = 0.786,
p(y) = 1.563, p(z) = 1.695, p(x, y, z) = p(x)p(y|x)p(z|y) = 0.046 while p(y|x) = 0.011,
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meaning that it is easier to find this anomaly by examining the local causal mechanism p(y|x). A
real-world motivation example can be found in Figure 8.

Figure 1: The causal mechanism between x, y, z is y = 0.5x + ϵ1, z = tanh(y2 − y) + ϵ2.
An anomaly occurs at time step 40 labeled by a black triangle. The causal mechanism helps find
the anomaly easily as the p-value w.r.t. y conditioned on x is 0.011 (test whether y follows its
normal conditional distribution p(y|x)). The root cause of this anomaly is y because only p(y|x) is
anomalous.

If the causal structure of the underlying process is given, we can examine whether each variable in
the time series follows its regular causal mechanism. The causal mechanism can be represented by
the structural equation model, i.e., xi(t) = fi(PA(xi(t)), ϵi(t)), ∀i = 1, · · · , d, where fi are arbi-
trary measurable functions, ϵi(t) are independent noises and PA(xi(t)) represents the causal parents
of xi(t) including both lagged and contemporaneous ones (Pearl, 2009). This causal structure can
also be represented by a causal graph G whose nodes correspond to the variables xi(t) at different
time lags. In this paper, we assume the graph G is a directed acyclic graph (DAG) and that the causal
relationships are stationary unless an anomaly occurs. According to the Markov factorization, the
joint distribution of x(t) can be factored as P[x(t)] =

∏d
i=1 PG [xi(t)|PA(xi(t))] where PG denotes

the conditional distribution.

The local causal mechanisms, corresponding to these conditional distribution terms, are known to
be irrelevant to each other in a causal system (Pearl, 2009). An anomaly can then be identified
according to the local causal mechanism. Therefore, we define anomalies as follows.

Definition 1 A point x(t) at time step t is an anomaly if there exists at least one variable xi

such that xi(t) violates the local generating mechanism, i.e., given PA(xi(t)), xi(t) does not fol-
low PG [xi(t)|PA(xi(t))], which is the conditional distribution corresponding to the regular causal
mechanism.

This definition states that an anomaly happens in the system if the causal mechanism between a
variable and its causal parents are violated, e.g., the local causal effect dramatically varies (Fig 1),
or a big change happens on a variable and this change propagates to its children. Based on Definition
1, the anomaly detection problem can be divided into several low-dimensional subproblems, e.g., by
checking whether each variable follows its regular conditional distribution. Thank to this modularity
property, the root causes can be naturally identified when an anomaly event occurs. Here is our
definition of root causes.

Definition 2 The root causes of an anomaly point x(t) are those variables xi such that given
PA(xi(t)), xi(t) does not follow PG [xi(t)|PA(xi(t))], e.g., an anomaly happens on the local causal
mechanism related to those variables.

Definition 2 indicates that xi is one of the root causes if the local causal mechanism of variable xi(t)
is violated. In Figure 1, variable y is the root cause by our definition because the causal mechanism
between y and z is normal while the causal mechanism between x and y is violated.

2.2 METHOD

We consider the unsupervised learning setting where X is given as the training data for learn-
ing the graph structures and the conditional distributions. (We will discuss the effects of pos-
sible anomalies on the learned causal structure in Section 2.2.4.) For learning causal graphs,
we exploit suitable causal discovery methods, as discussed in Section 2.2.1. For learning condi-
tional distributions, we maximize the log likelihoods given the observation data, i.e., maximizing
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Li(X) =
∑T

t=1 logPG [xi(t)|PA(xi(t))],∀i = 1, · · · , d. Specifically, let CR be the set of variables
with no causal parents in G. There are two cases to be considered:

• Variable with parents (i ̸∈ CR): The conditional distribution of xi(t) given its causal par-
ents needs to be estimated, i.e., PG [xi(t)|PA(xi(t))] is modeled via conditional density
estimation, which can be learned in a supervised manner.

• Variable with no parents (i ∈ CR): We model P[xi(t)] by applying any existing method
for modeling time series with the historical data Hi(t) = {xi(1), · · · , xi(t − 1)} of xi,
meaning that our framework can leverage the state-of-the-art time series models.

The training step produces the causal graph and the estimated conditional distributions correspond-
ing to local causal mechanisms (Section 2.2.2). For anomaly detection of local causal mechanism,
we detect data points that do not follow regular conditional distributions. There are multiple possible
ways to compute the final anomaly score; Heard & Rubin-Delanchy (2018) compared six methods
for combining p-values from individual tests, and showed that taking the minimum is sensitive to
the smallest p-value, which is suitable for reporting anomalies that any of the metrics is abnormal.
Hence the anomaly score is defined as one minus the minimum value of these estimated probabili-
ties. Intuitively, the purpose of using the minimum function is that we expect the algorithm to report
an anomaly if any of the metrics (root variables) or local causal mechanisms (conditional probabili-
ties) becomes abnormal, i.e., a data point is labeled as an anomaly if its anomaly score is larger than
a certain threshold. If an anomaly event is detected, the root cause scores are computed for each
variable and then the variables with the top scores are selected as the root causes (Section 2.2.3).
Algorithm 1 outlines our approach. The anomalies in training data may decrease the performance.
We discuss this issue and provide a solution for handling training anomalies in Section 2.2.4.

Algorithm 1 The causality-based approach for detecting anomalies and root causes

Input: training data X = {xi}di=1 ∈ RT×d, test data Y = {yi}di=1 ∈ RT̂×d, and threshold λ;

Training procedure:

1: Infer the causal graph G via causal discovery techniques, e.g., FGES (Chickering, 2003; 2002;
Meek, 1995) and PC (Spirtes & Glymour, 1991). If the G is a partial DAG, convert it into a
DAG by the method (Dor & Tarsi, 1992); (Section 2.2.1)

2: For variable i, train a model Mi estimating conditional distribution PG [xi(t)|PA(xi(t))] with
training data {xi(t),PA(xi(t))}Tt=1, where PA(xi(t)) can be an empty set. (Section 2.2.2)

Detection procedure:

