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ABSTRACT

Robots are increasingly envisioned as human companions, assisting with every-
day tasks that often involve manipulating deformable objects. While recent ad-
vancements in robotic hardware and embodied AI have expanded their capabili-
ties, current systems still struggle with handling thin, flat, deformable objects like
paper and fabric due to limitations in motion planning and perception. This pa-
per introduces PP-Tac, a robotic system for picking up paper-like objects. PP-Tac
features a multi-fingered robotic hand equipped with high-resolution tactile sen-
sors, providing omnidirectional feedback for slip detection and precise friction
control. Additionally, we propose a grasp trajectory synthesis pipeline that gen-
erates a dataset of paper-like object grasping motions and trains a diffusion-based
motion generator, which is then implemented on a physical hand-arm platform for
evaluation. Experiments demonstrate PP-Tac’s effectiveness in grasping paper-
like objects of varying stiffness (e.g., cloth and paper), achieving a success rate
of 87.5%. By leveraging tactile feedback, PP-Tac adapts to varying surfaces be-
neath the objects with robustness. This study is the first to explore grasping thin,
deformable objects using a dexterous robotic hand with tactile feedback. These
advancements pave the way for broader applications in domestic, industrial, and
logistical settings, where precise handling of paper-like objects is essential.

1 INTRODUCTION

Robots are increasingly popular as assistive agents in everyday life, particularly within household
environments Scassellati et al. (2012). These robots are designed to perform various domestic tasks,
often involving the grasp of thin, deformable objects such as paper and fabric Zhu et al. (2022).
For instance, clothes-folding tasks Li et al. (2015) require high dexterity and adaptability to accom-
modate variations in fabric size, texture, and stiffness, while document organization tasks Amigó
et al. (2013) demand precise picking capabilities for diverse paper types and form factors. Beyond
domestic settings, the ability to handle deformable objects is essential in industrial and logistical
applications, such as fabricating fabrics Billard & Kragic (2019) and packing objects using plastic
bags and cardboard Dogar & Srinivasa (2011).

Despite their significance, picking up paper-like objects remains challenging in robotics Zhu et al.
(2022). In particular, the main challenges are three-fold: 1) Vision systems, commonly used for
manipulation, struggle to perceive contact information during interactions with deformable objects
due to limited sensing modalities and occlusion, resulting in a lack of necessary feedback for motion
planning Li et al. (2018); 2) Their thin, stiff characteristics often result in flat shapes, hindering
the synthesis of stable grasps using conventional methods due to insufficient contact points Deng
et al. (2020). 3) The appearance of such objects exhibits high variability, as their shape undergoes
continuous and unpredictable deformation during manipulation. These dynamic shape variations
significantly impair the generalizability of vision-based methods.

∗Denotes equal contribution
†Co-corresponding authors

1



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 1: Overview of the PP-Tac Robotic System. The system leverages omnidirectional tactile feedback in
a dexterous robotic hand to pick up thin, deformable paper-like objects. (a) Hand motion generated by force and
slip feedback, inspired by human paper-picking motions involving sliding and pinching. (b) Hardware setup
includes a robotic arm, a dexterous hand, and four fingertip-mounted tactile sensors capable of simultaneously
detecting force and slip events.

In contrast, humans excel at picking up paper-like objects by leveraging coordinated multi-fingered
motion and tactile sensing. As shown in Figure 1(a), the process typically begins with establishing
contact using fingers, followed by sliding motions to deform the material and enable a stable pinched
grasp. Such success stems from the coordination of multiple fingers, which generates the necessary
friction to deform the object and utilizes sufficient finger Degree of Freedoms (DoFs) to adaptively
establish stable contact points for a stable grasp. Additionally, tactile sensing complements visual
feedback, allowing humans to perceive the object’s deformation and apply appropriate forces by
detecting friction and slip. These tactile cues facilitate real-time adjustments, ensuring the successful
execution of the picking-up action.

