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Abstract

Self-supervised learning for vision typically focuses on learning invariant or
equivariant representations through data transformations, but this approach in-
troduces priors and biases that weaken performance in tasks not aligned with these
symmetries. Inspired by world models, we propose Contextual Self-Supervised
Learning (CONTEXTSSL), which learns a general representation adaptable to
different transformations by leveraging context—a memory module that tracks
task-specific states, actions (transformations), and future states. Instead of en-
forcing invariance, CONTEXTSSL learns equivariance to all transformations, en-
abling the model to encode general features while adapting to task-specific symme-
tries with a few examples. Empirically, we demonstrate significant performance
gains over existing methods on equivariance-related tasks. Code is available at
https://github.com/Sharut/In-Context-Symmetries.

1 Introduction

Recent advances in self-supervised learning (SSL) of image representations have achieved competitive
performance to it’s supervised counterparts across various tasks, including image classification [9, 6,
43,29, 17,3, 18, 19, 35, 31, 10, 25, 11, 42, 36, 44]. Most SSL approaches rely on joint-embedding
architectures that bring semantically similar (positive) pairs closer together and push dissimilar
(negative) pairs apart. Positive pairs are typically generated through data augmentations like color
changes, cropping, or orientation shifts. These methods often enforce either invariance [9, 6, 11, 25,
42, 19] or equivariance [21, 13, 12, 15, 1, 16] to augmentations, introducing strong inductive biases
that may not generalize well across different downstream tasks. For instance, invariance to image
flipping is useful for classification but hinders segmentation, leading to brittle representations that
may require task-specific retraining with tailored augmentations. This motivates our central question

Can incorporating context into self-supervised vision algorithms eliminate augmentation-based
inductive priors and enable dynamic adaptation to varying task symmetries?

This work suggests a positive answer to this question by proposing to enhance the current joint
embedding architecture with a finite context — an abstract representation of a task, containing a
few demonstrations that inform about task-specific symmetries, as shown in Figure 3(c). Based
on this idea, we propose Contextual Self-Supervised Learning (CONTEXTSSL), a contrastive
learning framework that uses a transformer module to adapt to selective invariance or equivariance
to transformations by paying attention to context representing a task. Unlike previous approaches
with built-in symmetries, the ability of CONTEXTSSL to adapt to varying data symmetries—all
without undergoing any parameter updates—enables it to learn a general representation across tasks,
devoid of specific inductive priors. We demonstrate that in the absence of context, CONTEXTSSL
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Figure 1: We apply a transformation (rotation or color) on a source image in latent space and retrieve
the nearest neighbor (NN) of the predicted representation when the context contains pairs of data
transformed by (top row) 3D rotation (R*, RY, R*); (bottom row) color transformation (6, ¢). In the
top row, we see that CONTEXTSSL learns equivariance to rotation and invariance to color as the NN
representations match the target’s angle but not its color. In the bottom row, it adapts to the color
context and enforces the reverse, be equivariant to color and invariant to rotation.

learns a general representation by encoding all relevant features and data transformations. As the
context increases, the model tailors its symmetries to a task, encouraging equivariance to a subset of
transformations and invariance to the rest (as shown in Figure 1). We validate our approach on real
world a physiological dataset MIMIC III [28], a fairness benchmark UCI-Adult [2], 3DIEBench and
CIFAR10. We also extend CONTEXTSSL to supervised learning, demonstrating its ability to identify
task-defining features through context.

2 Beyond Built-in Symmetry: Contextual Self-Supervised Learning

Recognizing the limitations of existing augmentation-specific SSL methods, we propose a new
paradigm: Contextual Self-Supervised Learning (CONTEXTSSL). Unlike traditional methods, this
approach learns a single model that adapts to be either invariant or equivariant based on context-
specific augmentations, tailored to the needs of the task or data at hand. Instead of enforcing a fixed
set of symmetries, CONTEXTSSL learns these symmetries from contextual cues, thus capturing the
unique set of features of downstream tasks. This adaptability allows it to serve as a general-purpose
SSL framework, capable of learning from a diverse array of pretraining tasks with varying symmetry
priors and seamlessly adapting to different downstream tasks.

2.1 Contextual World Models

Symmetries as Context. Given a set of groups of input transformations {G, ..., G}, the goal of
CONTEXTSSL is to build a general representation that is adaptive to a set of multiple symmetries
corresponding to these different groups. Each group G, can be represented through the joint distribu-
tion P(z, a, y|G.), where z is the input sample (sampled from an unlabeled dataset), a represents the
parameters of the transformation drawn from G, and applied to x, and y is the transformed input. We
approximate this probability distribution by drawing K samples from the joint distribution and form
acontext C(G.) = [(x1,a1,v1),- -, (TK,ak, yx)], where z;, a;, y; ~ P(x,a,y|G.),i € [K].

Contextual World Models. To implement this broad goal, we propose to adaptively learn the
symmetries represented by G. by training the model:

Yi = h((wi,a:); (21,01, 91), - (Ti1, @im1, Yim1)- )]
While the requested prediction y; concerns only the inputs x; and a;, the model can now pay attention
to the experience so far, enforcing relevant symmetries for the augmentation group G.. The predictor
h is updated by minimizing the loss at each context length Zfil (h((z,a;); Ci—1),y:) where
C; ={(z1,a1,y1)s .-, (xi—1,ai—1, y;—1)} represents the context before index i.

A natural approach to enable context-based training is through attention mechanisms in transformer-
based autoregressive models. Large language models excel at in-context learning, generalizing to new
tasks by focusing on a few examples. Inspired by this, we train a decoder-only transformer model
in-context, conditioning on relevant context C'(G.) that represents the transformation group G..



2.2 Contextual Self-Supervised Learning (CONTEXTSSL)

Motivated by these ideas, we construct pairs of points {(z;, y;)} X, by either 1) sampling a trans-
formation group (G) and applying an augmentation from (¢gG) to x; to obtain y;; or 2) if available,
sampling a meta-latent and its transformation parameters based on the difference between their latent
parameters. Pairs can also be transformed by augmentations from other transformation groups, but
the context C'(G) only uses parameters from G.

Each input pair {(=;,y;)}X | is independently transformed by the encoder into latent representations.
The representation of xz; is then concatenated with its transformation action a;. This concatenated
vector (z;,a;) and the transformed input y; form the context for the symmetry G. The output
embeddings are aligned using the InfoNCE loss, minimized at each context length. If a; is set to
zero for all tokens, the model enforces invariance to G by aligning x; and y; without considering
transformation parameters. The overall loss is optimized as follows:

exp h((xi,a:)|Ci(G)) "h(yi| Ci(G)) /T
S exp h((wi, ;)| Ci(9)) Th(y;1C5(9)) /7

where transformed data tokens y; (j # ¢) form the negatives. We use a similar symmetric loss term
using y; as the anchor, (x;,a;) and (z;, a;) (j # ¢) as the positive and negatives respectively.

