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ABSTRACT
Quantitative information about entities constitutes a significant

portion of tabular data in open sources and data lakes. Such tables

often lack consistent labeling and proper schema, posing signifi-

cant challenges for querying and integration. This paper studies

the problem of numerical column annotation in scenarios where

quantitative data may be gathered from different sources and unit

consistency is a concern. For instance, weight measurements may

vary between entities, expressed in kilograms for some and pounds

for others, with no accompanying unit information. We investi-

gate the conditions for effectively annotating mixed-unit numeric

data, introduce a benchmark for such an annotation task, and pro-

pose an algorithm that reliably detects semantic types (e.g., height)

and links them to the corresponding types present in a knowledge

graph. Our evaluation on a diverse set of columns with mixed units

and varying levels of annotation difficulty shows that our method

significantly outperforms strong baselines such as GPT-4o-mini

and SAND in terms of accuracy, excelling in both detecting mixed

units and annotating them with appropriate semantic labels. (All

our code and data will be publicly released upon acceptance of the

paper.)
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1 INTRODUCTION
An ever growing number of tables reside in data lakes and open

government sources [14], and many of those tables contain highly

valuable data for tasks such as question answering [15, 25], fact

verification [6] and decision making processes [13]. To leverage

those tables in downstream tasks, one needs to know the semantics

of the columns and their relationships. Tables within corporate

databases may also use semantic labels to boost the performance of

query generation tools [19]. Quantitative information about entities,
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Entity C1 C2 Source

Player

1.88 84

espn.co.uk

1.85 87

1.85 93

1.93 104

6.25 192

nhl.com6.17 218

6.25 208

Table 1: The height and weight of NHL players inte-
grated from two sources: https://www.espn.co.uk/ and https:
//records.nhl.com/.

in particular, constitutes a significant portion of columns in these

table repositories, yet their semantics remain often inadequately

represented. For example, consider the list of hockey players, shown

in Table 1, sourced from two sporting websites and integrated into a

single table without meticulous examination or mediation. One data

source represents the height (column C1) in meters and the weight

(column C2) in kilograms, while the other data source expresses the

height in feet and the weight in pounds
1
. The issue of mixed-unit

columns becomes particularly prominent in data integration tasks,

such as table union and stitching[10, 12, 16]. For instance, during a

table union operation, two columns representing the same attribute

(e.g., height) may be combined despite being recorded in different

units. Moreover, several data integration processes–such as data

warehousing, ETL (Extract-Transform-Load), and the creation of

unified data views–involve merging datasets from multiple sources,

which can result in columns with mixed units. This amalgamation

of data from disparate sources often overlooks unit consistency or

conversion. To address this issue, we investigate whether numerical

columns with mixed units can be identified and if accurate semantic

labels can be assigned.

There are several challenges in mapping the columns of a table to

a knowledge graph, and those challenges are magnified for numeri-

cal columns. Firstly, if the desired semantic type or column values

do not exist in the knowledge graph, existing methods cannot make

accurate predictions. Particularly with numerical columns, quan-

titative measurements of identical entities from different sources

seldom match precisely, due to inherent inaccuracies in measure-

ments and reporting. For example, the height of the Eiffel Tower

is listed as 330 meters on Wikipedia
2
, while it is stated as 324 me-

ters on Wikidata
3
. Secondly, quantitative data frequently undergo

changes over time due to the dynamic nature of measurements.

For instance, while attributes such as name and nationality of a

player are less likely to change, measurements such as height and

weight can change regularly. Lastly, quantitative data may be re-

ported using different units (e.g., kilograms and pounds for weight).

Because of these issues, reliably determining the semantic type of

1
In general, individual entity names may not be available for reasons such as privacy,

and our approach does not assume that individual entity names are given.

2
https://en.wikipedia.org/wiki/Eiffel_Tower

3
https://www.wikidata.org/wiki/Q243

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
espn.co.uk
nhl.com
https://www.espn.co.uk/
https://records.nhl.com/
https://records.nhl.com/
https://en.wikipedia.org/wiki/Eiffel_Tower
https://www.wikidata.org/wiki/Q243


Web ’25, April 28–May 2, 2025, Sydney, Australia Anon.

numerical data and assigning appropriate annotations still remains

a challenging task.

Variousmethods exist for detecting the semantic types of columns,

often involving their mapping to types in knowledge bases, but

most of these approaches are tailored for textual data. Despite

some attempts to adapt these methods for numerical data (e.g.,

[26, 27]), progress has been slow and the adaptability of the meth-

ods remain questionable. Many approaches targeting numerical

data leverage the statistical properties of the columns, such as mean

and standard deviation, along with statistical testing, to assign a

type [9, 17, 18, 20]. However, the underlying assumptions of these

tests, namely that the values of each semantic type follow a known

distribution and that the query column is a random sample from

the same distribution, are often violated. More recent work attempt

to relax some of the assumptions on the distribution [24], yet all

aforementioned works assume that column values are uniformly

expressed using the same unit, which may not hold when data are

gathered from multiple sources, as discussed earlier.