Inspired by human strategies, this paper introduces a robotic system, PP-Tac (Paper-like object
Picking using omnidirectional Tactile feedback), designed for dexterous robotic hands. The sys-
tem comprises two key components: A dexterous robotic hand with omnidirectional and high-
resolution Vision-Based Tactile Sensors (VBTS). These fingertip-mounted tactile sensors provide
real-time feedback on contact status during grasping and feature an omnidirectional sensing area
with a high-framerate monochrome camera, enabling faster response times and simpler calibration
compared to RGB-based systems. An illustration of the system is shown in Figure 1(b). In ad-
dition to the tactile sensor, this paper also presents A diffusion-based motion generation policy
(PP-Tac policy) that imitates human picking-up skills. The proposed method first employs efficient
trajectory optimization to generate expert data replicating human sliding and pinching motions. To
generalize this approach to diverse deformable objects and uneven surfaces, a diffusion policy is
subsequently trained using these trajectories, leveraging proprioceptive data and tactile feedback for
adaptive control of the dexterous robotic hand.

In comprehensive real-world experiments, the proposed PP-Tac achieved an overall success rate of
87.5% in grasping everyday thin and deformable paper-like objects, such as plastic bags, paper bags,
and silk towels on flat surfaces. Figure 1(a) illustrates examples of our arm-hand system successfully
picking up paper-like objects. The PP-Tac also demonstrates significant adaptability in picking up
paper-like objects on various uneven surfaces. Additionally, an ablation study further validates the
contributions of each system component, highlighting the critical role of VBTS feedback and motion
generation policies in achieving robust performance.

To the best of our knowledge, this work represents the first demonstration of deformable object
picking using a dexterous hand equipped with VBTS. Overall, our contributions include:
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Figure 2: The hardware design of the omnidirectional VBTS and its integration into the four-fingered
dexterous robotic hand system. (a) illustrates the pipeline of depth reconstruction. (b) illustrates the exploded
view of the sensor, detailing each component. (c) shows the dimensions of the sensor. (d) shows the schematic
design. (e) illustrates the robotic hand equipped with four sensors on its distal joint.

1) We propose a new omnidirectional tactile sensor that is easy to fabricate, calibrate, and deploy at
scale.

2) We assemble a fully actuated dexterous robotic hand integrated with VBTS into each fingertip to
enable real-time contact feedback.

3) We introduce PP-Tac policy, a diffusion policy for picking up paper-like objects that demonstrate
robust generalization across diverse materials and surfaces.

4) We provide the implementation and systematic experiments of the proposed algorithms on the
physical device.

2 HARDWARE DESIGN

To provide sufficient dexterity to address the challenges of paper-picking tasks, we designed and
fabricated a set of finger-shaped VBTS, which are then integrated into Allegro Hand Robotics (2024)
through customization.

2.1 FINGERTIP-SHAPED TACTILE SENSING

The design of the fingertip-shaped tactile sensor is guided by five key principles to ensure effective
manipulation:

• Round shape: The hemispherical design enables omnidirectional tactile perception.
• High resolution: High spatial resolution enables accurate force and slip detection during the

picking-up process.
• Ease of fabrication & low-cost: The components of the tactile sensor are either off-the-shelf or

easy to fabricate, with a cost of around $60.
• Efficient calibration: The monochrome sensing principle simplifies lighting control and reduces

manual effort in image capture for calibration, making it particularly suitable for large-scale de-
ployment on multi-fingered robotic hands.

• Efficient data transmission: The monochrome camera produces lightweight data per frame,
facilitating high-speed data transmission between systems.

Based on these principles, the sensor design and its integration into the dexterous robotic hand is
illustrated in Figure 2.

2.2 CONTACT FORCE ESTIMATION & SLIP DETECTION

Our sensors are capable of detecting both contact forces and slip events. The contact force, modeled
by elasticity theory, is proportional to the deformation depth and can be expressed as a function of
deformation depth. Furthermore, the slip between the sensor and the object surface is detected using
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Figure 3: Force analysis during grasping flat objects. The grasping process is made possible by the following
forces: (1) the contact normal force exerted by the sensor on the object. (2) the static friction force (f1, f ′

1)
between fingers and the object, (3) a dynamic friction force (f2, f ′

2) between the object and the terrain. When
the static friction (f1, f ′

1) exceeds the critical buckling resistance of the paper, the sheet deforms, creating a
stable pinch region that facilitates successful grasping.

a lightweight neural network. The network takes the previous five frames as inputs, extracts the
features via a convolutional neural network (CNN), and outputs the slip probability Pslip through a
multilayer perception network (MLP). To train this network, we collected approximately 20 minutes
of data from the four tactile sensors. When the threshold of Pslip is set to 0.75, our evaluation shows
that the system achieves a detection accuracy of 86%.