K
£CONTEXTSSL(h) = EQN{gl,...gM}EC(Q) Z [_ log
i=1

At inference, we adapt representation extraction to the specific needs of the downstream task, whether
it requires equivariance or invariance to a transformation group G. For tasks benefiting from equivari-
ance, we use the maximum context length K from training, constructing {(z;, a;, ;) }X, where a;
belongs to G and transforms test data x; into ;. For tasks needing invariance, we use {(z;,0,v;)}X
as the context. Specifically, including the augmentation parameters for transformations in a group G
in the context enforces equivariance, while excluding them enforces invariance. In both cases, the
data are still transformed using augmentations, regardless of the type of symmetry desired. However,
this implementation bears two key challenges, as detailed below.

Context Masking. A challenge in minimizing alignment loss is the model’s tendency toward
shortcut learning, where it treats the embeddings of (x;,a;) as identical to y; due to access to
x;. This leads to constant representations for each pair (z;, y;), perfectly minimizing the loss but
undermining the model’s effectiveness. To counter this, we mask the input token (z;, a;) for each y;
in the context, ensuring that when encoding y;, the transformer only has access to the past context
C; ={(z1,a1,91), ..., (xi—1,a;-1,yi—1)}, excluding its corresponding pair.

However, as shown in Figure 4, for p = 0, a residual challenge of shortcut learning persists when
distinguishing the positives from the negatives. Since the context corresponding to each negative is
different from that of the anchor and the positive, the model could employ trivial solutions, such as
using the mean of the context vector to differentiate between positives and negatives. To mitigate this
issue, we introduce an additional layer of randomness to our masking strategy. Specifically, for each
token in the context, we implement random masking with a probability p for tokens preceding it.

Avoiding collapse to Invariance. A trivial but undesirable solution that minimizes our optimization
objective is invariance to the input transformations. As illustrated in Figure 5, naively training
CONTEXTSSL leads to poor equivariance with respect to the transformations. Previous works [15]
have also identified this concern. For our setting, we introduce a rather simple approach that involves
jointly training an auxiliary predictor. This predictor is designed to predict the latent transformations
of the target sample y; from the concatenated input vector (x;, a;).

3 Experimental Results

3.1 Quantitative Assessment of Adaptation to Task-Specific Symmetries

We use the 3D Invariant Equivariant Benchmark (3DIEBench) [15] and CIFARI10 to test our approach.
We compare CONTEXTSSL with 1) VICReg [6] and SimCLR [9] among the invariant self-supervised
approaches; 2) EquiMOD [13], SEN [32] and SIE [15] amongst the equivariant baselines. We
report the test performance on context lengths 0, 2, 14, 30, and 126. To assess the quality of the
invariant representations, we employ linear classification over frozen features. For the equivariant
counterpart, we report 122 on the task of predicting the corresponding transformation. More details
about pretraining algorithms and training setup are provided in Appendix C.
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Figure 2: (Left) Quantitative evaluation on invariant (classification) and equivariant (rotation predic-
tion, color prediction) tasks; (Right) Performance of CONTEXTSSL on equivariant (top) rotation
prediction; (bottom) color prediction tasks with varying contexts and lengths. The algorithm increas-
ingly demonstrates equivariance to rotation (color) as the rotation (color) context length increases
while simultaneously becoming more invariant to color (rotation).

Invariant Classification and Equivariant transformation prediction task. As shown in Section 3.1,
invariant self-supervised learning methods such as SimCLR and VICReg achieve high downstream
classification accuracies but underperform in equivariant augmentation prediction tasks. Among
the equivariant baselines, EquiMOD persistently maintains its downstream classification accuracy
but exhibits improvements in augmentation prediction tasks only when trained to be equivariant to
color. In contrast, CONTEXTSSL exhibits equivariance to both rotation and color in the absence
of context. As seen from the two rows corresponding to CONTEXTSSL in Section 3.1, when the
context corresponds to pairs of data with transformations sampled from the rotation (color) group, the
model adaptively learns to be invariant to color (rotation) while improving equivariance to rotation
(color). Appendix D.12 shows that CONTEXTSSL learns equivariance or invariance to the same
transformation based on the context.

Table 1: Quantitative evaluation of learned predictors equivariant to only rotation based on Mean
Reciprocal Rank (MRR) and Hit Rate H@k on the validation dataset. CONTEXTSSL learns to be
more equivariant to rotation with context.

Method MRR (1) H@l () H@5 (1)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126
EquiMOD 0.16 0.05 0.22
SEN 0.17 0.05 0.22

CONTEXTSSL 0240 0270 0373 0396 0.402 0108 020 0223 0245 0.292 0.366 0.412 0541 0.561 0.568

Equivariant Measures Based on Nearest Neighbours Retrieval. Table 1 illustrates the performance
of CONTEXTSSL on MRR and H@k compared to baseline methods with trained equivariance to
rotation. CONTEXTSSL outperforms the baseline models, and its performance on all the metrics
consistently improves with increasing context length, showing adaptation to rotation-specific features.

Additional results. Additional results to understand the role of context mask, auxiliary predictor
are shown in Figure 4 and Figure 5 respectively. Further, we demonstrate that CONTEXTSSL
extends to naturally occurring symmetries and sensitive features in fairness and physiological datasets
such as the MIMIC III [28] and UCI Adult [2]. Unlike 3DIEBench where meta-latents for each
data are available, we manually construct positives by applying augmentations like crop and blur
on CIFAR10. The results for the combinations of crop and blur are reported in Table 2. Results
on additional transformation pairs are provided in Appendix D.9. Moreover, we explore broader
applications of our algorithm, specifically for supervised learning and present these results in Table 5
and Appendix D.10. Related works and additional discussion about the algorithmic implications can
be found in Appendix B.
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A Related Work

Self-Supervised Learning. Existing SSL methods generally belong to two categories: invariant
learning [9, 6, 11, 25, 42, 19] and equivariant learning. The representative method for invariant
learning is contrastive learning, which draws the representations of positive samples together in the
latent space such that the representations are invariant to data augmentation. Contrastive learning
can learn highly discriminative features at the cost of losing certain image information due to the
invariance constraint [39]. Motivated by this limitation, recent works explore merging contrastive
learning with equivariant learning tasks by separate embedding [39, 15], augmentation-conditioned
predictor [13, 16], and explicit equivariant transformation [21]. However, existing works still
inherit the limitations of contrastive learning: its symmetry prior is built on a given set of manual



augmentations and is not adaptive to downstream tasks. In contrast, our method enables the contextual
world model to adapt its symmetry to the contextual data, which is more flexible and generalizable to
various tasks.