Our work aims to further relax the assumptions about data distri-

bution. In particular, we do not make the assumption that column

values are uniformly expressed using the same unit. In this context,

our main contribution include a mixed-unit numeric annotation

benchmark and a three-staged numeric data annotation pipeline.

The pipeline consists of (1) model generation, where plausible mod-

els of data subsets are generated, and data points are assigned to

those sub-models, (2) type annotation, where a semantic type is

assigned to each sub-model, following a cost-based approach, and

(3) an aggregation phase, where sub-model costs are aggregated

to estimate the cost of each unifying model covering the entire

column values, and to select models with the least cost. Our exper-

imental evaluation on a diverse collection of data, including our

benchmark and other datasets, demonstrates the superiority of our

approach over strong baselines from the literature in both detecting

and annotating mixed-unit numeric columns.

The remainder of this paper is organized as follows: Section 2

reviews related works, highlighting the limitations of existing meth-

ods. Section 3 details the construction of our datasets. Section 4

outlines our methodology, explaining the steps involved in the

proposed approach. Section 5 presents the experimental setup and

results, comparing our approach with the state-of-the-art methods.

Finally, Section 7 concludes the paper, summarizing our contribu-

tions and discussing the implications of our findings and potential

future work in this area.

2 RELATEDWORK
2.1 Categorical and Textual Data Annotation
In recent years, significant progress has been made in the field

of column type annotation for categorical and textual data. Vari-

ous models and approaches have been developed to address the

challenges associated with predicting column types in web tables.

For instance, Chen et al. [5] proposed Colnet, a model that lever-

ages the semantics of web tables to predict column types through

embeddings, demonstrating a robust approach to semantic table

interpretation. Efthymiou et al. [8] explored the matching of web ta-

bles with knowledge base entities, transitioning from simple entity

lookups to more sophisticated entity embeddings, thus enhancing

the accuracy of semantic annotations. Zhang’s TableMiner [28] is

another notable contribution, providing an effective and efficient

method for semantic table interpretation by integrating multiple

sources of evidence for type prediction. Zhang et al. [27] introduced

Sato, a contextual semantic type detection system that utilizes con-

text to improve the prediction accuracy of column types in tables.

Finally, the SemTab Challenge [1], held for the past five consecutive

years, is a benchmark for mapping tabular data to a Knowledge

graph with a primary focus on textual data.

2.2 Numerical Data Annotation
While substantial advancements have been made for categorical

and textual data, the task of annotating numerical columns has

also seen progress, though with some limitations. SAND (Semantic

Annotation of Numerical Data) [24] is a pioneering work in this

domain, focusing on numerical data and outperforming traditional

statistical-based methods such as KS-test. (We provide more details

on SAND in Section 4.1.) Alobaid’s work on fuzzy semantic label-

ing of semi-structured numerical datasets [3] introduces a novel

approach to handle the inherent uncertainty in numerical data an-

notation. Neumaier’s research on multi-level semantic labeling [17]

provides a hierarchical approach to enhance the granularity and ac-

curacy of numerical data annotations. Pham’s domain-independent

approach to semantic labeling [18] aims to generalize the anno-

tation process across various domains, making it more versatile.

Ramnandan’s work on assigning semantic labels to data sources

[20] contributes to improving the interoperability and usability of

numerical datasets. Kacprzak’s study on making sense of numerical

data focuses on the semantic labeling of web tables [9], addressing

the challenges of interpreting numerical columns in a web context.

Despite these advancements, existing methods for numerical

data annotation often overlook the complexities, discussed in the

previous section, introduced by columns containing multiple units

of measurement. This limitation hampers the effectiveness of se-

mantic annotations in such cases.

3 DATASET CONSTRUCTION
There is a lack of datasets for evaluating semantic annotation of nu-

meric columns. The SemTab challenge [1], held annually since 2019,

evaluates tabular data mapping to a knowledge graph, but it primar-

ily includes textual columns. In SemTab Challenge 2021 [7], a task

was introduced in Round 2 to identify the semantic relationship be-

tween an entity and a numeric property (e.g., ⟨Kielzugvogel,5.8⟩ and
⟨MT explosive motorboat,5.62⟩). However, this task differs from an-

notating a numerical column. Recent papers [3, 24] have introduced

small manually annotated datasets, but all column values in these

datasets have the same semantic type and unit. To our knowledge,

there is no public multi-unit numeric column annotation dataset.

To fill this gap, we introduce a mixed-unit numeric column anno-

tation dataset with varying levels of separability difficulty between

units. To quantify this separability difficulty, we introduce the con-

cept of reflectivity before discussing our dataset.
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3.1 Reflectivity
Some mixed-unit columns are challenging to separate, even for

human experts, due to significant overlap in data ranges from dif-

ferent units. In contrast, other mixed-unit scenarios are readily

identifiable. To quantify this difficulty, we introduce the concept

of reflectivity, which was previously used in a different context to

quantify the interference between data dimensions [2].

Reflectivity, as defined by Agrawal and Srikant [2], measures the

likelihood that a data point’s reflection exists within the dataset.