1: for t = 1 to T̂ do
2: Compute anomaly score: A(y(t)) = 1−min {Mi(yi(t))|i = 1, · · · , d};
3: Set anomaly label lt = 1 if A(y(t)) > λ or 0 otherwise;
4: If anomaly label lt is 1, computes root cause scores RS(xi(t)) via Eq (1) for each variable i,

and set root causes Rt be the variables with the top-k root cause scores. (Section 2.2.3)
5: end for

2.2.1 CAUSAL DISCOVERY

Our approach needs to exploit the causal structure underlying the data. A traditional way to find
causal relations is to use interventions or randomized experiments, which are generally too expen-
sive and time-consuming. Discovering causal information by analyzing purely observational data,
known as causal discovery, is then an important problem (Spirtes & Glymour, 1991; Peters et al.,
2017; Spirtes & Zhang, 2016). Multiple algorithms have been developed for causal discovery from
independent and identically distributed (i.i.d.) or time series data, and their results are asymptotically
guaranteed under corresponding assumptions. In this paper, we choose causal discovery algorithms
such as PC (Spirtes & Glymour, 1991), FGES (Chickering, 2003; 2002; Meek, 1995), depending
on whether we are given temporal data (with time-delayed causal relations) and whether the causal
relations are linear or nonlinear. For example, we apply FGES with SEM-BIC score if the variables
are linearly related and apply FGES with generalized score function (Huang et al., 2018) if they are
non-linearly correlated. One concern is whether the missing or incorrect causal links in the inferred
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causal graph have a big impact on the performance of our approach. We performed an empirical
study of this impact with public datasets, which shows that interestingly, our approach is robust to
the inferred causal graph. The complexity of PC and GES highly depends on the density of the
causal graph. Specifically, FGES is highly scalable when dealing with linear models (Ramsey et al.,
2016). In real-world applications, e.g., the public datasets in the experiments, even though the vari-
ables may not be exactly linearly correlated, FGES can still generate reasonable causal graphs that
are good enough for our approach.

2.2.2 ANOMALY DETECTION

After the causal Markov factorization, it becomes easier to model the joint distribution compared
to the previous approaches, e.g., the conditional distributions representing local causal mechanisms
can be estimated using simpler ML models.

For modeling PG [xi(t)|PA(xi(t))], one can apply kernel conditional density estimation (Hastie
et al., 2009), conditional VAE (CVAE) (Sohn et al., 2015) or even prediction models such as MLP or
CNN (Binkowski et al., 2018). Let τj be the causal time lag for a parent xj and τ∗ be the maximum
time lag in G; then we define PA∗(xi(t)) = {xj(t−τ∗), · · · , xj(t−τj) | j ∈ PA}. Time lag τj = 0
if xj is a contemporaneous causal parent of xi. For causal parent xj , more of its historical data
can also be included, e.g., a window with size k: {xj(t − τj − k + 1), · · · , xj(t − τj) | j ∈ PA}.
Therefore, the problem becomes estimating the conditional distribution from the empirical observa-
tions {(xi(t), ci(t))}Tt=1 where ci(t) = PA∗(xi(t)). In this paper, we apply CVAE to model such
conditional distribution. The reason why choosing CVAE is that it can be trained fast with a simple
architecture and achieve good performance as shown in our experiments. The empirical variational
lower bound of CVAE is

L(x, c; θ, ϕ) =
1

n

n∑
k=1

log pθ(x|c, zk)−KL(qϕ(z|x, c) ∥ pθ(z|c)),

where qϕ(z|x, c), pθ(x|c, zk) are MLPs and pθ(z|c) is a Gaussian distribution. Given (xi(t), ci(t)),
CVAE outputs x̂i(t) – reconstruction of xi(t), and then P[xi(t)|ci(t)] is measured by the distribution
of |x̂i(t)− xi(t)|. 1

If PA(xi(t)) is empty, i.e., i ∈ CR, one way to estimate distribution P[xi(t)] is to handle xi(t)
via univariate time series models, e.g., ARIMA (Hamilton, 1994), SARIMA (Hyndman & Athana-
sopoulos, 2018). The other way is to handle the variables in CR together by utilizing the models for
multivariate time series anomaly detection, e.g., Isolation Forest (IF) (Liu et al., 2008), AE (Baldi,
2012), LSTM-VAE (Park et al., 2017). The training data for such models includes all the observa-
tions of the variables in CR, i.e., {xi(t)|i ∈ CR}Tt=1. For example, the training data for a forecasting
based method is {(xi(t), {xi(t − k), · · · , xi(t − 1)})|i ∈ CR}Tt=1 where xi(t) is predicted by a
window of its previous data points.

Our approach reduces to the previous univariate/multivariate time series AD approaches if the causal
graph is empty, i.e., no causal relationships are considered. When the causal relationships are avail-
able obtained by domain knowledge or data-driven causal discovery techniques, our approach can
easily utilize such information and reduces the efforts in joint distribution estimation.

2.2.3 ROOT CAUSE ANALYSIS

Root cause analysis (RCA) aims to identify root causes when an anomaly event happens. RCA in
real-world applications such as AIOps can be very challenging. One practical issue for identifying
root causes is that an anomaly occurs in a variable often makes its causal children variables abnormal
due to anomaly propagation. Specifically, based on Definition 2, we propose the following practical
algorithm. For variable xi, define its initial root cause score at time t by S(xi(t)) = 1−Mi(xi(t)).
Suppose that N (xi(t)) is the set of the causal children of xi(t), the final root cause score is define
in a PageRank (Page et al., 1999; Wu et al., 2020) way:

RS(xi(t)) = S(xi(t)) + α
1

|N (xi)|
∑

xj(t)∈N (xi)

RS(xj(t)), ∀i = 1, · · · , d, (1)

1We assume the reconstruction error is additive, e.g., x = f(c) + e, so that P(x|c) = Pe(x− f(c)). Hence
we use the distribution of the reconstruction error for detecting anomalies.
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where α is a weight parameter satisfying 0 ≤ α < 1. When N (xi) is empty, we set RS(xi(t)) =
S(xi(t)). Here the final root cause score of a variable is the weighted combination of its initial root
cause score and the final root cause scores of its children to handle the anomaly propagation issue.
The root causes at time t are identified by picking the variables with top RS scores.