2.3 ROBOTIC HAND SYSTEM

We integrated the proposed omnidirectional tactile sensors into a fully actuated dexterous robotic
hand. These tactile sensors are mounted at the distal end of each fingertip, facilitating contact
characterization in the following paper-picking tasks. We designed and fabricated the robotic hand
featuring 13 controllable DoFs, including the DIP, PIP, and MCP joints for the index, middle, and
ring fingers, as well as the CMC, CMC-2, MCP, and IP joints for the thumb. The robotic hand
is driven by Dynamixel XC330-M288-T motors, which are all multiplexed through a U2D2 Hub.
For each tactile sensor, it communicates with the PC via a USB interface. The entire assembly is
mounted on a Franka Research 3, a 7-DoF robotic arm, which communicates with the PC via a
high-speed Ethernet connection.

3 PAPER-LIKE OBJECT PICKING PROBLEM STATEMENT

Next, we aim to address the challenge of grasping thin, deformable paper-like objects from flat
surfaces. This appears as a commonly seen scenario in everyday tasks, such as organizing scattered
document pages or retrieving napkins from dining plates. Although creases or irregularities in the
material can sometimes provide grasping points, a particularly challenging scenario arises when
the object is extremely flat and lacks discernible edges or salient grasping features. This research
introduces a novel approach to tackle this paper-picking problem that was previously unexplored.

Motivated by the human strategy for grasping flat objects, our work is based on a biomimetic grasp-
ing pose optimized for paper picking, as illustrated in Figure 3. By applying sufficient inward force,
the robotic fingers can induce buckling of the material against the supporting surface. This buckling
effect dynamically generates a pinchable region, enabling subsequent grasp execution.

During buckling, the distance between contact points beneath the fingers decreases. When this re-
duction rate matches the fingertips’ closure speed (i.e., no relative motion between fingertips and
material), two frictional forces govern the system: static friction (f1, f ′

1) between the fingers and
material, and dynamic friction (f2, f ′

2) between the material and the supporting surface. Their mag-
nitudes depend on the applied normal force and the respective coefficients of friction.

In particular, the above analysis assumes that the static friction between robotic fingers and the
material exceeds both the maximum static friction at the material-terrain interface and the critical
buckling resistance of the material. This framework can also be extended to scenarios with uneven
supporting surfaces. Without loss of generality, we assume that height variations in the terrain are
less than 3 cm.
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4 POLICY LEARNING FOR PAPER-PICKING

Manipulating paper-like objects with visual perception remains challenging due to difficulties in
detecting thickness and textural variability. To address this, we propose a vision-independent tactile-
based approach. The core idea leverages tactile feedback to maintain contact conditions (as defined
in Section 3), facilitating the creation of a buckling region for successful grasping. We implement
this through the PP-Tac policy, developed in two stages: 1) Trajectory Optimization: Generate a
dataset of grasping motions using trajectory optimization. 2) Diffusion Policy Training: Train a
policy on this dataset to infer motions from tactile feedback and proprioceptive states, ensuring
generalization to real-world robotic systems.

4.1 GRASP MOTION DATASET SYNTHESIS

We synthesize grasping motions through trajectory optimization in simulation, avoiding the need for
complex teleoperation devices. While reinforcement learning (RL) offers an alternative, it requires
soft-body simulation to model deformable object dynamics and VBTS elastomer behavior, often
necessitating additional real-to-sim procedures for fidelity. In contrast, our approach uses rigid-body
dynamics and transfers directly to real robots, as validated experimentally. The grasping process
begins by establishing fingertip contact with the object’s surface. Once contact is achieved, the
fingers gradually close to complete the grasp. Each finger follows an independent trajectory on the
object’s surface, with normal forces adjusted to maintain contact (Figure 3).