If ®𝑥𝑖 denotes the coordinates of a data point, the reflections of ®𝑥𝑖
include all permutations of ®𝑥𝑖 ’s coordinates, including ®𝑥𝑖 itself. For
example, the reflections of (1,2) is {(1, 2), (2, 1)}. The reflectivity of a

set of points 𝐷 ⊆ R2 is formally defined as:

Reflectivity(𝐷, 𝑟 ) = 1 − 1

|𝐷 |
∑︁
®𝑥𝑖 ∈𝐷

𝜃 ( ®𝑥𝑖 )
𝜌 ( ®𝑥𝑖 )

(1)

where 𝑟 is a distance threshold chosen experimentally,𝜃 ( ®𝑥𝑖 ) denotes
the number of points within Euclidean distance 𝑟 of ®𝑥𝑖 , 𝜌 ( ®𝑥𝑖 ) is the
number of points in 𝐷 with at least one reflection within distance 𝑟

of ®𝑥𝑖 , |𝐷 | is the dataset cardinality. The reflection of a point includes
itself, hence 𝜌 ( ®𝑥𝑖 ) ≥ 1 and 𝜌 ( ®𝑥𝑖 ) ≥ 𝜃 ( ®𝑥𝑖 ). Reflectivity is zero

if 𝜌 ( ®𝑥𝑖 ) = 𝜃 ( ®𝑥𝑖 ) for all data points. For higher dimensions, the

reflectivity is computed as the average reflectivity across all 2-

dimensional subspaces.

In our work, we are interested in the reflectivity relationship

between different units of a property. Given two sets of quantities,

𝑈1 and𝑈2, both measuring the same property but in different units,

the values of 𝑈1 can interfere with annotating the values in 𝑈2 if

their values are close. To capture this relationship between units, we

create our dataset𝐷 as the Cartesian product𝑈1×𝑈2, which includes

every pair (𝑎, 𝑏) where 𝑎 ∈ 𝑈1 and 𝑏 ∈ 𝑈2. A high reflectivity in

this dataset indicates a greater average number of reflections falling

within distance 𝑟 of existing data points. Intuitively, this scenario

implies an increased degree of overlap between the data represented

by the units𝑈1 and𝑈2. This overlap makes it more challenging to

separate these units. To illustrate, consider data points (𝑎𝑖 , 𝑏𝑖 ), (𝑎 𝑗 ,

𝑏 𝑗 ) ∈ D that are not within distance 𝑟 of each other. If the reflection

(𝑏𝑖 , 𝑎𝑖 ) of (𝑎𝑖 , 𝑏𝑖 ) is within distance 𝑟 of (𝑎 𝑗 , 𝑏 𝑗 ), it suggests that the

values 𝑏𝑖 and 𝑎 𝑗 , as well as 𝑏 𝑗 and 𝑎𝑖 , are similar. Since we know

𝑎𝑖 and 𝑎 𝑗 belong to𝑈1, and 𝑏𝑖 and 𝑏 𝑗 belong to𝑈2, this proximity

of values from different units suggests a greater degree of overlap

between the units. Conversely, a low reflectivity suggests that the

values in different units are largely distinct, with minimal overlap.

In our dataset generation, we set the value of 𝑟 such that the average

number of points within distance 𝑟 is 2.5. This decision was made

to capture reflections that fall within top 2-3 neighbours of a data

point.

As an example of high reflectivity, consider soccer field sizes

measured in meters and yards. As shown in Figure 1, many data

points are reflected in close proximity to others, making it chal-

lenging to distinguish between the two units. In contrast, for an

example of low reflectivity, consider player weight in pounds and

kilograms. As illustrated in Figure 2, the units are highly separable,

with reflections placed far from the original data points, making

differentiation much easier.

Entity Size (meters) Size (yards)

Soccer
Fields

100

84 91.86

110

100.58

103 112.64

82.30

Figure 1: Distribution of high reflective data (reflec-
tivity = 0.875)

Entity Weight (lb) Weight (kg)

Players

210 95.25

194

150

176

67

178.56 81

73

92

Figure 2: Distribution of non-reflective data (reflec-
tivity = 0)

3.2 Mixed-Unit Dataset
Our Mixed-Unit dataset leverages real-world numeric data from

Wikidata, transforming it into a robust dataset designed to test

a model’s ability to handle mixed units. The dataset is generated

systematically, allowing control over key parameters such as unit

counts, percentages of each unit within a column, and levels of data

reflectivity within each column.
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We generate three variations of the Mixed-unit dataset, each

consisting of 200 columns with 30 rows per column. Each column

consists of data in two different units, with an equal distribution of

values from each unit. The values of different units in each column

are present in varying proportions and degrees of overlap.

• Easy Dataset: This dataset is designed to present the least

challenge in identifying mixed-unit columns. The majority

of columns (60%) exhibit low reflectivity (< 0.3), indicating

minimal overlap between the two units present within each

of these columns. This characteristic makes the identifica-

tion of mixed-unit columns relatively straightforward in this

dataset. The remaining columns are divided equally between

those with moderate reflectivity (0.3 - 0.6) and those with

higher reflectivity (> 0.6).