2.2.4 NEGATIVE EFFECT OF TRAINING ANOMALIES

The existence of anomalies in the training data may decrease the detection performance. Our em-
pirical results show that this issue does not affect the anomaly detection performance much, which
is expected to be the case when there are relatively few anomalies in the data. Typically, there are
two possible cases where anomalies in training data may have obvious negative impacts on perfor-
mance. One case is that the value of a metric at certain timestamps becomes extremely large, which
can affect the conditional probability estimation. In this case, one can simply remove those values
based on statistical rules, e.g., removing them if the absolute value is larger than some threshold
in the preprocessing step. The other case is that the proportion of anomalies is relatively large. In
this case, we can consider an iterative solution that iteratively updates the causal graph and anomaly
detection model, i.e., 1) estimate causal graph G and train models Mi with the training data, and 2)
remove the anomalies detected by Mi in the training data and then go to Step (1). We repeat the
above two steps until the estimated causal model (including the estimated causal structure and quan-
titative model, e.g., causal coefficients in the linear case) converges. We conducted an experiment
with a simulation dataset to empirically study this iterative solution (Section A.7).

3 EXPERIMENTS

This section evaluates the performance of our proposed approach and compares it to several other ap-
proaches. The experiments include: 1) evaluating our approach with simulation and public datasets,
2) analyzing how different causal graphs affect the performance, and 3) a case study demonstrating
the application of our approach for real-world anomaly detection in AIOps.

The anomaly detection performance is assessed by the precision, recall and F1-score metrics in a
point-adjust manner, i.e., all the anomalies of an anomalous segment are considered as correctly
detected if at least one anomaly of this segment is correctly detected while the anomalies outside the
ground truth anomaly segment are treated as normal. By default, we apply FGES (Chickering, 2003)
to discover the causal graph. For i ̸∈ CR, we choose CVAE (Sohn et al., 2015). For i ∈ CR, we
tested the univariate model and other methods such as IF (Liu et al., 2008), AE (Baldi, 2012), LSTM-
VAE (Park et al., 2017) in our experiments. We compare our approach with several unsupervised
approaches, e.g., AE (Baldi, 2012), DAGMM (Zong et al., 2018), OmniAnomaly (Su et al., 2019),
USAD (Audibert et al., 2020), GANF (Dai & Chen, 2022)2.

3.1 SIMULATION DATASETS

Section A.3 discusses how to generate simulation datasets. We consider linear/nonlinear causal rela-
tionships and three types of anomalies. The first type is a “measurement” anomaly where the causal
mechanism is normal but the observation is abnormal due to measurement errors, i.e., randomly pick
a node xi, a time step t and a scale s, and then set xi(t) = [xi(t)− median(xi)] ∗ s+ median(xi).
The second type is an “intervention” anomaly, i.e., after generating anomalies for some nodes, those
anomaly values propagate to the children nodes according to the causal relationships. The third type
is an “effect” anomaly where anomalies only happen on the nodes with no causal children.

Performance comparison. In the experiments, we consider six settings derived from the combi-
nations of “linear/nonlinear” and “measurement/intervention/effect”. The simulated time series has
15 variables with length 20000, where the first half is the training data and the rest is the test data.
The percentage of anomalies is 10%. Table 1 shows the performance of different unsupervised
multivariate time series anomaly detection methods with the generated simulated dataset. Clearly,
our method outperforms all the other methods. It achieves significantly better F1 scores when the
relationships are nonlinear or the anomaly type is “intervention”, e.g., ours obtains F1 score 0.759
for “nonlinear, intervention”, while the best F1 score achieved by the others is 0.589. In “linear,

2https://github.com/EnyanDai/GANF
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Table 1: Performance comparison (F1-scores) on the simulation datasets.

Lin./Measu. Lin./Inter. Lin./Effect Nonlin./Measu. Nonlin./Inter. Nonlin./Effect
IF 0.374 0.403 0.220 0.336 0.422 0.367
AE 0.386 0.359 0.240 0.392 0.390 0.363

VAE 0.343 0.328 0.208 0.396 0.377 0.306
LSTM-VAE 0.457 0.454 0.485 0.581 0.545 0.393

DAGMM 0.746 0.542 0.721 0.456 0.589 0.359
USAD 0.252 0.260 0.220 0.346 0.302 0.279
GANF 0.292 0.340 0.213 0.355 0.316 0.286
Ours 0.791 0.757 0.740 0.757 0.759 0.637

measurement/effect”, DAGMM has a similar performance with ours because the data can be mod-
eled well by applying dimension reduction followed by a Gaussian mixture model. But when the
relationships become nonlinear, it becomes harder for DAGMM to model the data. This experiment
shows that the causal mechanism plays an important role in anomaly detection. Modeling joint
distribution without considering causality can lead to a significant performance drop.

We use the same simulation datasets as anomaly detection to evaluate the RCA performance mea-
sured by the top-k hit ratio, i.e., the predicted top-k root causes are correct as long as one of them is
the groundtruth root cause. Table 2 shows the RCA performance of our approach and the baseline.
The baseline ignores the causal relationships while samples root causes based on the probabilities
proportional to the anomaly scores. Our approach achieves HR@3 >= 0.95 and HR@3 >= 0.75

Table 2: RCA performance comparison (top-k hit-ratio) on the simulation datasets.

Top 1 Top 2 Top 3 Top 4
Linear/Measu. (Baseline) 0.406± 0.182 0.573± 0.182 0.617± 0.160 0.631± 0.148
Linear/Measu. (Ours) 0.654± 0.117 0.916± 0.075 0.965± 0.040 0.993± 0.010

Linear/Inter. (Baseline) 0.463± 0.182 0.551± 0.186 0.596± 0.171 0.614± 0.163
Linear/Inter. (Ours) 0.637± 0.178 0.815± 0.126 0.960± 0.032 0.988± 0.020

Nonlinear/Measu. (Baseline) 0.253± 0.042 0.449± 0.040 0.571± 0.074 0.644± 0.049
Nonlinear/Measu. (Ours) 0.577± 0.081 0.656± 0.056 0.764± 0.091 0.847± 0.088

Nonlinear/Inter. (Baseline) 0.262± 0.048 0.439± 0.113 0.589± 0.114 0.635± 0.102
Nonlinear/Inter. (Ours) 0.541± 0.152 0.623± 0.115 0.776± 0.077 0.867± 0.118

for the “linear” and “nonlinear” settings, respectively, which is significantly better than the baseline.