World Models. World modeling has achieved notable success in reinforcement learning (RL) for
model-based planning [22, 34, 23] and vision [24, 27, 41], where it involves predicting future states
based on current observations and actions. This concept, however, has not yet been fully leveraged in
visual representation learning. Nevertheless, Garrido et al. [16] shows that several families of self-
supervised learning approaches can be reformulated through the lens of world modeling. Equivariant
self-supervised learning methods. Specifically, Masked Image Modeling approaches [26, 4, 14, 40]
consider masked pixels and target pixel reconstruction as their action and next state. Other equivariant
learning approaches [13, 32, 15] consider data transformations and representation of the target image
as their action and next state pair. However, unlike true world modeling, these approaches do not
track past experiences, a component critical for generalization. Our method instead leverages context
to track past experiences in terms of state, action, and next-state triplets, enabling it to adapt and
generalize to varying environments.

In-context Learning. Our work is inspired by and extends the concept of in-context learning
(ICL) [7] to training. Initially studied in the context of language, in-context learning has recently
been adapted for vision tasks [20, 38, 5, 30], allowing models to infer environmental features or
tasks directly from input prompts without predefined notions. For example, Visual Prompting [38, 5]
uses a task input/output example pair and a query image at test time, and uses inpainting to generate
the desired output. Gupta et al. [20] propose using unlabeled data as context at training to extract
environment-specific signals and address domain generalization. ICL has been extensively explored
in various domains, including vision, language, and multimodal tasks. However, our work is the first
to apply ICL to vision self-supervised representation learning.

B Additional Discussion and Future Perspectives
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Figure 3: Family of approaches in self-supervised learning (a) Joint Embedding methods [9, 6,
8] encode invariances to input transformations a by aligning representations across views of the
same image; (b) Image World Models [16, 1] train a world model in the latent space and encode
equivariance to input transformations; (c) Contextual World Models (ours) selectively enforce
equivariance or invariance to a subset of input transformations based on context {(;, a;, y;)}*_;

The field of language modeling has witnessed a significant paradigm shift over the past decade,
moving towards foundation models that generalize across a variety of tasks either directly or through
distillation. However, this shift toward generalization has been conspicuously absent in the vision
domain. This is largely because self-supervised approaches for vision still heavily rely on inductive
priors strongly introduced by enforcing either invariance or equivariance to data augmentations. This
renders representations brittle in downstream tasks that do not conform to these priors and necessitates
retraining the representation separately for each task. This work forgoes any notion of pre-defined
symmetries and instead trains a model to infer the task-relevant symmetries directly from the context
through what we term Contextual Self-Supervised Learning (CONTEXTSSL). The ability of our
model to learn selective equivariances and invariances based on mere context opens up new avenues
for effectively handling a broader range of tasks, particularly in dynamic environments where the
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relevance of specific features may change over time. However, we limit our scope of symmetries
to hand-crafted transformations in the data and do not explore naturally occurring symmetries.
Nonetheless, CONTEXTSSL lays the groundwork for models that can potentially discern and adapt to
the underlying patterns of tasks, recognize shortcuts, and more effectively generalize across unseen
scenarios. Through this work, we hope to contribute to a broader understanding of how machines can
learn more like humans — contextually, adaptively, and with an eye toward the infinite variability of
the real world.

C Supplementary experimental details and assets disclosure

To evaluate the efficacy of our proposed algorithm CONTEXTSSL, our experiments are designed to
address the following questions:

i) How does CONTEXTSSL fare against competitive invariant and equivariant self-supervised
learning approaches in terms of performance across varying context sizes and different sets
of data transformations?

ii) How effectively can CONTEXTSSL identify task-specific symmetries, both within the scope
of self-supervised learning and beyond?

iii) What roles do specific components such as selective masking and the auxiliary latent
transformation predictor play in facilitating the learning of general and context-adaptable
representations?

C.1 Assets

We do not introduce new data in the course of this work. Instead, we use publicly available widely
used image datasets for the purposes of benchmarking and comparison.

C.2 Hardware and setup

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of accelerator
RAM. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB of RAM.
All experiments were implemented using the PyTorch deep learning framework.

C.3 Datasets

3D Invariant Equivariant Benchmark (3DIEBench). To test equivariance and invariance to
multiple data transformations, we use the 3D Invariant Equivariant Benchmark (3DIEBench) [15]
which has been specifically designed to address the limitations of existing datasets in evaluating
invariant and equivariant representations. It contains images of 3D objects along with their latent
parameters such as object rotation, lighting color, and floor color. Since we have access available to
individual meta latent parameters, transformation parameters between two views of an object are
calculated as the difference between their individual latents. We test our approach on 3DIEBench
under two settings 1) Considering two transformation groups: rotation and color with the aim of
learning invariance to one and equivariance to another after conditioning on context; 2) Considering
one transformation group, say rotation and learning to enforce invariance or equivariance to rotation
with context. As previously mentioned, all methods are trained for 1000 epochs using a batch size of
512 on 128x 128 resolution images. We use the standard training, validation and test splits, made
publicly available by the authors [15].

CIFAR10. 3DIEBench dataset is limited to only rotations and color as transformation groups.
We extend our approach to include more common self-supervised benchmarks, such as CIFAR-
10, incorporating transformations like blurring, color jitter, and cropping. Unlike 3DIEBench, we
manually construct positive pairs by applying compositions of these handcrafted augmentations. We
consider three transformation groups: crop, blur and color. Similar to 3DIEBench, we consider
combinations of two groups for each training run. We use the standard training, validation and test
splits.
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C.4 Baseline Algorithms

Among the invariant self-supervised approached, we compare our approach to VICReg [6] and and
SimCLR [9]. For each method, comparisons are drawn using their originally proposed architectures.
For the equivariant baselines, we consider EquiMOD [13], SIE [15] and SEN [32]. Similar to Garrido
et al. [15], For SEN, we use the InfoNCE loss instead the original triplet loss. To discard the
performance gains potentially arising from CONTEXTSSL’s transformer architecture, for each
approach, we consider an additional baseline that replaces the original projection heads or predictor
with our transformer model. Given an algorithm name A/, we refer to this baseline as A'*. Amongst
these, we report the best performing variant in our results. For A/, we conduct analysis in two
distinct settings: 1) a 'no context’ or ¢ = 0 invariant condition, and 2) a fully contextualized setting
with a context length of 126.