• Medium Dataset: This dataset introduces a moderate level

of difficulty in identifying mixed-unit columns. Compared

to the Easy dataset, the majority of columns (60%) exhibit

moderate reflectivity (0.3 - 0.6), indicating a noticeable over-

lap between data points with different units. The remaining

columns are divided equally between those with low reflec-

tivity (< 0.3) and those with higher reflectivity (> 0.6).

• Hard Dataset: This dataset presents the most challenging sce-

nario for mixed-unit column identification. The majority of

columns (60%) exhibit high reflectivity (> 0.8), making it sig-

nificantly more difficult to distinguish between the two units

and identify mixed-unit columns. The remaining columns

are equally divided between those with low reflectivity (<

0.3) and those with moderate reflectivity (0.3 - 0.6).

4 MIXEDSAND APPROACH
Consider a table with a set of columns 𝑐1, . . . , 𝑐𝑛 , and let val(𝑐𝑖 )

denote the set of values in column 𝑐𝑖 . Our focus is on columns

that consist of only numeric values. Each table often describes a

set of entities (e.g., person, organization, location) or relationships

between entities (e.g., distance between two cities), and this limits

the set of types a column can take.

Problem 1 (Numeric Column Type Annotation). Let T be a
set of entity types, P be a set of properties and U be a set of units. A
semantic type can be denoted as a triple <t, p, u> where t ∈ T, p ∈
P and u ∈ U. The problem of column type annotation for a numeric
column 𝑐𝑞 is the task of assigning a semantic type to 𝑐𝑞 .

In this work, we use a knowledge graph (KG) to construct our

candidate semantic types. However, candidate types may also be

obtained from other sources, such as Wikipedia or a training set.

For each candidate semantic type 𝑐 , we require a sample set of

data points val(𝑐) representing the distribution. We operate under

the closed world assumption, meaning that the candidate set is con-

sidered complete. This assumption is commonly made in similar

approaches on annotating tabular data [5, 8, 24, 28].

4.1 Background on Single Unit Column
Annotation

A few methods have been developed under the assumption that the

input column consists of a single unit [3, 24]. Our methodology is

built around SAND [24], a method that has been shown to be the

state-of-the-art performance for annotating single-unit numeric

columns, and which is reviewed in the following.

SAND [24] compares a given numeric column, known as the

query column, with all candidate columns in the knowledge graph.

This comparative analysis is executed by constructing a complete bi-

partite graph between the query column and the candidate column.

On one side, nodes represent the numbers in the query column,

while on the other side, they correspond to the numbers in one of

the candidate columns. Edges in this graph signify the numerical

disparity between the nodes they connect. Each mapping of the

query column to a candidate column is represented with a sub-

graph and is associated with a cost. This cost is defined as the sum

of the edge weights in the mapping, with each weight giving the

difference between two quantities.

It should be noted that the model operates under the assumption

that all query columns are single-unit columns, and each query

column is compared with candidate columns that feature a singular

unit. When units are mixed within the query column, the model

maps values across different units from a mixed-unit query col-

umn to single-unit candidate columns. Consequently, the model is

prone to fail to produce satisfactory results when the query column

consists of mixed units, as shown in our evaluation section.

Furthermore, this approach presumes that all values in the query

column align with units available in the knowledge graph. If the

data exists in a different unit within the knowledge base, SAND’s

predictive accuracy is compromised.

4.2 Annotating Mixed-Unit Columns
Assuming that the column to be annotated has mixed units

4
, our

approach consists of a three-staged pipeline, as illustrated in Figure

3: (1) model generation, where plausible models of data subsets are

generated, and data points are assigned to such sub-models, (2)

sub-model annotation, where a semantic type is assigned to each

sub-model, following a cost optimization framework for numerical

data similar to SAND [24], and (3) aggregation phase, where sub-
model costs are aggregated to estimate the cost of each unifying

model covering the entire column values as well as to select models

with the least cost.

4.2.1 Model Generation. Given a column with mixed units,

there can be potentially many possible groupings of the column

values, with the total number determined by the powerset of the

column values. We hypothesize that quantities or measurements
with the same unit are more likely to be closer to each other than
those with different units. Based on this hypothesis, a clustering of

the column values can place values with the same unit in the same

cluster. As the simplest andmost commonly used clusteringmethod,

k-means is an option. However, there are two key problems that

need to be addressed. First, the scale of the numbers can vary signif-

icantly between units (e.g., millimeters and kilometer), making the

absolute difference between two quantities less meaningful when

they are of different units. Second, the number of units in a mixed

column is often unknown, which complicates the determination

of the appropriate number of clusters k. We initially assume the

4
This assumption is relaxed in Section 4.3.
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Figure 3: MixedSAND column annotation pipeline

number of units in a column is known and relax this condition in

Section 4.3

Choosing an appropriate distance function. The default dis-
tance function in k-means is the Euclidean distance, which treats

all differences between quantities equally. This poses a problem

when clustering quantities with different measurement scales and

units. For example, consider the “Area” column in Table 2, which

lists the areas of Canadian cities in both square meters and square

kilometers. Without knowing the units, the default k-means dis-

tance function (Euclidean distance) would incorrectly cluster the

first three cities with areas 684.4, 115, and 87,430,000 together, while

separating the fourth city with an area of 630,200,000. This error

occurs because the default metric fails to account for the scale vari-

ations inherent in mixed-unit data, as depicted in Figure 4 using

min-max normalization for clearer illustration.