3.2 PUBLIC DATASETS

Four public datasets were used in our experiments: 1) Secure Water Treatment (SWaT) (Mathur
& Tippenhauer, 2016): it consists of 11 days of continuous operation, i.e., 7 days collected under
normal operations and 4 days collected with attacks, 2) Water Distribution (WADI) (Mathur &
Tippenhauer, 2016): It consists of 16 days of continuous operation, of which 14 days were collected
under normal operation and 2 days with attacks. 3) Soil Moisture Active Passive (SMAP) satellite
and Mars Science Laboratory (MSL) rover Datasets (Hundman et al., 2018), which are two public
datasets expert-labeled by NASA.

Performance comparison. Table 3 shows the results on four representative datasets. Overall, IF,
AE, VAE and DAGMM have relatively lower performance because they neither exploit the tempo-
ral information nor leverage the causal relationships between those variables. LSTM-VAE, Omni-
Anomaly and USAD perform better than these four methods since they utilize the temporal infor-
mation via modeling the current observations with the historical data, while the DAG-based method
GANF does not perform well except for SWaT. Our approach exploits the causal relationships be-
sides the temporal information, achieving significantly better results than the other methods in all
the datasets, e.g., ours has the best F1 score 0.918 for SWaT and 0.818 for WADI, while the best
F1 scores for SWaT and WADI by other methods are 0.846 and 0.767, respectively. For each public
datasets, Table 4 reports the best metrics that can be achieved by choosing the best thresholds in
the test datasets. Clearly, if we are allowed to choose better thresholds, the metrics achieved by our
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Table 3: Performance comparison of our approach and other methods on the public datasets.

SMAP MSL SWaT WADI
Methods Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

IF 0.815 0.591 0.685 0.854 0.922 0.887 0.998 0.669 0.801 0.541 0.794 0.644
AE 0.806 0.585 0.678 0.858 0.892 0.875 0.999 0.656 0.792 0.595 0.762 0.668

VAE 0.808 0.588 0.681 0.771 0.656 0.709 0.999 0.656 0.792 0.616 0.855 0.716
LSTM-VAE 0.818 0.591 0.686 0.859 0.911 0.884 0.997 0.689 0.815 0.658 0.920 0.767

DAGMM 0.800 0.877 0.837 0.900 0.864 0.882 0.829 0.767 0.797 0.639 0.501 0.412
OmniAnom 0.758 0.975 0.853 0.901 0.889 0.895 0.722 0.983 0.833 0.265 0.980 0.417

USAD 0.769 0.983 0.863 0.861 0.964 0.910 0.987 0.740 0.846 0.645 0.322 0.430
GANF 0.692 0.549 0.612 0.285 0.773 0.416 0.964 0.706 0.815 0.576 0.596 0.586
Ours 0.874 0.982 0.925 0.867 0.961 0.912 0.945 0.892 0.918 0.749 0.901 0.818
(std) ±0.001 ±0.006 ±0.003 ±0.003 ±0.011 ±0.007 ±0.009 ±0.016 ±0.008 ±0.021 ±0.029 ±0.023

approach can be much higher, e.g., F1-score 0.946 for SMAP and 0.913 for MSL. We also report
the running time of our approach in Section A.8.

Table 4: The best performance of our approach with the public datasets.

Dataset SMAP MSL SWaT WADI
Precision* 0.951± 0.011 0.903± 0.029 0.929± 0.018 0.883± 0.021

Recall* 0.930± 0.011 0.951± 0.033 0.965± 0.009 0.947± 0.020
F1* 0.940± 0.004 0.926± 0.017 0.946± 0.007 0.913± 0.008

Ablation study on Mi for i ∈ CR. This experiment evaluates the effect of the causal information
on anomaly detection. For an anomaly detection method A such as IF and AE, we compare A with
our approach “ours + A” that uses CVAE for i ̸∈ CR (estimates PG [xi(t)|PA(xi(t))]) and A for
i ∈ CR (estimates

∏
i∈CR

P[xi(t)]). We report the metrics as mentioned above and the best metrics
achieved by choosing the best thresholds in the test datasets. Table 5 shows the performance of

Table 5: Performance of our method using different models for A in SWaT and WADI. “*” means
the best metrics. A = ∅ means anomalies are detected by i ̸∈ CR only without using i ∈ CR.

SWaT WADI
A Prec. Rec. F1 Prec.* Rec.* F1* Prec. Rec. F1 Prec.* Rec.* F1*
∅ 0.952 0.874 0.911 0.950 0.929 0.940 0.749 0.920 0.826 0.873 0.979 0.923
IF 0.947 0.893 0.919 0.946 0.945 0.945 0.738 0.920 0.819 0.948 0.920 0.934
AE 0.958 0.900 0.928 0.963 0.920 0.941 0.789 0.920 0.850 0.931 0.979 0.955

LSTM-VAE 0.954 0.874 0.912 0.951 0.936 0.944 0.748 0.920 0.825 0.949 0.920 0.934

our approach with different A, where A = ∅ means that the anomalies are detected by i ̸∈ CR
only without using i ∈ CR. By comparing this table with Table 3 we can observe that “ours + A”
performs much better than using A only, e.g., “ours + AE” achieves F1 score 0.850 for WADI, while
AE obtains 0.668 for WADI. If A is not used in anomaly detection, we get a performance drop in
terms of F1 score. For example, the best F1 score drops from 0.934 to 0.923 for WADI.

Ablation study on causal discovery and causal mechanism estimation. We also studied the
effects of different parameters for discovering causal graphs on the performance of our approach.
The experiments (in Section A.9) shows that our approach is robust to the changes of the inferred
causal graph. In practice, the causal graph is not required to be accurate, namely, we just need to
ensure that it doesn’t contain too many missing links or false positive links. Besides FGES, other
methods such as the PC algorithm (Spirtes & Glymour, 1991) can also be applied to infer the causal
graphs. The causal graphs inferred by PC are probably different from those computed by FGES.
Our experiments show that our anomaly detection approach is stable even though the causal graphs
are different. Table 6 compares the performance of our approach with FGES, GES and PC. For
SWaT, using FGES, GES and PC have similar performance. For WADI, using PC performs worse
than using GES and FGES, but the F1-score 0.768 is still better than the other approaches. The
performance drop is because the causal graph discovered by FGES is more accurate than PC in
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Table 6: Performance comparison (F1-score) with the public datasets, e.g., GES vs PC vs FGES for
causal discovery, and CVAE vs MLP vs KMN for causal mechanism estimation.