C.5 Training Protocol

To ensure a fair comparison across different algorithms for each dataset, we use a standardized
neural network backbone. Precisely, for our encoder, we use a ResNet-18 backbone pre-trained on
ImageNet. For CONTEXTSSL, output features from the encoder are transformed into the context
sequence, which is then processed by the decoder-only Transformer [37] from the GPT-2 Transformer
family [33]. Our model configuration includes 3 layers, 4 attention heads, and a 2048-dimensional
embedding space, consistently applied across all datasets. Linear layers are utilized to convert the
input sequence into the transformer’s latent embedding of dimension 2048 and to map the predicted
output vectors to the output space of dimension 512.

We fix the maximum training context length to 128. Since for every y, the corresponding token
(z;, a;) is masked out, context length L corresponds to effective context length L — 2. Thus, we report
CONTEXTSSL’s performance over varying test context length of 0, 2, 14, 30 and 126. On all datasets,
we train CONTEXTSSL with the Adam optimizer with a learning rate of 56> and weight decay
le—3. For baseline self-supervised approaches, in their original architecture, we use a learning rate
of 1e~3 with no weight decay. However, when tested using the transformer architecture, we choose
one of the above two optimizer hyperpameters. Consequently, performance of the best performing
model is reported among the two baselines. Similar to Garrido et al. [15], we report hyper-parameters
and architectures specific to each method:

* SimCLR [9] We train using a 2048-2048-2048 dimensional multi-layered perceptron (MLP)
based projection head with a temperature of 0.5.

* VICReg [6] We train using a 2048-2048-2048 MLP for the projection head and use weight
of 10 for both the invariance loss and variance loss and 1 for covariance loss.

* SEN [32] Similar to other approaches we use a projection head of dimension 2048-2048-
2048 and temperature 0.1.

* EquiMod [13] We use the standatd projection head of dimensions 1024-1024-128 and use
equal weighing of the invariance and the equivariance loss.

* SIE [15] We use two 1024-1024-1024 projection heads, one for invariant latent space and
other for equivariant. When trained to learn equivariance to only rotation or only color, we
use weight of 10 for both the invariance loss and variance loss, 1 for the covariance loss and
4.5 for the equivariant loss. However, when trained to be equivariant to both rotation and
color jointly, we use 10 as the equivariant weight.

C.6 Evaluation metrics

In line with established self-supervised learning methodologies, we begin by assessing the quality of
the learned representations through downstream tasks. For evaluating invariant representations, we
employ linear classification over frozen features. To evaluate equivariant representations, we predict
the corresponding data transformation. This prediction takes representations from two differently
transformed views of the same object and regresses on the applied transformation between them.
Further, we use Mean Reciprocal Rank (MRR) and Hit Rate at k (H@k) to evaluate the performance
for our context predictor. Given the source data and the transformation action, we identify the k
nearest neighbors in the embedding space. MRR is calculated as the average reciprocal rank of the
target embedding within these nearest neighbors. Hit rate-k (H@Xk) assigns a score of 1 if the target
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embedding is within the k-nearest neighbors of the predicted embedding and 0 otherwise. Similar to
Garrido et al. [15], we restrict the search for nearest neighbors to different views of the same object,
thus ensuring that the predictor is not penalized for retrieving an incorrect object in a pose similar to
the correct one.

D Additional Experiments

D.1 Role of Context Mask and Auxiliary Predictor

Role of Context Mask. To illustrate how context masking effectively eliminates shortcuts, we
conduct an ablation study with varying masking probabilities, detailed in Figure 4. We observed that
as masking probability increases, performance on both classification and prediction tasks initially
improves but later declines, reaching optimal performance at a masking probability of 90%.
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Figure 4: Role of context mask to avoid context based shortcuts in CONTEXTSSL

Role of Auxiliary Predictor. We demonstrate that the auxiliary predictor is crucial for the model to
achieve equivariance. In its absence, as depicted in Figure 5, while the model retains its performance
on the invariant classification task, it fails to learn equivariance, and cannot effectively adapt to
different contexts.
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Figure 5: Role of auxiliary predic-  Figure 6: Nearest neighbors of different methods taking as
tor to avoid the trivial solution of input the source image and rotation angle. CONTEXTSSL
invariance. aligns best with the rotation angle of the target image.

D.2 Qualitative Assessment of Adaptation to Task-Specific Symmetries

We conduct a qualitative assessment of model performance by taking the nearest neighbors of the
predictor output when inputting a source image and a transformation variable, as shown in Figure 6.
The nearest neighbors of invariance models (SimCLR and VICReg) have random rotation angles.
Equivariance baselines (SEN, SIE, EquiMOD) correctly generate the target rotation angle for some
of the 3-nearest neighbors but fail in others. CONTEXTSSL outperforms by successfully identifying
the correct angle in all 3-nearest neighbors while remaining invariant to color variations. Additional
qualitative assessments for CONTEXTSSL with varying context are provided in Appendix D.8.
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D.3 Expanding to Diverse Data Transformations

Unlike 3DIEBench where meta-latents for each data are available, we manually construct positives
by applying augmentations like crop and blur on CIFAR10. The results for the combinations
of crop and blur are reported in Table 15. Consistent with our previous results, while almost
retaining the classification performance as SimCLR, CONTEXTSSL learns to adaptively enforce
equivariance to crop (blur) and invariance to blur (crop) depending upon the context. Note that the
invariance performance initially improves with increasing context length but then diminishes. This
occurs due to the 90% random masking ratio during training, which necessitates out-of-distribution
generalization when the context length is large. Results on additional transformation pairs are
provided in Appendix D.9.

Table 2: Performance of CONTEXTSSL on invariant (classification) and equivariant (crop prediction,
blur prediction) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and
blur, i.e. CONTEXTSSL (blur).