Figure 4: Normalized area values (min-max scaling) for Cana-
dian cities in Table 2. The visual gap between the third and
fourth rows highlights the scaling issue leading to a misclas-
sification.

In contrast, humans typically have no problem recognizing these

scale differences and will likely cluster the first two cities with mea-

surements in square kilometers together and the last two cities with

measurements in square meters together. Our proposed solution to

this problem is the Bray-Curtis distance [21], a normalized relative

difference function defined as follows:

distance(𝑥,𝑦) = |𝑥 − 𝑦 |
𝑥 + 𝑦 for 𝑥,𝑦 ≥ 0 and 𝑥 + 𝑦 > 0. (2)

This distance function, commonly used in ecology for comparing

quantities with different scales, incorporates the magnitudes of

quantities into the comparison, effectively replicating the intuitive

clustering of city areas in our example and mitigating scaling errors.

In our city area example, the Bray-Curtis distance between the areas

in Rows 3 and 4 is 0.7563, indicating that Row 3 is considered closer

Entity Property Unit

C
ity

684.4

km
2

115

87,430,000

m
2

630,200,000

Table 2: Area of a few Canadian cities

to Row 4 than Row 1, as the distance between Rows 1 and 3 is 0.9999.

Our experiments in Section 5.5 confirm that this adaptation results

in more accurate unit-based clustering with the k-means algorithm.

Additionally, the Bray-Curtis distance is a metric, ensuring smooth

integration within clustering algorithms.

Clustering. We employ a clustering approach based on the k-

means algorithm, with k set to the number of units, to partition

a mixed-unit column into sub-columns. Initially, we assume the

number of units is known, a presumption we relax in Section 4.3. As-

suming adequate differentiation between units within the column,

each resulting sub-column should predominantly contain values

associated with the same semantic type and unit. Next, we discuss

the annotation process for each sub-column.

4.2.2 Annotating Sub-Models. In our model generation, a query

column is partitioned into sub-columns, and each sub-column is

expected to map to an atomic semantic type and unit. This mapping

is performed using a single-unit annotation method; in our case,

this is done using SAND, as discussed in Section 4.1. However, there

are two issues in using a single-unit annotation process. First, while

the knowledge graph may be complete in terms of the semantic

types covered, it is less likely to include all possible units for each

property or sufficient samples for each unit. Thus, the knowledge

graphmay not have the exact unit that matches a query sub-column.

To address this, we compile a set of possible units and conversion

rates between all convertible units. When comparing a candidate

column from the knowledge graph to a query column, we expand

the knowledge graph column with all other applicable units. This

type expansion is also applied to data samples using our conversion

tables, meaning each new unit will have data samples. For example,

if the knowledge graph has human height in centimeters, the data

samples in centimeters are mapped to meters, feet, etc.

Another issue is the cost function in SAND, which is defined as

the sum of the edge weights in a mapping, with the edge weight

determined by the absolute difference between matching quantities.

We replace this function with one that provides a more accurate

cost estimate when dealing with multiple units, as discussed in the

next subsection.
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4.2.3 Aggregating Sub-Model Annotations. Our MixedSAND

model treats sub-column type predictions as possible candidates for

the entire column. The cost of a prediction for the entire column is

defined as the cumulative costs of sub-column predictions. However,

this cost model is only meaningful if the costs across different sub-

columns are comparable. With the default edge weight in SAND,

defined as the absolute difference between the quantities connected

by the edge, these costs are not comparable across different units.

We modify the edge weights so that the weight of an edge con-

necting two quantities u and v is defined again using Bray-Curtis

distance (Eq. 2). This new edge weight ensures the cost is nor-

malized based on the scale of the quantities matched, making the

mappings costs across different sub-columns and candidate types

comparable.

4.3 Relaxing the Assumption on Unit Count
We now relax the assumption from the previous section that the

number of units in a query column is known. Detecting the number

of units solely based on the distribution of the values is not straight-

forward especially when the ranges of values for different units

overlap. Each choice of 𝑘 yields a model of data with an associated

cost. Our hypothesis posits that a correct model should yield a better
mapping of the query column and result in the least cost.

Based on this hypothesis, we vary the number of units 𝑘 from

one to a maximum and estimate the cost of the mapping under each

value of 𝑘 . For example, for 𝑘 = 2, our query column is divided into

two sub-columns using k-means clustering. With each sub-column

assumed to contain only one unit, we proceed with the annotation

process individually for each. This results in a final annotation

with an associated cost value for each sub-column. The cumulative

cost of the two sub-column mappings gives the cost for having

two units. We expect the range of possible values for 𝑘 to be small,

and that the optimal number of partitions, where the cost value is

minimized, signifies the ideal partitioning of the column into its

constituent units.