Methods SWaT WADI Methods SWaT WADI
Ours (GES) 0.895± 0.013 0.802± 0.015 Ours (CVAE) 0.918± 0.008 0.818± 0.023
Ours (PC) 0.912± 0.007 0.768± 0.020 Ours (MLP) 0.909± 0.010 0.739± 0.041

Ours (FGES) 0.918± 0.008 0.818± 0.023 Ours (KMN) 0.900± 0.007 0.634± 0.029

WADI. As shown in Table 6, we also tested different methods for estimating causal mechanisms
(conditional distributions), e.g., CVAE, MLP and KMN (Ambrogioni et al., 2017). CVAE works
better than the others in SWaT and WADI so we choose CVAE by default.

3.3 CASE STUDY: REAL-WORLD APPLICATION IN AIOPS

Our last experiment is to apply our method for a real-world anomaly detection task in AIOps, where
the goal is to monitor the operational key performance indicator (KPI) metrics of database services
for alerting anomalies and identifying root causes in order to automate remediation strategies and
improve database availability in cloud-based services. In this application, we monitor a total of 61
time series variables measuring the KPI metrics of database services, e.g., read/write IO requests,
CPU usage, DB time. The data in this case study consists of the one-month measurements. Accord-
ing to the feedback from domain experts, most of the inferred causal relationships shown in Figure
2 are consistent with the known domain knowledge. For example, the discovered links Redo (redo
size) –> Lfpw (log file parallel write) –> Lfs (log file sync) –> COMT (commit) are exactly the
same as the domain knowledge.

Figure 2: Example on a real-world AIOps case, showing 8 out of 61 time variables (left) and a part
of the causal graph (right). The deeper colors of nodes in the graph indicate higher root cause scores.

The incidences that happened are relatively rare, e.g., 2 major incidences one month, and our
anomaly detection approach correctly detect these incidences. Therefore, we focus on the root
cause analysis in this case study. Figure 2 shows an example of one major incidence, showing sev-
eral abnormal metrics such as DBt (DB time), Lfs (log file sync), APPL (application), TotPGA (total
PGA allocated) and a part of the causal graph. The root cause scores computed by our method are
highlighted. We can observe that the top root causes metrics are APPL, DBt and TotPGA, all of
which correspond to application or database related issues for the incident as validated by domain
experts. More results can be found in Appendix.

4 CONCLUSIONS

Most previous approaches for multivariate time series anomaly detection model the joint distribution
directly without considering the underlying causal process of the observed time series data. This
paper presented a new definition and formulation of anomalies in multivariate time series from a
causal perspective, and proposed a novel approach that exploits the causal structures discovered
from data to help detect anomalies more accurately and identify the root causes robustly according
to the local causal mechanism. Our experiments on both simulation and real datasets demonstrated
the efficacy, robustness and practical feasibility of the proposed approach in real-world applications.
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A APPENDIX

A.1 RELATED WORK

Anomaly detection methods for univariate time series can be applied to each dimension of multi-
variate time series. Popular univariate anomaly detection techniques include statistical or distance-
based methods, e.g., KNN (Chaovalitwongse et al., 2007; Angiulli & Pizzuti, 2002), One-Class
SVM (Manevitz & Yousef, 2002), and probabilistic methods (Chandola et al., 2009). These meth-
ods are computationally efficient and suitable for high dimensional data. But their performance
degrades faced with long-term anomalies since the temporal patterns within time series are ig-
nored. To address this issue, temporal prediction methods, e.g., ARIMA, SARIMA (Hamilton,
1994), Prophet (Taylor & Letham, 2018), SR-CNN (Ren et al., 2019), and DONUT (Laptev et al.,
2015), have been proposed to model temporal dependencies/autocorrelations. However, these meth-
ods treat each dimension individually and ignore the correlations between different time series. As
shown in Figure 1, they cannot identify the anomaly corresponding to the abnormal causal mecha-
nism.

Recent years have seen the increasing popularity of unsupervised methods using deep learning tech-
niques, which can infer the correlations between time series. For example, DAGMM (Zong et al.,
2018) combines an autoencoder with a Gaussian mixture model to model the joint distribution.
MSCRED (Zhang et al., 2019) utilizes the system signature matrix to model the correlations and
temporal patterns. LSTM-VAE (Park et al., 2017) combines LSTM with VAE and models temporal
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dependencies through LSTM. OmniAnomaly (Su et al., 2019) learns robust time series representa-
tions with a stochastic variable connection and a planar normalizing flow. USAD (Audibert et al.,
2020) uses adversely trained autoencoders inspired by GANs, providing fast training. However,
these methods model the joint distribution directly without considering the process behind multi-
variate time series, and an anomaly that happens to a local mechanism in the process might not
change the joint distribution dramatically. Besides, it is difficult for them to leverage the domain
knowledge of the monitored system, e.g., the known causal dependencies between time series, and
to provide explanations that are crucial for root cause analysis and remediation when an anomaly
occurs. Finally, our work also differs substantially from existing studies (Qiu et al., 2012; 2020)
which though explore causality in anomaly detection in different ways, but do not use the causal
mechanism to model anomalies in time series.

Root cause analysis (RCA) methods leverage the KPI metrics monitored on those services to de-
termine the root causes when an anomaly event is detected. The key idea behind RCA with KPI
metrics is to analyze the relationships or dependencies between these metrics and then utilize these
relationships to identify root causes when an anomaly occurs. Typically, there are two types of ap-
proaches: 1) identifying the anomalous metrics in parallel with the observed anomaly via metric data
analysis, and 2) discovering topology/causal graphs that represent the causal relationships between
the services.

Nguyen et al. (2011; 2013) propose two similar RCA methods by analyzing low-level system met-
rics, e.g., CPU, memory and network statistics. Both methods first detect abnormal behaviors for
each component via a change point detection algorithm when a performance anomaly is detected,
and then determine the root causes based on the propagation patterns obtained by sorting all critical
change points in a chronological order. Shan et al. (2019) developed a low-cost RCA method called
ϵ-Diagnosis to detect root causes of small-window long-tail latency for web services. ϵ-Diagnosis
assumes that the root cause metrics of an abnormal service have significantly changes between the
abnormal and normal periods. But these methods don’t consider the causal relationships between
KPI metrics or the dependencies between services in an application.