Method Crop prediction (R?) Blur prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.459 0.371 89.1
SimCLR™* (c=0) 0.448 0.361 88.9
SimCLR™* 0.362 0.444 59.9
CONTEXTSSL (crop) 0.608 0.607 0.607 0.608 0.608 0.920 0.854 0.624 0.667 0.694 88.5
CONTEXTSSL (blur)  0.609 0.482 0434 0417 0465 0.920 0923 0925 0925 0.925 88.5

D.4 Context World Models Beyond Self-Supervised Learning

While our analysis has primarily focused on self-supervised learning, the concept of context is versatile
and extends beyond representation learning. In principle, irrespective of the task at hand, paying
attention to context can learn and identify features defined by it. To validate this and explore broader
applications of our algorithm, we consider a supervised learning task where our transformer model is
trained to directly predict the labels corresponding to an input image. We further corrupt the labels to
be directly influenced by the augmentation group transforming the data. Specifically, for 3DIEBench
dataset, we add a constant value of 10 to each label if the context corresponds to the rotation group
and leave it unchanged otherwise. We report classification performance along with rotation and
color prediction equivariant measures. As shown in Table 5, CONTEXTSSL’s classification accuracy
improves with context, demonstrating its ability to better identify the underlying symmetry group
with increase in context. Additional results are provided in Appendix D.10. Further, CONTEXTSSL
serves as a general framework that can adapt to different training regimes such as supervised learning.

D.5 CONTEXTSSL on Naturally Occurring Symmetries

We show that ContextSSL extends to naturally occurring symmetries and sensitive features in fairness
and physiological datasets such as the MIMIC III [28] and UCI Adult [2]. To demonstrate this, we
train ContextSSL to be selectively equivariant or invariant to gender by merely attending to different
contexts. This is crucial; for instance, equivariance is needed for gender-specific medical diagnoses
where different medicine dosages are required, while invariance is essential for fairness in tasks such
as predicting hospital stay duration or medical cost. We present these results in Table 3 and Table 4,
with details in the caption. From Table 3 , we can observe that ContextSSL learns equivariance to
gender in one context, improving gender and medical diagnosis prediction for MIMIC-III. In another
context, ContextSSL achieves higher invariance to gender, resulting in superior performance on
fairness metrics like equalized odds (EO) and equality of opportunity (EOPP) for hospital stay (LOS)
prediction. We observe similar results for fairness of income prediction in the UCI Adult dataset, as
shown in Table 4 of the attached document.

D.6 Quantitative Assessment of Adaptation to Task-Specific Symmetries

In this section, we present additional results on the quantitative assessment of model performance on
3DIEBench, including the evaluation of learned representations on equivariant tasks (rotation and
color prediction) to predict individual latent values. In contrast, the results in Section 3.1 focus on
predicting relative latent values between pairs of image embeddings as inputs.
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Table 3: Performance of CONTEXTSSL on the MIMIC III dataset [28]. For each data point z;, we
create the transformed data y; by flipping the value of gender. For this experiment, equivariance is
needed for gender-specific medical diagnoses where different medicine dosages are required, while
invariance is essential for fairness in tasks such as predicting hospital stay duration or medical cost.
We observe that when the environment is equivariant to gender, both gender prediction and medical
treatment prediction improve with context. When the environment is invariant, embedding fairness
of hospital stay (LOS) prediction as measured by equalized odds (EO) and equality of opportunity
(EOPP), improves with context.

G Gender prediction Acc 1 LOS prediction Acc T Equalized odds |  Equality of opportunity |  Treatment prediction Acc 1
Context Length 0 126 0 126 0 126 0 126 0 126
Equivariant 0.969 0.991 0.942 0.944 0.028  0.035 0.023 0.031 0.333 0.344
Invariant 0.969 0.626 0.942 0.943 0.028  0.023  0.023 0.004 0.333 0.316

Table 4: Performance of CONTEXTSSL on the UCI Adult [2] dataset. For each data point x;, we
create the transformed data y; by flipping the value of gender. When the environment is equivariant to
gender, both gender prediction and income prediction improve with context. When the environment
is invariant, embedding fairness of income prediction measured by equalized odds (EO) and equality
of opportunity (EOPP), improves with context.

g Gender prediction Acc 1 Income prediction AUC 1 Equalized odds |  Equality of opportunity |
Context Length 0 126 0 126 0 126 0 126
Equivariant 0.985 0.999 0.900 0.900 0.114  0.130  0.061 0.101
Invariant 0.985 0.605 0.900 0.899 0.114  0.066  0.061 0.047

Table 5: Performance of CONTEXTSSL on equivariant tasks (including classificaion) for context-
dependent labels. CONTEXTSSL adapts to context-dependent labels with varying context.

Method Rotation prediction (R?) Color prediction (R?) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126
SimCLR (color) 0.537 0.056 72.0
SimCLR (rotation) 0.537 0.056 14.2
SimCLR™* (c=0) (color) 0.427 -0.007 80.4
SimCLR™ (c=0) (rotation) 0.427 -0.007 5.2
SimCLR™ (color) 0.424 0.243 168 151 156 148 14.0
SimCLR™ (rotation) 0.424 0.243 56.1 582 584 584 59.1
CONTEXTSSL (color) 0.556 0.542 0.538 0.540 0.539 0913 0.973 0981 0982 0982 89 824 827 828 83.0
CONTEXTSSL (rotation) ~ 0.556 0.624 0.661 0.665 0.666 0913 0.379 0.111 0.095 0.093 735 827 826 8.6 83.0

D.6.1 Invariant Classification and Equivariant transformation prediction task

As shown in Table 6, invariant self-supervised learning methods such as SimCLR and VICReg
underperform in equivariant augmentation prediction tasks. The equivariant baselines, EquiMOD,
SIE, and SEN, exhibit improvements compared to the invariant baselines in some of the augmentation
prediction tasks. However, their degree of equivariance is much worse compared to CONTEXTSSL.
Besides, aligning them with different targeted symmetry groups requires retraining the entire model.
In contrast, CONTEXTSSL employs a single model capable of learning equivariance to rotation
and invariance to color (or vice versa) based on the given context. As seen from the two rows
corresponding to CONTEXTSSL Section 3.1, when the context corresponds to pairs of data with
transformations sampled from the rotation (color) group, the model adaptively learns to be invariant
to color (rotation) while retaining equivariance to rotation (color).

Results in Section 3.1 are the average value over three random seeds. We provide the standard
deviation for rotation and color prediction of CONTEXTSSL in Table 7 and Table 8.