5 EVALUATION
We evaluated our model’s performance on diverse datasets with

varying parameters, such as data reflectivity, column size and unit

counts, and compared it to state-of-the-art baselines.

5.1 Experimental Setup
We employ two diverse datasets in our evaluation:

• Mixed-unit datasets: As detailed in Section 3, these aremixed-

unit datasets derived from the Wikidata knowledge graph.

We generated three variations–Easy, Medium, and Hard–to

assess the model’s robustness across different levels of unit

overlap and reflectivity.

• WDC dataset: This single-unit dataset, used in the evaluation

of SAND [24], is a subset of the WDC table corpus. We

employ the same subset, enabling a direct comparison with

the state-of-the-art method on a standardized benchmark.

More specialized datasets, such as VUCD (Section 5.2), and baselines

are introduced in relevant sections.

5.2 Detecting the Number of Units
Single-unit vs. multi-unit columns. This evaluationwas conducted

on both our Mixed-unit dataset and the single-unit WDC dataset.

To provide context for our model’s performance, we used Kernel

Density Estimation (KDE) [22], a common method for identifying

multimodal distributions, as a baseline. Given that a mixed-unit

column contains data from different units (e.g., weight in pounds

and kilograms), and because of the differences in range and scale

between units, the overall distribution of the column is likely to

appear as if composed of two or more distinct distributions. As one

can see in Figure 5, this phenomenon manifests as multimodality,

where the distribution exhibits multiple peaks or modes. KDE, a

non-parametric method for estimating probability density func-

tions, helps assess whether a column’s distribution is multimodal

[4, 23]. The presence of peaks in a KDE plot suggests a mixed-unit

column, while a smooth, unimodal distribution is more characteris-

tic of a single-unit column. We expect the KDE baseline to perform

well in cases where units are clearly separated but anticipate chal-

lenges in scenarios with high reflectivity, where overlapping units

might obscure multimodality.

Figure 5: Distribution of a mixed-unit column

As shown in Table 3, our model consistently outperformed the

KDE-based baseline across all datasets, demonstrating its ability

to discern subtle unit patterns more effectively. Both MixedSAND

and KDE exhibit relatively lower accuracy on the hard dataset due

to high reflectivity, where significant overlap between units makes

it more challenging to identify mixed unit columns.

Dataset Hard Medium Easy WDC
Number of Columns 200 200 200 69

MixedSAND Accuracy 0.58 0.715 0.765 0.696

KDE Accuracy 0.50 0.54 0.55 0.652

Table 3: Accuracy of MixedSAND (our method) in identifying
multi-unit columns, compared to a KDE-based baseline

Determining the number of units. To evaluate our model’s accu-

racy in counting distinct units within mixed-unit columns, we con-

structed the Varying Unit Count Dataset (VUCD) with 300 distinct

columns. The dataset was generated based on Wikidata, following

the mixed-unit dataset generation process outlined in Section 3.2.

We categorized the columns based on the number of units they con-

tained (2, 3, 4, or 5), and ensured that the dataset included an equal
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number of columns for each unit category. MixedSAND achieved an

accuracy of 0.516 in determining the number of units, compared to

KDE, which had an accuracy of 0.193. This accuracy is for the entire

VUCD, which includes columns with 2 to 5 units. The substantial

performance difference likely stems from KDE’s reliance on density

estimation, which becomes less reliable when distributions are not

well-separated, leading to diminished accuracy in such cases.

5.3 End-to-End Type Detection Performance
For an end-to-end evaluation, we processed columns without prior

knowledge of whether they contained mixed units, fed them into

each model, and evaluated performance based on the predicted se-

mantic types. We compared our method against both an LLM-based

approach using GPT-4o-mini and the SAND method as baselines.

The LLM was tasked with identifying the semantic types of nu-

meric columns in a few-shot setting
5
. While LLM-based solutions

have shown strong performace on textual data [11], we sought to

evaluate their performance on numeric data, especially in cases

with mixed units.

Table 4 presents top-n accuracy, measuring the fraction of an-

notated columns where the correct semantic type appeared in the

top-n predictions, for n=1, 3 and 5. Our model consistently out-

performs SAND and GPT-4o-mini across all mixed-unit datasets.

The performance gap between our model and SAND is most pro-

nounced in the Easy dataset compared to Medium and Hard. This

is because the Easy dataset primarily contains low-reflectivity data,

where different units in the same column exhibit minimal overlap.

SAND struggles with this separation, as it attempts to annotate

all column values at once. However, in the Hard dataset, where

there is significant overlap between units, SAND treats the column

as a single unit and performs better. It should be noted that the

higher degree of overlap in the Hard and Medium datasets makes

unit separation more challenging, leading to a slight decrease in

accuracy compared to the Easy dataset.