The second type of RCA approaches leverages such dependencies, which usually involves two steps,
i.e., constructing topology/causal graphs given the KPI metrics and domain knowledge, and extract-
ing anomalous subgraphs or paths given the observed anomalies. Such graphs can either be recon-
structed from the topology (domain knowledge) of a certain application (Thalheim et al., 2017; Wu
et al., 2020; Álvaro Brandón et al., 2020; Samir & Pahl, 2019) or automatically estimated from the
metrics via causal discovery techniques (Wang et al., 2018; Mariani et al., 2018; Chen et al., 2019;
Meng et al., 2020; Lin et al., 2018; Ma et al., 2019; 2020). To identify the root causes of the observed
anomalies, random walk (e.g., Kim et al. (2013); Meng et al. (2020); Wang et al. (2018)), page-rank
(e.g., Wu et al. (2020)) or other analysis methods can be applied over the discovered topology/causal
graphs. Recently, Budhathoki et al. (2022) proposed a method based counterfactual analysis which
identifies the root cause of a detected anomaly/outlier by computing the contribution of each noise
term to the anomaly score. But these methods only accept univariate time series anomaly detectors,
i.e., detecting anomalies for each metric separately.

A.2 EXPERIMENTAL SETUP AND PARAMETERS SETTINGS

For the implementation of our approach, we employ the CVAE to model conditional distributions
PG [xi(t)|PA(xi(t))]. We choose the same parameters for all the experiments on both simulated
and public real datasets. The encoder and decoder in CVAE are both MLPs with hidden sizes
[10, 20, 10]. The latent size is 5 and the prior distribution pθ(z|c) is assumed to be the standard
normal distribution (doesn’t depend on c). For training CVAE, the optimizer is ADAM with learning
rate 0.001, batch size 1024 and epoch num 80.

For modeling
∏

i∈R P[xi(t)], there are several options to choose in practical applications. For
the simulated datasets and our internal AIOps dataset, we choose a univariate anomaly detection
method based on a CNN forecasting model. The CNN forecasting model consists of 4 resid-
ual blocks with 1D convolutional layers, i.e., the “(input channels, output channels)” pairs are
(1, 8), (8, 16), (16, 32), (32, 64), followed by the concatenate of 1D adaptive average pooling and
1D adaptive max pooling. The output layer is a linear layer. For each residual block, it has two
convolutional layers “(input channels, output channels) –> (output channels, output channels)”. We
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choose ADAM as the optimizer with learning rate 0.001 (with decay), batch size 1024 and epoch
num 50. The window size of the historical data for prediction is 20. For the public datasets, besides
this CNN forecasting model, we can also choose isolation forest (IF) and autoencoder (AE). For IF,
the max number of samples is 10000. For AE, the hidden sizes of the encoder are [25, 10, 5], the
latent size is 5, and the hidden sizes of the decoder are [5, 10, 25].

For the simulated datasets, we apply FGES and set “max degree = 5” and “penalty discount = 20”.
For the public datasets SWaT and WADI, we apply FGES and set “max degree = 10” and “penalty
discount = 100”. For SMAP and MSL, we apply the PC algorithm with the default parameters.
The library for causal discovery we used in this project is Tetrad 3. Smaller “max degree” or larger
“penalty discount” in FGES leads to more sparse graphs with less edges. Table 7 lists the number of
the edges in the causal graphs discovered with different parameters.

The reason why we choose these parameters such as CVAE hidden sizes = [10, 20, 10] is as follows.
For all the simulation datasets, the “max-degree” is set to 5 in FGES and the causal relations are
instantaneous, meaning that the number of causal parents of each variable is at most 5 so that the
input dimensions of the parent variables in CVAEs for modeling conditional probabilities are at most
5. For the public datasets, the “max-degree” is 10 and we found that there are instantaneous causal
influences but not time-delayed ones, so the input dimensions of the parent variables in CVAEs are
at most 10. That’s why we choose those parameters for the encoder and decoder. For a new dataset,
if one considers a similar setting for causal discovery, he/she can use our parameters as default. In
general, the input dimensions of CVAEs are at most “max-degree” * “time-lag”, so one can choose
the hidden sizes around this number. For modeling conditional probabilities, one can construct a
validation set by splitting the training dataset. Under the Gaussian distribution assumption in CVAE,
the overfitting issue can be found and avoided by measuring the reconstruction MSE loss.

For all the experiments, the detection thresholds are inferred by taking the nth percentile of the
detection scores in the test data, e.g., we choose n = 95 for SWaT and WADI, n = 98 for SMAP
and MSL. For the other methods (except ours) in the simulated datasets, the reported precision,
recall and F1-score metrics are the best metrics that can be achieved in the test datasets (by choosing
the best threshold).

Table 7: The number of the edges in the causal graphs generated by FGES with different parameters.

SWaT max degree (penalty discount = 100) penalty discount (max degree = 10)
d=5 6 7 8 9 10 p=20 40 60 80 100 120

Edge num 70 79 88 95 98 102 139 122 115 111 102 93
WADI max degree (penalty discount = 100) penalty discount (max degree = 10)

d=5 6 7 8 9 10 p=20 40 60 80 100 120
Edge num 152 180 195 211 227 249 331 308 278 262 249 225

A.3 SIMULATION DATASET

The simulated time series data can be generated in the following steps:

1. Generate an Erdös Rényi random graph G with number of nodes/variables n and edge
creation probability p, then convert it into a DAG. We choose p = 0.1.

2. For the variables with no parents in G, randomly pick a signal type from “harmonic”,
“pseudo periodic” and “autoregressive” and generate a time series with length T accord-
ing to this type. We use the Python library “TimeSynth”4 to generate such signals. When
generating these signals, the stop time is set to 100. For “harmonic”, the frequency and
the noise std are uniformly drawn from [0.1, 1.0] and [0.1, 0.3], respectively. For “pseudo
periodic”, the frequency is uniformly drawn from [1.0, 6.0], “freqSD” and “ampSD” are set
to 0.0 and 0.1. For “autoregressive”, “ar param” is uniformly sampled from [0.3, 1.0] and
“sigma” is uniformly sampled from [0.01, 0.1].