D.6.2 Equivariant Measures Based on Nearest Neighbours Retrieval

Similar to Table 1, we provide the performance of CONTEXTSSL on MRR and H@k compared
to baseline methods with trained equivariance to rotation. While Table 1 uses the validation set
data as the retrieval library, Table 9 provides the results using the training set data. CONTEXTSSL
outperforms the baseline models, and its performance on all the metrics consistently improves with
increasing context length, showing adaptation to rotation-specific features.
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Table 6: Quantitative evaluation of learned representations on equivariant (rotation prediction, color
prediction) tasks to predict individual latent values.

g Method Rotation prediction (R?) Color prediction (R2)
0 2 14 30 126 0 2 14 30 126
Invariant
SimCLR 0.791 0.137
SimCLR*(c=0) 0.773 0.061
SimCLR* 0.544 0.498
VICReg 0.660 0.011
VICReg ™ (c=0) 0.615 0.061
= Equivariant
2 5 EquiMOD 0.712 0.221
£ < SIE 0.760 0.972
~ +0O SEN 0.617 0.888
= EquiMOD 0.707 0.033
2 SIE 0.790 0.001
g SEN 0.723 0.437
~ CONTEXTSSL' 0.838 0.839 0.840 0.840 0.840 0.895 0.620 0.021 0.014 0.021
EquiMOD 0.660 0.855
8 SIE 0.560 0.974
3 SEN 0.713 0.876

CONTEXTSSL? 0.838 0.800 0.699 0.666 0.685 0.895 0981 0985 0.985 0.986

Table 7: Performance of CONTEXTSSL in 3DIEBench in rotation prediction under the environment
of rotation, i.e. CONTEXTSSL (rotation), and color, i.e. CONTEXTSSL (color), with standard
deviations over three random seeds.

Method Rotation prediction (R?)
0 2 14 30 126

CONTEXTSSL (rotation) 0.734 £0.002 0.740 £ 0.004 0.743 £0.001 0.743 £ 0.001  0.744 £ 0.001
CONTEXTSSL (color) 0.735 £ 0.001 0.614 £0.108 0.389 £ 0.054 0.345 £ 0.040 0.344 £ 0.003

Table 8: Performance of CONTEXTSSL in 3DIEBench in color prediction under the environment of
rotation, i.e. CONTEXTSSL (rotation), and color, i.e. CONTEXTSSL (color), with standard deviations
over three random seeds.

Method Color prediction (R?)
0 2 14 30 126

CONTEXTSSL (rotation) 0.908 4 0.002 0.664 & 0.166 0.037 =0.010 0.023 £0.001  0.046 & 0.007
CONTEXTSSL (color) 0.908 £0.002 0.981 +£0.002 0.98540.001 0.986 & 0.001  0.986 £ 0.001

Table 9: Quantitative evaluation of learned predictors equivariant to only rotation based on Mean
Reciprocal Rank (MRR) and Hit Rate H@k on training dataset. CONTEXTSSL learns to be more
equivariant to rotation with context.

Method MRR (1) H@I1 (1) H@5 (1)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126
EquiMOD 0.17 0.06 0.24
SEN 0.17 0.06 0.24

CONTEXTSSL  0.282 0321 0470 0.498 0.531 0.132 0.263 0.575 0.398  0.402 0436 0495 0.650 0.669 0.680

D.7 Role of Context Mask and Auxiliary Predictor

In this section, we provide additional results for the role of context mask and auxiliary predictor.
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Figure 7: Role of context mask to avoid context based shortcuts in CONTEXTSSL under color context

D.7.1 Role of Context Mask

In addition to Figure 4, we provide the performance of the rotation and color prediction tasks
with varying masking probabilities under the environment of color in Figure 7. We observed that
as masking probability increases, performance on both classification and prediction tasks initially
improves but later declines, reaching optimal performance at a masking probability of 90%.

Results in Figure 4 and Figure 7 are the average value over three random seeds. We provide the
standard deviation for rotation and color prediction of CONTEXTSSL in Table 10 and Table 11.

Table 10: Performance of CONTEXTSSL rotation prediction tasks in 3DIEBench under different
random masking probabilities, with standard deviations over three random seeds.

Context  Probability Rotation prediction (R?)
0 2 14 30 126

0.00 0.677 £0.004 0.677 £0.002 0.673 £0.009 0.682 £+ 0.003 0.683 & 0.003
0.20 0.710 £0.002 0.721 £0.006 0.727 £0.002 0.729 £+ 0.001  0.729 £ 0.001
0.50 0.725 £ 0.001 0.738 £0.005 0.743 £ 0.001 0.743 = 0.001  0.744 £ 0.001

Rotation 0.75 0.734 £ 0.002  0.738 = 0.006 0.742 & 0.004 0.741 & 0.004 0.741 & 0.002
0.90 0734+ 0.002  0.740 + 0.004 0.743 + 0.001 0.743 + 0.001  0.744 = 0.001
0.98 0.726 £ 0.002  0.725 4+ 0.003 0.726 4+ 0.002 0.726 4+ 0.003  0.726 + 0.003
0.00 0.677 = 0.004 0.676 = 0.005 0.620 = 0.019 0.569 = 0.019 0.655 = 0.010
0.20 0710 £ 0.002  0.689 +0.013 0.427 +£0.031 0336+ 0.007 0.282 + 0.022
Color 0.50 0725+ 0.001 0.683 +0.006 0.390 +0.031 0.282+0.013 0.287 = 0.002

0.75 0.734 £0.002 0.718 £0.002 0.499 £0.035 0.378 £0.054 0.472 +0.015
0.90 0.735 £0.001  0.614 +0.108  0.389 + 0.054 0.345 +0.040 0.344 + 0.003
0.98 0.726 £0.002  0.508 £ 0.127 0.529 £0.141 0.571 £0.125 0.665 £ 0.023

Table 11: Performance of CONTEXTSSL color prediction tasks in 3DIEBench under different random
masking probabilities, with standard deviations over three random seeds.

Context  Probability Color prediction (R?)
0 2 14 30 126

0.00 0.981 £0.002 0.940 £0.033 0.613 £0.123 0.406 = 0.125 0.807 4 0.080
0.20 0.975+0.001 0.866 £0.171 0.465 £0.113 0.194 +£0.057 0.124 4 0.027
0.50 0.971 £0.002 0.904 £0.086 0.699 £0.028 0.205 £ 0.054 0.091 +0.016

Rotation 0.75 0.980 & 0.001 0.727 £0.351 0358 £0.233 0.162 +0.021 0.076 = 0.009
0.90 0.908 = 0.002  0.664 = 0.166  0.037 = 0.010  0.023 = 0.001  0.046 = 0.007
0.98 0.982 £ 0.001 0.674 =0.368 0309 £ 0.139 0.303 £ 0.118 0.253 & 0.033
0.00 0.981 £ 0.002  0.986 = 0.002 0.989 - 0.001 0.989 - 0.001 0.989 + 0.001
0.20 0.975 £ 0.001 0.984 = 0.002 0.987 == 0.001  0.987 = 0.001  0.987 == 0.001
Color 0.50 0.971 +0.002 0982 +0.002 0.986+0.002 0.987 & 0.002 0.988 + 0.001