In simulation, the ground-truth shape of the terrain is known, enabling the determination of all finger
joint values and arm poses through the following optimization problem:

γ̂ = argmin
γ

(Lee + L∆ + LRT ) , (1)

Lee = wee MSE(fk(γ), eetarget), (2)
L∆ = w∆ MSE (γ̂, γ) , (3)

LR,pwrist
= wR,pwrist

MSE
(
(R̂1:Ndata , p̂1:Ndata

wrist ), (R1:Ndata , p1:Ndata
wrist )

)
, (4)

where γ is the optimization variables consisting of hand joint angles qqq1:Ndata ; R1:Ndata is the ro-
tation matrix of wrist(end effector of arm) rotation, and p1:Ndata

wrist is the wrist translation along the
z-axis in world coordination; Ndata is the sequence length. The forward kinematics fk computes
the four fingertips’ trajectories, and eetarget represents the target fingertips’ trajectories. The ob-
jective function minimizes the mean squared error (MSE) between the fingertip positions and their
targets, while L∆ regularizes the motion to remain close to the initial pose. Additionally, LR,pwrist

minimizes wrist movement, ensuring the arm stays within its workspace.

4.2 PP-TAC POLICY

Once the dataset is prepared, we employ a diffusion policy to jointly control the hand and arm,
enabling adaptation to varying terrain shapes and contact force conditions. We adopt a Denoising
Diffusion Probabilistic Model (DDPM) framework Ho et al. (2020; 2022); Chi et al. (2023); Song
et al. (2021), which predicts future actions (Npred steps of xpred) conditioned on historical states
(Nprefix steps of xprefix). The state variables include:

(pppj , ṗppj , qqq, q̇qq, R,Ω, pwrist, ṗwrist, dddtac)

where pppj ∈ R17×3 is hand joints’ position in world coordinate, ṗppj ∈ R17×3 is the linear velocity
of the hand joints relative to each parent frame, qqq ∈ R13 is the rotation angle of controllable hand
joints, q̇̇q̇q ∈ R13 is the angular velocity of controllable hand joints, R ∈ R6 is 6D rotation (represented
as two-row vectors of rotational matrix, which is from Zhou et al. (2019)) of wrist(end effector of
arm), Ω ∈ R6 represents the angular velocity of wrist rotation, pwrist ∈ R is the wrist’s height along
arm’s z-axis, ṗwrist ∈ R is the linear velocity of pwrist, dddtac ∈ R4 represents the deformation depth
readings from four fingertip tactile sensors. The total state dimension is D = 142. Such a high-
dimensional and over-parameterized input allows the network to extract more robust and expressive
latent features for the diffusion policy.
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Flat Plane 10-degree Slop Book∗ Complex Terrain
Paper Sheet 0.95 0.95 0.90 0.85
Plastic Bag 1.00 1.00 1.00 0.90

Cloth 0.95 0.90 0.95 0.85
Kraft Paper Bag 0.75 0.65 0.80 0.60

Table 1: Quantitative Results. We have statistically analyzed the grasping success rates of the PP-Tac system
for four different materials on four distinct terrains. “Book∗“ denotes placing a book randomly on the table.

We apply an encoder-only transformer to predict future robot motion xpred
0 given prefix motion

xprefix, diffused future motion xpred
t , diffusion step t, current frame index i, and target deformation

depth d̄ddtac. The input sequence is encoded into a latent vector of dimension R(1+Nprefix+Npred)×D,
comprising: 1) A latent vector of D-dimensional features representing t, i, and d̄ddtac, extracted using
three 3-layer MLP networks respectively. 2) Nprefix × D dimensions corresponding to the prefix
states of Nprefix time steps. 3) Npred ×D dimensions for the predicted states of Npred time steps.
Instead of predicting ϵt as formulated by Ho et al. (2022), we follow Tevet et al. (2023) to predict the
state sequence itself x̂pred

0 . Predicting x̂pred
0 is found to produce better results for the state sequence

which contains motion data, and enables us to apply a target loss as geometric loss explicitly as each
denoising step as following:

L = ∥x̂pred
0 − xpred

0 ∥22 + λconsistLconsist, (5)

Lconsist = ∥fk(qpred0 )− Jpred
0 ∥22 (6)

where Lconsist enforces consistency between joint angles and positions, and λconsist is a weight
hyper-parameter.

During inference, we set t = 1000 and the diffused xpred
1000 ∼ N (0, I) and iteratively denoise it to

produce xpred
0 . To ensure real-time performance, we reduce denoising steps to 10 and set Npred =

Nprefix = 5, achieving motion generation in 11 ms on an RTX4090 GPU. The predicted qqq controls
the hand, while R and pwrist control the arm.

During grasping, preventing slip between the object and the fingertips is essential to maximize mate-
rial deformation. To achieve this, a fingertip contact force controller is introduced, which adjusts the
fingertip’s deformation depth dddtac. If slip is detected by the tactile sensors, we increase the desired
deformation depth by a small increment ∆dddtac.