3https://github.com/cmu-phil/tetrad
4https://github.com/TimeSynth/TimeSynth
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3. For a variable xi with parents PA(xi) in G, we consider both linear relationship xi =∑
j∈PA(xi)

wjxj + ϵ and nonlinear relationship xi =
∑

j∈PA(xi)
wj tanh(xj) + ϵ, where

wj is uniformly sampled from [0.5, 2.0] and ϵ is uniformly sampled from [−0.1, 0.1]. The
time series for those variables are generated in a topological order.

4. Add anomalies into the generated time series: We consider three types of anomalies. The
first one is a “measurement” anomaly, i.e., randomly pick a variable xi, a time step t, a
scale s (uniformly sampled from [0, 3]) and a duration d (uniformly sampled from [5, 20]),
and then set xi(t : t + d) = [xi(t) − median(xi)] ∗ s + median(xi). The second one is
an “intervention” anomaly, i.e., after generating “measurement” anomalies for some vari-
ables, those anomaly values propagate to the children according to the causal mechanisms.
The third one is an “effect” anomaly where anomalies only happen on the variables with
no causal children.

Figure 3 shows the generated causal graph which contains 15 variables. According to this causal
graph, we can generate multivariate time series by following the procedure mentioned above, as
shown in Figure 4 and Figure 5 where some of the abnormal time steps in the test dataset are labeled
by blue triangles.

Figure 3: An example of the ground truth causal graph in the simulated datasets.

Figure 4: An example of the simulated training datasets.

A.4 MIXED RELATIONSHIPS: LINEAR + NONLINEAR

We also consider a mix of linear and nonlinear relationships, i.e., randomly pick a relationship from
[linear, nonlinear] during time series generation, where the probability of selecting “linear” is 0.7.
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Figure 5: An example of the simulated test datasets. Some of the abnormal time steps are labeled
by blue triangles.

Table 8 shows the experimental results when the relationships are a mix of linear and nonlinear.
Compared with the linear case, a mixed relationship makes the anomaly detection problem harder,
e.g., the performance of most approaches drops. Our approach still has the best performance com-
pared to the other methods.

Table 8: Performance comparison with the simulated dataset. The relationships are a mix of linear
and nonlinear.

Mix, Measurement Mix, Intervention Mix, Effect
Methods Precision Recall F1 Precision Recall F1 Precision Recall F1

IF 0.401 0.542 0.461 0.241 0.618 0.347 0.223 0.329 0.266
AE 0.314 0.669 0.427 0.277 0.406 0.329 0.229 0.436 0.301

VAE 0.364 0.479 0.414 0.241 0.621 0.347 0.181 0.440 0.256
LSTM-VAE 0.519 0.595 0.555 0.425 0.522 0.468 0.230 0.560 0.326

DAGMM 0.603 0.601 0.602 0.638 0.494 0.557 0.619 0.582 0.600
USAD 0.252 0.454 0.324 0.217 0.315 0.257 0.154 0.467 0.231
Ours 0.751 0.720 0.735 0.635 0.794 0.706 0.805 0.591 0.682

A.5 MIXED DATA TYPES: DISCRETE + CONTINUOUS

This experiment considers the case that the generated multivariate time series contains both discrete
and continuous values. The generation procedure for this kind of time series data has the following
differences. For the variables without parents in G, we randomly pick a signal type from “harmoni”,
“pseudoperiodic” and “autoregressive”. For a variable xi with parents P(xi) in G, we first randomly
pick a data type, i.e., choosing “discrete” with probability 0.4 and “continuous” with probability
0.6. For “discrete”, xi = 1[

∑
j∈P(xi)

wjxj + ϵ > 0], i.e., logistic regression. For “continuous”,
xi =

∑
j∈P(xi)

wjxj + ϵ, i.e., linear relationship. When generating anomalies for “discrete”, we
take xi(t : t+ d) = ceil[[xi(t)−median(xi)] ∗ s+median(xi)] for time step t, duration d and scale
s. Figures 6 and 7 give an example of the generated training data and test data in this case.

Table 9 shows the experimental results with the “discrete/continuous” datasets. Compared with the
“continuous” case, the performance of all the methods decreases because inferring correlations or
doing causal discovery becomes relatively harder with the mixed data types. Our approach still
significantly outperforms the other ones in this case.
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Figure 6: An example of the simulated training datasets with mixed data types.

Figure 7: An example of the simulated test datasets with mixed data types. Some of the abnormal
time steps are labeled by blue triangles.

Table 9: Performance comparison with the simulated dataset. The data types are a mix of discrete
and continuous.

DC, Measurement DC, Intervention DC, Effect
Methods Precision Recall F1 Precision Recall F1 Precision Recall F1

IF 0.218 0.584 0.317 0.212 0.713 0.327 0.195 0.727 0.308
AE 0.437 0.251 0.319 0.494 0.376 0.427 0.324 0.392 0.355

VAE 0.207 0.602 0.308 0.340 0.390 0.363 0.245 0.557 0.341
LSTM-VAE 0.291 0.484 0.363 0.365 0.633 0.463 0.282 0.547 0.372

DAGMM 0.515 0.447 0.479 0.529 0.604 0.564 0.833 0.376 0.518
USAD 0.236 0.363 0.286 0.352 0.348 0.350 0.268 0.313 0.289
Ours 0.591 0.715 0.647 0.837 0.574 0.681 0.644 0.666 0.655

A.6 REAL-WORLD MOTIVATING EXAMPLE

Figure 8 shows why causality matters with a real-world example. In SWaT (Mathur & Tippenhauer,
2016), at timestamp 491, our causality-based approach detects a true anomaly where the causal
mechanism between Metrics 1, 0 and 9 is violated (Metrics 0 and 9 are the causal parents of Metric
1). We plot the probability density of the reconstruction error based on the causal mechanism (top
left figure), where the black triangle is the anomaly. Clearly, this anomaly can be easily identified
w.r.t. the p-value. But if we check the probability density of the “joint” reconstruction error by AE
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(top right figure), this anomaly cannot be found w.r.t. the p-value. The bottom figure plots the time
series data of these three metrics. Intuitively, we can observe that Metric 1 has a peak value when
Metric 0 is low, and Metric 1 is low when Metric 0 is high. In the range (450, 550), this causal
mechanism is violated, e.g., Metric 0 is high while Metric 1 is also high. This type of anomalies is
hard to be identified by checking joint or marginal distributions.