0.75 0.980 £ 0.001 0.983 £0.001 0.987 £0.001 0.987 £ 0.001 0.988 £ 0.001
0.90 0.908 +0.002 0.981 £0.002 0.985£0.001 0.986 &+ 0.001 0.986 4 0.001
0.98 0.982 +0.001 0.982 £0.001 0.981 £0.001 0.981 £0.001 0.981 & 0.001

17



D.7.2 Role of Auxiliary Predictor

We provide the complete results corresponding to Figure 5 in Table 12 to demonstrate that the
auxiliary predictor is crucial for the model to achieve equivariance. In its absence, while the model
retains its performance on the invariant classification task, it fails to learn equivariance, performs
similarly to the invariant models, and cannot effectively adapt to different contexts.

Table 12: Performance of CONTEXTSSL on classification, rotation and color prediction tasks in
3DIEBench with and without the auxiliary predictor

Method Rotation prediction (R?) Color prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.227 -0.004 853
SimCLR™ (c=0) 0.230 -0.004 834
SimCLR™* 0.245 0.028 423
CONTEXTSSL (w/o) (rotation)  0.227 0227 0.226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
CONTEXTSSL (w/o0) (color) 0.227 0.227 0226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
CONTEXTSSL (rotation) 0.734 0.740 0.743 0.743 0.744 0.908 0.664 0.037 0.023  0.046 80.4
CONTEXTSSL (color) 0.735 0.614 0389 0.345 0.344 0.908 0981 0985 098 0.986 80.4

D.8 Qualitative Assessment of Adaptation to Task-Specific Symmetries

D.8.1 Comparison with Baseline Approaches

We provide additional results to the qualitative assessment comparing with different models in
Figure 8. The nearest neighbors of invariance models (SimCLR and VICReg) have random rotation
angles. Equivariance baselines (SEN, SIE, EquiMOD) correctly generate the target rotation angle
for some of the 3-nearest neighbors but fail in others. CONTEXTSSL outperforms by successfully
identifying the correct angle in all 3-nearest neighbors while remaining invariant to color variations.

SimCLR VICReg EquiMOD  CoNTEXTSSL

Source

1I-NN

2-NN

3-NN

Figure 8: Nearest neighbors of different methods taking as input the source image and rotation angle.
CONTEXTSSL aligns best with the rotation angle of the target image.

D.8.2 Nearest Neighbour Retrieval with Varying Context

In this section, we conduct a qualitative assessment of model performance by taking the nearest
neighbors of the predictor output when inputting a source image and a transformation variable, and
show the change in retrieving quality in Figure 9, Figure 10, and Figure 11. We observe that the
nearest neighbors have a closer rotation angle (color) to the target image under rotation (color) context
as context length increases, indicating CONTEXTSSL’s ability to adapt to the given context as context
length increases.

D.9 Expanding to Diverse Data Transformations

Unlike 3DIEBench where meta-latents for each data are available, we manually construct positives by
applying augmentations like crop and blur on CIFAR10. The results for the combinations of crop and
blur are reported in Table 15. We additionally provide the results for the combinations of crop and
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Figure 9: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at
different context lengths. As context increases, CONTEXTSSL aligns better with the rotation angle
(color) of the target image when the context is based on rotation (color).
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Figure 10: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle
at different context lengths. As context increases, CONTEXTSSL aligns better with the rotation angle
(color) of the target image when the context is based on rotation (color).

color in Table 14 and crop and blur in Table 15. Consistent with our previous results, while almost
retaining the classification performance as SimCLR, CONTEXTSSL learns to adaptively enforce
equivariance and invariance to different environments depending upon the context.

Table 13: CIFAR-10 Color-Blur. Performance of CONTEXTSSL on invariant (classification) and
equivariant (color prediction, blur prediction) tasks in CIFAR-10 under the environment of color, i.e.
CONTEXTSSL (color), and blur, i.e. CONTEXTSSL (blur).

Method Color prediction (R?) Blur prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.154 0.371 89.1
SimCLR™* (c=0) 0.054 0.361 88.9
SimCLR* 0.318 0.444 59.9
CONTEXTSSL (color) 0.518 0.519 0.519 0519 0.519 0916 0.793 0.699 0.735 0.823 88.9
CONTEXTSSL (blur)  0.518 0.353 0.241 0259 0.333 0916 0916 0916 0916 0917 88.8

In addition to the results for predicting relative latent values between pairs of image embeddings as
input in Table 15, Table 14, and Table 13, we provide the evaluation of learned representations on
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Figure 11: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle
at different context lengths. As context increases, CONTEXTSSL aligns better with the rotation angle
(color) of the target image when the context is based on rotation (color).

Table 14: CIFAR-10 Crop-Color. Performance of CONTEXTSSL on invariant (classification) and
equivariant (crop prediction, color prediction) tasks in CIFAR-10 under the environment of crop, i.e.
CONTEXTSSL (crop), and color, i.e. CONTEXTSSL (color).

Method Crop prediction (R?) Color prediction (R?) Classification (top-1)
0 2 14 30 126 0 2 14 30 126 Representation
SimCLR 0.459 0.154 89.1
SimCLR* (c=0) 0.448 0.054 88.9
SimCLR* 0.362 0.318 59.9
CONTEXTSSL (crop)  0.606 0.606 0.607 0.607 0.607 0.522 0.378 0.253 0.264 0.301 87.5
CONTEXTSSL (color) 0.605 0.467 0387 0466 0511 0.523 0.525 0.527 0.527 0.527 87.5

equivariant tasks (rotation and color prediction) to predict individual latent values, as shown in ??,
Table 17, and Table 16 respectively. Both results lead to the same conclusion, that CONTEXTSSL is
able to adaptively enforce equivariance and invariance to different environments depending upon the
context.

Table 15: CIFAR-10 Crop-Blur. Performance of CONTEXTSSL on equivariant (crop prediction,
blur prediction) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and
blur, i.e. CONTEXTSSL (blur), to predict individual latent values.