5 EXPERIMENTS

In this section, we present comprehensive experiments to evaluate our proposed PP-Tac pipeline.

We conducted experiments to evaluate the system’s ability to handle flat objects under varying con-
ditions. The qualitative and quantitative results are shown in Figure 4 and Table 1 respectively.

Figure 4 shows the typical successful grasp cases, highlighting that our hardware and PP-Tac al-
gorithm can successfully handle flat objects placed above both the flat and uneven object surface.
During the grasping process, the fingertip first contacts the material, followed by a gradual finger
closure that buckles the material and creates pinchable regions. Finally, the object is pinched and
lifted.

Table 1 provides quantitative analysis of the success rate with respect to the object material and the
complexity of the terrain beneath. To facilitate this analysis, we conducted experiments using four
flat objects in daily life: paper, plastic bag, cloth, and kraft paper bag, each of which presents unique
challenges. The paper is extremely flat with no detectable hold points. Plastic bags, commonly
encountered in daily life, are difficult to locate using conventional visual pipelines because of their
transparency. The cloth is thick and highly deformable, while the kraft paper bags are stiff and have
a multilayered structure. To assess the system’s robustness, we also varied the terrain beneath the
objects. The four types of terrain used include: a flat plane, a slope (10 degrees), a plane with a 2 cm
thick book randomly placed on it, and an uneven terrain with random curvatures. The terrain shapes
are shown in Table 1.
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Figure 4: Gallery of Grasping Different Objects in Real-World Evaluations. This figure demonstrates
successful grasps of five flat objects on four different types of terrains, highlighting the effectiveness of our
hardware and the PP-Tac algorithm. (a) A paper sheet on a flat desktop. (b) A stiff kraft paper bag on a flat
desktop. (c) A soft napkin on a plate. (d) A paper sheet on a randomly arranged book. (e) Paper sheet on a
random terrain. These evaluations showcase the robustness and adaptability of our approach.

For statistical significance, we performed 20 grasping attempts for each combination of terrain and
object. From results in Table 1, cloth and plastic bags are relatively easy to grasp due to their low
stiffness, which allows them to buckle more easily under force. In contrast, paper and kraft paper
bags are being stiffer and resist buckling, leading to lower success rates.

The terrain beneath the object also significantly impacts grasp success. On flat terrains, such as a
plane or a tilted slope, success rates for paper, plastic bags, and cloth were relatively high. This sug-
gests that flat surfaces usually generate consistent frictional forces essential for a successful grasp.
However, this advantage diminishes for stiffer flat objects, such as kraft paper bags. These stiff flat
objects usually lack of initial buckling when placed on a flat surface, making it more challenging to
form reliable grasp points afterward.

For uneven surfaces, the success rates varied according to the shape of the terrain. When a book
was placed underneath the flat object, all objects maintained high success rates. These results can
be attributed to the edge of the book and the partial void space created beneath the material, which
made it easier for the materials to buckle and separate with the terrain. In contrast, when the terrain
was highly irregular, the success rate dropped for all objects. This is likely due to the challenges
added to our force controllers, which increased the likelihood of the fingers slipping away from the
material.

6 CONCLUSIONS

This paper presents PP-Tac, a coordinated hand-arm system designed to manipulate thin, flat objects
such as paper and fabric. The system is equipped with a multi-fingered, vision-based tactile sensor
that is easy to fabricate and deploy on the hand’s fingertips. The sensor can detect contact on its
curved, omnidirectional surfaces, enabling the system to measure force and friction during contact.
This capability helps minimize slip and increases the likelihood of material deformation when han-
dling flat materials. Based on this hand design, the grasping motion is planned using a data-driven
approach. We developed an efficient synthesis algorithm to generate sliding trajectories across var-
ious terrain shapes and sensor deformation conditions, resulting in a dataset of 500,000 trajectory
samples. Using this dataset and a domain randomization technique, we trained a diffusion policy
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that enables adaptation to diverse terrains in real-world settings. Experimental results show that our
system can successfully grasp flat objects of varying thicknesses and stiffness, achieving a success
rate of 87.5%. Additionally, the proposed policy demonstrates robustness to external disturbances
and adapts well to different support terrain surfaces.
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