Dataset Method Top-n Accuracy
n=1 n=3 n=5

Easy

SAND 0.195 0.36 0.53

GPT-4o-mini 0.365 0.555 0.625

MixedSAND 0.485 0.75 0.825

Medium

SAND 0.22 0.455 0.65

GPT-4o-mini 0.26 0.415 0.52

MixedSAND 0.335 0.64 0.80

Hard

SAND 0.275 0.455 0.665

GPT-4o-mini 0.265 0.45 0.55

MixedSAND 0.33 0.60 0.775

Table 4: Top-n accuracy of MixedSAND vs. SAND and GPT 4o-
mini on semantic labeling of the Easy/Medium/Hard datasets

On the WDC dataset, which consists exclusively of single-unit

columns, our model performs comparably to both the LLM-based

approach and SAND, as shown in Table 5.

5
Details on the LLM-based prompt and examples can be found in Appendix A

Method Top-n Accuracy
n=1 n=3 n=5

KS-test 0.069 0.129 0.277

SAND 0.116 0.232 0.42

GPT 4o-mini 0.13 0.26 0.29

MixedSAND 0.101 0.26 0.405

Table 5: Top-n accuracy of MixedSAND vs. SAND, KS-test,
and GPT 4o-mini on semantic labeling of the WDC dataset

5.4 Performance on Clustered Columns
Sometimes, clusters within a mixed column are known from earlier

preprocessing steps. For examples, when data is integrated from

multiple sources, each source may be treated as a cluster. This arises

particularly after table integration tasks such as table union and

stitching [12, 16], where the columns being integrated may share

the same type and property but not necessarily the same unit. In

such cases, our pipeline can be reduced to two steps: Annotating

Sub-Models (Section 4.2.2) andAggregating Sub-Model Annotations

(Section 4.2.3).

To assess the performance of our model in these scenarios, we

constructed a real dataset comprising 23 table pairs, with each pair

containing two numeric columns to be integrated. The numeric

columns in each pair shared the same type and property but differed

in units. The dataset was sourced from Wikitables, which includes

1.9 million tables extracted from Wikipedia. We systematically

identified numeric columns representing the same property and

manually annotated a subset to determine their type and unit. From

this, we selected column pairs with identical types and properties

but different units to create the dataset for this evaluation.

As shown in Table 6, our model achieved higher accuracy in

this specific task compared to the scenarios where data clusters

are unknown. This is because, in our evaluation of mixed-unit and

single-unit columns (§5.3), the model must first determine whether

a column is mixed-unit before proceeding to the annotation step,

introducing potential errors at each stage.

Top-n Accuracy
n=1 n=3 n=5
0.65 0.78 0.91

Table 6: Post-Clustering Annotation Performance of the
Model on the Wikitables Dataset

5.5 Impact of Relative Difference
The impact of using relative difference (or Bray-Curtis distance)

instead of absolute distance was evaluated in two key tasks: deter-

mining the number of units within mixed-unit columns (multi-class

classification) and distinguishing between single-unit and mixed-

unit columns (binary classification). The former was assessed us-

ing the VUCD dataset, which contains mixed-unit columns with

varying unit counts, while the latter was evaluated on both our

mixed-unit dataset and the WDC.

As shown in Table 7, our model consistently achieves superior

performance when employing relative difference. As discussed in
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Section 4.2.1, mixed-unit columns include values measured on dif-

ferent scales (e.g., kilograms vs. pounds), where absolute differences

can be misleading. In contrast, relative difference accounts for these

scale variations, allowing for more accurate clustering and unit

count determination.

Method Accuracy
MixedSAND + relative difference 51.6

MixedSAND + absolute distance 25

Table 7: Impact of relative distance on clustering accuracy

When differentiating between single-unit andmixed-unit columns,

Table 8 reveals a clear improvement in performance when using rel-

ative difference. This improvement can be attributed to the inherent

limitations of absolute distance in handling mixed-unit data. Large

absolute differences can occur between values of the same unit if

their magnitudes are high, leading to separate clusters. Conversely,

small absolute differences between values of different units with

low magnitudes can result in two distinct units being clustered to-

gether. Relative difference mitigates these issues by considering the

scale of the values, thus improving the model’s ability to correctly

distinguish between single-unit and mixed-unit columns.

Hard Medium Easy WDC
Number of Columns 200 200 200 69

MixedSAND with relative difference 0.58 0.715 0.765 0.696

MixedSAND with absolute distance 0.52 0.64 0.665 0.493

Table 8: Impact of relative difference in distinguishing single-
unit vs. mixed-unit columns

5.6 Robustness to Variations in Unit Count
To evaluate the robustness of our method with respect to the num-

ber of units within amixed-unit column, we constructed datasets fol-

lowing the process outlined in Section 3.2. These datasets contained

mixed-unit columns with varying unit counts while maintaining

other parameters, such as reflectivity, unchanged. We constructed

four datasets, each containing columns with a specific number of

units ranging from two to five. Each dataset contained 100 columns,

each with 40 rows, and the reflectivity distribution of the columns

aligned with that of the easy dataset (§3.2).

# of units Top-n Accuracy
n=1 n=3 n=5

2 0.49 0.74 0.82

3 0.41 0.69 0.80

4 0.41 0.70 0.80

5 0.42 0.70 0.81

Table 9: Performance of MixedSAND on Columns with Vary-
ing Numbers of Units

As shown in Table 9, our model demonstrates robustness to varia-

tions in the number of units within a column. Notably, performance

remains consistent across all datasets with 3, 4, or 5 units.