Method Crop prediction (R2) Blur prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.382 0.122
SimCLR™ (c=0) 0.375 0.111
SimCLR™* 0.202 0.322

CONTEXTSSL (crop) 0.576 0.575 0.576 0.576 0.576 0.835 0.795 0.630 0.644 0.663
CONTEXTSSL (blur) 0.575 0.504 0.463 0443 0474 0.835 0.835 0.836 0.837 0.837

D.10 Context World Models Beyond Self-Supervised Learning

We report classification performance along with rotation and color prediction equivariant measures.
The results for predicting relative values are shown in Table 5 and the results for predicting individual
latent values are shown in Table 18. The equivariance (invariance) performance of CONTEXTSSL
improves with increased context.
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Table 16: CIFAR-10 Color-Blur. Performance of CONTEXTSSL on equivariant (color prediction,
blur prediction) tasks in CIFAR-10 under the environment of color, i.e. CONTEXTSSL (color), and
blur, i.e. CONTEXTSSL (blur), to predict individual latent values.

Method Color prediction (R?) Blur prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.121 0.122
SimCLR™ (c=0) 0.039 0.111
SimCLR* 0.242 0.322

CONTEXTSSL (color) 0.488 0.488 0488 0.4838 0.488 0.837 0.711 0.628 0.672 0.730
CONTEXTSSL (blur)  0.488 0.376 0.286 0309 0362 0.837 0.838 0.838 0.838 0.837

Table 17: CIFAR-10 Crop-Blur. Performance of CONTEXTSSL on equivariant (crop prediction,
color prediction) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and
color, i.e. CONTEXTSSL (color), to predict individual latent values.

Method Crop prediction (R?) Color prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.382 0.121
SimCLR™ (c=0) 0.375 0.039
SimCLR™ 0.202 0.242

CONTEXTSSL (crop) 0570 0.572 0.572 0.572 0572 0495 0417 0342 0356 0.373
CONTEXTSSL (color) 0.570 0.490 0.447 0492 0.515 0495 0496 0497 0497 0.497

Table 18: Context-Dependent Labels Classification Task. Performance of CONTEXTSSL on
equivariant (rotation prediction, color prediction) tasks for context-dependent labels to predict
individual latent values. As context length increases, CONTEXTSSL becomes more equivariant to
color (or rotation) and more invariant to rotation (or color) within the respective environment.

Method Rotation prediction (R?) Color prediction (R?)
0 2 14 30 126 0 2 14 30 126
SimCLR 0.781 0.058
SimCLR™ (c=0) 0.478 -0.003
SimCLR™* 0.695 0.267

CONTEXTSSL (color) 0.751 0.751 0.750 0.750 0.749 0915 0973 0980 0.981 0.981
CONTEXTSSL (rotation) 0.750 0.778 0.797 0.795 0.795 0915 0.375 0.104 0.091 0.090

D.11 Performance on Encoder Representations and Predictor Embedding

We analyze the difference between the performance on representation and the performance on
predictor embedding for both the invariance (classification) task and equivariance (rotation prediction)
task in Table 19 and Table 20. CONTEXTSSL maintains almost the same performance for rotation
prediction using either representations or embeddings, while the performance of all other baselines
drops significantly when using the embeddings. Similar conclusions apply to the classification case,
except for SimCLR™, for which the classification accuracy for both representations and embeddings
is low.

D.12 Enforcing Invariance or Equivariance to the Same Transformation Using Context

Apart from adaptively learning equivariance to a subset of transformation groups and invariance to the
rest as shown in Section 3.1, we extend CONTEXTSSL to operate within environments characterized
by a single transformation. Motivated by this, we ask the question: Can CONTEXTSSL adapt to
learn equivariance or invariance to the same transformation depending on the context?. At training,
we randomly sample one of these environments. If the environment corresponds to enforcing equiv-
ariance, we construct our context in the same way as before i.e. pairs of positives transformed using
augmentations sampled from the transformation group. However, if the environment corresponds
to enforcing invariance, we maximize alignment between positives transformed by augmentation
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Table 19: Model performance in rotation prediction task, within the rotation-equivariant environment.
The R? values are calculated for both the representations and the embeddings (output of projection
head for invariant models (VICReg, SimCLR) or predictor for equivariant models (SEN, EquiMod,
SIE, CONTEXTSSL). Unlike other models, which experience a significant performance drop between
representations and embeddings, CONTEXTSSL maintains consistent performance.

Method Rotation prediction (R?)
Representations Embeddings Change

VICReg 0.37 0.23 -0.14
SimCLR 0.51 0.23 -0.28
SEN 0.63 0.39 -0.24
EquiMod 0.51 0.39 -0.12
SIE 0.67 0.60 -0.07
CONTEXTSSL (rotation) 0.74 0.74 -0.00

Table 20: Performance of CONTEXTSSL on accuracy of predictor embeddings for context-dependent
labels.

Method Classification (top-1)

0 2 14 30 126  Representation Change
SimCLR 52.7 85.3 -32.6
SimCLR™ (c=0) 724 83.4 -11.0
SimCLR* 41.8 423 -0.5
CONTEXTSSL (rotation) 76.6 769 756 769 77.5 80.4 -2.9
CONTEXTSSL (color) 76.6 753 71.7 726 765 80.4 -3.9

sampled from the transformation group without conditioning on that augmentation. Take rotation
in 3DIEBench as an example. As shown in Table 21, similar to our results in two transformation
setting (rotation and color) in Section 3.1, CONTEXTSSL effectively adapts to enforce invariance
and equivarance to rotation depending on the context. Results for predicting individual latents are
provided in Table 22.

Table 21: Single Transformation Setting. Performance of CONTEXTSSL in 3DIEBench under
the equivariant environment, i.e. CONTEXTSSL (rotation), and the invariant environment, i.e.
CONTEXTSSL (none), with respect to rotation.

Method Rotation prediction (R?) Classification (top-1)
0 2 14 30 126 Representation
SimCLR 0.506 853
SimCLR™ (c=0) 0.478 834
SimCLR™* 0.247 423
CONTEXTSSL (rotation) 0.737 0.737 0.736  0.737 0.738 80.6
CONTEXTSSL (none) 0.737 0.717 0477 0377 0473 80.6

Table 22: Single Transformation Setting. Performance of CONTEXTSSL in 3DIEBench under
the equivariant environment, i.e. CONTEXTSSL (rotation), and the invariant environment, i.e.
CONTEXTSSL (none), with respect to rotation, to predict the individual latent values.

Method Rotation prediction (R?)
0 2 14 30 126
SimCLR 0.791
SimCLR™ (c=0) 0.773
SimCLR™ 0.544

CONTEXTSSL (rotation) 0.778 0.777 0.767 0.768 0.777
CONTEXTSSL (none) 0.839 0.829 0.721 0.667 0.698
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