Figure 8: A motivation example in the real-world dataset SWaT (Mathur & Tippenhauer, 2016). At
timestamp 491, our causality-based approach detects a true anomaly where the causal mechanism
between metrics 1, 0 and 9 is violated (metrics 0 and 9 are the causal parents of metric 1).

A.7 TRAINING ANOMALIES

When the fraction of anomalous points is large in the training data, these anomalies may decrease
detection performance since the discovered causal graph may not be accurate. In this case, we
can apply the solution discussed in Section 2.2.4, updating the causal graph and anomaly detection
model iteratively. In this experiment, the training and test data are generated under the setting
“linear/measurement”, and a large proportion of noises are added into the training data, i.e., adding
additional Gaussian noises to the first 20% data points in the training data. These noisy data points
makes estimating accurate causal graphs harder via causal discovery algorithms. In each iteration,
3% data points are detected as anomalies and removed. Figure 9(a) shows the detection performance
on the test dataset measured by the F1 scores over each iteration. In the beginning the discovered
causal graph has more errors due to the noises in the training data, leading to the low F1 score.
After each iteration, our approach removes the detected anomalies from the training data, making
the discovered causal graph more accurate in the next iteration, so that the detection performance
increases consistently. This experiment empirically verifies our “iterative updates” approach in the
case where the training data has a large portion of anomalies. Figure 9(b) plots the difference
between the adjacency matrices of two consecutive estimated causal graphs, which increases first
then decreases and converges to 0 since the distribution of training data gradually changes from a
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mix of noises and regular points to regular points only. This experiment considers an extreme case

Figure 9: Empirical study on our “iterative updates” approach discussed in Section 2.2.4 for handling
large noise in the training data. (a) The detection performance (F1 scores) on the test data over
iterations. (b) The difference between the adjacency matrices of two consecutive discovered causal
graphs.

that the proportion of anomalies and the magnitude of anomalies are large. In practical applications
where the proportion of anomalies in training data is relatively small., e.g., the public datasets, there
is no need to apply this iterative approach, i.e., one iteration is good enough.

A.8 RUNNING TIME

Table 10 shows the running time of our approach. The most time consuming step is local causal
mechanism estimation (conditional distribution estimation). After training, our approach detects
anomalies and root causes fast.

Table 10: The running time of our approach (wall clock time).

Stage SWaT WADI
Training (Causal discovery) 10.27s 42.18s

Training (Conditional distribution estimation) 415.37s 1026.59s
Inference (anomaly detection) 0.279ms per point 0.636ms per point

A.9 ABLATION STUDY ON CAUSAL GRAPH G

We also studied the effects of different parameters for discovering causal graphs on the performance
of our approach. The parameters that we investigated are “max degree” and “penalty discount” in
FGES, both of which affect the structure of the causal graph, e.g., sparsity, indegree, outdegree. In
this experiment, we use 6 different “max degree” [5, 6, 7, 8, 9, 10] and 6 different “penalty discount”
[20, 40, 60, 80, 100, 120]. Smaller “max degree” or larger “penalty discount” leads to more sparse
graphs with less edges, e.g., for SWaT, the number of the edges in G is [70, 79, 88, 95, 98, 102] when
“max degree” = [5, 6, 7, 8, 9, 10], respectively.

Figure 10 plots the detection precision, recall and F1 score obtained with different “max degree”
and “penalty discount”. For SWaT, these two parameters don’t affect the performance much. For
WADI, when “max degree” decreases (the causal graph becomes more sparse) or “penalty discount”
decreases (the causal graph has more false positive links), the performance also decreases but it
doesn’t drop much, i.e., the worst F1 score is still above 0.65. When “max degree” > 6 and “penalty
discount” > 40, we got similar performance, e.g., the F1 score is around 0.8, showing that our
approach is robust to the changes of the inferred causal graph. In practice, the causal graph is not
required to be accurate, namely, we just need to ensure that it doesn’t contain too many missing links
or false positive links.

A.10 DETECTED ANOMALIES IN PUBLIC DATASETS

Figures 11-14 show the detection results by our approach where we did downsampling for better
demonstration. The left figures plot the ground truth labels. The right figures plot the detected
anomalies in a point-adjust way.
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Figure 10: Precision, Recall and F1 score as a function of “max degree” and “penalty discount”.
The first and second rows plot the metrics for SWaT and WADI, respectively.

Figure 11: SWaT detection results. Left: Ground-truth labels. Right: Detected anomalies.

Figure 12: WADI detection results. Left: Ground-truth labels. Right: Detected anomalies.

B CASE STUDY: REAL-WORLD APPLICATIONS IN AIOPS

Root Cause Analysis (RCA) in real-world applications such as AIOps can be very challenging. One
practical issue for identifying root causes is that an anomaly occurs in a parent often makes its
contemporaneous causal children abnormal due to the estimation errors in conditional distributions.
To handle this issue, we developed the following practical algorithm.
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Figure 13: SMAP detection results. Left: Ground-truth labels. Right: Detected anomalies.

Figure 14: MSL detection results. Left: Ground-truth labels. Right: Detected anomalies.

Specifically, for a variable xi, recall that its root cause score at time t is

S(xi(t)) = 1−Mi(xi(t)). (2)

Suppose that N (xi(t)) is the set of the contemporaneous causal children of xi(t), the final root
cause score is define by

RS(xi(t)) = S(xi(t)) + α
1

|N (xi)|
∑

xj(t)∈N (xi)

RS(xj(t)), ∀i = 1, · · · , d, (3)

where α is a weight parameter satisfying 0 ≤ α < 1. When N (xi) is empty, we set RS(xi(t)) =
S(xi(t)). Here the final root cause score of a variable is the combination between its original root
cause score and the root cause scores of its children. The final root cause scores for all the variables
can be computed by these linear equations. When α = 0, it is reduced to the ideal scenario discussed
above. When α ̸= 0, the above approach improves the ranking of root causes from a global view.
Then the root causes at time t can be identified by picking the variables with top root cause scores.

Figure 15 shows another major incidence. The top abnormal variables are SYIO (system I/O), USIO
(user I/O), Lfpw (log file parallel write), UTIL (I/O utilization). All of them are related to I/O issues,
meaning that the root causes are the components related to I/O.
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Figure 15: Case study in AIOps. 8 out of 61 time variables (left) and a part of the causal graph
(right). The anomaly scores are indicated by the colors, e.g., deeper colors indicate larger anomaly
scores.
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