6 IMPACT OF QUERY COLUMN SIZE
For this evaluation, we constructed a dataset of single-unit columns

derived from real-world numeric data in Wikidata, with each col-

umn containing 50 entries. To evaluate the impact of query column

size on the model’s accuracy, we used random samples from the

query columns rather than the entire column.

As illustrated in Figure 6, the top-n accuracy initially increases

with the length of the query column. However, beyond a certain

point, further increases in the query column length results in a

decline in accuracy. When the query column size exceeds that of

the candidate column, injective mapping becomes unfeasible, neces-

sitating that the query column be sampled to match the candidate

column’s length. Additionally, for an injective mapping, the data in

the query column must map entirely to the data in the candidate

column, and the presence of outliers can clearly lead to inaccurate

predictions by the model. In our dataset, the average size of a candi-

date column was 43, and a drop in performance occurs as the query

size approaches or surpasses the size of the candidate column.

Figure 6: Accuracy varying query column size

7 CONCLUSIONS
In this paper, we addressed the problem of annotating numerical

columns, with a specific focus on mixed-unit columns–an aspect

that has been overlooked in previous work. We introduced a multi-

unit column annotation benchmark and proposed a new annotation

approach that leveraged the SAND model. We evaluated our model

on datasets containing mixed-unit columns with varying levels

of reflectivity and compared its performance with state-of-the-art

methods. The results demonstrated that our method outperforms

existing approaches in terms of accuracy.

Future research could explore several promising directions based

on our current approach. One avenue is optimizing the process by

pre-determining whether a column is mixed-unit before annotation,

potentially reducing runtime. Another direction is leveraging the

shared context when annotating multiple columns of the same

table.
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A DETAILS OF OUR LLM-BASED APPROACH
USING GPT-4O-MINI

In this section, we provide detailed information about the LLM-

based approach (GPT 4o-mini) used for semantic type detection

in the evaluation section. The LLM was prompted to determine

the semantic type of a numeric column based on numeric values

and their related entity types. Below, we include the prompt used,

examples provided to the model, and the evaluation methodology.

A.1 Prompt Design
The LLM-based method was evaluated using a custom-designed

prompt. The task was to identify the most likely semantic type

for a numeric column given its entity type. The prompt explicitly

mentioned that the numeric column could contain mixed-unit data,

but the model was not required to identify the units. Below is the

prompt used:

I have a dataset with two columns: one contains numeric

values, and the other is related to an entity type. The nu-

meric column might contain mixed-unit data, meaning the

values could be in different units, but we are not concerned

with determining the units. Your task is to determine the

most likely semantic type of the numeric column based

on the numeric values and the type of entity column they

are related to. The semantic type refers to what the nu-

meric values represent in relation to the entity type, such

as weight, height, price, duration, or another meaningful

concept.

Here are some examples:

1.

Input:

Entity Type: lake

Numeric Column: [’27’, ’70’, ’25’, ’10’, ’10’, ’55’, ’16’, ...]

Output: depth

2.

Input:

Entity Type: weapon model

Numeric Column: [’77168.0’, ’9760.0’, ’17700.0’, ’15.8’, ...]

Output: mass

3.

Input:

Entity Type: destroyed building or structure

Numeric Column: [’119.5’, ’85.0’, ’110.0’, ’209.0’, ...]

Output: length

Now, based on this information, here is the input:

Entity Type: entity_type
Numeric Column: numeric_column
Please provide up to 5 guesses for the most likely seman-

tic type of the numeric column, without any additional

explanation or context.

A.2 Examples Provided to the Model
To improve performance, we included infrequent examples and

entity types in the prompt, since the model was already able to

correctly predict the semantic type in cases involving frequent

types, such as human height and weight. By using more infrequent

examples, we aimed to evaluate the model’s ability to generalize

beyond common cases.

A.3 Testing Different Prompts
Initially, we tested prompts that did not mention the possibility of

mixed-unit columns. In these cases, the model assumed all numeric

columns were single-unit and returned lower performance. When

we explicitly mentioned that columns might be mixed-unit, the

model attempted to annotate the units as well, which was not

required and led to reduced accuracy. Therefore, we added the

clarification that determining the units was not part of the task,

and this resulted in improved performance. The prompt provided

above yielded the best overall performance.

A.4 Evaluation Methodology
For evaluating the LLM-based approach, we followed the same

procedure used for evaluating SAND and MixedSAND. The LLM

was provided with numeric columns and their corresponding entity

types, and the model’s predicted semantic types were recorded.

As our performance metric, we used top-n accuracy, measuring

the fraction of annotated columns where the correct semantic type

appeared in the top-n predictions, for n=1, 3 and 5. The performance

results of GPT 4o-mini were included in Tables 4 and 5 in the main

paper.

A.5 Conclusion of the LLM Evaluation
The results of the LLM evaluation showed that while GPT 4o-mini

could handle simple cases with single-unit columns, it consistently

struggled with mixed-unit columns. This confirms the importance

of a specialized method for handling mixed-unit numeric data, such

as the one proposed in this work.
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